Publications
2023
Geometry of Genus One Fine Compactified Universal Jacobians
Pagani, N., & Tommasi, O. (2023). Geometry of Genus One Fine Compactified Universal Jacobians. International Mathematics Research Notices, 2023(10), 8495-8543. doi:10.1093/imrn/rnac094
2020
Geometry of genus one fine compactified universal Jacobians
Pullbacks of universal Brill-Noether classes via Abel-Jacobi morphisms
Pagani, N., Ricolfi, A., & Van Zelm, J. (n.d.). Pullbacks of universal Brill-Noether classes via Abel-Jacobi morphisms. Mathematische Nachrichten. doi:10.1002/mana.201800422
2019
The stability space of compactified universal Jacobians
Pagani, N. T., & Kass, J. L. (2019). The stability space of compactified universal Jacobians. Transactions of the American Mathematical Society, 372, 4851-4887. doi:10.1090/tran/7724
2018
Pullbacks of universal Brill-Noether classes via Abel-Jacobi morphisms
Extending the double ramification cycle using Jacobians
Holmes, D., Kass, J. L., & Pagani, N. (2018). Extending the double ramification cycle using Jacobians. European Journal of Mathematics, 4(3), 1087-1099. doi:10.1007/s40879-018-0256-7
2017
Extensions of the universal theta divisor
Kass, J. L., & Pagani, N. (2017). Extensions of the universal theta divisor. Advances in Mathematics, 321, 221-268. doi:10.1016/j.aim.2017.09.021
2016
Moduli of abelian covers of elliptic curves
Pagani, N. (2016). Moduli of abelian covers of elliptic curves. Journal of Pure and Applied Algebra, 220(3), 1258-1279. doi:10.1016/j.jpaa.2015.08.020
2014
The class of the bielliptic locus in genus 3
Faber, C., & Pagani, N. (2014). The class of the bielliptic locus in genus 3. International Mathematics Research Notices, 2015(12), 3943-3961. doi:10.1093/imrn/rnu057
Harer stability and orbifold cohomology
Pagani, N. (n.d.). Harer stability and orbifold cohomology. Pacific Journal of Mathematics, 267(2), 465-477. doi:10.2140/pjm.2014.267.465
2013
The orbifold cohomology of moduli of genus 3 curves
Pagani, N., & Tommasi, O. (2013). The orbifold cohomology of moduli of genus 3 curves. Manuscripta Mathematica, 142(3-4), 409-437. doi:10.1007/s00229-013-0608-z
Chen–Ruan Cohomology of \mathcal{M}_{1,n} and \overline{\mathcal{M}}_{1,n}
Pagani, N. (2013). Chen–Ruan Cohomology of \mathcal{M}_{1,n} and \overline{\mathcal{M}}_{1,n}. Annales de l’institut Fourier, 63(4), 1469-1509. doi:10.5802/aif.2808
2012
The Chen–Ruan cohomology of moduli of curves of genus 2 with marked points
Pagani, N. (2012). The Chen–Ruan cohomology of moduli of curves of genus 2 with marked points. Advances in Mathematics, 229(3), 1643-1687. doi:10.1016/j.aim.2011.12.017
The Orbifold Cohomology of Moduli of Hyperelliptic Curves
Pagani, N. (n.d.). The Orbifold Cohomology of Moduli of Hyperelliptic Curves. International Mathematics Research Notices. doi:10.1093/imrn/rnr106
2011
Generating stable modular graphs
Maggiolo, S., & Pagani, N. (2011). Generating stable modular graphs. Journal of Symbolic Computation, 46(10), 1087-1097. doi:10.1016/j.jsc.2011.05.008