2023
Mertzios, G. B., Molter, H., Niedermeier, R., Zamaraev, V., & Zschoche, P. (2023). Computing maximum matchings in temporal graphs. Journal of Computer and System Sciences, 137, 1-19. doi:10.1016/j.jcss.2023.04.005DOI: 10.1016/j.jcss.2023.04.005
Alecu, B., Alekseev, V. E., Atminas, A., Lozin, V., & Zamaraev, V. (2023). Graph parameters, implicit representations and factorial properties. DISCRETE MATHEMATICS, 346(10). doi:10.1016/j.disc.2023.113573DOI: 10.1016/j.disc.2023.113573
Becker, R., Crescenzi, P., Renken, M., Zamaraev, V., Casteigts, A., Kodric, B., & Raskin, M. (2023). Giant Components in Random Temporal Graphs. In Leibniz International Proceedings in Informatics, LIPIcs Vol. 275. doi:10.4230/LIPIcs.APPROX/RANDOM.2023.29DOI: 10.4230/LIPIcs.APPROX/RANDOM.2023.29
Esperet, L., Harms, N., & Zamaraev, V. (2023). Optimal Adjacency Labels for Subgraphs of Cartesian Products. In Leibniz International Proceedings in Informatics, LIPIcs Vol. 261. doi:10.4230/LIPIcs.ICALP.2023.57DOI: 10.4230/LIPIcs.ICALP.2023.57
Dabrowski, K. K., Johnson, M., Paesani, G., Paulusma, D., & Zamaraev, V. (2023). On the price of independence for vertex cover, feedback vertex set and odd cycle transversal. European Journal of Combinatorics. doi:10.1016/j.ejc.2023.103821DOI: 10.1016/j.ejc.2023.103821
Functionality of box intersection graphs. (Preprint)
Giant Components in Random Temporal Graphs. (Conference Paper)
Becker, R., Casteigts, A., Crescenzi, P., Kodric, B., Renken, M., Raskin, M., & Zamaraev, V. (2023). Giant Components in Random Temporal Graphs.. In N. Megow, & A. D. Smith (Eds.), APPROX/RANDOM Vol. 275 (pp. 29:1). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Retrieved from https://www.dagstuhl.de/dagpub/978-3-95977-296-9
Graph parameters, implicit representations and factorial properties. (Preprint)
Randomized Communication and Implicit Representations for Matrices and Graphs of Small Sign-Rank. (Preprint)
Small But Unwieldy. (Preprint)
Tight bounds on adjacency labels for monotone graph classes. (Preprint)
2022
Konrad, C., & Zamaraev, V. (2022). Distributed minimum vertex coloring and maximum independent set in chordal graphs. THEORETICAL COMPUTER SCIENCE, 922, 486-502. doi:10.1016/j.tcs.2022.04.047DOI: 10.1016/j.tcs.2022.04.047
Harms, N., Wild, S., & Zamaraev, V. (2022). Randomized Communication and Implicit Graph Representations. In PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22) (pp. 1220-1233). doi:10.1145/3519935.3519978DOI: 10.1145/3519935.3519978
Esperet, L., Harms, N., & Zamaraev, V. (2022). Optimal Adjacency Labels for Subgraphs of Cartesian Products. Retrieved from http://arxiv.org/abs/2206.02872v2
Adamson, D., Gusev, V. V., Malyshev, D., & Zamaraev, V. (2022). Faster Exploration of Some Temporal Graphs. In Leibniz International Proceedings in Informatics, LIPIcs Vol. 221. doi:10.4230/LIPIcs.SAND.2022.5DOI: 10.4230/LIPIcs.SAND.2022.5
Alecu, B., Lozin, V., Quiroz, D. A., Rabinovich, R., Razgon, I., & Zamaraev, V. (2022). The treewidth and pathwidth of graph unions. Retrieved from http://arxiv.org/abs/2202.07752v2
Compact Graph Representation of molecular crystals using Point-wise Distance Distributions. (Preprint)
Alecu, B., Alekseev, V. E., Atminas, A., Lozin, V., & Zamaraev, V. (2022). Graph Parameters, Implicit Representations and Factorial Properties. In COMBINATORIAL ALGORITHMS (IWOCA 2022) Vol. 13270 (pp. 60-72). doi:10.1007/978-3-031-06678-8_5DOI: 10.1007/978-3-031-06678-8_5
Alecu, B., Ferguson, R., Kante, M. M., Lozin, V. V., Vatter, V., & Zamaraev, V. (2022). LETTER GRAPHS AND GEOMETRIC GRID CLASSES OF PERMUTATIONS. SIAM JOURNAL ON DISCRETE MATHEMATICS, 36(4), 2774-2797. doi:10.1137/21M1449646DOI: 10.1137/21M1449646
Lozin, V., Zamaraev, V., Zamaraeva, E., & Zolotykh, N. Y. (2022). On Boolean threshold functions with minimum specification number. INFORMATION AND COMPUTATION, 289. doi:10.1016/j.ic.2022.104926DOI: 10.1016/j.ic.2022.104926
The treewidth and pathwidth of graph unions. (Preprint)
2021
Harms, N., Wild, S., & Zamaraev, V. (2021). Randomized Communication and Implicit Graph Representations. Retrieved from http://arxiv.org/abs/2111.03639v3
Sliding window temporal graph coloring (Journal article)
Mertzios, G. B., Molter, H., & Zamaraev, V. (2021). Sliding window temporal graph coloring. Journal of Computer and System Sciences, 120, 97-115. doi:10.1016/j.jcss.2021.03.005DOI: 10.1016/j.jcss.2021.03.005
Enright, J., Meeks, K., Mertzios, G. B., & Zamaraev, V. (2021). Deleting edges to restrict the size of an epidemic in temporal networks. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 119, 60-77. doi:10.1016/j.jcss.2021.01.007DOI: 10.1016/j.jcss.2021.01.007
Alecu, B., Atminas, A., Lozin, V., & Zamaraev, V. (2021). Graph classes with linear Ramsey numbers. Discrete Mathematics, 344(4). doi:10.1016/j.disc.2021.112307DOI: 10.1016/j.disc.2021.112307
Harms, N., Wild, S., & Zamaraev, V. (2021). Randomized Communication and the Implicit Graph Conjecture.. CoRR, abs/2111.03639.
Sharp Thresholds in Random Simple Temporal Graphs. (Conference Paper)
Casteigts, A., Raskin, M., Renken, M., & Zamaraev, V. (2021). Sharp Thresholds in Random Simple Temporal Graphs.. In FOCS (pp. 319-326). IEEE. Retrieved from https://doi.org/10.1109/FOCS52979.2022
2020
Akrida, E. C., Mertzios, G. B., Nikoletseas, S., Raptopoulos, C., Spirakis, P. G., & Zamaraev, V. (2020). How fast can we reach a target vertex in stochastic temporal graphs?. Journal of Computer and System Sciences, 114, 65-83. doi:10.1016/j.jcss.2020.05.005DOI: 10.1016/j.jcss.2020.05.005
Casteigts, A., Raskin, M., Renken, M., & Zamaraev, V. (2022). Sharp Thresholds in Random Simple Temporal Graphs. In 2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021) (pp. 319-326). doi:10.1109/FOCS52979.2021.00040DOI: 10.1109/FOCS52979.2021.00040
Tsakalidis, K., Wild, S., & Zamaraev, V. (2020). Succinct Permutation Graphs. Retrieved from http://dx.doi.org/10.1007/s00453-022-01039-2
Letter graphs and geometric grid classes of permutations: Characterization and recognition (Report)
Alecu, B., Lozin, V., de Werra, D., & Zamaraev, V. (2020). Letter graphs and geometric grid classes of permutations: Characterization and recognition. doi:10.1016/j.dam.2020.01.038DOI: 10.1016/j.dam.2020.01.038
Alecu, B., Lozin, V. V., Werra, D. D., & Zamaraev, V. (2020). Letter graphs and geometric grid classes of permutations: Characterization and recognition.. Discret. Appl. Math., 283, 482-494.
Alecu, B., Kante, M. M., Lozin, V., & Zamaraev, V. (2020). Between clique-width and linear clique-width of bipartite graphs. DISCRETE MATHEMATICS, 343(8). doi:10.1016/j.disc.2020.111926DOI: 10.1016/j.disc.2020.111926
Akrida, E. C., Deligkas, A., Mertzios, G. B., Spirakis, P. G., & Zamaraev, V. (2020). Matching in Stochastically Evolving Graphs. Retrieved from http://arxiv.org/abs/2005.08263v1
Blanché, A., Dabrowski, K. K., Johnson, M., Lozin, V. V., Paulusma, D., & Zamaraev, V. (2020). Clique-Width for Graph Classes Closed under Complementation. SIAM Journal on Discrete Mathematics, 34(2), 1107-1147. doi:10.1137/18m1235016DOI: 10.1137/18m1235016
Deligkas, A., Mertzios, G. B., Spirakis, P. G., & Zamaraev, V. (2020). Exact and Approximate Algorithms for Computing a Second Hamiltonian Cycle. Retrieved from http://arxiv.org/abs/2004.06036v2
Lozin, V. V., Malyshev, D. S., Mosca, R., & Zamaraev, V. (2020). Independent domination versus weighted independent domination.. Inf. Process. Lett., 156, 105914. doi:10.1016/j.ipl.2020.105914DOI: 10.1016/j.ipl.2020.105914
Temporal Vertex Cover with a Sliding Time Window (Journal article)
Akrida, E., Mertzios, G. B., Spirakis, P., & Zamaraev, V. (2020). Temporal Vertex Cover with a Sliding Time Window. Journal of Computer and System Sciences, 107, 108-123. doi:10.1016/j.jcss.2019.08.002DOI: 10.1016/j.jcss.2019.08.002
Mertzios, G. B., Molter, H., Niedermeier, R., Zamaraev, V., & Zschoche, P. (2020). Computing Maximum Matchings in Temporal Graphs.. In C. Paul, & M. Bläser (Eds.), STACS Vol. 154 (pp. 27:1). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Retrieved from https://www.dagstuhl.de/dagpub/978-3-95977-140-5DOI: 10.4230/LIPIcs.STACS.2020.27
Exact and Approximate Algorithms for Computing a Second Hamiltonian Cycle. (Conference Paper)
Deligkas, A., Mertzios, G. B., Spirakis, P. G., & Zamaraev, V. (2020). Exact and Approximate Algorithms for Computing a Second Hamiltonian Cycle.. In J. Esparza, & D. Král' (Eds.), MFCS Vol. 170 (pp. 27:1). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Retrieved from https://www.dagstuhl.de/dagpub/978-3-95977-159-7DOI: 10.4230/LIPIcs.MFCS.2020.27
2019
Dabrowski, K. K., Johnson, M., Paesani, G., Paulusma, D., & Zamaraev, V. (2019). On the Price of Independence for Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal. Retrieved from http://arxiv.org/abs/1910.05254v1
Dabrowski, K. K., Johnson, M., Paesani, G., Paulusma, D., & Zamaraev, V. (2019). INDEPENDENT TRANSVERSALS VERSUS TRANSVERSALS. In ACTA MATHEMATICA UNIVERSITATIS COMENIANAE Vol. 88 (pp. 585-591). Retrieved from https://www.webofscience.com/
Mertzios, G. B., Molter, H., Niedermeier, R., Zamaraev, V., & Zschoche, P. (2020). Computing Maximum Matchings in Temporal Graphs. In 37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020) Vol. 154. doi:10.4230/LIPIcs.STACS.2020.27DOI: 10.4230/LIPIcs.STACS.2020.27
Akrida, E. C., Mertzios, G. B., Nikoletseas, S., Raptopoulos, C., Spirakis, P. G., & Zamaraev, V. (2019). How fast can we reach a target vertex in stochastic temporal graphs?. Retrieved from http://arxiv.org/abs/1903.03636v1
Deleting Edges to Restrict the Size of an Epidemic in Temporal Networks. (Conference Paper)
Enright, J. A., Meeks, K., Mertzios, G. B., & Zamaraev, V. (2019). Deleting Edges to Restrict the Size of an Epidemic in Temporal Networks.. In P. Rossmanith, P. Heggernes, & J. -P. Katoen (Eds.), MFCS Vol. 138 (pp. 57:1). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Retrieved from http://www.dagstuhl.de/dagpub/978-3-95977-117-7
Distributed Minimum Vertex Coloring and Maximum Independent Set in Chordal Graphs. (Conference Paper)
Konrad, C., & Zamaraev, V. (2019). Distributed Minimum Vertex Coloring and Maximum Independent Set in Chordal Graphs.. In P. Rossmanith, P. Heggernes, & J. -P. Katoen (Eds.), MFCS Vol. 138 (pp. 21:1). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Retrieved from http://www.dagstuhl.de/dagpub/978-3-95977-117-7
Sliding Window Temporal Graph Coloring. (Conference Paper)
Mertzios, G. B., Molter, H., & Zamaraev, V. (2019). Sliding Window Temporal Graph Coloring.. In AAAI (pp. 7667-7674). AAAI Press. Retrieved from https://ojs.aaai.org/index.php/AAAI/issue/view/246
2018
Sliding Window Temporal Graph Coloring (Conference Paper)
Mertzios, G. B., Molter, H., & Zamaraev, V. (2019). Sliding Window Temporal Graph Coloring. In THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE (pp. 7667-7674). Retrieved from https://www.webofscience.com/
Brief Announcement: Distributed Minimum Vertex Coloring and Maximum Independent Set in Chordal Graphs (Conference Paper)
Konrad, C., & Zamaraev, V. (2018). Brief Announcement: Distributed Minimum Vertex Coloring and Maximum Independent Set in Chordal Graphs. In PODC'18: PROCEEDINGS OF THE 2018 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (pp. 159-161). doi:10.1145/3212734.3212787DOI: 10.1145/3212734.3212787
Lozin, V., Razgon, I., Zamaraev, V., Zamaraeva, E., & Zolotykh, N. (2018). Linear read-once and related Boolean functions. DISCRETE APPLIED MATHEMATICS, 250, 16-27. doi:10.1016/j.dam.2018.05.001DOI: 10.1016/j.dam.2018.05.001
Enright, J., Meeks, K., Mertzios, G. B., & Zamaraev, V. (2018). Deleting edges to restrict the size of an epidemic in temporal networks. Retrieved from http://arxiv.org/abs/1805.06836v2
Konrad, C., & Zamaraev, V. (2018). Distributed Minimum Vertex Coloring and Maximum Independent Set in Chordal Graphs. Retrieved from http://arxiv.org/abs/1805.04544v1
Lozin, V., Razgon, I., & Zamaraev, V. (2018). Well-quasi-ordering versus clique-width. JOURNAL OF COMBINATORIAL THEORY SERIES B, 130, 1-18. doi:10.1016/j.jctb.2017.09.012DOI: 10.1016/j.jctb.2017.09.012
Letter Graphs and Geometric Grid Classes of Permutations: Characterization and Recognition (Conference Paper)
Alecu, B., Lozin, V., Zamaraev, V., & de Werra, D. (2018). Letter Graphs and Geometric Grid Classes of Permutations: Characterization and Recognition. In COMBINATORIAL ALGORITHMS, IWOCA 2017 Vol. 10765 (pp. 195-205). doi:10.1007/978-3-319-78825-8_16DOI: 10.1007/978-3-319-78825-8_16
Akrida, E. C., Mertzios, G. B., Spirakis, P. G., & Zamaraev, V. (2018). Temporal Vertex Cover with a Sliding Time Window. Retrieved from http://arxiv.org/abs/1802.07103v3
Dominating induced matchings in graphs containing no long claw. (Journal article)
Hertz, A., Lozin, V. V., Ries, B., Zamaraev, V., & Werra, D. D. (2018). Dominating induced matchings in graphs containing no long claw.. J. Graph Theory, 88, 18-39. doi:10.1002/jgt.22182DOI: 10.1002/jgt.22182
Linear Clique-Width of Bi-complement Reducible Graphs (Conference Paper)
Alecu, B., Lozin, V., & Zamaraev, V. (2018). Linear Clique-Width of Bi-complement Reducible Graphs. In COMBINATORIAL ALGORITHMS, IWOCA 2018 Vol. 10979 (pp. 14-25). doi:10.1007/978-3-319-94667-2_2DOI: 10.1007/978-3-319-94667-2_2
Atminas, A., Lozin, V., & Zamaraev, V. (2018). Linear Ramsey Numbers. In COMBINATORIAL ALGORITHMS, IWOCA 2018 Vol. 10979 (pp. 26-38). doi:10.1007/978-3-319-94667-2_3DOI: 10.1007/978-3-319-94667-2_3
Linear read-once and related Boolean functions. (Journal article)
Lozin, V. V., Razgon, I., Zamaraev, V., Zamaraeva, E., & Zolotykh, N. Y. (2018). Linear read-once and related Boolean functions.. Discret. Appl. Math., 250, 16-27.
2017
The structure and the number of P7-free bipartite graphs (Conference Paper)
Lozin, V., & Zamaraev, V. (2017). The structure and the number of P7-free bipartite graphs. In Electronic Notes in Discrete Mathematics Vol. 61 (pp. 827-833). Elsevier BV. doi:10.1016/j.endm.2017.07.042DOI: 10.1016/j.endm.2017.07.042
Lozin, V., Razgon, I., Zamaraev, V., Zamaraeva, E., & Zolotykh, N. Y. (2017). Specifying a positive threshold function via extremal points. Retrieved from http://arxiv.org/abs/1706.01747v1
Blanché, A., Dabrowski, K. K., Johnson, M., Lozin, V. V., Paulusma, D., & Zamaraev, V. (2017). Clique-Width for Graph Classes Closed under Complementation. Retrieved from http://arxiv.org/abs/1705.07681v2
Collins, A., Foniok, J., Korpelainen, N., Lozin, V., & Zamaraev, V. (2018). Infinitely many minimal classes of graphs of unbounded clique-width. DISCRETE APPLIED MATHEMATICS, 248, 145-152. doi:10.1016/j.dam.2017.02.012DOI: 10.1016/j.dam.2017.02.012
Clique-Width for Graph Classes Closed under Complementation. (Conference Paper)
Blanché, A., Dabrowski, K. K., Johnson, M., Lozin, V. V., Paulusma, D., & Zamaraev, V. (2017). Clique-Width for Graph Classes Closed under Complementation.. In K. G. Larsen, H. L. Bodlaender, & J. -F. Raskin (Eds.), MFCS Vol. 83 (pp. 73:1). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Retrieved from http://www.dagstuhl.de/dagpub/978-3-95977-046-0
New Results on Weighted Independent Domination (Conference Paper)
Lozin, V., Malyshev, D., Mosca, R., & Zamaraev, V. (2017). New Results on Weighted Independent Domination. In GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2017) Vol. 10520 (pp. 399-411). doi:10.1007/978-3-319-68705-6_30DOI: 10.1007/978-3-319-68705-6_30
Specifying a positive threshold function via extremal points. (Conference Paper)
Lozin, V. V., Razgon, I., Zamaraev, V., Zamaraeva, E., & Zolotykh, N. Y. (2017). Specifying a positive threshold function via extremal points.. In S. Hanneke, & L. Reyzin (Eds.), ALT Vol. 76 (pp. 208-222). PMLR. Retrieved from http://proceedings.mlr.press/v76/
2016
AbouEisha, H., Hussain, S., Lozin, V., Monnot, J., Ries, B., & Zamaraev, V. (2018). Upper Domination: Towards a Dichotomy Through Boundary Properties. ALGORITHMICA, 80(10), 2799-2817. doi:10.1007/s00453-017-0346-9DOI: 10.1007/s00453-017-0346-9
Lozin, V., & Zamaraev, V. (2017). The structure and the number of <i>P</i><sub>7</sub>-free bipartite graphs. EUROPEAN JOURNAL OF COMBINATORICS, 65, 143-153. doi:10.1016/j.ejc.2017.05.008DOI: 10.1016/j.ejc.2017.05.008
Lozin, V., Malyshev, D., Mosca, R., & Zamaraev, V. (2017). More results on weighted independent domination. THEORETICAL COMPUTER SCIENCE, 700, 63-74. doi:10.1016/j.tcs.2017.08.007DOI: 10.1016/j.tcs.2017.08.007
Atminas, A., & Zamaraev, V. (2018). On Forbidden Induced Subgraphs for Unit Disk Graphs. Discrete and Computational Geometry: an international journal of mathematics and computer science, 60, 57-97. doi:10.1007/s00454-018-9968-1DOI: 10.1007/s00454-018-9968-1
A Boundary Property for Upper Domination (Conference Paper)
AbouEisha, H., Hussain, S., Lozin, V., Monnot, J., Ries, B., & Zamaraev, V. (2016). A Boundary Property for Upper Domination. In Combinatorial Algorithms Vol. 9843 (pp. 229-240). doi:10.1007/978-3-319-44543-4_18DOI: 10.1007/978-3-319-44543-4_18
2015
Hertz, A., Lozin, V., Ries, B., Zamaraev, V., & de Werra, D. (2018). Dominating induced matchings in graphs containing no long claw. JOURNAL OF GRAPH THEORY, 88(1), 18-39. doi:10.1002/jgt.22182DOI: 10.1002/jgt.22182
Well-quasi-ordering Does Not Imply Bounded Clique-width (Journal article)
Lozin, V. V., Razgon, I., & Zamaraev, V. (2016). Well-quasi-ordering Does Not Imply Bounded Clique-width. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 9224, 351-359. doi:10.1007/978-3-662-53174-7_25DOI: 10.1007/978-3-662-53174-7_25
Boundary Properties of Factorial Classes of Graphs (Journal article)
Lozin, V. V., & Zamaraev, V. (2015). Boundary Properties of Factorial Classes of Graphs. JOURNAL OF GRAPH THEORY, 78(3), 207-218. doi:10.1002/jgt.21799DOI: 10.1002/jgt.21799
A tolerance-based heuristic approach for the weighted independent set problem (Journal article)
Goldengorin, B. I., Malyshev, D. S., Pardalos, P. M., & Zamaraev, V. A. (2015). A tolerance-based heuristic approach for the weighted independent set problem. JOURNAL OF COMBINATORIAL OPTIMIZATION, 29(2), 433-450. doi:10.1007/s10878-013-9606-zDOI: 10.1007/s10878-013-9606-z
Well-quasi-ordering Does Not Imply Bounded Clique-width. (Conference Paper)
Lozin, V. V., Razgon, I., & Zamaraev, V. (2015). Well-quasi-ordering Does Not Imply Bounded Clique-width.. In E. W. Mayr (Ed.), WG Vol. 9224 (pp. 351-359). Springer. Retrieved from https://doi.org/10.1007/978-3-662-53174-7
2014
Combinatorics and Algorithms for Augmenting Graphs (Journal article)
Dabrowski, K. K., Lozin, V. V., de Werra, D., & Zamaraev, V. (2016). Combinatorics and Algorithms for Augmenting Graphs. GRAPHS AND COMBINATORICS, 32(4), 1339-1352. doi:10.1007/s00373-015-1660-0DOI: 10.1007/s00373-015-1660-0
Implicit representations and factorial properties of graphs (Journal article)
Atminas, A., Collins, A., Lozin, V., & Zamaraev, V. (2015). Implicit representations and factorial properties of graphs. DISCRETE MATHEMATICS, 338(2), 164-179. doi:10.1016/j.disc.2014.09.008DOI: 10.1016/j.disc.2014.09.008
Market Graph and Markowitz Model (Chapter)
Kalyagin, V., Koldanov, A., Koldanov, P., & Zamaraev, V. (2014). Market Graph and Markowitz Model. In Optimization in Science and Engineering (pp. 293-306). Springer New York. doi:10.1007/978-1-4939-0808-0_15DOI: 10.1007/978-1-4939-0808-0_15
Locally bounded coverings and factorial properties of graphs (vol 33, pg 534, 2012) (Journal article)
Lozin, V. V., Mayhill, C., & Zamaraev, V. (2014). Locally bounded coverings and factorial properties of graphs (vol 33, pg 534, 2012). EUROPEAN JOURNAL OF COMBINATORICS, 40, 168. doi:10.1016/j.ejc.2014.03.004DOI: 10.1016/j.ejc.2014.03.004
Network Structures Uncertainty for Different Markets (Chapter)
Kalyagin, V. A., Koldanov, P. A., & Zamaraev, V. A. (2014). Network Structures Uncertainty for Different Markets. In NETWORK MODELS IN ECONOMICS AND FINANCE (Vol. 100, pp. 181-197). doi:10.1007/978-3-319-09683-4_10DOI: 10.1007/978-3-319-09683-4_10
Social Networks and the Economics of Sports (Book)
Pardalos, P. M., & Zamaraev, V. (Eds.) (2014). Social Networks and the Economics of Sports. Springer International Publishing. doi:10.1007/978-3-319-08440-4DOI: 10.1007/978-3-319-08440-4
The Impact of Social Networks on Sports (Chapter)
Pardalos, P. M., & Zamaraev, V. (2014). The Impact of Social Networks on Sports. In Social Networks and the Economics of Sports (pp. 1-8). Springer International Publishing. doi:10.1007/978-3-319-08440-4_1DOI: 10.1007/978-3-319-08440-4_1
2013
Measures of uncertainty in market network analysis (Journal article)
Kalyagin, V. A., Koldanov, A. P., Koldanov, P. A., Pardalos, P. M., & Zamaraev, V. A. (2014). Measures of uncertainty in market network analysis. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 413, 59-70. doi:10.1016/j.physa.2014.06.054DOI: 10.1016/j.physa.2014.06.054
2012
On factorial properties of chordal bipartite graphs (Journal article)
Dabrowski, K., Lozin, V. V., & Zamaraev, V. (2012). On factorial properties of chordal bipartite graphs. DISCRETE MATHEMATICS, 312(16), 2457-2465. doi:10.1016/j.disc.2012.04.010DOI: 10.1016/j.disc.2012.04.010
Locally bounded coverings and factorial properties of graphs (Journal article)
Lozin, V. V., Mayhill, C., & Zamaraev, V. (2012). Locally bounded coverings and factorial properties of graphs. EUROPEAN JOURNAL OF COMBINATORICS, 33(4), 534-543. doi:10.1016/j.ejc.2011.10.006DOI: 10.1016/j.ejc.2011.10.006
2011
On estimation of the number of graphs in some hereditary classes (Journal article)
Zamaraev, V. A. (2011). On estimation of the number of graphs in some hereditary classes. Discrete Mathematics and Applications, 21(4). doi:10.1515/dma.2011.027DOI: 10.1515/dma.2011.027
A note on the speed of hereditary graph properties (Journal article)
Lozin, V. V., Mayhill, C., & Zamaraev, V. (2011). A note on the speed of hereditary graph properties. ELECTRONIC JOURNAL OF COMBINATORICS, 18(1). Retrieved from https://www.webofscience.com/
Almost all factorial subclasses of quasi-line graphs with respect to one forbidden subgraph (Journal article)
Zamaraev, V. (2011). Almost all factorial subclasses of quasi-line graphs with respect to one forbidden subgraph. Moscow Journal of Combinatorics and Number Theory, 1(3), 69-78.