Skip to main content
What types of page to search?

Alternatively use our A-Z index.

Publications

What type of publication do you want to show?

2025

Bridging Dimensions: Confident Reachability for High-Dimensional Controllers

Geng, Y., Baldauf, J. B., Dutta, S., Huang, C., & Ruchkin, I. (2025). Bridging Dimensions: Confident Reachability for High-Dimensional Controllers. In Lecture Notes in Computer Science (pp. 381-402). Springer Nature Switzerland. doi:10.1007/978-3-031-71162-6_20

DOI
10.1007/978-3-031-71162-6_20
Chapter

Case Study: Runtime Safety Verification of Neural Network Controlled System

Yang, F., Zhan, S. S., Wang, Y., Huang, C., & Zhu, Q. (2025). Case Study: Runtime Safety Verification of Neural Network Controlled System. In Unknown Conference (pp. 205-217). Springer Nature Switzerland. doi:10.1007/978-3-031-74234-7_13

DOI
10.1007/978-3-031-74234-7_13
Conference Paper

2024

Analytically Determining the Robustness of Binarized Neural Networks

Alzahrani, S. M., Schewe, S., Huang, C., & Huang, X. (2024). Analytically Determining the Robustness of Binarized Neural Networks. In 2024 International Conference on Machine Learning and Applications (ICMLA) (pp. 597-604). IEEE. doi:10.1109/icmla61862.2024.00087

DOI
10.1109/icmla61862.2024.00087
Conference Paper

Kinematics-aware Trajectory Generation and Prediction with Latent Stochastic Differential Modeling

Jiao, R., Wang, Y., Liu, X., Zhan, S. S., Huang, C., & Zhu, Q. (2024). Kinematics-aware Trajectory Generation and Prediction with Latent Stochastic Differential Modeling. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 565-572). IEEE. doi:10.1109/iros58592.2024.10802438

DOI
10.1109/iros58592.2024.10802438
Conference Paper

Boosting Reinforcement Learning with Strongly Delayed Feedback Through Auxiliary Short Delays

Wu, Q., Zhan, S. S., Wang, Y., Wang, Y., Lin, C. W., Lv, C., . . . Huang, C. (2024). Boosting Reinforcement Learning with Strongly Delayed Feedback Through Auxiliary Short Delays. In Proceedings of Machine Learning Research Vol. 235 (pp. 53973-53998).

Conference Paper

State-Wise Safe Reinforcement Learning with Pixel Observations

Zhan, S. S., Wang, Y., Wu, Q., Jiao, R., Huang, C., & Zhu, Q. (2024). State-Wise Safe Reinforcement Learning with Pixel Observations. In Proceedings of Machine Learning Research Vol. 242 (pp. 1187-1201).

Conference Paper

Variational Delayed Policy Optimization

Wu, Q., Zhan, S. S., Wang, Y., Wang, Y., Lin, C. W., Lv, C., . . . Huang, C. (2024). Variational Delayed Policy Optimization. In Advances in Neural Information Processing Systems Vol. 37.

Conference Paper

2023

Verification and Design of Robust and Safe Neural Network-enabled Autonomous Systems

Zhu, Q., Li, W., Huang, C., Chen, X., Zhou, W., Wang, Y., . . . Fu, F. (2023). Verification and Design of Robust and Safe Neural Network-enabled Autonomous Systems. In 2023 59th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 1-8). IEEE. doi:10.1109/allerton58177.2023.10313451

DOI
10.1109/allerton58177.2023.10313451
Conference Paper

Joint Differentiable Optimization and Verification for Certified Reinforcement Learning

Wang, Y., Zhan, S., Wang, Z., Huang, C., Wang, Z., Yang, Z., & Zhu, Q. (2023). Joint Differentiable Optimization and Verification for Certified Reinforcement Learning. In Proceedings of the ACM/IEEE 14th International Conference on Cyber-Physical Systems (with CPS-IoT Week 2023) (pp. 132-141). ACM. doi:10.1145/3576841.3585919

DOI
10.1145/3576841.3585919
Conference Paper

Safety-Assured Design and Adaptation of Connected and Autonomous Vehicles

Chen, X., Fan, J., Huang, C., Jiao, R., Li, W., Liu, X., . . . Zhu, Q. (2023). Safety-Assured Design and Adaptation of Connected and Autonomous Vehicles. In Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems (pp. 735-757). Springer International Publishing. doi:10.1007/978-3-031-28016-0_26

DOI
10.1007/978-3-031-28016-0_26
Chapter

2022

2021

Bounding Perception Neural Network Uncertainty for Safe Control of Autonomous Systems

Wang, Z., Huang, C., Wang, Y., Hobbs, C., Chakraborty, S., & Zhu, Q. (2021). Bounding Perception Neural Network Uncertainty for Safe Control of Autonomous Systems. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 1745-1750). IEEE. doi:10.23919/date51398.2021.9474204

DOI
10.23919/date51398.2021.9474204
Conference Paper

Safety-Assured Design and Adaptation of Learning-Enabled Autonomous Systems

Zhu, Q., Huang, C., Jiao, R., Lan, S., Liang, H., Liu, X., . . . Xu, S. (2021). Safety-Assured Design and Adaptation of Learning-Enabled Autonomous Systems. In Proceedings of the 26th Asia and South Pacific Design Automation Conference (pp. 753-760). ACM. doi:10.1145/3394885.3431623

DOI
10.1145/3394885.3431623
Conference Paper

2020

Know the unknowns

Zhu, Q., Li, W., Kim, H., Xiang, Y., Wardega, K., Wang, Z., . . . Choi, H. (2020). Know the unknowns. In Proceedings of the 39th International Conference on Computer-Aided Design (pp. 1-9). ACM. doi:10.1145/3400302.3415768

DOI
10.1145/3400302.3415768
Conference Paper

Opportunistic Intermittent Control with Safety Guarantees for Autonomous Systems

Huang, C., Xu, S., Wang, Z., Lan, S., Li, W., & Zhu, Q. (2020). Opportunistic Intermittent Control with Safety Guarantees for Autonomous Systems. In 2020 57th ACM/IEEE Design Automation Conference (DAC) (pp. 1-6). IEEE. doi:10.1109/dac18072.2020.9218742

DOI
10.1109/dac18072.2020.9218742
Conference Paper

SAW: A Tool for Safety Analysis of Weakly-Hard Systems

Huang, C., Chang, K. -C., Lin, C. -W., & Zhu, Q. (2020). SAW: A Tool for Safety Analysis of Weakly-Hard Systems. In Unknown Book (Vol. 12224, pp. 543-555). doi:10.1007/978-3-030-53288-8_26

DOI
10.1007/978-3-030-53288-8_26
Chapter

Navigating Discrete Difference Equation Governed WMR by Virtual Linear Leader Guided HMPC

Huang, C., Chen, X., Tang, E., He, M., Bu, L., Qin, S., & Zeng, Y. (2020). Navigating Discrete Difference Equation Governed WMR by Virtual Linear Leader Guided HMPC. In 2020 IEEE International Conference on Robotics and Automation (ICRA) (pp. 151-157). IEEE. doi:10.1109/icra40945.2020.9197375

DOI
10.1109/icra40945.2020.9197375
Conference Paper

Efficient System Verification with Multiple Weakly-Hard Constraints for Runtime Monitoring

Wu, S. -L., Bai, C. -Y., Chang, K. -C., Hsieh, Y. -T., Huang, C., Lin, C. -W., . . . Zhu, Q. (2020). Efficient System Verification with Multiple Weakly-Hard Constraints for Runtime Monitoring. In Unknown Book (Vol. 12399, pp. 497-516). doi:10.1007/978-3-030-60508-7_28

DOI
10.1007/978-3-030-60508-7_28
Chapter

ReachNN*: A Tool for Reachability Analysis of Neural-Network Controlled Systems

Fan, J., Huang, C., Chen, X., Li, W., & Zhu, Q. (2020). ReachNN*: A Tool for Reachability Analysis of Neural-Network Controlled Systems. In Unknown Conference (pp. 537-542). Springer International Publishing. doi:10.1007/978-3-030-59152-6_30

DOI
10.1007/978-3-030-59152-6_30
Conference Paper

2019

Towards Verification-Aware Knowledge Distillation for Neural-Network Controlled Systems: Invited Paper

Fan, J., Huang, C., Li, W., Chen, X., & Zhu, Q. (2019). Towards Verification-Aware Knowledge Distillation for Neural-Network Controlled Systems: Invited Paper. In 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (pp. 1-8). IEEE. doi:10.1109/iccad45719.2019.8942059

DOI
10.1109/iccad45719.2019.8942059
Conference Paper

Formal verification of weakly-hard systems

Huang, C., Li, W., & Zhu, Q. (2019). Formal verification of weakly-hard systems. In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control (pp. 197-207). ACM. doi:10.1145/3302504.3311811

DOI
10.1145/3302504.3311811
Conference Paper

Exploring weakly-hard paradigm for networked systems

Huang, C., Wardega, K., Li, W., & Zhu, Q. (2019). Exploring weakly-hard paradigm for networked systems. In Proceedings of the Workshop on Design Automation for CPS and IoT (pp. 51-59). ACM. doi:10.1145/3313151.3313165

DOI
10.1145/3313151.3313165
Conference Paper

2018

Design Automation for Intelligent Automotive Systems

Lan, S., Huang, C., Wang, Z., Liang, H., Su, W., & Zhu, Q. (2018). Design Automation for Intelligent Automotive Systems. In 2018 IEEE International Test Conference (ITC) (pp. 1-10). IEEE. doi:10.1109/test.2018.8624723

DOI
10.1109/test.2018.8624723
Conference Paper

2017

Probabilistic Safety Verification of Stochastic Hybrid Systems Using Barrier Certificates

Huang, C., Chen, X., Lin, W., Yang, Z., & Li, X. (2017). Probabilistic Safety Verification of Stochastic Hybrid Systems Using Barrier Certificates. In ACM Transactions on Embedded Computing Systems Vol. 16 (pp. 1-19). Association for Computing Machinery (ACM). doi:10.1145/3126508

DOI
10.1145/3126508
Conference Paper

Switched Linear Multi-Robot Navigation Using Hierarchical Model Predictive Control

Huang, C., Chen, X., Zhang, Y., Qin, S., Zeng, Y., & Li, X. (2017). Switched Linear Multi-Robot Navigation Using Hierarchical Model Predictive Control. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (pp. 4331-4337). International Joint Conferences on Artificial Intelligence Organization. doi:10.24963/ijcai.2017/605

DOI
10.24963/ijcai.2017/605
Conference Paper

2016

Family patronage, institutional patronage, and work family conflict: women’s employment status and subjective well-being in urban China

Wu, Y., Wang, P., & Huang, C. (2016). Family patronage, institutional patronage, and work family conflict: women’s employment status and subjective well-being in urban China. The Journal of Chinese Sociology, 3(1). doi:10.1186/s40711-016-0041-2

DOI
10.1186/s40711-016-0041-2
Journal article

Tool for analyzing interference problems in aspect-oriented designs

Chen, X., Huang, C., Zhang, Y. F., & Mei, Y. M. (2016). Tool for analyzing interference problems in aspect-oriented designs. Ruan Jian Xue Bao/Journal of Software, 27(3), 633-644. doi:10.13328/j.cnki.jos.004985

DOI
10.13328/j.cnki.jos.004985
Journal article

A Linear Programming Relaxation Based Approach for Generating Barrier Certificates of Hybrid Systems

Yang, Z., Huang, C., Chen, X., Lin, W., & Liu, Z. (2016). A Linear Programming Relaxation Based Approach for Generating Barrier Certificates of Hybrid Systems. In Unknown Conference (pp. 721-738). Springer International Publishing. doi:10.1007/978-3-319-48989-6_44

DOI
10.1007/978-3-319-48989-6_44
Conference Paper

2015

Method of automatic test case generation for safety-critical scenarios in train control systems

Chen, X., Jiang, P., Zhang, Y. F., Huang, C., & Zhou, Y. (2015). Method of automatic test case generation for safety-critical scenarios in train control systems. Ruan Jian Xue Bao/Journal of Software, 26(2), 269-278. doi:10.13328/j.cnki.jos.004780

DOI
10.13328/j.cnki.jos.004780
Journal article

Research on reliability and correctness assurance methods and techniques for device drivers

Zhang, Y. F., Huang, C., Ou, J. S., Tang, E. Y., & Chen, X. (2015). Research on reliability and correctness assurance methods and techniques for device drivers. Ruan Jian Xue Bao/Journal of Software, 26(2), 239-253. doi:10.13328/j.cnki.jos.004778

DOI
10.13328/j.cnki.jos.004778
Journal article