Skip to main content
What types of page to search?

Alternatively use our A-Z index.

Publications

Selected publications

  1. BayLIME: Bayesian Local Interpretable Model-Agnostic Explanations (Conference Paper - 2020)
  2. Interval Change-Point Detection for Runtime Probabilistic Model Checking (Conference Paper - 2020)
  3. Assessing safety-critical systems from operational testing: A study on autonomous vehicles (Journal article - 2020)
  4. Probabilistic Model Checking of Robots Deployed in Extreme Environments (Conference Paper - 2018)
  5. A Safety Framework for Critical Systems Utilising Deep Neural Networks (Conference Paper - 2020)
What type of publication do you want to show?

2025

Uncertainty-oriented dynamic topology optimization for cross-scale concurrent design considering improved size-controlling strategy

Zhao, X., Wang, L., & Liu, Y. (2025). Uncertainty-oriented dynamic topology optimization for cross-scale concurrent design considering improved size-controlling strategy. Reliability Engineering & System Safety, 257, 110819. doi:10.1016/j.ress.2025.110819

DOI
10.1016/j.ress.2025.110819
Journal article

Risk Controlled Image Retrieval

Cai, K., Lu, C. X., Zhao, X., Huang, W., & Huang, X. (2025). Risk Controlled Image Retrieval. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 39 (pp. 27224-27232). Association for the Advancement of Artificial Intelligence (AAAI). doi:10.1609/aaai.v39i26.34931

DOI
10.1609/aaai.v39i26.34931
Conference Paper

Hyper-CycleGAN: A New Adversarial Neural Network Architecture for Cross-Domain Hyperspectral Data Generation

He, Y., Seng, K. P., Ang, L. M., Peng, B., & Zhao, X. (2025). Hyper-CycleGAN: A New Adversarial Neural Network Architecture for Cross-Domain Hyperspectral Data Generation. Applied Sciences, 15(8), 4188. doi:10.3390/app15084188

DOI
10.3390/app15084188
Journal article

Safety analysis in the era of large language models: A case study of STPA using ChatGPT

Qi, Y., Zhao, X., Khastgir, S., & Huang, X. (2025). Safety analysis in the era of large language models: A case study of STPA using ChatGPT. Machine Learning with Applications, 19, 100622. doi:10.1016/j.mlwa.2025.100622

DOI
10.1016/j.mlwa.2025.100622
Journal article

Data Augmentation for Continual RL via Adversarial Gradient Episodic Memory

Wu, S., Zhao, X., & Huang, X. (2025). Data Augmentation for Continual RL via Adversarial Gradient Episodic Memory. In Lecture Notes in Computer Science (pp. 182-196). Springer Nature Singapore. doi:10.1007/978-981-96-6585-3_13

DOI
10.1007/978-981-96-6585-3_13
Chapter

ProTIP: Probabilistic Robustness Verification on Text-to-Image Diffusion Models Against Stochastic Perturbation

Zhang, Y., Tang, Y., Ruan, W., Huang, X., Khastgir, S., Jennings, P., & Zhao, X. (2025). ProTIP: Probabilistic Robustness Verification on Text-to-Image Diffusion Models Against Stochastic Perturbation. In Lecture Notes in Computer Science (pp. 455-472). Springer Nature Switzerland. doi:10.1007/978-3-031-73411-3_26

DOI
10.1007/978-3-031-73411-3_26
Chapter

The Impact of Live Polling Quizzes on Student Engagement and Performance in Computer Science Lectures: A Post-COVID19 Study

Zhao, X. (2025). The Impact of Live Polling Quizzes on Student Engagement and Performance in Computer Science Lectures: A Post-COVID19 Study. In Proceedings of the 17th International Conference on Computer Supported Education (pp. 291-298). SCITEPRESS - Science and Technology Publications. doi:10.5220/0013218700003932

DOI
10.5220/0013218700003932
Conference Paper

2024

Is Difficulty Calibration All We Need? Towards More Practical Membership Inference Attacks

He, Y., Li, B., Wang, Y., Yang, M., Wang, J., Hu, H., & Zhao, X. (2024). Is Difficulty Calibration All We Need? Towards More Practical Membership Inference Attacks. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security (pp. 1226-1240). ACM. doi:10.1145/3658644.3690316

DOI
10.1145/3658644.3690316
Conference Paper

Instance-Level Safety-Aware Fidelity of Synthetic Data and its Calibration

Cheng, C. -H., Stöckel, P., & Zhao, X. (2024). Instance-Level Safety-Aware Fidelity of Synthetic Data and its Calibration. In 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC) (pp. 2354-2361). IEEE. doi:10.1109/itsc58415.2024.10920032

DOI
10.1109/itsc58415.2024.10920032
Conference Paper

Augmenting Scenario Description Languages for Intelligence Testing of Automated Driving Systems

Tang, Y., Bruto Da Costa, A. A., Irvine, P., Dodoiu, T., Zhang, Y., Zhao, X., . . . Jennings, P. (2024). Augmenting Scenario Description Languages for Intelligence Testing of Automated Driving Systems. In 2024 IEEE Intelligent Vehicles Symposium (IV) (pp. 1112-1118). IEEE. doi:10.1109/iv55156.2024.10588707

DOI
10.1109/iv55156.2024.10588707
Conference Paper

ODD-based Query-time Scenario Mutation Framework for Autonomous Driving Scenario databases

Tang, Y., Raj, D., Zhao, X., Zhang, X., Bruto da Costa, A. A., Khastgir, S., & Jennings, P. (2024). ODD-based Query-time Scenario Mutation Framework for Autonomous Driving Scenario databases. In 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2197-2203). IEEE. doi:10.1109/icra57147.2024.10610412

DOI
10.1109/icra57147.2024.10610412
Conference Paper

Position: Building Guardrails for Large Language Models Requires Systematic Design

Dong, Y., Mu, R., Jin, G., Qi, Y., Hu, J., Zhao, X., . . . Huang, X. (2024). Position: Building Guardrails for Large Language Models Requires Systematic Design. In Proceedings of Machine Learning Research Vol. 235 (pp. 11375-11394).

Conference Paper

TARP-VP: Towards Evaluation of Transferred Adversarial Robustness and Privacy on Label Mapping Visual Prompting Models

Chen, Z., Zhang, Y., Wang, F., Zhao, X., Huang, X., & Ruan, W. (2024). TARP-VP: Towards Evaluation of Transferred Adversarial Robustness and Privacy on Label Mapping Visual Prompting Models. In Advances in Neural Information Processing Systems Vol. 37.

Conference Paper

What, Indeed, is an Achievable Provable Guarantee for Learning-Enabled Safety-Critical Systems

Bensalem, S., Cheng, C. -H., Huang, W., Huang, X., Wu, C., & Zhao, X. (2024). What, Indeed, is an Achievable Provable Guarantee for Learning-Enabled Safety-Critical Systems. In Unknown Conference (pp. 55-76). Springer Nature Switzerland. doi:10.1007/978-3-031-46002-9_4

DOI
10.1007/978-3-031-46002-9_4
Conference Paper

2023

Cycle-Consistent Generative Adversarial Network Architectures for Audio Visual Speech Recognition

He, Y., Seng, K. P., Ang, L. -M., & Zhao, X. (2023). Cycle-Consistent Generative Adversarial Network Architectures for Audio Visual Speech Recognition. In 2023 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC) (pp. 1-6). IEEE. doi:10.1109/icspcc59353.2023.10400358

DOI
10.1109/icspcc59353.2023.10400358
Conference Paper

The Unnecessity of Assuming Statistically Independent Tests in Bayesian Software Reliability Assessments

Salako, K., & Zhao, X. (2023). The Unnecessity of Assuming Statistically Independent Tests in Bayesian Software Reliability Assessments. IEEE Transactions on Software Engineering, 1-9. doi:10.1109/tse.2022.3233802

Journal article

2022

The Unnecessity of Assuming Statistically Independent Tests in Bayesian Software Reliability Assessments

DOI
10.48550/arxiv.2208.00462
Preprint

Bridging Formal Methods and Machine Learning with Global Optimisation

Huang, X., Ruan, W., Tang, Q., & Zhao, X. (2022). Bridging Formal Methods and Machine Learning with Global Optimisation. In Lecture Notes in Computer Science (pp. 1-19). Springer International Publishing. doi:10.1007/978-3-031-17244-1_1

DOI
10.1007/978-3-031-17244-1_1
Chapter

2021

Reliability Assessment and Safety Arguments for Machine Learning Components in System Assurance

DOI
10.48550/arxiv.2112.00646
Preprint

2020

Assessing Safety-Critical Systems from Operational Testing: A Study on Autonomous Vehicles

DOI
10.48550/arxiv.2008.09510
Preprint

Assessing safety-critical systems from operational testing: A study on autonomous vehicles

Zhao, X., Salako, K., Strigini, L., Robu, V., & Flynn, D. (2020). Assessing safety-critical systems from operational testing: A study on autonomous vehicles. INFORMATION AND SOFTWARE TECHNOLOGY, 128. doi:10.1016/j.infsof.2020.106393

DOI
10.1016/j.infsof.2020.106393
Journal article

On reliability assessment when a software-based system is replaced by a thought-to-be-better one

Littlewood, B., Salako, K., Strigini, L., & Zhao, X. (2020). On reliability assessment when a software-based system is replaced by a thought-to-be-better one. RELIABILITY ENGINEERING & SYSTEM SAFETY, 197. doi:10.1016/j.ress.2019.106752

DOI
10.1016/j.ress.2019.106752
Journal article

A Safety Framework for Critical Systems Utilising Deep Neural Networks

Zhao, X., Banks, A., Sharp, J., Robu, V., Flynn, D., Fisher, M., & Huang, X. (2020). A Safety Framework for Critical Systems Utilising Deep Neural Networks. In Computer Safety, Reliability, and Security (Vol. 12234, pp. 244-259). Springer Nature. doi:10.1007/978-3-030-54549-9_16

DOI
10.1007/978-3-030-54549-9_16
Chapter

2019

UAS Operators Safety and Reliability Survey: Emerging Technologies towards the Certification of Autonomous UAS

Osborne, M., Lantair, J., Shafiq, Z., Zhao, X., Robu, V., Flynn, D., & Perry, J. (2019). UAS Operators Safety and Reliability Survey: Emerging Technologies towards the Certification of Autonomous UAS. In 2019 4TH INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY (ICSRS 2019) (pp. 203-212). doi:10.1109/icsrs48664.2019.8987692

DOI
10.1109/icsrs48664.2019.8987692
Conference Paper

The Application of Machine Learning and Low Frequency Sonar for Subsea Power Cable Integrity Evaluation

Tang, W., Flynn, D., Brown, K., Valentin, R., & Zhao, X. (2019). The Application of Machine Learning and Low Frequency Sonar for Subsea Power Cable Integrity Evaluation. In OCEANS 2019 MTS/IEEE SEATTLE. Retrieved from https://www.webofscience.com/

Conference Paper

The Design of a Fusion Prognostic Model and Health Management System for Subsea Power Cables

Tang, W., Flynn, D., Brown, K., Valentin, R., & Zhao, X. (2019). The Design of a Fusion Prognostic Model and Health Management System for Subsea Power Cables. In OCEANS 2019 MTS/IEEE SEATTLE. Retrieved from https://www.webofscience.com/

Conference Paper

Towards Integrating Formal Verification of Autonomous Robots with Battery Prognostics and Health Management

DOI
10.48550/arxiv.1909.03019
Preprint

Assessing the Safety and Reliability of Autonomous Vehicles from Road Testing

Zhao, X., Robu, V., Flynn, D., Salako, K., & Strigini, L. (2019). Assessing the Safety and Reliability of Autonomous Vehicles from Road Testing. In 2019 IEEE 30TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING (ISSRE) (pp. 13-23). doi:10.1109/ISSRE.2019.00012

DOI
10.1109/ISSRE.2019.00012
Conference Paper

Machine learning methods for wind turbine condition monitoring: A review

Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, D., Barnes, M., . . . Nenadic, G. (2019). Machine learning methods for wind turbine condition monitoring: A review. RENEWABLE ENERGY, 133, 620-635. doi:10.1016/j.renene.2018.10.047

DOI
10.1016/j.renene.2018.10.047
Journal article

2018

Probabilistic Model Checking of Robots Deployed in Extreme Environments

Zhao, X., Robu, V., Flynn, D., Dinmohammadi, F., Fisher, M., & Webster, M. (2019). Probabilistic Model Checking of Robots Deployed in Extreme Environments. In THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE (pp. 8066-8074). Retrieved from https://www.webofscience.com/

Conference Paper

Verifiable Self-Certifying Autonomous Systems

Fisher, M., Collins, E., Dennis, L., Luckcuck, M., Webster, M., Jump, M., . . . Zhao, X. (2018). Verifiable Self-Certifying Autonomous Systems. In 2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW) (pp. 341-348). IEEE. doi:10.1109/issrew.2018.00028

DOI
10.1109/issrew.2018.00028
Conference Paper

Conservative claims for the probability of perfection of a software-based system using operational experience of previous similar systems

Zhao, X., Littlewood, B., Povyakalo, A., Strigini, L., & Wright, D. (2018). Conservative claims for the probability of perfection of a software-based system using operational experience of previous similar systems. RELIABILITY ENGINEERING & SYSTEM SAFETY, 175, 265-282. doi:10.1016/j.ress.2018.03.032

DOI
10.1016/j.ress.2018.03.032
Journal article

2017

Modeling the probability of failure on demand (<i>pfd</i>) of a 1-out-of-2 system in which one channel is "quasi-perfect"

Zhao, X., Littlewood, B., Povyakalo, A., Strigini, L., & Wright, D. (2017). Modeling the probability of failure on demand (<i>pfd</i>) of a 1-out-of-2 system in which one channel is "quasi-perfect". RELIABILITY ENGINEERING & SYSTEM SAFETY, 158, 230-245. doi:10.1016/j.ress.2016.09.002

DOI
10.1016/j.ress.2016.09.002
Journal article

2016

Conservative Claims about the Probability of Perfection of Software-based Systems

Zhao, X., Littlewood, B., Povyakalo, A., & Wright, D. (2015). Conservative Claims about the Probability of Perfection of Software-based Systems. In 2015 IEEE 26TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING (ISSRE) (pp. 130-140). Retrieved from https://www.webofscience.com/

Conference Paper

2014

A Dependability Case Construction Approach Based on Dependability Deviation Analysis

Zhang, D. J., Lu, M. Y., & Zhao, X. Y. (2014). A Dependability Case Construction Approach Based on Dependability Deviation Analysis. Applied Mechanics and Materials, 543-547, 3682-3687. doi:10.4028/www.scientific.net/amm.543-547.3682

DOI
10.4028/www.scientific.net/amm.543-547.3682
Journal article

2012

A New Approach to Assessment of Confidence in Assurance Cases

Zhao, X., Zhang, D., Lu, M., & Zeng, F. (2012). A New Approach to Assessment of Confidence in Assurance Cases. In Unknown Conference (pp. 79-91). Springer Berlin Heidelberg. doi:10.1007/978-3-642-33675-1_7

DOI
10.1007/978-3-642-33675-1_7
Conference Paper

2011

Variance Analysis Based Software Fault Localization

Variance Analysis Based Software Fault Localization (2011). In Unknown Conference (pp. 333-339). ASME Press. doi:10.1115/1.859858.paper46

DOI
10.1115/1.859858.paper46
Conference Paper