Skip to main content
What types of page to search?

Alternatively use our A-Z index.

Publications

Selected publications

  1. The Complexity of the Simplex Method (Conference Paper - 2014)
  2. Learning equilibria of games via payoff queries (Journal article - 2015)
  3. The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions (Journal article - 2013)
  4. Enumeration of Nash equilibria for two-player games (Journal article - 2009)
  5. Unique end of potential line (Journal article - 2020)
What type of publication do you want to show?

2024

Market Making with Learned Beta Policies

Wang, Y., Savani, R., Gu, A., Mascioli, C., Turocy, T., & Wellman, M. (2024). Market Making with Learned Beta Policies. In Proceedings of the 5th ACM International Conference on AI in Finance (pp. 643-651). ACM. doi:10.1145/3677052.3698623

DOI
10.1145/3677052.3698623
Conference Paper

A Strategic Analysis of Prepayments in Financial Credit Networks

Zhou, H., Wang, Y., Varsos, K., Bishop, N., Savani, R., Calinescu, A., & Wooldridge, M. (2024). A Strategic Analysis of Prepayments in Financial Credit Networks. In Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence (pp. 3040-3048). International Joint Conferences on Artificial Intelligence Organization. doi:10.24963/ijcai.2024/337

DOI
10.24963/ijcai.2024/337
Conference Paper

Ordinal Potential-based Player Rating

Vadori, N., & Savani, R. (2024). Ordinal Potential-based Player Rating. In Proceedings of Machine Learning Research Vol. 238 (pp. 118-126).

Conference Paper

Policy Space Response Oracles: A Survey

Bighashdel, A., Wang, Y., McAleer, S., Savani, R., & Oliehoek, F. A. (2024). Policy Space Response Oracles: A Survey. In Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence (pp. 7951-7961). International Joint Conferences on Artificial Intelligence Organization. doi:10.24963/ijcai.2024/880

DOI
10.24963/ijcai.2024/880
Conference Paper

The Complexity of Computing KKT Solutions of Quadratic Programs.

Fearnley, J., Goldberg, P. W., Hollender, A., & Savani, R. (2024). The Complexity of Computing KKT Solutions of Quadratic Programs.. In B. Mohar, I. Shinkar, & R. O'Donnell (Eds.), STOC (pp. 892-903). ACM. Retrieved from https://doi.org/10.1145/3618260

Conference Paper

Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents.

Borzechowski, M., Fearnley, J., Gordon, S., Savani, R., Schnider, P., & Weber, S. (2024). Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents.. In K. Bringmann, M. Grohe, G. Puppis, & O. Svensson (Eds.), ICALP Vol. 297 (pp. 32:1). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Retrieved from https://www.dagstuhl.de/dagpub/978-3-95977-322-5

Conference Paper

2023

Recommender Systems and Competition on Subscription-Based Platforms

DOI
10.2139/ssrn.4428125
Preprint

2022

Market Making with Scaled Beta Policies

Jerome, J., Palmer, G., & Savani, R. (2022). Market Making with Scaled Beta Policies. In Proceedings of the Third ACM International Conference on AI in Finance (pp. 214-222). ACM. doi:10.1145/3533271.3561745

DOI
10.1145/3533271.3561745
Conference Paper

Generative Models over Neural Controllers for Transfer Learning

Butterworth, J., Savani, R., & Tuyls, K. (2022). Generative Models over Neural Controllers for Transfer Learning. In Unknown Book (Vol. 13398, pp. 400-413). doi:10.1007/978-3-031-14714-2_28

DOI
10.1007/978-3-031-14714-2_28
Chapter

Sample-based Approximation of Nash in Large Many-Player Games via Gradient Descent

Gemp, I., Savani, R., Lanctot, M., Bachrach, Y., Anthony, T., Everett, R., . . . Kramár, J. (2022). Sample-based Approximation of Nash in Large Many-Player Games via Gradient Descent. In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS Vol. 1 (pp. 507-515).

Conference Paper

2021

Trading via Selective Classification

Chalkidis, N., & Savani, R. (2021). Trading via Selective Classification. In ICAIF 2021: THE SECOND ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE. doi:10.1145/3490354.3494379

DOI
10.1145/3490354.3494379
Conference Paper

Trading via Selective Classification

Chalkidis, N., & Savani, R. (2021). Trading via Selective Classification. Retrieved from http://dx.doi.org/10.1145/3490354.3494379

Conference Paper

A deep learning approach to identify unhealthy advertisements in street view images

Palmer, G., Green, M., Boyland, E., Vasconcelos, Y. S. R., Savani, R., & Singleton, A. (2021). A deep learning approach to identify unhealthy advertisements in street view images. SCIENTIFIC REPORTS, 11(1). doi:10.1038/s41598-021-84572-4

DOI
10.1038/s41598-021-84572-4
Journal article

Difference Rewards Policy Gradients

Castellini, J., Devlin, S., Oliehoek, F. A., & Savani, R. (2021). Difference Rewards Policy Gradients. In ALA 2021 - Adaptive and Learning Agents Workshop at AAMAS 2021.

Conference Paper

Reachability Switching Games.

Fearnley, J., Gairing, M., Mnich, M., & Savani, R. (2021). REACHABILITY SWITCHING GAMES. In LOGICAL METHODS IN COMPUTER SCIENCE Vol. 17. doi:10.23638/LMCS-17(2:10)2021

Conference Paper

2020

Difference Rewards Policy Gradients

Castellini, J., Devlin, S., Oliehoek, F. A., & Savani, R. (2020). Difference Rewards Policy Gradients. Retrieved from http://dx.doi.org/10.1007/s00521-022-07960-5

Internet publication

Unique end of potential line

Fearnley, J. S., Gordon, S., Mehta, R., & Savani, R. (2020). Unique End of Potential Line. Journal of Computer and System Sciences, 114, 1-35. doi:10.1016/j.jcss.2020.05.007

DOI
10.1016/j.jcss.2020.05.007
Journal article

Bayesian optimisation of restriction zones for bluetongue control.

Spooner, T., Jones, A. E., Fearnley, J., Savani, R., Turner, J., & Baylis, M. (2020). Bayesian optimisation of restriction zones for bluetongue control.. Scientific Reports, 10(1), 15139. doi:10.1038/s41598-020-71856-4

DOI
10.1038/s41598-020-71856-4
Journal article

One-Clock Priced Timed Games are PSPACE-hard

Fearnley, J., Ibsen-Jensen, R., & Savani, R. (2020). One-Clock Priced Timed Games are PSPACE-hard. LICS '20: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. Retrieved from http://arxiv.org/abs/2001.04458v2

Journal article

The Automated Inspection of Opaque Liquid Vaccines

Palmer, G., Schnieders, B., Savani, R., Tuyls, K., Fossel, J., & Flore, H. (2020). The Automated Inspection of Opaque Liquid Vaccines. In ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE Vol. 325 (pp. 1898-1905). doi:10.3233/FAIA200307

DOI
10.3233/FAIA200307
Conference Paper

Robust market making via adversarial reinforcement learning

Spooner, T., & Savani, R. (2020). Robust Market Making via Adversarial Reinforcement Learning. In PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (pp. 4590-4596). Retrieved from https://www.webofscience.com/

Conference Paper

Tree Polymatrix Games Are PPAD-Hard.

Deligkas, A., Fearnley, J., & Savani, R. (2020). Tree Polymatrix Games Are PPAD-Hard.. In A. Czumaj, A. Dawar, & E. Merelli (Eds.), ICALP Vol. 168 (pp. 38:1). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Retrieved from https://www.dagstuhl.de/dagpub/978-3-95977-138-2

Conference Paper

2019

Evolving indoor navigational strategies using gated recurrent units in NEAT

Butterworth, J., Savani, R., & Tuyls, K. (2019). Evolving indoor navigational strategies using gated recurrent units in NEAT. In GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 111-112). doi:10.1145/3319619.3321995

DOI
10.1145/3319619.3321995
Conference Paper

Analysing Factorizations of Action-Value Networks for Cooperative Multi-Agent Reinforcement Learning

DOI
10.48550/arxiv.1902.07497
Preprint

The Representational Capacity of Action-Value Networks for Multi-Agent Reinforcement Learning

Castellini, J., Oliehoek, F. A., Savani, R., & Whiteson, S. (2019). The Representational Capacity of Action-Value Networks for Multi-Agent Reinforcement Learning. In AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (pp. 1862-1864). Retrieved from https://www.webofscience.com/

Conference Paper

2018

Unique End of Potential Line

Fearnley, J., Gordon, S., Mehta, R., & Savani, R. (2018). Unique End of Potential Line. Retrieved from http://arxiv.org/abs/1811.03841v1

Other

The Complexity of All-Switches Strategy Improvement

Fearnley, J. S., & Savani, R. S. J. (2018). The Complexity of All-Switches Strategy Improvement. Logical Methods in Computer Science, 14(4), 1-57. doi:10.23638/LMCS-14(4:9)2018

DOI
10.23638/LMCS-14(4:9)2018
Journal article

Negative Update Intervals in Deep Multi-Agent Reinforcement Learning

Palmer, G., Savani, R., & Tuyls, K. (2019). Negative Update Intervals in Deep Multi-Agent Reinforcement Learning. In AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (pp. 43-51). Retrieved from https://www.webofscience.com/

Conference Paper

Beyond Local Nash Equilibria for Adversarial Networks

Oliehoek, F. A., Savani, R., Gallego, J., van der Pol, E., & Gross, R. (2019). Beyond Local Nash Equilibria for Adversarial Networks. In ARTIFICIAL INTELLIGENCE, BNAIC 2018 (Vol. 1021, pp. 73-89). doi:10.1007/978-3-030-31978-6_7

Other

Market Making via Reinforcement Learning

Spooner, T., Fearnley, J., Savani, R., & Koukorinis, A. (2018). Market Making via Reinforcement Learning. In PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18) (pp. 434-442). Retrieved from https://www.webofscience.com/

Other

End of Potential Line

Fearnley, J., Gordon, S., Mehta, R., & Savani, R. (2018). End of Potential Line. Retrieved from http://arxiv.org/abs/1804.03450v2

Other

Beyond Local Nash Equilibria for Adversarial Networks.

Oliehoek, F. A., Savani, R., Gallego-Posada, J., Pol, E. V. D., & Groß, R. (2018). Beyond Local Nash Equilibria for Adversarial Networks.. In M. Atzmueller, & W. Duivesteijn (Eds.), BNCAI Vol. 1021 (pp. 73-89). Springer. Retrieved from https://doi.org/10.1007/978-3-030-31978-6

Conference Paper

Lenient Multi-Agent Deep Reinforcement Learning.

Palmer, G., Tuyls, K., Bloembergen, D., & Savani, R. (2018). Lenient Multi-Agent Deep Reinforcement Learning.. In E. André, S. Koenig, M. Dastani, & G. Sukthankar (Eds.), AAMAS (pp. 443-451). International Foundation for Autonomous Agents and Multiagent Systems Richland, SC, USA / ACM. Retrieved from http://dl.acm.org/citation.cfm?id=3237383

Conference Paper

Market Making via Reinforcement Learning.

Spooner, T., Fearnley, J., Savani, R., & Koukorinis, A. (2018). Market Making via Reinforcement Learning.. In E. André, S. Koenig, M. Dastani, & G. Sukthankar (Eds.), AAMAS (pp. 434-442). International Foundation for Autonomous Agents and Multiagent Systems Richland, SC, USA / ACM. Retrieved from http://dl.acm.org/citation.cfm?id=3237383

Conference Paper

2017

GANGs: Generative Adversarial Network Games

Oliehoek, F. A., Savani, R., Gallego-Posada, J., Pol, E. V. D., Jong, E. D. D., & Gross, R. (2017). GANGs: Generative Adversarial Network Games. Retrieved from http://arxiv.org/abs/1712.00679v2

Other

Lenient Multi-Agent Deep Reinforcement Learning

Palmer, G., Tuyls, K., Bloembergen, D., & Savani, R. (2018). Lenient Multi-Agent Deep Reinforcement Learning. In PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18) (pp. 443-451). Retrieved from https://www.webofscience.com/

Conference Paper

LiftUpp: Support to Develop Learner Performance

Oliehoek, F. A., Savani, R., Adderton, E. A., Cui, X., Jackson, D., Jimmieson, P., . . . Dawson, L. (2017). LiftUpp: Support to Develop Learner Performance. In International Journal of Artificial Intelligence in Education. Wuhan, China: International Artificial Intelligence in Education Society. doi:10.1007/978-3-319-61425-0_62

DOI
10.1007/978-3-319-61425-0_62
Conference Paper

CLS: New Problems and Completeness

Fearnley, J., Gordon, S., Mehta, R., & Savani, R. (2017). CLS: New Problems and Completeness. Retrieved from http://arxiv.org/abs/1702.06017v2

Other

Computing Approximate Nash Equilibria in Polymatrix Games

Deligkas, A., Fearnley, J., Savani, R., & Spirakis, P. (2017). Computing Approximate Nash Equilibria in Polymatrix Games. ALGORITHMICA, 77(2), 487-514. doi:10.1007/s00453-015-0078-7

DOI
10.1007/s00453-015-0078-7
Journal article

Computing Constrained Approximate Equilibria in Polymatrix Games.

Deligkas, A., Fearnley, J., & Savani, R. (2017). Computing Constrained Approximate Equilibria in Polymatrix Games.. CoRR, abs/1705.02266.

Journal article

LiftUpp: Support to Develop Learner Performance

Oliehoek, F. A., Savani, R., Adderton, E., Cui, X., Jackson, D., Jimmieson, P., . . . Dawson, L. (2017). LiftUpp: Support to Develop Learner Performance. In Artificial Intelligence in Education (Vol. 10331, pp. 553-556). Springer Nature. doi:10.1007/978-3-319-61425-0_62

DOI
10.1007/978-3-319-61425-0_62
Chapter

2016

Inapproximability Results for Approximate Nash Equilibria.

Deligkas, A., Fearnley, J., & Savani, R. (2016). Inapproximability Results for Approximate Nash Equilibria.. In Y. Cai, & A. Vetta (Eds.), WINE Vol. 10123 (pp. 29-43). Springer. Retrieved from https://doi.org/10.1007/978-3-662-54110-4

Conference Paper

Hedonic Games

Aziz, H., & Savani, R. (2016). Hedonic Games. In Handbook of Computational Social Choice (pp. 356-376). Cambridge University Press. doi:10.1017/cbo9781107446984.016

DOI
10.1017/cbo9781107446984.016
Chapter

An empirical study on computing equilibria in polymatrix games

Deligkas, A., Fearnley, J., Igwe, T. P., & Savani, R. (2016). An Empirical Study on Computing Equilibria in Polymatrix Games. In AAMAS'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS (pp. 186-195). Retrieved from https://www.webofscience.com/

Conference Paper

Preface

Gairing, M., & Savani, R. (2016). Preface (Vol. 9928 LNCS).

Book

2015

Computing Stable Outcomes in Symmetric Additively Separable Hedonic Games

Gairing, M., & Savani, R. (2019). Computing Stable Outcomes in Symmetric Additively Separable Hedonic Games. In MATHEMATICS OF OPERATIONS RESEARCH (Vol. 44, Iss. 3, pp. 1101-1121). doi:10.1287/moor.2018.0960

DOI
10.1287/moor.2018.0960
Other

Learning equilibria of games via payoff queries

Fearnley, J., Gairing, M., Goldberg, P. W., & Savani, R. (2015). Learning Equilibria of Games via Payoff Queries. JOURNAL OF MACHINE LEARNING RESEARCH, 16, 1305-1344. Retrieved from https://www.webofscience.com/

Journal article

An Empirical Study of Finding Approximate Equilibria in Bimatrix Games

Fearnley, J., Igwe, T. P., & Savani, R. (2015). An Empirical Study of Finding Approximate Equilibria in Bimatrix Games. In EXPERIMENTAL ALGORITHMS, SEA 2015 Vol. 9125 (pp. 339-351). doi:10.1007/978-3-319-20086-6_26

DOI
10.1007/978-3-319-20086-6_26
Conference Paper

Unit vector games

Savani, R., & von Stengel, B. (2016). Unit vector games. INTERNATIONAL JOURNAL OF ECONOMIC THEORY, 12(1), 7-27. doi:10.1111/ijet.12077

DOI
10.1111/ijet.12077
Journal article

An Empirical Study of Finding Approximate Equilibria in Bimatrix Games.

Fearnley, J., Igwe, T. P., & Savani, R. (2015). An Empirical Study of Finding Approximate Equilibria in Bimatrix Games.. In E. Bampis (Ed.), SEA Vol. 9125 (pp. 339-351). Springer. Retrieved from https://doi.org/10.1007/978-3-319-20086-6

Conference Paper

2014

Computing Approximate Nash Equilibria in Polymatrix Games.

Deligkas, A., Fearnley, J., Savani, R., & Spirakis, P. (2014). Computing Approximate Nash Equilibria in Polymatrix Games. In WEB AND INTERNET ECONOMICS Vol. 8877 (pp. 58-71). Retrieved from https://www.webofscience.com/

Conference Paper

A Data Rich Money Market Model - Agent-based Modelling for Financial Stability

Devine, P., & Savani, R. (2014). A Data Rich Money Market Model - Agent-based Modelling for Financial Stability. In Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (pp. 231-236). SCITEPRESS - Science and Technology Publications. doi:10.5220/0005096602310236

DOI
10.5220/0005096602310236
Conference Paper

Computing Approximate Nash Equilibria in Polymatrix Games

Deligkas, A., Fearnley, J., Savani, R., & Spirakis, P. (2014). Computing Approximate Nash Equilibria in Polymatrix Games. In Web and Internet Economics (Vol. 8877, pp. 58-71). Springer Nature. doi:10.1007/978-3-319-13129-0_5

DOI
10.1007/978-3-319-13129-0_5
Chapter

Cooperative Max Games and Agent Failures

Bachrach, Y., Savani, R., & Shah, N. (2014). Cooperative Max Games and Agent Failures. In AAMAS'14: PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS (pp. 29-36). Retrieved from https://www.webofscience.com/

Conference Paper

Equilibrium Computation (Dagstuhl Seminar 14342)

Megiddo, N., Mehlhorn, K., Savani, R., & Vazirani, V. (2014). Equilibrium Computation (Dagstuhl Seminar 14342). Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik. doi:10.4230/DagRep.4.8.73

DOI
10.4230/DagRep.4.8.73
Report

Finding approximate nash equilibria of bimatrix games via payoff queries

Fearnley, J., & Savani, R. (2014). Finding approximate nash equilibria of bimatrix games via payoff queries. In Proceedings of the fifteenth ACM conference on Economics and computation (pp. 657-674). ACM. doi:10.1145/2600057.2602847

DOI
10.1145/2600057.2602847
Conference Paper

Increasing VCG Revenue by Decreasing the Quality of Items

Guo, M., Deligkas, A., & Savani, R. (2014). Increasing VCG Revenue by Decreasing the Quality of Items. In PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (pp. 705-711). Retrieved from https://www.webofscience.com/

Conference Paper

2013

Finding approximate Nash equilibria of bimatrix games via payoff queries

Fearnley, J., & Savani, R. (2013). Finding Approximate Nash Equilibria of Bimatrix Games via Payoff Queries. Retrieved from http://arxiv.org/abs/1310.7419v2

Journal article

Polylogarithmic Supports are required for Approximate Well-Supported Nash Equilibria below 2/3

DOI
10.48550/arxiv.1309.7258
Preprint

Learning equilibria of games via payoff queries

Fearnley, J., Gairing, M., Goldberg, P., & Savani, R. (2013). Learning equilibria of games via payoff queries. In Proceedings of the fourteenth ACM conference on Electronic commerce (pp. 397-414). ACM. doi:10.1145/2482540.2482558

DOI
10.1145/2482540.2482558
Conference Paper

The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions

Goldberg, P. W., Papadimitriou, C. H., & Savani, R. (2013). The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions. ACM Transactions on Economics and Computation, 1(2), 1-25. doi:10.1145/2465769.2465774

DOI
10.1145/2465769.2465774
Journal article

Learning Equilibria of Games via Payoff Queries

Fearnley, J., Gairing, M., Goldberg, P., & Savani, R. (2013). Learning Equilibria of Games via Payoff Queries. Retrieved from http://arxiv.org/abs/1302.3116v4

DOI
10.1145/2492002.2482558
Conference Paper

Game Theory Explorer

Egesdal, M., Gomez-Jordana, A., Pelissier, C., Savani, R. S. J., von Stengel, B., & Prause, M. (2013). Game Theory Explorer [Computer Software].

Software / Code

Game Theory Explorer

Savani, R. S. J. (2013). Game Theory Explorer [Computer Software]. Retrieved from http://gametheoryexplorer.org/

Software / Code

Polylogarithmic Supports Are Required for Approximate Well-Supported Nash Equilibria below 2/3

Anbalagan, Y., Norin, S., Savani, R., & Vetta, A. (2013). Polylogarithmic Supports Are Required for Approximate Well-Supported Nash Equilibria below 2/3. In Web and Internet Economics (Vol. 8289, pp. 15-23). Springer Nature. doi:10.1007/978-3-642-45046-4_2

DOI
10.1007/978-3-642-45046-4_2
Chapter

2012

Approximate Well-Supported Nash Equilibria Below Two-Thirds

Fearnley, J., Goldberg, P. W., Savani, R., & Sørensen, T. B. (2012). Approximate Well-Supported Nash Equilibria Below Two-Thirds. In Unknown Conference (pp. 108-119). Springer Berlin Heidelberg. doi:10.1007/978-3-642-33996-7_10

DOI
10.1007/978-3-642-33996-7_10
Conference Paper

High-Frequency Trading: The Faster, the Better?

Savani, R. (2012). High-Frequency Trading: The Faster, the Better?. IEEE INTELLIGENT SYSTEMS, 27(4), 70-73. doi:10.1109/MIS.2012.75

DOI
10.1109/MIS.2012.75
Journal article

2011

On the Approximation Performance of Fictitious Play in Finite Games

Goldberg, P. W., Savani, R., Sorensen, T. B., & Ventre, C. (2011). On the Approximation Performance of Fictitious Play in Finite Games. In ALGORITHMS - ESA 2011 Vol. 6942 (pp. 93-105). Retrieved from https://www.webofscience.com/

Conference Paper

On the approximation performance of fictitious play in finite games

Goldberg, P. W., Savani, R., Sorensen, T. B., & Ventre, C. (2013). On the approximation performance of fictitious play in finite games. INTERNATIONAL JOURNAL OF GAME THEORY, 42(4), 1059-1083. doi:10.1007/s00182-012-0362-6

DOI
10.1007/s00182-012-0362-6
Journal article

Computing Stable Outcomes in Hedonic Games with Voting-Based Deviations

Gairing, M., & Savani, R. (2011). Computing Stable Outcomes in Hedonic Games with Voting-Based Deviations. In International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011) (pp. 559-566). Taipei: -. Retrieved from http://portal.acm.org/

Conference Paper

Computing stable outcomes in hedonic games with voting-based deviations

Gairing, M., & Savani, R. (2011). Computing stable outcomes in hedonic games with voting-based deviations. In 10th International Conference on Autonomous Agents and Multiagent Systems 2011, AAMAS 2011 Vol. 1 (pp. 521-528).

Conference Paper

2010

Computing Stable Outcomes in Hedonic Games

Gairing, M., & Savani, R. (2010). Computing Stable Outcomes in Hedonic Games. In ALGORITHMIC GAME THEORY Vol. 6386 (pp. 174-185). Retrieved from https://www.webofscience.com/

Conference Paper

The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions

DOI
10.48550/arxiv.1006.5352
Preprint

The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions.

Goldberg, P. W., Papadimitriou, C. H., & Savani, R. (2011). The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions. In 2011 IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2011) (pp. 67-76). doi:10.1109/FOCS.2011.26

DOI
10.1109/FOCS.2011.26
Conference Paper

Linear complementarity algorithms for infinite games

Fearnley, J., Jurdziński, M., & Savani, R. (2010). Linear complementarity algorithms for infinite games. In 36th Conference on Current Trends in Theory and Practice of Computer Science (pp. 382-393). Czech Republic: Springer-Verlag.

Conference Paper

2009

Power Indices in Spanning Connectivity Games

Aziz, H., Lachish, O., Paterson, M., & Savani, R. (2009). Power Indices in Spanning Connectivity Games. In ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, PROCEEDINGS Vol. 5564 (pp. 55-67). Retrieved from https://www.webofscience.com/

Conference Paper

Enumeration of Nash equilibria for two-player games

Avis, D., Rosenberg, G. D., Savani, R., & von Stengel, B. (2010). Enumeration of Nash equilibria for two-player games. ECONOMIC THEORY, 42(1), 9-37. doi:10.1007/s00199-009-0449-x

DOI
10.1007/s00199-009-0449-x
Journal article

Linear complementarity algorithms for infinite games

Fearnley, J., Jurdzinski, M., & Savani, R. (2010). Linear Complementarity Algorithms for Infinite Games. In SOFSEM 2010: THEORY AND PRACTICE OF COMPUTER SCIENCE, PROCEEDINGS Vol. 5901 (pp. 382-+). Retrieved from https://www.webofscience.com/

DOI
10.1007/978-3-642-11266-9_32
Conference Paper

Wiretapping a hidden network

Aziz, H., Lachish, O., Paterson, M., & Savani, R. (2009). Wiretapping a Hidden Network. In INTERNET AND NETWORK ECONOMICS, PROCEEDINGS Vol. 5929 (pp. 438-+). Retrieved from https://www.webofscience.com/

DOI
10.1007/978-3-642-10841-9_40
Conference Paper

Spanning connectivity games

Aziz, H., Lachish, O., Paterson, M., & Savani, R. (2009). Spanning connectivity games. Retrieved from http://arxiv.org/abs/0906.3643v1

Report

Multi-strategy trading utilizing market regimes

Mlnarik, H., Ramamoorthy, S., & Savani, R. (2009). Multi-strategy trading utilizing market regimes.

Other

Wiretapping a Hidden Network

Aziz, H., Lachish, O., Paterson, M., & Savani, R. (2009). Wiretapping a Hidden Network. In Internet and Network Economics (Vol. 5929, pp. 438-446). Springer Nature. doi:10.1007/978-3-642-10841-9_40

DOI
10.1007/978-3-642-10841-9_40
Chapter

2008

A simple P-matrix linear complementarity problem for discounted games

Jurdzinski, M., & Savani, R. (2008). A simple P-matrix linear complementarity problem for discounted games. In LOGIC AND THEORY OF ALGORITHMS Vol. 5028 (pp. 283-293). doi:10.1007/978-3-540-69407-6_32

DOI
10.1007/978-3-540-69407-6_32
Conference Paper

Good neighbors are hard to find: computational complexity of network formation

Baron, R., Durieu, J., Haller, H., Savani, R., & Solal, P. (2008). Good neighbors are hard to find: computational complexity of network formation. REVIEW OF ECONOMIC DESIGN, 12(1), 1-19. doi:10.1007/s10058-008-0043-x

DOI
10.1007/s10058-008-0043-x
Journal article

2006

Hard-to-solve bimatrix games

Savani, R., & von Stengel, B. (2006). Hard-to-solve bimatrix games. ECONOMETRICA, 74(2), 397-429. doi:10.1111/j.1468-0262.2006.00667.x

DOI
10.1111/j.1468-0262.2006.00667.x
Journal article

'Finding Nash equilibria of bimatrix games'

Savani, R. (2006). 'Finding Nash equilibria of bimatrix games'. (PhD Thesis, London School of Economics and Political Science).

Thesis / Dissertation

2005

Mixed-species aggregations in birds:: zenaida doves, <i>Zenaida aurita</i>, respond to the alarm calls of carib grackles, <i>Quiscalus lugubris</i>

Griffin, A. S., Savani, R. S., Hausmanis, K., & Lefebvre, L. (2005). Mixed-species aggregations in birds:: zenaida doves, <i>Zenaida aurita</i>, respond to the alarm calls of carib grackles, <i>Quiscalus lugubris</i>. ANIMAL BEHAVIOUR, 70, 507-515. doi:10.1016/j.anbehav.2004.11.023

DOI
10.1016/j.anbehav.2004.11.023
Journal article

A novel strategy for the Penn-Lehman automated trading competition

Veal, B., & Savani, R. (2005). A novel strategy for the Penn-Lehman automated trading competition. Retrieved from http://www.cdam.lse.ac.uk/Reports/Abstracts/cdam-2005-12.html

Report

2004

Exponentially many steps for finding a nash equilibrium in a bimatrix game

Savani, R., & von Stengel, B. (2004). Exponentially many steps for finding a nash equilibrium in a bimatrix game. In 45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS (pp. 258-267). doi:10.1109/FOCS.2004.28

DOI
10.1109/FOCS.2004.28
Conference Paper

Challenge instances for NASH

Savani, R. (2004). Challenge instances for NASH. Retrieved from http://www.cdam.lse.ac.uk/Reports/Abstracts/cdam-2004-14.html

Report

2002

Solve a bimatrix game

Savani, R. (2002). Solve a bimatrix game [Internet (free access)]. Retrieved from http://banach.lse.ac.uk/form.html

Software / Code