Publications
2024
de Sitter State in Heterotic String Theory
Alexander, S., Dasgupta, K., Maji, A., Ramadevi, P., & Tatar, R. (n.d.). de Sitter State in Heterotic String Theory. Fortschritte der Physik. doi:10.1002/prop.202400163
2023
Resurgence of a de Sitter Glauber-Sudarshan State: Nodal Diagrams and Borel Resummation
Brahma, S., Dasgupta, K., Faruk, M. -M., Kulinich, B., Meruliya, V., Pym, B., & Tatar, R. (2023). Resurgence of a de Sitter Glauber-Sudarshan State: Nodal Diagrams and Borel Resummation. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS. doi:10.1002/prop.202300136
Coherent states in M-theory: A brane scan using the Taub-NUT geometry
Chakravarty, J., Dasgupta, K., Jain, D., Jatkar, D. P., Maji, A., & Tatar, R. (n.d.). Coherent states in M-theory: A brane scan using the Taub-NUT geometry. Physical Review D, 108(8). doi:10.1103/physrevd.108.l081902
2021
de Sitter Space as a Glauber-Sudarshan State: II
Bernardo, H., Brahma, S., Dasgupta, K., Faruk, M. -M., & Tatar, R. (2021). de Sitter Space as a Glauber-Sudarshan State: II. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 69(11-12). doi:10.1002/prop.202100131
Branes, fermions, and superspace dualities (vol 10, 243, 2021)
Retolaza, A., Rogers, J., Tatar, R., & Tonyioni, F. (2021). Branes, fermions, and superspace dualities (vol 10, 243, 2021). JOURNAL OF HIGH ENERGY PHYSICS, (11). doi:10.1007/JHEP11(2021)124
Four-Dimensional Null Energy Condition as a Swampland Conjecture
Bernardo, H., Brahma, S., Dasgupta, K., Faruk, M. M., & Tatar, R. (2021). Four-Dimensional Null Energy Condition as a Swampland Conjecture. PHYSICAL REVIEW LETTERS, 127(18). doi:10.1103/PhysRevLett.127.181301
Purely nonperturbative AdS vacua and the swampland
Bernardo, H., Brahma, S., Dasgupta, K., & Tatar, R. (2021). Purely nonperturbative AdS vacua and the swampland. PHYSICAL REVIEW D, 104(8). doi:10.1103/PhysRevD.104.086016
de Sitter vacua in the string landscape
Dasgupta, K., Emelin, M., Faruk, M. M., & Tatar, R. (2021). de Sitter vacua in the string landscape. NUCLEAR PHYSICS B, 969. doi:10.1016/j.nuclphysb.2021.115463
Four-dimensional de Sitter space is a Glauber-Sudarshan state in string theory
Brahma, S., Dasgupta, K., & Tatar, R. (2021). Four-dimensional de Sitter space is a Glauber-Sudarshan state in string theory. JOURNAL OF HIGH ENERGY PHYSICS, (7). doi:10.1007/JHEP07(2021)114
How a four-dimensional de Sitter solution remains outside the swampland
Dasgupta, K., Emelin, M., Faruk, M. M., & Tatar, R. (2021). How a four-dimensional de Sitter solution remains outside the swampland. JOURNAL OF HIGH ENERGY PHYSICS, (7). doi:10.1007/JHEP07(2021)109
Branes, fermions, and superspace dualities
Retolaza, A., Rogers, J., Tatar, R., & Tonyioni, F. (2021). Branes, fermions, and superspace dualities. JOURNAL OF HIGH ENERGY PHYSICS, (10). doi:10.1007/JHEP10(2021)243
Branes, fermions, and superspace dualities
Crisis on infinite earths: short-lived de Sitter vacua in the string theory landscape
Bernardo, H., Brahma, S., Dasgupta, K., & Tatar, R. (2021). Crisis on infinite earths: short-lived de Sitter vacua in the string theory landscape. JOURNAL OF HIGH ENERGY PHYSICS, (4). doi:10.1007/JHEP04(2021)037
de Sitter space as a Glauber-Sudarshan state
Brahma, S., Dasgupta, K., & Tatar, R. (2021). de Sitter space as a Glauber-Sudarshan state. JOURNAL OF HIGH ENERGY PHYSICS, (2). doi:10.1007/JHEP02(2021)104
de Sitter Vacua in the String Landscape: La Petite Version
Dasgupta, K., Emelin, M., Faruk, M. M., & Tatar, R. (2021). de Sitter Vacua in the String Landscape: La Petite Version. In Quantum Theory and Symmetries (pp. 447-455). Springer International Publishing. doi:10.1007/978-3-030-55777-5_41
2020
Phases of QCD3 with three families of fundamental flavors
Khalil, A., & Tatar, R. (2020). Phases of QCD3 with three families of fundamental flavors. EUROPEAN PHYSICAL JOURNAL C, 80(9). doi:10.1140/epjc/s10052-020-8385-9
2019
<i>D<sub>n</sub></i> Dynkin quiver moduli spaces
Rogers, J., & Tatar, R. (2019). <i>D<sub>n</sub></i> Dynkin quiver moduli spaces. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 52(42). doi:10.1088/1751-8121/ab4344
Axion hilltops, Kahler modulus quintessence and the swampland criteria
Emelin, M., & Tatar, R. (2019). Axion hilltops, Kahler modulus quintessence and the swampland criteria. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 34(28). doi:10.1142/S0217751X19501641
Quantum Corrections and the de Sitter Swampland Conjecture
Dasgupta, K., Emelin, M., McDonough, E., & Tatar, R. (2019). Quantum Corrections and the de Sitter Swampland Conjecture. The Journal of High Energy Physics, 2019. doi:10.1007/JHEP01(2019)145
2018
Moduli Space Singularities for 3d N=4 Circular Quiver Gauge Theories
Tatar, R., & Rogers, J. (2018). Moduli Space Singularities for 3d N=4 Circular Quiver Gauge Theories. The Journal of High Energy Physics, 2018. doi:10.1007/JHEP11(2018)022
2017
Heterotic-F Theory Duality Revisited
泰山, 渡., 博貴, 林., Tatar, R., 幸伸, 戸., & 雅人, 山. (n.d.). Heterotic-F Theory Duality Revisited. 素粒子論研究, 117(1), a82. doi:10.24532/soken.117.1_a82
From N=2 supersymmetry in four dimensions to (0,2) supersymmetry in two dimensions
Tatar, R. (2017). From <i>N</i>=2 supersymmetry in four dimensions to (0,2) supersymmetry in two dimensions. PHYSICAL REVIEW D, 96(6). doi:10.1103/PhysRevD.96.066022
Knot invariants and M-theory: Hitchin equations, Chern-Simons actions, and surface operators
Dasgupta, K., Diez, V. E., Ramadevi, P., & Tatar, R. (2017). Knot invariants and M-theory: Hitchin equations, Chern-Simons actions, and surface operators. PHYSICAL REVIEW D, 95(2). doi:10.1103/PhysRevD.95.026010
2015
Geometric constructions of two-dimensional (0,2) SUSY theories
Tatar, R. (2015). Geometric constructions of two-dimensional (0,2) SUSY theories. Physical Review D, 92(4). doi:10.1103/PhysRevD.92.045006
2014
de Sitter vacua in type IIB string theory: classical solutions and quantum corrections
Dasgupta, K., Gwyn, R., McDonough, E., Mia, M., & Tatar, R. (2014). de Sitter vacua in type IIB string theory: classical solutions and quantum corrections. Journal of High Energy Physics, 2014(7). doi:10.1007/JHEP07(2014)054
2013
Flows between dualities for 3d Chern-Simons theories
Khan, S., & Tatar, R. (n.d.). Flows between dualities for 3d Chern-Simons theories. Physical Review D, 88(6). doi:10.1103/physrevd.88.066011
Solitons and Yukawa couplings in nearly Kähler flux compactifications
Dolan, B. P., & Szabo, R. J. (n.d.). Solitons and Yukawa couplings in nearly Kähler flux compactifications. Physical Review D, 88(6). doi:10.1103/physrevd.88.066002
2012
GUT theories from Calabi-Yau 4-folds with SO(10) singularities
Tatar, R., & Walters, W. (2012). GUT theories from Calabi-Yau 4-folds with SO(10) singularities. Journal of High Energy Physics, 2012(12). doi:10.1007/jhep12(2012)092
2011
Supersymmetric configurations, geometric transitions and new non-Kähler manifolds
Chen, F., Dasgupta, K., Franche, P., Katz, S., & Tatar, R. (2011). Supersymmetric configurations, geometric transitions and new non-Kähler manifolds. Nuclear Physics B, 852(3), 553-591. doi:10.1016/j.nuclphysb.2011.07.013
Toward the gravity dual of heterotic small instantons
Chen, F., Dasgupta, K., Franche, P., & Tatar, R. (n.d.). Toward the gravity dual of heterotic small instantons. Physical Review D, 83(4). doi:10.1103/physrevd.83.046006
T-branes and Yukawa Couplings
T-branes and Yukawa couplings
Chiou, C. -C., Faraggi, A. E., Tatar, R., & Walters, W. (2011). T-branes and Yukawa couplings. JOURNAL OF HIGH ENERGY PHYSICS, (5). doi:10.1007/JHEP05(2011)023
2010
Yukawa couplings and neutrinos in F-theory compactifications
Tatar, R. (2010). Yukawa couplings and neutrinos in F-theory compactifications. In CORFU 2009 (pp. 900-902). Corfu: Fortschritte der Physik.
2009
Codimension-3 singularities and Yukawa couplings in F-theory
Hayashi, H., Kawano, T., Tatar, R., & Watari, T. (2009). Codimension-3 singularities and Yukawa couplings in F-theory. Nuclear Physics B, 823(1-2), 47-115. doi:10.1016/j.nuclphysb.2009.07.021
Right-handed neutrinos in F-theory compactifications
Tatar, R., Tsuchiya, Y., & Watari, T. (2009). Right-handed neutrinos in F-theory compactifications. Nuclear Physics B, 823(1-2), 1-46. doi:10.1016/j.nuclphysb.2009.07.020
GUT relations from string theory compactifications
Tatar, R., & Watari, T. (2009). GUT relations from string theory compactifications. Nuclear Physics B, 810(1-2), 316-353. doi:10.1016/j.nuclphysb.2008.11.009
New aspects of Heterotic–F-theory duality
Hayashi, H., Tatar, R., Toda, Y., Watari, T., & Yamazaki, M. (2009). New aspects of Heterotic–F-theory duality. Nuclear Physics B, 806(1-2), 224-299. doi:10.1016/j.nuclphysb.2008.07.031
SQCD vacua and geometrical engineering
Tatar, R., & Wetenhall, B. (2009). SQCD vacua and geometrical engineering. In SUSY 2009 (pp. 492-494). Seoul: AIP Conference Proceedings.
2008
Supersymmetric QCD vacua and geometrical engineering
Tatar, R., & Wetenhall, B. (n.d.). Supersymmetric QCD vacua and geometrical engineering. Physical Review D, 77(4). doi:10.1103/physrevd.77.046007
SQCD Vacua and Geometrical Engineering
Tatar, R., Wetenhall, B., Ko, P., & Ki Hong, D. (2008). SQCD Vacua and Geometrical Engineering. AIP Conference Proceedings, 492-494. doi:10.1063/1.3052005
2007
Metastable vacua and complex deformations
Tatar, R., & Wetenhall, B. (n.d.). Metastable vacua and complex deformations. Physical Review D, 76(12). doi:10.1103/physrevd.76.126011
SQCD Vacua and Geometrical Engineering
Metastable Vacua and Complex Deformations
A stable proton without R-parity: Implications for the LSP
Tatar, R., & Watari, T. (2007). A stable proton without R-parity: Implications for the LSP. Physics Letters B, 646(5-6), 258-264. doi:10.1016/j.physletb.2007.01.020
Metastable vacua, geometrical engineering and MQCD transitions
Tatar, R., & Wetenhall, B. (n.d.). Metastable vacua, geometrical engineering and MQCD transitions. Journal of High Energy Physics, 2007(02), 020. doi:10.1088/1126-6708/2007/02/020
2006
Metastable Vacua, Geometrical Engineering and MQCD Transitions
Gauge-gravity dualities, dipoles and new non-Kähler manifolds
Dasgupta, K., Grisaru, M., Gwyn, R., Katz, S., Knauf, A., & Tatar, R. (2006). Gauge-gravity dualities, dipoles and new non-Kähler manifolds. Nuclear Physics B, 755(1-3), 21-78. doi:10.1016/j.nuclphysb.2006.07.026
Proton decay, Yukawa couplings and underlying gauge symmetry in string theory
Tatar, R., & Watari, T. (2006). Proton decay, Yukawa couplings and underlying gauge symmetry in string theory. Nuclear Physics B, 747(1-2), 212-265. doi:10.1016/j.nuclphysb.2006.04.025
Geometric transitions, flops and non-Kähler manifolds: II
Becker, M., Dasgupta, K., Katz, S., Knauf, A., & Tatar, R. (2006). Geometric transitions, flops and non-Kähler manifolds: II. Nuclear Physics B, 738(1-2), 124-183. doi:10.1016/j.nuclphysb.2005.12.023
2005
Geometric transitions, non-Kahler geometries and string vacua
Becker, K., Becker, M., Dasgupta, K., & Tatar, R. (2005). Geometric transitions, non-Kahler geometries and string vacua. International Journal of Modern Physics A, A20(15), 3442-3448.
In the realm of the geometric transitions
Alexander, S., Becker, K., Becker, M., Dasgupta, K., Knauf, A., & Tatar, R. (2005). In the realm of the geometric transitions. Nuclear Physics B, 704(1-2), 231-278. doi:10.1016/j.nuclphysb.2004.10.036
2004
Geometric transitions, flops and non-Kähler manifolds: I
Becker, M., Dasgupta, K., Knauf, A., & Tatar, R. (2004). Geometric transitions, flops and non-Kähler manifolds: I. Nuclear Physics B, 702(1-2), 207-268. doi:10.1016/j.nuclphysb.2004.09.020
Baryons, boundaries and matrix models
Bena, I., Roiban, R., & Tatar, R. (2004). Baryons, boundaries and matrix models. Nuclear Physics B, 679(1-2), 168-188. doi:10.1016/j.nuclphysb.2003.10.045
Chiral field theories from conifolds
Landsteiner, K., Lazaroiu, C., & Tatar, R. (2004). Chiral field theories from conifolds. Journal of High Energy Physics, 0402, 44-86.
Chiral field theories, Konishi anomalies and matrix models
Landsteiner, K., Lazaroiu, C., & Tatar, R. (2004). Chiral field theories, Konishi anomalies and matrix models. Journal of High Energy Physics, 0402, 44-86.
Geometric transitions, matrix models and effective field theories
Tatar, R. (2004). Geometric transitions, matrix models and effective field theories. In QUANTUM THEORY AND SYMMETRIES (pp. 424-430). Cincinnati, Ohio: World Scientific.
2003
Massless flavor in geometry and matrix models
Roiban, R., Tatar, R., & Walcher, J. (2003). Massless flavor in geometry and matrix models. Nuclear Physics B, 665, 211-235. doi:10.1016/s0550-3213(03)00451-6
(Anti)symmetric matter and superpotentials from IIB orientifolds
Landsteiner, K., Lazaroiu, C., & Tatar, R. (2003). (Anti)symmetric matter and superpotentials from IIB orientifolds. Journal of High Energy Physics.
Duality and Confinement in N=1 Supersymmetric Theories from Geometric Transitions
Oh, K., & Tatar, R. (2003). Duality and Confinement in N=1 Supersymmetric Theories from Geometric Transitions. Advances in Theoretical and Mathematical Physics, 6, 141-196.
Matrix model description of baryonic deformations
Bena, I., Murayama, H., Tatar, R., & Roiban, R. (n.d.). Matrix model description of baryonic deformations. Journal of High Energy Physics, 2003(05), 049. doi:10.1088/1126-6708/2003/05/049
Puzzles for matrix models of chiral field theories
Landsteiner, K., Lazaroiu, C., & Tatar, R. (2003). Puzzles for matrix models of chiral field theories. Forshift auf Physik.
2002
Geometric Transition versus Cascading Solution
Dasgupta, K., Oh, K., Park, J., & Tatar, R. (n.d.). Geometric Transition versus Cascading Solution. Journal of High Energy Physics, 2002(01), 031. doi:10.1088/1126-6708/2002/01/031
Geometrical transitions and strong coupling effects in supersymmetric field theories
Tatar, R. (2002). Geometrical transitions and strong coupling effects in supersymmetric field theories. In 0th International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY02) (pp. 1399-1406). Hamburg: World Scientific.
Orbifolds, Penrose limits and supersymmetry enhancement
Oh, K., & Tatar, R. (2002). Orbifolds, Penrose limits and supersymmetry enhancement. Physics Reviews D.
Space-time quotients, Penrose limits and conformal symmetry restoration.
Alishahiha, M., Sheikh-Jabbari, M. M., & Tatar, R. (2002). Space-time quotients, Penrose limits and conformal symmetry restoration.. Journal of High Energy Physics.
2001
Geometric transition, large N dualities and MQCD dynamics
Dasgupta, K., Oh, K., & Tatar, R. (2001). Geometric transition, large N dualities and MQCD dynamics. Nuclear Physics B, 610(1-2), 331-346. doi:10.1016/s0550-3213(01)00296-6
Open/Closed String Dualities and Seiberg Duality from Geometric Transitions in M-theory
Dasgupta, K., Oh, K., & Tatar, R. (n.d.). Open/Closed String Dualities and Seiberg Duality from Geometric Transitions in M-theory. Journal of High Energy Physics, 2002(08), 026. doi:10.1088/1126-6708/2002/08/026
Orientifold, geometric transition and large <i>N</i> duality for SO/Sp gauge theories
Edelstein, J. D., Oh, K., & Tatar, R. (n.d.). Orientifold, geometric transition and large <i>N</i> duality for SO/Sp gauge theories. Journal of High Energy Physics, 2001(05), 009. doi:10.1088/1126-6708/2001/05/009
2000
Lumps and P-branes in Open String Field Theory
de Mello Koch, R., Jevicki, A., Mihailescu, M., & Tatar, R. (2000). Lumps and P-branes in Open String Field Theory. Physics Letters B.