Course details
This is one of our most popular degree programmes with great employment potential. Studying a range of topics covering the core areas of mathematics, this course will prepare you for a career in the financial sector.
This is one of our most popular degree programmes with great employment potential. Studying a range of topics covering the core areas of mathematics, this course will prepare you for a career in the financial sector.
Mathematics is a fascinating, beautiful and diverse subject to study. It underpins a wide range of disciplines; from physical sciences to social science, from biology to business and finance. At Liverpool, our programmes are designed with the needs of employers in mind, to give you a solid foundation from which you may take your career in any number of directions.
This programme is designed to prepare you for a career in the banking sector, pension or investment funds, hedge funds, consultancy and auditing firms or government regulators. The course prepares students to be professionals who use mathematical models to analyse and solve financial problems under uncertainty. The programme will provide a useful perspective on how capital markets function in a modern economy.
We have accreditation from the Institute and Faculty of Actuaries, from the Institute of Mathematics and its Applications and from the Royal Statistical Society. Currently our students can receive exemptions for CM2, CS1 and CB1 of the professional actuarial exams conducted by the Institute and Faculty of Actuaries, the professional body for actuaries in the UK.
Institute and Faculty of Actuaries
We have accreditation from the Institute and Faculty of Actuaries. Currently our students can receive exemptions for CS1, CM2 and CB1 of the professional actuarial exams conducted by the Institute and Faculty of Actuaries, the professional body for actuaries in the UK.
Royal Statistical Society
Moreover, the programme is accredited by the Royal Statistical Society.
Both accreditations can be achieved on a conditional basis. Accreditations depend on your choice and your performance on optional modules.
We’re proud to announce we’ve been awarded a Gold rating for educational excellence.
Tuition fees cover the cost of your teaching and assessment, operating facilities such as libraries, IT equipment, and access to academic and personal support.
All XJTLU 2+2 students receive a partnership discount of 10% on the standard fees for international students. We also offer 50 XJTLU Excellence Scholarships providing a 25% discount on tuition fees to the students that score most highly in stage 2 at XJTLU across the different subject areas. Allocation is based on the number of applications received per programme.
The net fees (inclusive of the discounts) can be seen below.
XJTLU 2+2 fees | ||
---|---|---|
2025 tuition fee (full) | £26,600 | |
2025 tuition fee for XJTLU 2+2 students (inclusive of 10% discount) | £23,940 | |
2025 tuition fee for XJTLU 2+2 students qualifying for Excellence Scholarship (inclusive of 25% discount) | £19,950 |
In your first year in Liverpool, you will study a range of topics covering important areas of mathematics. The main focus will be on basic financial mathematics, statistics, and probability. Choose two further modules, one from each semester.
On the 2+2 programme, you'll study your third and fourth years at the University of Liverpool. These will be year two and year three of the University of Liverpool's programme of study.
Programme details and modules listed are illustrative only and subject to change.
The module aims to introduce students to the modern theory of finance and financial management. Theoretical concepts like the net present value, decision making under uncertainty, dividend valuation, bond pricing, portfolio theory, asset pricing, futures and options are introduced. In all cases numerical examples, using real market data, will be used to make theory come to life.
This module is a non-specialist introduction into the field of accounting and finance. The module aims to give students basic knowledge and skills in a range of financial accounting areas covering 4 main topics – financial reporting and analysis looking at the creation and understanding of financial statements and how to interpret the numbers included in such statements; taxation looking at basic tax calculations covering personal income tax, corporation tax and capital gains tax, along with understanding the tax system in place in the UK; managerial accounting looking at decision making based on financial data; and financial instruments and looking at financial institutions and how businesses can raise finance. Successful students will obtain a good knowledge of basic accounting techniques, the ability to perform accounting calculations and the ability to interpret and understand key financial statements and how to use them in a business scenario. Such skills are essential in the business world and offer students a good foundation on which to build if they are interested in further accounting or business modules. The module is delivered through interactive lectures and seminars involving a high level of question practice with discussion on key topics. It is assessed through a 100% exam. There will be a practice test in Week7 of the Semester.
Analysis of data has become an essential part of current research in many fields including medicine, pharmacology, and biology. It is also an important part of many jobs in e.g. finance, consultancy and the public sector. This module provides an introduction to statistical methods with a strong emphasis on applying and interpreting standard statistical techniques. Since modern statistical analysis of real data sets is performed using computer power, a statistical software package is introduced and employed throughout.
This is a foundational module aimed at providing the students with the basic concepts and techniques of modern real Analysis. The guiding idea will be to start using the powerful tools of analysis, familiar to the students from the first year module MATH101 (Calculus I) in the context of the real numbers, to vectors (multivariable analysis) and to functions (functional analysis). The notions of convergence and continuity will be reinterpreted in the more general setting of metric spaces. This will provide the language to prove several fundamental results that are in the basic toolkit of a mathematician, like the Picard Theorem on the existence and uniqueness of solutions to first order differential equations with an initial datum, and the implicit function theorem. The module is central for a curriculum in pure and applied mathematics, as familiarity with these notions will help students who want to take several other subsequent modules as well as many projects. This module is also a useful preparation (although not a formal prerequisite) for MATH365 Measure theory and probability, a very useful module for a deep understanding of financial mathematics.
Mathematical Finance uses mathematical methods to solve problems arising in finance. A common problem in Mathematical Finance is that of derivative pricing. In this module, after introducing the basic concepts in Financial Mathematics, we use some particular models for the dynamic of stock price to solve problems of pricing and hedging derivatives. This module is fundamental for students intending to work in financial institutions and/or doing an MSc in Financial Mathematics or related areas.
This module provides an introduction to probabilistic methods that are used not only in actuarial science, financial mathematics and statistics but also in all physical sciences. It focuses on discrete and continuous random variables with values in one and several dimensions, properties of the most useful distributions (e.g. geometric, exponential, and normal), their transformations, moment and probability generating functions and limit theorems. This module will help students doing MATH260 and MATH262 (Financial mathematics). This module complements MATH365 (Measure theory and probability) in the sense that MATH365 provides the contradiction-free measure theoretic foundation on which this module rests.
This module provides a thorough introduction to the new subject of Data Science starting from the fundamental mathematical methods and developing real-life applications in several areas including Pattern Recognition, Materials Science, Computer Vision, Climate Analysis. The basic concepts from Linear Algebra and Metric Geometry will be gradually introduced without assuming any prior knowledge. The methods and algorithms from Graph Theory and Computational Geometry will be illustrated by worked examples and short programs/scripts.
This module introduces several probabilistic models in operations research, such as queueing systems, simulations, and decision theory under risk. Those topics heavily interact with other subjects such as applied probability, actuarial sciences etc. This module is complementary to MATH269 (Operational research), which focuses on the mathematical programming aspect of operational research, mainly in a deterministic setup.
This is a cross-disciplinary module focusing on the challenges of identifying, exploring, and implementing entrepreneurial opportunities that create and capture value. The module’s broad spectrum provides students with a foundation in entrepreneurial thinking, allowing them to develop the skills and attributes needed whether to build their own start up from the ground up or add value within existing companies through entrepreneurial and innovation applications. Students will develop an entrepreneurial mindset through experiential learning and embeddedness in the entrepreneurship ecosystem through start-ups and industries engagement as well as the Brett Centre for Entrepreneurship Venture Creation Programme, in which every part of the business journey is covered from ideation to pitching to a panel of industry experts.
Most problems in modern applied mathematics require the use of suitably designed numerical methods. Working exactly, we can often reduce a complicated problem to something more elementary, but this will often lead to integrals that cannot be evaluated using analytical methods or equations that are too complex to be solved by hand. Other problems involve the use of ‘real world’ data, which don’t fit neatly into simple mathematical models. In both cases, we can make further progress using approximate methods. These usually require lengthy iterative processes that are tedious and error prone for humans (even with a calculator), but ideally suited to computers. The first few lectures of this module demonstrate how computer programs can be written to handle calculations of this type automatically. These ideas will be used throughout the module. We then investigate how errors propagate through numerical computations. The focus then shifts to numerical methods for finding roots, approximating integrals and interpolating data. In each case, we will examine the advantages and disadvantages of different approaches, in terms of accuracy and efficiency.
The term "Operational Research" came in the 20th century from military operations. It describes mathematical methods to achieve the goal (or to find the best possible decision) having limited resources. This branch of applied mathematics makes use of and has stimulated the development of optimisation methods, typically for problems with constraints. This module can be interesting for any student doing mathematics because it concentrates on real-life problems.
In the final year, you will cover some specialised work in financial mathematics. Subsequently, you will begin to study more advanced ideas in probability theory and statistics as well as stochastic modelling, econometrics and finance.
This programme is designed to prepare you for a career in the banking sector, pension or investment funds, hedge funds, consultancy and auditing firms or government regulators.
The course prepares students to be professionals who use mathematical models to analyse and solve financial problems under uncertainty. The programme will provide a useful perspective on how capital markets function in a modern economy.
Choose four optional modules: two from semester 1 and two from semester 2. At least two must be MATH modules.
On the 2+2 programme, you'll study your third and fourth years at the University of Liverpool. These will be year two and year three of the University of Liverpool's programme of study.
Programme details and modules listed are illustrative only and subject to change.
This module studies discrete-time Markov chains, as well as introducing the most basic continuous-time processes. The basic theory for these stochastic processes is considered in detail. This includes the Chapman Kolmogorov equation, communication of states, periodicity, recurrence and transience properties, asymptotic behaviour, limiting and stationary distributions, and an introduction to Poisson processes. Applications in different areas, in particular in insurance, are considered.
This module covers stochastic modelling and its applications in different actuarial/financial problems. This module can contribute to getting a CM2 exemption by The Institute and Faculty of Actuaries.
This module covers the application of statistical methodologies and technique into actuarial sets of data. This module can contribute to getting CS1 and CS2 exemptions by The Institute and Faculty of Actuaries.
This module focuses on the applications of actuarial and financial mathematics using the programming language R. It provides the students with an introduction to the basic principles of programming in R. Students will practice various computational aspects of actuarial science and finance. The module focuses on the implementation of the theoretical models, learned in other modules, using R code. Students will develop a background in the practical applications of Statistics, Reserving, Portfolio management, Option pricing, and others. This module will enhance the employability skills for students in Financial and Actuarial Mathematics.
The research internship module is designed to give students the experience of working in a research environment or setting that is quite different from any project work that they undertake in the Department of Mathematics. It should provide an insight into how students may apply skills and experiences later in their career; whether working abroad, in industry or in a scientific setting.
Econometrics is a branch of economics aimed at providing rigorous statistical techniques to test, empirically, the validity of economic hypotheses and economic models using data from the real world. Therefore, this module provides students with opportunities to develop and further strengthen important, but crucially transferable, advanced academic skills in economics, mathematics, statistics and computing, which can be used in a variety of different contexts such as applied economics and finance research. These skills are very useful and in high demand by graduate employers. A key feature of this module is the combination of rigorous theoretical foundation of OLS with hands-on applications using a relevant analytical software package (for example, EViews or STATA) and economic data.
Ordinary and partial differential equations (ODEs and PDEs) are crucial to many areas of science, engineering and finance. This module addresses methods for, or related to, their solution. It starts with a section on inhomogeneous linear second-order ODEs which are often required for the solution of higher-level problems. We then generalize basic calculus by considering the optimization of functionals, e.g., integrals involving an unknown function and its derivatives, which leads to a wide variety of ODEs and PDEs. After those systems of two linear first-order PDEs and second-order PDES are classified and reduced to ODEs where possible. In certain cases, e.g., `elliptic’ PDEs like the Laplace equation, such a reduction is impossible. The last third of the module is devoted to two approaches, conformal mappings and Fourier transforms, which can be used to obtain solutions of the Laplace equation and other irreducible PDEs.
This module extends earlier work on linear regression and analysis of variance, and then goes beyond these to generalised linear models. The module emphasises applications of statistical methods. Statistical software is used throughout as familiarity with its use is a valuable skill for those interested in a career in a statistical field.
MATH367 aims to develop an appreciation of optimisation methods for real-world problems using fundamental tools from network theory; to study a range of ‘standard problems’ and techniques for solving them. Thus, network flow, shortest path problem, transport problem, assignment problem, and routing problem are some of the problems that are considered in the syllabus. MATH367 is a decision making module, which fits well to those who are interested in receiving knowledge in graph theory, in operational research, in economics, in logistics and in finance.
This module is important for students who are interested in the abstract theory of integrating and in the deep theoretical background of the probability theory. It will be extremely useful for those who plan to do MSc and perhaps PhD in Probability, including financial applications. If you plan to take level 4 module(s) on Financial Mathematics next year, MATH365 can be very helpful.
In the last three decades, derivatives have become increasingly important in the world of finance. Futures and options are now traded actively on many exchanges and OTC around the world. Yet most of our undergraduate finance courses, which mostly study underlying assets and institutions, simply do not have enough time for an in-depth discussion of derivatives. This class presents both a practical and theoretical approach to derivatives markets. The course starts with basic definitions and properties of put and call options, and forward and futures contracts. Payoff diagrams are used to illustrate these basic notions. Determinants of derivatives values are discussed. The basic no-arbitrage pricing relationships between different types of derivatives are established.
In this module you will explore, from a game-theoretic point of view, models which have been used to understand phenomena in which conflict and cooperation occur and see the relevance of the theory not only to parlour games but also to situations involving human relationships, economic bargaining (between trade union and employer, etc), threats, formation of coalitions, war, etc.
Stochastic processes are ways of quantifying the dynamic relationships of sequences of random events. Stochastic models play an important role in elucidating many areas of the natural and engineering sciences. They can be used to analyse the variability inherent in biological and medical processes, to deal with uncertainties affecting managerial decisions and with the complexities of psychological and social interactions, and to provide new perspectives, methodology, models and intuition to aid in other mathematical and statistical studies. This module is intended as a beginning course in introducing continuous-time stochastic processes for students familiar with elementary probability. The objectives are: (1) to introduce students to the standard concepts and methods of stochastic modelling; (2) to illustrate the rich diversity of applications of stochastic processes in the science; and (3) to provide exercises in the applications of simple stochastic analysis to appropriate problems.
This module introduces fundamental topics in mathematical statistics, including the theory of point estimation and hypothesis testing. Several key concepts of statistics are discussed, such as sufficiency, completeness, etc., introduced from the 1920s by major contributors to modern statistics such as Fisher, Neyman, Lehmann and so on. This module is absolutely necessary preparation for postgraduate studies in statistics and closely related subjects.
This module raises the awareness of students on how mathematical methods from stochastics can help to deal with problems arising in a variety of areas, ranging from quantifying uncertainty, to problems in physics, to optimisation and decision making, among others. The module summarises probability theory, explain the basics of simulation and sampling and then focuses on learning theory and methods. Specific topics and examples will be presented along with the theory and computer experiments.
To provide an understanding of the mathematical risk theory used in practise in non-life actuarial depts of insurance firms, to provide an introduction to mathematical methods for managing the risk in insurance and finance (calculation of risk measures/quantities), to develop skills of calculating the ruin probability and the total claim amount distribution in some non ‐ life actuarial risk models with applications to insurance industry, to prepare the students adequately and to develop their skills in order to be exempted for the exams of CT6 subject of the Institute of Actuaries (MATH366 covers 50% of CT6 in much more depth).
We have a large department with highly qualified staff, a first-class reputation in teaching and research, and a great city in which to live and work.
Your course will be delivered by the Department of Mathematical Sciences.
From arrival to alumni, we’re with you all the way:
I think the University of Liverpool has abundant, interesting and beneficial courses. Some modules are especially focused on emphasising the cultivation of innovative and academic thinking process. These modules design a lot of interesting research oriented assignments, which will be very beneficial for your future academic career.
Want to find out more about student life?
Chat with our student ambassadors and ask any questions you have.