Course details
- A level requirements: AAB
- UCAS code: H100
- Study mode: Full-time
- Length: 3 years
Return to top
Study Engineering and you will have the opportunity to delve into a huge range of disciplines. Become a problem solver, not just learning how to fix things but to develop and invent from the very start.
Following a broad first year of study covering all disciplines within the School, students on this programme will be required to transfer their registration onto one of the following engineering programmes, depending on whether they are on the three or four-year programme.
• Aerospace Engineering BEng (H425)
• Mechanical Engineering BEng (H300)
• Product Design Engineering BEng (HW24)
We’re proud to announce we’ve been awarded a Gold rating for educational excellence.
Discover what you'll learn, what you'll study, and how you'll be taught and assessed.
This is predominantly a practical module in which students work in small groups to examine in detail the workings and manufacture of a single-cylinder, 4-stroke petrol engine by dismantling it into component parts and documenting the disassembly process in a Wiki.
This module aims to introduce students to the fundamental concepts and theory of how engineering structures work to sustain loads. It will also show how stress analysis leads to the design of safer structures. It will also provide students with the means to analyse and design basic structural elements as used in modern engineering structures.
To develop an understanding of the basic principles of fluid mechanics, the laws of thermodynamics, and an appreciation of how to solve simple engineering problems. To develop skills in performing and reporting simple experiments.
This module aims to provide students with an interesting and engaging project that will help them to immediately relate the material being taught,both within and without this module, to a practical problem that is identifiable to their engineering discipline, thus reinforcing its relevance to the topixc.
The module:
1) Seeks to provide students with an early understanding of the preliminary design processes
2) Will introduce students to formal engineering drawing and visualisation
3) Will expose the students to group work and the dynamics of working in a team
4) Will expose students to the complexity of an engineering design task
5) Will enable students to develop data analysis and plotting skills
6) Will embody an approach to learning that will engage the students for the remainder of their lives
7) Seeks to provide students with an early understanding of the detail design and manufacturing process
8. Will introduce students to industry standard computer aided engineering drawing tools and practice
9. Will enable students to develop report writing and oral presentation skills
10. Will provide students with a basic understanding of engineering components and mechanisms
11. Will embody an approach to learning that will engage the students for the remainder of their lives
ENGG198 is a Year 1 mathematics module for students of programmes taught in the School of Engineering, e.g. Aerospace, Civil, Architectural, Mechanical, Product Design and Industrial Design Engineering. It is designed to reinforce and build upon A-level (or equivalent) mathematics, providing you with the strong background required in your engineering studies and preparing you for Year 2 mathematics modules.
To provide students with a basic introduction to various classes of engineering materials, their mechanical properties, deformation and failure and how the properties structure and processing can be controlled to design materials with desired properties for various engineering applications.
Students completing the module should be able to understand simple computer programs and write their own simple MATLAB programs to solve problems and process data as required by other modules and in engineering practice.
Students completing the module will be able to understand simple electrical circuits with passive and active components, mechanical (mass-spring-damper) systems and electromechanical systems (DC machines). They will learn basic mathematical, practical and computational methods for analysing and modelling these.
Year two follows your chosen path from:
Year three follows your chosen path from:
We are leading the UK’s involvement in the international Conceive-Design-Implement-Operate (CDIO) initiative – an innovative educational framework for producing the next generation of engineers.
Our degree programmes encompass the development of a holistic, systems approach to engineering. Technical knowledge and skills are complemented by a sound appreciation of the life-cycle processes involved in engineering and an awareness of the ethical, safety, environmental, economic, and social considerations involved in practicing as a professional engineer.
You will be taught through a combination of face-to-face teaching in group lectures, laboratory sessions, tutorials, and seminars. Our programmes include a substantial practical component, with an increasing emphasis on project work as you progress through to the final year. You will be supported throughout by an individual academic adviser.
Assessment takes many forms, each appropriate to the learning outcomes of the particular module studied. The main modes of assessment are coursework and examination. Depending on the modules taken, you may encounter project work, presentations (individual and/or group), and specific tests or tasks focused on solidifying learning outcomes.
We have a distinctive approach to education, the Liverpool Curriculum Framework, which focuses on research-connected teaching, active learning, and authentic assessment to ensure our students graduate as digitally fluent and confident global citizens.
Studying with us means you can tailor your degree to suit you. Here's what is available on this course.
You’ll study in The School of Engineering, which hosts modern, world-class teaching and learning facilities. This includes the Active Learning Laboratories, which feature lab space, manufacturing robots and prototyping facilities so you can learn, build and test. You’ll also have access to high-spec workstations featuring industry-standard engineering software.
I chose engineering because I have always been passionate about the way things work and the method by which systems operate. I have always had more of a pure science background, but I also yearned to see the application of such theory with the tool of mathematics.
Want to find out more about student life?
Chat with our student ambassadors and ask any questions you have.
A day in the life of Engineering student Joel
Hear what graduates say about their career progression and life after university.
Neha is the founder of Aviotron Automations, an education technology company that focuses on imparting practical education for K-12 level using trending technologies such as design thinking methodology, space education, aeromodelling and 3D printing.
Your tuition fees, funding your studies, and other costs to consider.
UK fees (applies to Channel Islands, Isle of Man and Republic of Ireland) | |
---|---|
Full-time place, per year | £9,250 |
Year in industry fee | £1,850 |
Year abroad fee | £1,385 |
International fees | |
---|---|
Full-time place, per year | £27,200 |
Year abroad fee | £13,600 |
Tuition fees cover the cost of your teaching and assessment, operating facilities such as libraries, IT equipment, and access to academic and personal support. Learn more about paying for your studies.
We understand that budgeting for your time at university is important, and we want to make sure you understand any course-related costs that are not covered by your tuition fee. This may include a laptop, books, or stationery. All safety equipment, other than boots, is provided free of charge by the department.
Find out more about the additional study costs that may apply to this course.
We offer a range of scholarships and bursaries that could help pay your tuition and living expenses.
We've set the country or region your qualifications are from as United Kingdom. Change it here
The qualifications and exam results you'll need to apply for this course.
We've set the country or region your qualifications are from as United Kingdom. Change it here
Your qualification | Requirements |
---|---|
A levels |
AAB Applicants with the Extended Project Qualification (EPQ) are eligible for a reduction in grade requirements. For this course, the offer is ABB with A in the EPQ. You may automatically qualify for reduced entry requirements through our contextual offers scheme. If you don't meet the entry requirements, you may be able to complete a foundation year which would allow you to progress to this course. Available foundation years: |
T levels |
T levels are not currently accepted. |
GCSE | 4/C in English and 4/C in Mathematics |
Subject requirements |
Mathematics and a second science. Applicants following the modular Mathematics A Level must be studying A Level Physics or Further Mathematics as the second science (or must be studying at least one Mechanics module in their Mathematics A Level). Accepted Science subjects are Biology, Chemistry, Computing, Economics, Electronics, Environmental Science, Further Mathematics, Geography, Geology, Human Biology, Physics and Statistics. For applicants from England: For science A levels that include the separately graded practical endorsement, a "Pass" is required. |
BTEC Level 3 National Extended Certificate |
Acceptable at grade Distinction* alongside BB in A Level Mathematics and a second science. |
BTEC Level 3 Diploma |
Distinction* Distinction* in relevant BTEC considered alongside A Level Mathematics grade B. Accepted BTECs include Aeronautical, Aerospace, Construction, Mechanical, Mechatronics and Engineering. |
BTEC Level 3 National Extended Diploma |
D*DD in acceptable BTEC, plus B in A level Maths (not accepted without B in A level Maths) |
International Baccalaureate |
35 overall including 5 in Higher Level Mathematics and 5 in Higher Level Physics. |
Irish Leaving Certificate | H1,H1,H2,H2,H2,H3, including H2 in Higher Maths and Higher Second Science. We also require a minimum of H6 in Higher English or O3 in Ordinary English |
Scottish Higher/Advanced Higher |
Pass Scottish Advanced Highers with grades AAB including Mathematics and a second science |
Welsh Baccalaureate Advanced | Acceptable at grade B alongside AA in A Level Mathematics and a second science. |
Cambridge Pre-U Diploma | D3 in Cambridge Pre U Principal Subject is accepted as equivalent to A-Level grade A M2 in Cambridge Pre U Principal Subject is accepted as equivalent to A-Level grade B Global Perspectives and Short Courses are not accepted. |
Access | Considered if taking a relevant subject. Check with Department or Admissions team. |
International qualifications |
Many countries have a different education system to that of the UK, meaning your qualifications may not meet our entry requirements. Completing your Foundation Certificate, such as that offered by the University of Liverpool International College, means you're guaranteed a place on your chosen course. |
You'll need to demonstrate competence in the use of English language, unless you’re from a majority English speaking country.
We accept a variety of international language tests and country-specific qualifications.
International applicants who do not meet the minimum required standard of English language can complete one of our Pre-Sessional English courses to achieve the required level.
English language qualification | Requirements |
---|---|
IELTS | 6.0 overall, with no component below 5.5 |
TOEFL iBT | 78 overall, with minimum scores of listening 17, writing 17, reading 17 and speaking 19 |
Duolingo English Test | 105 overall, with no component below 95 |
Pearson PTE Academic | 59 overall, with no component below 59 |
LanguageCert Academic | 65 overall, with no skill below 60 |
Cambridge IGCSE First Language English 0500 | Grade C overall, with a minimum of grade 2 in speaking and listening. Speaking and listening must be separately endorsed on the certificate. |
Cambridge IGCSE First Language English 0990 | Grade 4 overall, with Merit in speaking and listening |
Cambridge IGCSE Second Language English 0510/0511 | 0510: Grade C overall, with a minimum of grade 2 in speaking. Speaking must be separately endorsed on the certificate. 0511: Grade C overall. |
Cambridge IGCSE Second Language English 0993/0991 | 0993: Grade 5 overall, with a minimum of grade 2 in speaking. Speaking must be separately endorsed on the certificate. 0991: Grade 5 overall. |
International Baccalaureate | Standard Level grade 5 or Higher Level grade 4 in English B, English Language and Literature, or English Language |
Cambridge ESOL Level 2/3 Advanced | 169 overall, with no paper below 162 |
Do you need to complete a Pre-Sessional English course to meet the English language requirements for this course?
The length of Pre-Sessional English course you’ll need to take depends on your current level of English language ability.
Find out the length of Pre-Sessional English course you may require for this degree.
Have a question about this course or studying with us? Our dedicated enquiries team can help.
Last updated 1 October 2024 / / Programme terms and conditions