Cowan Group

Full citation metrics are available on google scholar

Potential dependent reorientation controlling activity of a molecular electrocatalyst
A. M. Gardner, G. Neri, B. Siritanaratkul, H. Jang, K. Saeed, P. Donaldson and A. J. Cowan
Journal of the American Chemical Society,
2024, Accepted article

Studying the cation dependence of CO2 reduction intermediates at Cu by in situ VSFG spectroscopy
L. Banerji, H. Jang, A. M. Gardner and A. J. Cowan
Chemical Science,
2024, 15, 2889-2897, https://pubs.rsc.org/en/content/articlehtml/2024/sc/d3sc05295h

Magnetohydrodynamic Redeposition of Cations Onto the Anode
H Jang, D Roe, G Teobaldi, O Cespedes, A. J. Cowan
Electrochemical Society Meeting Abstracts
244, 1235, 2023,

Water Dissociation Interfaces in Bipolar Membranes for H2 Electrolysers
D. A. Garcia-Osorio, H Jang, B Siritanaratkul and A. J. Cowan
Electrochemical Society Meeting Abstracts
244, 1891, 2023, 

Efficient hole abstraction for highly selective oxidative coupling of methane by Au-sputtered TiO2 photocatalysts
X. Li, Y. Xu, Q. Liu, M. Bahri, L. Zhang, N. D. Browning, A. J. Cowan* and J. Tang*
Nature Energy.,
2023, https://doi.org/10.1038/s41560-023-01317-5

Unravelling the Roles of Integral Polypeptides in Excitation Energy Transfer of Photosynthetic RC-LH1 Supercomplexes
O. Thwaites, B. Christianson, A. J. Cowan, F. Jaecekl, L-N Liu and A. M. Gardner*
Journal of Physical Chemistry B.,
2023, 2023, 127, 33, 7283–7290

Pulsed Electrolysis with a Nickel Molecular Catalyst Improves Selectivity for Carbon Dioxide Reduction
F. Greenwell, B. Siritanaratkul, P. Sharma, E. H. Yu and A. J. Cowan*
Journal of the American Chemical Society.,
2023, 2023, 145, 28, 15078–15083

A Manganese Complex on a Gas Diffusion Electrode for Selective CO2 to CO Reduction
C. Eagle, G. Neri, V. Piercy, K. Younis, B. Siritanaratkul and A. J. Cowan*
Sustainable Energy & Fuels.,
2023, 2023,7, 2301-2307  link

Monitoring interfacial electric fields at a hematite electrode during water oxidation
K. H. Saeed, D. A. Garcia-Osorio, C. Li, L. Banerji, A. M. Gardner and A. J. Cowan*
Chemical Science,
2023, 14, 3182-3189 link

Improving the stability, selectivity, and cell voltage of a bipolar membrane zero-gap electrolyzer for low-loss CO2 reduction
B. Siritanaratkul, P. Sharma, E. H. Yu and A. J. Cowan*
Advanced Materials Interfaces,
2023, in press link

Hybrid photocathode based on a Ni molecular catalyst and Sb2Se3 for solar H2 production
D. A. Garcia-Osorio, T. Shalvey, L. Banerji, K. Saeed, G. Neri, L. J. Phillips, O. S. Hutter, C. Casadevall, D. Anton-Garcia, E. Reisner, J. Major* and A. J. Cowan*
Chem. Commun.,
2023, 59(7), 944-947 link

Packing-Induced Selectivity Switching in Molecular Nanoparticle Photocatalysts for Hydrogen and Hydrogen Peroxide Production
H. Yang,# C. Li,# T Liu, T. Fellowes, S. Y. Chong, L. Catalano, M. Bahri, W. Zhang, Y. Xu, L. Liu, W. Zhao, A. M. Gardner, R. Clowes, N. D. Browning, X. Li,* A. J. Cowan,* A. I. Cooper*
Nature Nanotech.,
2023, doi:10.1038/s41565-022-01289-9 read only version rdcu.be/c4dW9

Transient absorption spectroscopic studies of linear polymeric photocatalysts for solar fuel generation
C. Li, A. J. Cowan, A. M. Gardner*
Chemical Physics
Reviews. 2022, 3 (3), 031304

Dynamics of Solid-Electrolyte Interphase Formation on Silicon Electrodes Revealed by Combinatorial Electrochemical Screening
D. Martín-Yerga, D. C. Milan, X. Xu, J. Fernández-Vidal, L. Whalley, A. J. Cowan, L. J. Hardwick,* P. Unwin*
Angew. Chem. Int. Ed,
2022., https://doi.org/10.1002/anie.202207184

Zero-gap bipolar membrane electrolyzer for carbon dioxide reduction using acid-tolerant molecular electrocatalysts 
B. Siritanaratkul, M. Forster, F. Greenwell, P. Sharma, E. Yu, and A. J. Cowan*
J. Am. Chem. Soc.,
2022, 144, 17, 7551–7556

Tuning the local chemical environment of ZnSe quantum dots with dithiols towards photocatalytic CO2 reduction 
Constantin Sahm, Anna Ciotti, Eric Mates-Torres, Vivek M. Badiani, Kamil Sokolowski, Gaia Neri, Alexander J. Cowan, Max Garcia-Melchor and Erwin Reisner*
Chem. Sci.
2022,13, 5988-5998

Manganese Carbonyl Complexes as Selective Electrocatalysts for CO2 Reduction in Water and Organic Solvents 
Bhavin Siritanaratkul, Catherine Eagle and Alexander J. Cowan*
Acc. Chem. Res.
2022, 55, 7, 955–965 link

Photocatalytic overall water splitting under visible light enabled by a particulate conjugated polymer loaded with iridium 
Yang Bai, Chao Li, Lunjie Liu, Yuichi Yamaguchi, Mounib Bahri, Haofan Yang, Adrian Gardner, Martijn A. Zwijnenburg, Nigel D. Browning, Alexander J. Cowan,* Akihiko Kudo,* Andrew I. Cooper,* Reiner Sebastian Sprick*
Angew. Chem. Int. Ed,
2022, ASAP, https://doi.org/10.1002/anie.202201299

How to go beyond C1 products with electrochemical reduction of CO2 
Da Li, Hao Zhang, Hang Xiang,  Shahid Rasul,  Jean-Marie Fontmorin,  Paniz Izadi,  Alberto Roldan, Rebecca Taylor, Yujie Feng, Liam Banerji,  Alexander Cowan,* Eileen Hao Yu* and  Jin Xuan*
Sustainable Energy Fuels,
2021,5, 5893-5914 link

Time-Resolved Raman Spectroscopy of Polaron Formation in a Polymer Photocatalyst
V. L. Piercey, K.H. Saeed, A. W. Prentice, G. Neri, C. Li, A. M. Gardner, Y. Bai, R. S. Sprick, I. V. Sazanovich, A. I. Cooper, M. J. Rosseinsky, M. A. Zwijnenburg and A. J. Cowan*
J. Phys. Chem. Lett.,
2021, 12, 44, 10899-10905 link

Water electrolysis: Direct from the sea or not to be?
P. Farràs. P, Strasser and A. J. Cowan*
Joule,
2021, 5 ,8, 1921-1923 link

Noncovalent Immobilization of a Nickel Cyclam Catalyst on Carbon Electrodes for CO2 Reduction Using Aqueous Electrolyte
F. Greenwell, V. Piercy, G. Neri and A. J. Cowan*
Electrochimica Acta,
2021, 392, 139015, link

Hybrid photocathodes for carbon dioxide reduction: interfaces for charge separation and selective catalysis
D. A. Garcia Osorio, G. Neri and A. J. Cowan*
ChemPhotoChem,
2021, ASAP, https://doi.org/10.1002/cptc.202000309 link

Electrochemical Carbon Dioxide Reduction in Ionic Liquids at High Pressure
L. M. Welch, M. Vijayaraghavan, F. Greenwell, J. Satherley and A. J. Cowan*
Faraday Discussions,
2021, ASAP DOI: 10.1039/D0FD00140F link

Solar to fuel: Recent developments in conversion of sunlight into high value chemicals
F. Toma, A. J. Cowan, M. Sugiyama, L. Wang and K. Xi
APL Materials,
2020,
8, 120401 link

Alkaline Water Oxidation Using a Bimetallic Phospho‐Boride Electrocatalyst
S. Gupta, M. Forster, A. Yadav, A. J. Cowan, N. Patel, and M. Patel
Chem. Sus. Chem.,
2020, ASAP, link

Controlling photocatalytic activity by self-assembly – tuning perylene bisimide photocatalysts for the Hydrogen Evolution Reaction
D. McDowall, B. J. Greeves, R. Clowes, K. McAulay, A. M. Fuentes-Caparrós, L. Thomson, N. Khunti, N. Cowieson, M. C. Nolan, M. Wallace, A. I. Cooper, E. R. Draper, A. J. Cowan and D. J. Adams
Adv. Energy Mater.,
2020, 2002469, link

Potential and Pitfalls: On the Use of Transient Absorption Spectroscopy for In-Situ and Operando Studies of Photoelectrodes
M. Forster, D. Cheung, A. M. Gardner and A. J. Cowan
J. Chem. Phys.,
2020153, 150901, link

Photocatalyst Z-scheme system composed of a linear conjugated polymer and BiVO4 for overall water splitting under visible light
Y. Bai, K. Nakagawa, A. J. Cowan, C. M. Aitchison, Y. Yamaguchi, M. R. Zwijnenburg, A. Kudo, S. Sprick, and A. I. Cooper
J. Mater. Chem. A,
2020, doi.org/10.1039/D0TA04754F, link

Water oxidation intermediates on iridium oxide electrodes probed by in situ electrochemical SHINERS
K. H. Saeed, M. Forster, J. F. Li, L. J. Hardwick and A. J. Cowan
Chem. Commun.,
2020, 56, 1129-1132 link

Highly efficient and selective metal oxy-boride electrocatalysts for oxygen evolution from alkali and saline solutions
S. Gupta, M. Forster, A. Yadav, A. J. Cowan, N. Patel, and M. Patel
ACS Appl. Energy Mater,
2020, 3, 8, 7619–7628,  link

Water oxidation with cobalt-loaded linear conjugated polymer photocatalysts 
R. S. Sprick, Z. Chen, A. J. Cowan, Y. Bai, C. M. Atchinson, Y. Fang, M. A. Zwijnenburg, A. I. Cooper and X. Wang
Angew. Chem. Int. Ed.,
2020, 59, 42, 18695-18700, link

Electrolysis of low-grade and saline surface water
W. Tong, M. Forster, F. Dionigi, S. Dresp, R. Erami Sadegh, P. Strasser, A. J. Cowan and P. Farràs
Nature Energy,
2020, 5, 367-377 link

Strong Impact of Intramolecular Hydrogen Bonding on the Cathodic Path of [Re(3,3 '-dihydroxy-2,2 '-bipyridine)(CO)(3)Cl] and Catalytic Reduction of Carbon Dioxide
J. O. Taylor, G. Neri, L. Banerji, A. J. Cowan and F. Hartl
Inorganic Chemistry,
2020, 59(8), 5564-5578

A Stable Covalent Organic Framework for Photocatalytic Carbon Dioxide Reduction
Z. Fu, X. Wang, A. M. Gardner, X. Wang, S. Y. Chong, G. Neri, A. J. Cowan, L. Liu, X. Li, A. Vogel, R. Clowes, M. Bilton, L. Chen, R. S. Sprick and A. I. Cooper
Chemical Science,
2020, 11, 543-550

Gelation enabled charge separation following visible light excitation using self-assembled perylene bisimides
C. L. Smith, L. M. Mears, B. Greeves, E. R. Draper, J. Doutch, D. J. Adams and A. J. Cowan
Physical Chemistry Chemical Physics,
2019,21, 26466-26476

Metal-Organic Conjugated Microporous Polymer Containing a Carbon Dioxide Reduction Electrocatalyst 
C. L. Smith, R. Clowes, R. S. Sprick, A. I. Cooper and A. J. Cowan
Sustainable Energy and Fuels,
2019, 3, 2990-2994 , Link

Vibrational Sum-Frequency Generation Spectroscopy of Electrode Surfaces: Studying the Mechanisms of Sustainable Fuel Generation and Utilisation 
A. M. Gardner, K. H. Saeed and A. J. Cowan
Physical Chemistry Chemical Physics,
2019, 21(23), 12067-12086. link

Advanced Spectroelectrochemical Techniques to Study Electrode Interfaces Within Lithium-Ion and Lithium-Oxygen Batteries 
A. J. Cowan and L. J. Hardwick
Annual Review of Analytical Chemistry
,
2019, accepted, link

In-Situ Study Of The Low Overpotential “Dimer Pathway” For Electrocatalytic Carbon Dioxide Reduction By Manganese Carbonyl Complexes 
G. Neri, P. M. Donaldson and A. J. Cowan 
Physical Chemistry Chemical Physics
, 2019, 21, 7389-7397 link

Photocatalytically active ladder polymers
A. Vogel, M. Forster, L. Wilbraham, C. L. Smith, A. J. Cowan, M. Zwijnenburg, S. Sprick and A. I. Cooper, 
Faraday Discussions,
2019, 215, 84-97 link

A water-soluble Manganese complex for selective electrocatalytic CO2 reduction to CO
J. J. Walsh, G. Neri, C. L. Smith and A. J. Cowan
Organometallics, 
2019, 386, 1224-1229 link

Detection of catalytic intermediates at an electrode surface during carbon dioxide reduction by an earth-abundant catalyst
G. Neri, J. J. Walsh, G. T. Teobaldi, P. M. Donaldson and A. J. Cowan
Nature Catalysis,
2018, 1, 952-959

ZnSe quantum dots modified with a Ni(cyclam) catalyst for efficient visible-light driven CO2 reduction in water
M. F. Kuehnel, C. D. Sahm, G. Neri, J. Lee, K. L. Orchard, A. J. Cowan and E. Reisner
Chemical Science,
2018, 9, 2501-2509 link

Photochemical Energy Storage,
G. Neri, M. Forster and A. J. Cowan,
In, Energy Storage Options and their environmental impacts, RSC Press, 2018,

Surface-Selective and Time-Resolved Spectroelectrochemical Studies of CO2 Reduction Mechanisms,
A. J. Cowan,
In, Electrochemical reduction of carbon dioxide: overcoming the limitations of photosynthesis, RSC Press, 2018

Directing the mechanism of CO2 reduction by a Mn catalyst through surface immobilization
J. J. Walsh, M. Forster, C. L. Smith, G. Neri, R. Potter and A. J. Cowan
Physical Chemistry Chemical Physics,
2018, 20(10), 6811-6816, link

Stable Ta2O5 overlayers on α-Fe2O3 can enhance photoelectrochemical water splitting efficiencies
M. Forster, R. Potter, Y. Yang, Y. Li and A. J. Cowan
ChemPhotoChem,
2018, 2(3), 183-189 link

The role of electrode-catalyst interactions in enabling efficient CO2 reduction with Mo(bpy)(CO)4 as revealed by vibrational sum-frequency generation spectroscopy
G. Neri, P. M. Donaldson and A. J. Cowan
Journal of the American Chemical Society,
2017, 139, 39, 13791–13797 link,

Highlighted in JACS Young Investigators Virtual Issue link

A Solution-Processable Polymer Photocatalyst for Hydrogen Evolution from Water
D. J. Woods, R. S. Sprick, C. L. Smith, A. J. Cowan and A. I. Cooper
Advanced Energy Materials,
2017, 7, 1700479

Time-Resolved Spectroscopy of ZnTe Photocathodes for Solar Fuel Production 
X. Xianqiang, M. Forster, J. Major, Y. Xu and A. J. Cowan
Journal of Physical Chemistry C,
2017, 121 (40), 22073–22080 link

A Hydrophilic, Hole-Delocalizing Ligand Shell to Promote Charge Transfer from Colloidal CdSe Quantum Dots in Water
J. R. Lee, W. Li, A. J. Cowan and F. Jäckel
Journal of Physical Chemistry C,
2017, 121(8), 121, 15160–15168

pH Dependent Photocatalytic Hydrogen Evolution by Self-Assembled Perylene Bisimides
M. C. Nolan, J. J. Walsh, L. L. E. Mears, E. R. Draper, M. Wallace, M. Barrow, B. Dietrich, S. M. King, A. J. Cowan and D. J. Adams
Journal of Materials Chemistry A, 
2017, 5, 7555-7563.

Photochemical CO2 reduction in water using a co-immobilised nickel catalyst and a visible light sensitiser
G. Neri, M. Forster, J. J. Walsh, C. M. Robertson, T. J. Whittles, P. Farras and A. J. Cowan
Chemical Communications, 
2016, 52, 14200-14203

Intermediate Identification
A. J. Cowan
Nature Chemistry,
2016, 8(8), 740-741 link

Self-Sorted Photoconductive Xerogels
E. R. Draper, J. R. Lee, M. Wallace, F Jäckel, A. J. Cowan and D. J. Adams
Chemical Science,
2016, 7, 6499-6505 link

Acid Treatment Enables Suppression of Electron-Hole Recombination in Hematite for Photoelectrochemical Water Splitting
Y. Yang, M. Forster, Y. Ling, G. Wang, T. Zhai, Y. Tong, A. J. Cowan, and Y. Li
Angew. Chem. Int. Ed., 
2016, 128, 10 3464 link

A Highly Active Nickel Electrocatalyst shows Excellent Selectivity for CO2 Reduction in Acidic Media
G. Neri, I. M. Aldous, J. J. Walsh, L. J. Hardwick and A. J. Cowan
Chemical Science,
2016, 7, 1521-1526 link

Photochemical CO2 reduction using structurally controlled g-C3N4
J. J. Walsh, C. Jiang, J. Tang and A. J. Cowan
Physical Chemistry Chemical Physics,
2016,18, 24825-24829

Controlling Visible Light-Driven Photoconductivity In Self-Assembled Perylene Bisimide Structures
J. J. Walsh, E. R. Draper, J. R. Lee, S. M. King, F. Jäckel, M. A. Zwijnenburg, D. J. Adams and A. J. Cowan
Journal of Physical Chemistry C,
2016, 120, 33, 18479-18486

Design of a highly photocatalytically active ZnO/CuWO4 nanocomposite
T. Mavric, M. Valant, M. Forster, A. J. Cowan, U. Lavrenčič and S. Emin
Journal of Colloid and Interface Science,
2016, 483, 93-101

Rationalising the efficiency of hydrogen treated TiO2 nanomaterials in light driven water splitting applications
M. Forster and A. J. Cowan,
Black TiO2 nanomaterials for energy applications,
2016 ISBN: 978-1-78634-165-5

Oxygen Deficient α-Fe2O3 Photoelectrodes: A Balance Between Enhanced Electrical Properties and Trap-Mediated Losses
M. Foster, R. J. Potter, Y. Ling, Y. Yang, D. R. Klug, Y. Li and A. J. Cowan
Chemical Science, 2015, 2015, 6, 4009-4016 link

A Functionalised Nickel Cyclam Catalyst for CO2 Reduction: Electrocatalysis, Semiconductor Surface Immobilisation and Light-Driven Electron Transfer
G. Neri, J. J. Walsh, C. Wilson, A. Reynal, J. Y. C. Lim, L. Xiaoe, A. J. P. White, N. J. Long, J. R. Durrant and A. J. Cowan
Phys. Chem. Chem. Phys., 2015, 17, 1562-1566. Link

Carbon Dioxide Utilisation: Improving the efficiency of electrochemical CO2 reduction using immobilized manganese complexes
J. J. Walsh, C. L. Smith, G. Neri, G. F. S. Whitehead, C. M. Robertson and A. J. Cowan
Faraday Discuss.
2015, 183, 147-160 link

Carbon Dioxide Utilisation: Capture agents, conversion mechanisms, biotransformations and biomimetics: general discussion
E Remiezowicz, J Spooren, E Bay, A Cowan et al.,
Faraday Discuss.
2015, 183, 463-487

Introducing novel light management to design a hybrid high concentration photovoltaic/water splitting system
J. J. H. Videira, K. W. J Barnham, A. Hankin, M. Leak, J. Johnson, G. H. Kelsall, R. Airey, A. J. Chatten, A. J. Cowan
IEE Proceedings
PVSC 42, 2015,

Electrocatalytic CO2 reduction with a membrane supported manganese catalyst in aqueous solution
J. J. Walsh, G. Neri, C. L. Smith and A. J. Cowan
Chem. Commun.,
2014, 50, 12698-12701. Link

Photocatalytic Water Oxidation Under Visible Light Irradiation By A Pyrochlore Oxide: Rhodium Substitution Into Yttrium Titanate
B. Kiss, C. Didier, T. Johnson, T. D. Manning, M. S. Dyer, A. J. Cowan, J. B. Claridge, J. R. Darwent and M. J. Rosseinsky
Angew. Chem. Int. Ed.,
2014, 53(52), 14480–14484. Link

Air-stable photoconductive films formed from perylene bisimide gelators
E. R. Draper, J. J. Walsh, T. O. McDonald, M. A. Zwijnenburg, P. C. Cameron, A. J. Cowan, D. J. Adams
J. Mater. Chem. C, 2014,2, 5570-5575

Efficient Suppression of Electron-Hole Recombination in Oxygen-Defficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting
F. M. Pesci, G. Wang, D. R. Klug, Y. Li and A. J. Cowan
J. Phys. Chem. C., 2013, 17 (48), 25837–25844.

Interfacial charge separation in Cu2O/RuOx as visible light driven CO2 reduction catalyst
E. Pastor, F. M. Pesci, A. Reynal, A. D. Sandoko, M. Guo, X. An, A. J. Cowan, D. Klug, J. Durrant and J. Tang
Phys. Chem. Chem. Phys., 2014, 16, 5922-5926

Charge carrier separation in nanostructured TiO2 photoelectrodes for water splitting
A. J. Cowan*, W. Leng, P. R. F. Barnes, D. R. Klug and J. R. Durrant,
Phys. Chem. Chem. Phys., 2013, 22, 8772-8778.

Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes
M. Barroso, S. R. Pendlebury, A. J. Cowan and J. R. Durrant,
Chem. Sci., 2013, 4, 2724-2734.

Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels
A. J. Cowan and J. R. Durrant,
Chem. Soc. Rev., 2013, 42 (6), 2281 - 2293.

Photocatalytic water splitting,
J. Tang and A. J. Cowan,
CRC Handbook Photochemistry and Photobiology 3rd Ed.,


Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting
M. Barroso, C. A. Mesa, S. R. Pendlebury, A. J. Cowan, T. Hisatomi, K. Sivula, M. Graetzel, D. R. Klug, J. R. Durrant,
Proc. Natl. Acad. Sci. U.S.A., 2012, 109, 39, 15640-15645.

Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes
S. R. Pendlebury, A. J. Cowan, M. Barroso, K. Sivula, J. Ye, M. Grätzel, D. R. Klug, J. Tang and J. R. Durrant,
Energy and Environ. Sci., 2012, 5(4), 6304-6312.

Activation energies for the rate-limiting step in water photooxidation by nanostructured α-Fe2O3 and TiO2
A. J. Cowan, S. R. Pendlebury, C. J. Barnett, K. Sivula, M. Grätzel, J. R. Durrant and D. R. Klug,
J. Am. Chem. Soc., 2011, 133(26), 10134-10140.

The Role of Cobalt-Phosphate in Enhancing the Photocatalytic Activity of α-Fe2O3 towards Water Oxidation
M. Barroso, S. R. Pendlebury, A. J. Cowan, M. Grätzel, D. R. Klug, and J. R. Durrant,
J. Am. Chem. Soc., 2011, 133(38), 14868-14871.

Transient absorption spectrum of long-lived photoholes on mesoporous WO3
F. M. Pesci, A. J. Cowan, B. D. Alexander, J. R. Durrant and D. R. Klug,
J. Phys. Chem. Lett., 2011, 2, 1900–1903.

Charge carrier dynamics in metal oxide water splitting photoelectrodes
A. J. Cowan, S. Pendlebury, M. Barosso, J. R. Durrant and D. R. Klug,
Abstracts ACS, 2011, 242, 228-FUEL

Mechanism of O2 Production from Water Splitting: Charge Carrier dynamics in Nitrogen Doped Nanocrystalline TiO2 Films and Factors Limiting O2 Production
J. Tang, A. J. Cowan, W. Leng, J. R. Durrant and D. R. Klug,
J. Phys. Chem. C., 2011,115(7), 3143-3150.

Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy
S. Pendlebury, M. Barroso, A. J. Cowan, K. Sivula, J. Tang, M. Grätzel, D. R. Klug, and J. R. Durrant,
Chem. Commun., 2011, 47, 716-7180.

Water splitting by nc-TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination
A. J. Cowan, J. Tang, W. Leng, J. R. Durrant and D. R. Klug,
J. Phys. Chem. C.,2010, 114, 4208-4214.


A Combined Theoretical and Experimental Study on the Role of Spin States in the Chemistry of Fe(CO)5 Photoproducts
M. Besora J. L. Carreon-Macedo, A. J. Cowan, M. W. George, J. N. Harvey, P. Portius, K. L. Ronayne KL, X.-Z. Sun, M. Towrie
J. Am. Chem. Soc., 2009, 131(10), 3583-3592

Formation and reactivity of organometallic alkane complexes
A. J. Cowan and M. W. George
Coord. Chem. Rev., 2008, 131(10), 2504-2511

Cell Design for Picosecond Time-Resolved Infrared Spectroscopy in High-Pressure Liquids and Supercritical Fluids
X.-Z. Sun, P. Portius, D. C. Grills, A. J. Cowan and M. W. George

TRIR study on the formation and reactivity of organometallic methane and ethane complexes in room temperature solution
A. J. Cowan, P. Portius, H. K. Kawanami, O. S. Jina, D. C. Grills, X.-Z. Sun, J. McMaster and M. W. George
Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 6933-6938.

A delicate balance of complexation vs activation of alkanes: NMR and TRIR studies of the interaction of alkanes with [Re(Cp)(CO)(PF3)]
G. E. Ball, C. M. Brookes, A. J. Cowan, T. A. Darwish, M. W. George, H.K. Kawanami, P. Portius, J. P. Rourke
Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 6927-6932.

Ultrafast IR spectroscopy of the short-lived transients formed by UV excitation of cytosine derivatives
S. Quinn, G. W. Doorley, G. E. Watson, A. J. Cowan, M. W. George, A. W. Parker, K. L. Ronayne, M. Towrie and J. M. Kelly
Chem. Commun., 2007, (21): 2130-2132.

Monitoring the direct and indirect damage of DNA bases and polynucleotides by using time-resolved infrared spectroscopy
M. K. Kuimova, A. J. Cowan, P. Matousek, A. W. Parker, X.-Z. Sun, M. Towrie and M. W. George
Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 2150-2153

A sequential molecular mechanics/quantum mechanics study of the electronic spectra of amides
N. A. Besley, M. T. Oakley, A. J. Cowan and J. D. Hirst,
J. Am. Chem. Soc., 2004, 126, 13502-13511