Mode of action of teixobactins in cellular membranes

Shukla, R., Medeiros-Silva, J., Parmar, A., Vermeulen, B. J. A., Das, S., Paioni, A. L., . . . Weingarth, M. (2020). Mode of action of teixobactins in cellular membranes. Nature Communications, 11(1). DOI: 10.1038/s41467-020-16600-2


AWZ1066S, a highly specific anti-Wolbachia drug candidate for a short-course treatment of filariasis

Hong, W. D., Benayoud, F., Nixon, G. L., Ford, L., Johnston, K. L., Clare, R. H., . . . O'Neill, P. M. (2019). AWZ1066S, a highly specific anti-Wolbachia drug candidate for a short-course treatment of filariasis. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 116(4), 1414-1419. DOI: 10.1073/pnas.1816585116


Industrial scale high-throughput screening delivers multiple fast acting macrofilaricides

Clare, R. H., Bardelle, C., Harper, P., Hong, W. D., Borjesson, U., Johnston, K. L., . . . Ward, S. A. (2019). Industrial scale high-throughput screening delivers multiple fast acting macrofilaricides. NATURE COMMUNICATIONS, 10. DOI: 10.1038/s41467-018-07826-2


Semi-solid prodrug nanoparticles for long-acting delivery of water-soluble antiretroviral drugs within combination HIV therapies

Hobson, J., Al-Khouja, A., Curley, P., Meyers, D., Flexner, C., Siccardi, M., . . . Rannard, S. P. (2019). Semi-solid prodrug nanoparticles for long-acting delivery of water-soluble antiretroviral drugs within combination HIV therapies. Nature Communications, 10. DOI: 10.1038/s41467-019-09354-z


Long-acting injectable atovaquone nanomedicines for malaria prophylaxis

Bakshi, R. P., Tatham, L. M., Savage, A. C., Tripathi, A. K., Mlambo, G., Ippolito, M. M., . . . Shapiro, T. A. (2018). Long-acting injectable atovaquone nanomedicines for malaria prophylaxis. Nature Communications, 9. DOI: 10.1038/s41467-017-02603-z


A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance

O'Neill, P. M., Amewu, R. K., Charman, S. A., Sabbani, S., Gnädig, N. F., Straimer, J., . . . Ward, S. A. (2017). A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance. Nature Communications, 8. DOI: 10.1038/ncomms15159


The continuous oxidation of HMF to FDCA and the immobilisation and stabilisation of periplasmic aldehyde oxidase (PaoABC)

McKenna, S. M., Mines, P., Law, P., Kovacs-Schreiner, K., Birmingham, W. R., Turner, N. J., . . . Carnell, A. J. (2017). The continuous oxidation of HMF to FDCA and the immobilisation and stabilisation of periplasmic aldehyde oxidase (PaoABC). GREEN CHEMISTRY, 19, 4660-4665. DOI: 10.1039/c7gc01696d


Accelerated oral nanomedicine discovery from miniaturized screening to clinical production exemplified by paediatric HIV nanotherapies

Giardiello, M., Liptrott, M. J., McDonald, T. O., Moss, D., Siccardi, M., Martin, P., . . . Owen, A. (2016). Accelerated oral nanomedicine discovery from miniaturized screening to clinical production exemplified by paediatric HIV nanotherapies. Nature Communications, 7. DOI: 10.1038/ncomms13184


A Click Chemistry-Based Proteomic Approach Reveals that 1,2,4-Trioxolane and Artemisinin Antimalarials Share a Common Protein Alkylation Profile

Ismail, H. M., Barton, V. E., Panchana, M., Charoensutthivarakul, S., Biagini, G. A., Ward, S. A., & O'Neill, P. M. (2016). A Click Chemistry-Based Proteomic Approach Reveals that 1,2,4-Trioxolane and Artemisinin Antimalarials Share a Common Protein Alkylation Profile. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 55(22), 6401-6405. DOI: 10.1002/anie.201512062


Enzyme cascade reactions: synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem

McKenna, S., Leimkühler, S., Herter, S., Turner, N. J., & Carnell, A. (2015). Enzyme cascade reactions: synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem. Green Chemistry, 17(6), 3271-3275. DOI: 10.1039/c5gc00707k


Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1

Capper, M., O'Neill, P., Fisher, N., Strange, R., Moss, D., Ward, S., . . . Antonyuk, S. (2015). Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1. Proceedings of the National Academy of Sciences of the United States of America, 112(3), 755-760. DOI: 10.1073/pnas.1416611112


Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7

Ismail, H. M., Barton, V., Phanchana, M., Charoensutthivarakul, S., Wong, M. H. L., Hemingway, J., . . . Ward, S. A. (2016). Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 113(8), 2080-2085. DOI: 10.1073/pnas.1600459113


References from other areas

J. Comenge, J. Sharkey, O.Fragueiro, B. Wilm, M. Brust, P. Murray, R. Levy, A. Plagge, Multimodal cell tracking from systemic administration to tumour growth by combining gold nanorods and reporter genes, Elife, 2018/6/27, 7, e33140,

A. R. Town, M. Giardiello, R. Gurjar, M. Siccardi, M. E. Briggs, R. Akhtar, T. O. McDonald, Dual-stimuli responsive injectable microgel/solid drug nanoparticle nanocomposites for release of poorly soluble drugs. Nanoscale, 2017, 9, 6302-6314.

Yonghong Yang, Claudia Fryer, Jack Sharkey, Aidan Thomas, Ulrike Wais, Alexander William Jackson, Patricia Murray, Haifei Zhang*, Perylene Diimide Nanoprobes for In Vivo Tracking of Mesenchymal Stromal Cells Using Photoacoustic Imaging, ACS Appl. Mater. Interfaces 2020, 12, 27930-27939.

elds. Giardiello, M., Hatton, F. L., Slater, R. A., Chambon, P., North, J., Peacock, A. K., He, T., McDonald, T. O., Owen, A., Rannard, S. P. Stable, polymer-directed and SPION-nucleated magnetic amphiphilic block copolymer nanoprecipitates with readily reversible assembly in magnetic fiNanoscale, 8, 7224-7231 (2016) doi.org/10.1039/C6NR00788K

O. Boyd, G.-W. Wang, O. O. Sokolova, A. D. J. Calow, S. M. Bertrand and J. F. Bower*; Modular access to eight-membered N-heterocycles by directed carbonylative C-C bond activation of aminocyclopropanes. Angew. Chem. Int. Ed. 2019, 58, 18844-18848.

W. Ma, et al, “Iron-Catalyzed Anti-Markovnikov Hydroamination and Hydroamidation of Allylic Alcohols”, J. Am. Chem. Soc2019, 141, 13506−13515.

Back to: Department of Chemistry