To meet the demands of a more populated planet, crop yields need to double by 2050; improving the efficiency of photosynthesis by engineering crop plants is essential to achieve this. A major inefficiency of photosynthesis is that the pigment–protein complexes that absorb light are finely tuned to specific ranges of the solar spectrum, and thus do not effectively harvest the abundant photons at different wavelengths. The aims of this project are to define the components needed to assemble foreign light-harvesting complexes in genetically-tractable bacteria, to use a combination of synthetic biology and directed evolution to tune their absorption properties, and to then transfer them to the evolutionary ancestor of the plant chloroplast, cyanobacteria, to enhance energy capture in an oxygen-evolving organism. The project will reveal the routes to increased light capture efficiency, and the principles defined will be directly applicable to the engineering of crop plants to meet our future needs.
The successful candidate will receive extensive training in all relevant techniques as part of the collaborative, multidisciplinary Photosynthesis, Plants and Energy research group, and will have access to world-leading facilities in the Institute of Systems, Molecular and Integrative Biology at the University of Liverpool.