2022
Abaho, M., Bollegala, D., Williamson, P., & Dodd, S. (2022). Position-based Prompting for Health Outcome Generation. Retrieved from http://arxiv.org/abs/2204.03489v1
2021
Alsuhaibani, M., & Bollegala, D. (2021). Fine-Tuning Word Embeddings for Hierarchical Representation of Data Using a Corpus and a Knowledge Base for Various Machine Learning Applications. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021. doi:10.1155/2021/9761163DOI: 10.1155/2021/9761163
Zhou, Y., & Bollegala, D. (2021). Learning Sense-Specific Static Embeddings using Contextualised Word Embeddings as a Proxy. Retrieved from http://arxiv.org/abs/2110.02204v2
Bollegala, D. (2021). Assessment of contextualised representations in detecting outcome phrases in clinical trials. European Journal for Biomedical Informatics. doi:10.24105/ejbi.2021.17.9.53-65DOI: 10.24105/ejbi.2021.17.9.53-65
Fain, M., Twomey, N., & Bollegala, D. (2021). Backretrieval: An Image-Pivoted Evaluation Metric for Cross-Lingual Text Representations Without Parallel Corpora.. In F. Diaz, C. Shah, T. Suel, P. Castells, R. Jones, & T. Sakai (Eds.), SIGIR (pp. 2106-2110). ACM. Retrieved from https://doi.org/10.1145/3404835
Kaneko, M., & Bollegala, D. (2021). Debiasing Pre-trained Contextualised Embeddings.. In P. Merlo, J. Tiedemann, & R. Tsarfaty (Eds.), EACL (pp. 1256-1266). Association for Computational Linguistics. Retrieved from https://aclanthology.org/volumes/2021.eacl-main/
Kaneko, M., & Bollegala, D. (2021). Dictionary-based Debiasing of Pre-trained Word Embeddings.. In P. Merlo, J. Tiedemann, & R. Tsarfaty (Eds.), EACL (pp. 212-223). Association for Computational Linguistics. Retrieved from https://aclanthology.org/volumes/2021.eacl-main/
Bollegala, D., Hakami, H., Yoshida, Y., & Kawarabayashi, K. -I. (2021). RelWalk - A Latent Variable Model Approach to Knowledge Graph Embedding.. In P. Merlo, J. Tiedemann, & R. Tsarfaty (Eds.), EACL (pp. 1551-1565). Association for Computational Linguistics. Retrieved from https://aclanthology.org/volumes/2021.eacl-main/
Discrimination of human-written and human and machine written sentences using text consistency (Conference Paper)
Harada, A., Bollegala, D., & Chandrasiri, N. P. (2021). Discrimination of human-written and human and machine written sentences using text consistency. In 2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS) (pp. 41-47). doi:10.1109/ICCCIS51004.2021.9397237DOI: 10.1109/ICCCIS51004.2021.9397237
Muhammad, I., Bollegala, D., Coenen, F., Gamble, C., Kearney, A., & Williamson, P. (2021). Document Ranking for Curated Document Databases Using BERT and Knowledge Graph Embeddings: Introducing GRAB-Rank. In Unknown Conference (pp. 116-127). Springer International Publishing. doi:10.1007/978-3-030-86534-4_10DOI: 10.1007/978-3-030-86534-4_10
2020
Kaneko, M., & Bollegala, D. (2020). Autoencoding Improves Pre-trained Word Embeddings.. In D. Scott, N. Bel, & C. Zong (Eds.), COLING (pp. 1699-1713). International Committee on Computational Linguistics. Retrieved from https://aclanthology.org/volumes/2020.coling-main/
Cui, X., & Bollegala, D. (2020). Multi-Source Attention for Unsupervised Domain Adaptation.. In K. -F. Wong, K. Knight, & H. Wu (Eds.), AACL/IJCNLP (pp. 873-883). Association for Computational Linguistics. Retrieved from https://aclanthology.org/volumes/2020.aacl-main/
Atkinson, K., Bench-Capon, T., & Bollegala, D. (2020). Explanation in AI and law: Past, present and future. ARTIFICIAL INTELLIGENCE, 289. doi:10.1016/j.artint.2020.103387DOI: 10.1016/j.artint.2020.103387
Khemchandani, Y., O'Hagan, S., Samanta, S., Swainston, N., Roberts, T. J., Bollegala, D., & Kell, D. B. (2020). DeepGraphMolGen, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach. Journal of Cheminformatics, 12(1). doi:10.1186/s13321-020-00454-3DOI: 10.1186/s13321-020-00454-3
O'Neill, J., & Bollegala, D. (2020). Meta-Embedding as Auxiliary Task Regularization.. In G. D. Giacomo, A. Catalá, B. Dilkina, M. Milano, S. Barro, A. Bugarín, & J. Lang (Eds.), ECAI Vol. 325 (pp. 2124-2131). IOS Press. Retrieved from https://doi.org/10.3233/FAIA325
Cao, G., Zhou, Y., Bollegala, D., Luo, S., & IEEE. (2020). Spatio-temporal Attention Model for Tactile Texture Recognition. In 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) (pp. 9896-9902). doi:10.1109/IROS45743.2020.9341333DOI: 10.1109/IROS45743.2020.9341333
Khemchandani, Y., O'Hagan, S., Samanta, S., Swainston, N., Roberts, T., Bollegala, D., & Kell, D. (2020). DeepGraphMolGen, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach. doi:10.21203/rs.3.rs-32446/v2DOI: 10.21203/rs.3.rs-32446/v2
Rajendran, P., Bollegala, D., & Parsons, S. (2020). A Pilot Study on Argument Simplification in Stance-Based Opinions. In International Conference of the Pacific Association for Computational Linguistics (pp. 218-230). Hanoi, Vietnam: Springer Singapore. doi:10.1007/978-981-15-6168-9_19DOI: 10.1007/978-981-15-6168-9_19
Hakami, H., & Bollegala, D. (2020). Context-Guided Self-supervised Relation Embeddings. In International Conference of the Pacific Association for Computational Linguistics (pp. 67-78). Hanoi, Vietnam: Springer Singapore. doi:10.1007/978-981-15-6168-9_6DOI: 10.1007/978-981-15-6168-9_6
Mandya, A. A., Bollegala, D., & Coenen, F. P. (2020). Evaluating Co-reference Chains based Conversation History in Conversational Question Answering. In L. -M. Nguyen, X. -H. Phan, K. Hasida, & S. Tojo (Eds.), Computational Linguistics (pp. 283-292). Singapore: Springer. doi:10.1007/978-981-15-6168-9_24DOI: 10.1007/978-981-15-6168-9_24
Chen, W., Hakami, H., & Bollegala, D. (2020). Learning to Compose Relational Embeddings in Knowledge Graphs. In International Conference of the Pacific Association for Computational Linguistics (pp. 56-66). Hanoi, Vietnam: Springer Singapore. doi:10.1007/978-981-15-6168-9_5DOI: 10.1007/978-981-15-6168-9_5
Khemchandani, Y., O'Hagan, S., Samanta, S., Swainston, N., Roberts, T., Bollegala, D., & Kell, D. (2020). DeepGraphMol, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach. doi:10.21203/rs.3.rs-32446/v1DOI: 10.21203/rs.3.rs-32446/v1
Isonuma, M., Mori, J., Bollegala, D., Sakata, I., & Linguist, A. C. (2020). Tree-Structured Neural Topic Model. In 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020) (pp. 800-806). Retrieved from http://gateway.webofknowledge.com/
Khemchandani, Y., O’Hagan, S., Samanta, S., Swainston, N., Roberts, T., Bollegala, D., & Kell, D. (2020). DeepGraphMol, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach. doi:10.1101/2020.05.25.114165DOI: 10.1101/2020.05.25.114165
Bollegala, D., Kiryo, R., Tsujino, K., & Yukawa, H. (2020). Language-Independent Tokenisation Rivals Language-Specific Tokenisation for Word Similarity Prediction.. In N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, . . . S. Piperidis (Eds.), LREC (pp. 3851-3860). European Language Resources Association. Retrieved from https://aclanthology.org/volumes/2020.lrec-1/
Mandya, A., O'Neill, J., Bollegala, D., & Coenen, F. (2020). Do not let the history haunt you - Mitigating Compounding Errors in Conversational Question Answering. In PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020) (pp. 2017-2025). Retrieved from http://gateway.webofknowledge.com/
Do not let the history haunt you: Mitigating Compounding Errors in Conversational Question Answering. (Conference Paper)
Mandya, A., O'Neill, J., Bollegala, D., & Coenen, F. (2020). Do not let the history haunt you: Mitigating Compounding Errors in Conversational Question Answering.. In N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, . . . S. Piperidis (Eds.), LREC (pp. 2017-2025). European Language Resources Association. Retrieved from https://aclanthology.org/volumes/2020.lrec-1/
Mandya, A., Bollegala, D., & Coenen, F. (2020). Graph Convolution over Multiple Dependency Sub-graphs for Relation Extraction.. In D. Scott, N. Bel, & C. Zong (Eds.), COLING (pp. 6424-6435). International Committee on Computational Linguistics. Retrieved from https://aclanthology.org/volumes/2020.coling-main/
O’Neill, J., & Bollegala, D. (2020). Learning to Evaluate Neural Language Models. In Unknown Conference (pp. 123-133). Springer Singapore. doi:10.1007/978-981-15-6168-9_11DOI: 10.1007/978-981-15-6168-9_11
Muhammad, I., Bollegala, D., Coenen, F., Gamble, C., Kearney, A., & Williamson, P. (2020). Maintaining Curated Document Databases Using a Learning to Rank Model: The ORRCA Experience. In Unknown Conference (pp. 345-357). Springer International Publishing. doi:10.1007/978-3-030-63799-6_26DOI: 10.1007/978-3-030-63799-6_26
Spatio-temporal Attention Model for Tactile Texture Recognition. (Conference Paper)
Cao, G., Zhou, Y., Bollegala, D., & Luo, S. (2020). Spatio-temporal Attention Model for Tactile Texture Recognition.. In IROS (pp. 9896-9902). IEEE. Retrieved from https://doi.org/10.1109/IROS45743.2020
2019
Torrisi, A., Bevan, R., Atkinson, K., Bollegala, D., & Coenen, F. (2019). Combining Textual and Visual Information for Typed and Handwritten Text Separation in Legal Documents. In LEGAL KNOWLEDGE AND INFORMATION SYSTEMS (JURIX 2019) Vol. 322 (pp. 223-228). doi:10.3233/FAIA190329DOI: 10.3233/FAIA190329
Cui, X., & Bollegala, D. (2019). Self-Adaptation for Unsupervised Domain Adaptation. In Proceedings - Natural Language Processing in a Deep Learning World. Incoma Ltd., Shoumen, Bulgaria. doi:10.26615/978-954-452-056-4_025DOI: 10.26615/978-954-452-056-4_025
Masahiro, K., & Bollegala, D. (2019). Gender-preserving Debiasing for Pre-trained Word Embeddings. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy.
Torrisi, A., Bevan, R., Atkinson, K., Bollegala, D., & Coenen, F. (2019). Automated Bundle Pagination Using Machine Learning. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Law. ACM. doi:10.1145/3322640.3326726DOI: 10.1145/3322640.3326726
Lee, J. -T., Bollegala, D., Luo, S., & IEEE. (2019). "Touching to See" and "Seeing to Feel": Robotic Cross-modal Sensory Data Generation for Visual-Tactile Perception. In 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) (pp. 4276-4282). Retrieved from http://gateway.webofknowledge.com/
Mandya, A., Bollegala, D., Coenen, F., Atkinson, K., & Declerck, T. (2018). A Dataset for Inter-Sentence Relation Extraction using Distant Supervision. In PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018) (pp. 1559-1565). Retrieved from http://gateway.webofknowledge.com/
Behavioural Biometric Continuous User Authentication Using Multivariate Keystroke Streams in the Spectral Domain (Chapter)
Alshehri, A., Coenen, F., & Bollegala, D. (2019). Behavioural Biometric Continuous User Authentication Using Multivariate Keystroke Streams in the Spectral Domain. In Communications in Computer and Information Science (pp. 43-66). Springer International Publishing. doi:10.1007/978-3-030-15640-4_3DOI: 10.1007/978-3-030-15640-4_3
Combining Long Short Term Memory and Convolutional Neural Network for Cross-Sentence n-ary Relation Extraction. (Conference Paper)
Mandya, A., Bollegala, D., Coenen, F., & Atkinson, K. (2019). Combining Long Short Term Memory and Convolutional Neural Network for Cross-Sentence n-ary Relation Extraction.. In AKBC. Retrieved from https://openreview.net/group?id=AKBC.ws/2019/Conference
Abaho, M., Bollegala, D., Williamson, P., & Dodd, S. (2019). Correcting crowdsourced annotations to improve detection of outcome types in evidence based medicine. In CEUR Workshop Proceedings Vol. 2429 (pp. 1-5).
Gender-preserving Debiasing for Pre-trained Word Embeddings. (Conference Paper)
Kaneko, M., & Bollegala, D. (2019). Gender-preserving Debiasing for Pre-trained Word Embeddings.. In A. Korhonen, D. R. Traum, & L. Màrquez (Eds.), ACL (1) (pp. 1641-1650). Association for Computational Linguistics. Retrieved from https://aclanthology.org/volumes/P19-1/
Joint Learning of Hierarchical Word Embeddings from a Corpus and a Taxonomy. (Conference Paper)
Alsuhaibani, M., Maehara, T., & Bollegala, D. (2019). Joint Learning of Hierarchical Word Embeddings from a Corpus and a Taxonomy.. In AKBC. Retrieved from https://openreview.net/group?id=AKBC.ws/2019/Conference
Joint Learning of Sense and Word Embeddings (Conference Paper)
Alsuhaibani, M., Bollegala, D., & Declerck, T. (2018). Joint Learning of Sense and Word Embeddings. In PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018) (pp. 223-229). Retrieved from http://gateway.webofknowledge.com/
Learning Relation Representations from Word Representations. (Conference Paper)
Hakami, H., & Bollegala, D. (2019). Learning Relation Representations from Word Representations.. In AKBC. Retrieved from https://openreview.net/group?id=AKBC.ws/2019/Conference
Rajendran, P., Bollegala, D., Parsons, S., & Declerck, T. (2018). Sentiment-Stance-Specificity (SSS) Dataset: Identifying Support-based Entailment among Opinions. In PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018) (pp. 619-626). Retrieved from http://gateway.webofknowledge.com/
Sub-Sequence-Based Dynamic Time Warping (Conference Paper)
Alshehri, M., Coenen, F., & Dures, K. (2019). Sub-Sequence-Based Dynamic Time Warping. In KDIR: PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT - VOL 1: KDIR (pp. 274-281). doi:10.5220/0008053402740281DOI: 10.5220/0008053402740281
Neill, J. O., Bollegala, D., Radford, A. D., & Noble, P. J. (2019). Tick parasitism classification from noisy medical records. In CEUR Workshop Proceedings Vol. 2429 (pp. 30-34).
Zhou, Y., & Bollegala, D. (2019). Unsupervised Evaluation of Human Translation Quality. In KDIR: PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT - VOL 1: KDIR (pp. 55-64). doi:10.5220/0008064500550064DOI: 10.5220/0008064500550064
2018
Alshehri, A., Coenen, F., & Bollegala, D. (2018). Iterative Keystroke Continuous Authentication: A Time Series Based Approach. KI - Künstliche Intelligenz, 32(4), 231-243. doi:10.1007/s13218-018-0526-zDOI: 10.1007/s13218-018-0526-z
O'Neill, J., & Bollegala, D. (2020). Meta-Embedding as Auxiliary Task Regularization. ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 325, 2124-2131. doi:10.3233/FAIA200336DOI: 10.3233/FAIA200336
Bollegala, D., Atanasov, V., Maehara, T., & Kawarabayashi, K. -I. (2018). ClassiNet - Predicting Missing Features for Short-Text Classification.. ACM Transactions on Knowledge Discovery from Data, 12(5). doi:10.1145/3201578DOI: 10.1145/3201578
Samardzhiev, K., Gargett, A., & Bollegala, D. (2018). Learning Neural Word Salience Scores.. In M. Nissim, J. Berant, & A. Lenci (Eds.), *SEM@NAACL-HLT (pp. 33-42). Association for Computational Linguistics. Retrieved from https://aclanthology.org/volumes/S18-2/
Bollegala, D., Atanasov, V., Maehara, T., & Kawarabayashi, K. -I. (2018). ClassiNet -- Predicting Missing Features for Short-Text Classification. ACM Transactions on Knowledge Discovery from Data.
Bollegala, D., Maskell, S., Sloane, R., Hajne, J., & Pirmohamed, M. (2018). Causality Patterns for Detecting Adverse Drug Reactions From Social Media: Text Mining Approach. JMIR PUBLIC HEALTH AND SURVEILLANCE, 4(2), 292-303. doi:10.2196/publichealth.8214DOI: 10.2196/publichealth.8214
Causality Patterns for Detecting Adverse Drug Reactions From Social Media: Text Mining Approach (Preprint) (Journal article)
Bollegala, D., Maskell, S., Sloane, R., Hajne, J., & Pirmohamed, M. (n.d.). Causality Patterns for Detecting Adverse Drug Reactions From Social Media: Text Mining Approach (Preprint). doi:10.2196/preprints.8214DOI: 10.2196/preprints.8214
Coates, J., & Bollegala, D. (2018). Frustratingly Easy Meta-Embedding -- Computing Meta-Embeddings by Averaging Source Word Embeddings. Retrieved from http://arxiv.org/abs/1804.05262v1
Cui, X., Al-Bazzas, N., Bollegala, D., & Coenen, F. P. (2018). A Comparative Study of Pivot Selection Strategies for Unsupervised Domain Adaptation. The Knowledge Engineering Review.
Alsuhaibani, M., Bollegala, D., Maehara, T., & Kawarabayashi, K. -I. (2018). Jointly learning word embeddings using a corpus and a knowledge base. PLOS ONE, 13(3). doi:10.1371/journal.pone.0193094DOI: 10.1371/journal.pone.0193094
Bollegala, D., Yoshida, Y., & Kawarabayashi, K. -I. (2018). Using $k$-way Co-occurrences for Learning Word Embeddings. Proceedings of the National Conference on Artificial Intelligence. Retrieved from http://arxiv.org/abs/1709.01199v1
An Empirical Study on Fine-Grained Named Entity Recognition. (Conference Paper)
Mai, K., Pham, T. -H., Nguyen, M. T., Duc, N. T., Bollegala, D., Sasano, R., & Sekine, S. (2018). An Empirical Study on Fine-Grained Named Entity Recognition.. In E. M. Bender, L. Derczynski, & P. Isabelle (Eds.), COLING (pp. 711-722). Association for Computational Linguistics. Retrieved from https://aclanthology.org/volumes/C18-1/
Mandya, A., Bollegala, D., Coenen, F., & Atkinson, K. (2018). Classifier-Based Pattern Selection Approach for Relation Instance Extraction. In COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING (CICLING 2017), PT I Vol. 10761 (pp. 418-434). doi:10.1007/978-3-319-77113-7_33DOI: 10.1007/978-3-319-77113-7_33
Hakami, H., Mandya, A., & Bollegala, D. (2018). Discovering Representative Space for Relational Similarity Measurement. In COMPUTATIONAL LINGUISTICS, PACLING 2017 Vol. 781 (pp. 76-87). doi:10.1007/978-981-10-8438-6_7DOI: 10.1007/978-981-10-8438-6_7
Coenen, F. P., Bevan, R., Torrisi, A., Atkinson, K., & Bollegala, D. (n.d.). Efficient and Effective Case Reject-Accept Filtering: A Study Using Machine Learning. In JURIX 2018.
Mandya, A., Bollegala, D., Coenen, F., & Atkinson, K. (2018). Frame-Based Semantic Patterns for Relation Extraction. In COMPUTATIONAL LINGUISTICS, PACLING 2017 Vol. 781 (pp. 51-62). doi:10.1007/978-981-10-8438-6_5DOI: 10.1007/978-981-10-8438-6_5
Frustratingly Easy Meta-Embedding - Computing Meta-Embeddings by Averaging Source Word Embeddings. (Conference Paper)
Coates, J., & Bollegala, D. (2018). Frustratingly Easy Meta-Embedding - Computing Meta-Embeddings by Averaging Source Word Embeddings.. In M. A. Walker, H. Ji, & A. Stent (Eds.), NAACL-HLT (2) (pp. 194-198). Association for Computational Linguistics. Retrieved from https://aclanthology.org/volumes/N18-2/
Rajendran, P., Bollegala, D., & Parsons, S. (2018). Is something better than nothing? automatically predicting stance-based arguments using deep learning and small labelled dataset. In NAACL HLT 2018 - 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference Vol. 2 (pp. 28-34).
Learning word meta-embeddings by autoencoding (Conference Paper)
Bao, C., & Bollegala, D. (2018). Learning word meta-embeddings by autoencoding. In COLING 2018 - 27th International Conference on Computational Linguistics, Proceedings (pp. 1650-1661).
Cui, X., Kojaku, S., Masuda, N., & Bollegala, D. (2018). Solving Feature Sparseness in Text Classification using Core-Periphery Decomposition. In NAACL HLT 2018 - Lexical and Computational Semantics, SEM 2018, Proceedings of the 7th Conference (pp. 255-264).
Alshehri, A., Coenen, F., & Bollegala, D. (2018). Spectral Analysis of Keystroke Streams: Towards Effective Real-time Continuous User Authentication. In ICISSP: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (pp. 62-73). doi:10.5220/0006606100620073DOI: 10.5220/0006606100620073
Think Globally, Embed Locally - Locally Linear Meta-embedding of Words. (Conference Paper)
Bollegala, D., Hayashi, K., & Kawarabayashi, K. -I. (2018). Think Globally, Embed Locally - Locally Linear Meta-embedding of Words.. In J. Lang (Ed.), IJCAI (pp. 3970-3976). ijcai.org. Retrieved from http://www.ijcai.org/proceedings/2018/
Bollegala, D., Yoshida, Y., & Kawarabayashi, K. -I. (2018). Using k-Way Co-Occurrences for Learning Word Embeddings.. In S. A. McIlraith, & K. Q. Weinberger (Eds.), AAAI (pp. 5037-5044). AAAI Press. Retrieved from https://www.aaai.org/ocs/index.php/AAAI/AAAI18/schedConf/presentations
Why does PairDiff work? – A mathematical analysis of bilinear relational compositional operators for analogy detection (Conference Paper)
Hakami, H., Hayashi, K., & Bollegala, D. (2018). Why does PairDiff work? – A mathematical analysis of bilinear relational compositional operators for analogy detection. In COLING 2018 - 27th International Conference on Computational Linguistics, Proceedings (pp. 2493-2504).
2017
Coenen, F. P., Cui., & bollegala. (2017). TSP: Learning Task-Specific Pivots for Unsupervised Domain Adaptation. In ECML-PKDD.
Coenen, F. P., alshehri., & bollegala. (2017). Spectral Keyboard Streams: Towards Effective and Continuous Authentication.
Hakami, H., & Bollegala, D. (2017). Compositional approaches for representing relations between words: A comparative study. KNOWLEDGE-BASED SYSTEMS, 136, 172-182. doi:10.1016/j.knosys.2017.09.008DOI: 10.1016/j.knosys.2017.09.008
Hakami, H., & Bollegala, D. (2017). Compositional approaches for representing relations between words: A comparative study.. Knowl.-Based Syst., 136, 172-182.
Beyond co-occurrence-based ADR detection from Social Media (Poster)
Bollegala, D., Maskell, S., & Pirmohamed, M. (2017). Beyond co-occurrence-based ADR detection from Social Media. Poster session presented at the meeting of Unknown Conference. Retrieved from http://gateway.webofknowledge.com/
Bollegala, D., Hayashi, K., & Kawarabayashi, K. -I. (2017). Learning Linear Transformations between Counting-based and Prediction-based Word Embeddings. PLoS One, 12(9). doi:10.1371/journal.pone.0184544DOI: 10.1371/journal.pone.0184544
Kajiwara, T., Bollegala, D., Yoshida, Y., & Kawarabayashi, K. -I. (2017). An iterative approach for the global estimation of sentence similarity. PLOS ONE, 12(9). doi:10.1371/journal.pone.0180885DOI: 10.1371/journal.pone.0180885
Rajendran., Bollegala, D., & Parsons. (2017). Identifying Argument based Relation Properties in Opinions. In Springer LNCS. Myanmar.
Bollegala, D. (2017). Dynamic feature scaling for online learning of binary classifiers. KNOWLEDGE-BASED SYSTEMS, 129, 97-105. doi:10.1016/j.knosys.2017.05.010DOI: 10.1016/j.knosys.2017.05.010
CLIEL (Conference Paper)
García-Constantino, M., Atkinson, K., Bollegala, D., Chapman, K., Coenen, F., Roberts, C., & Robson, K. (2017). CLIEL. In Proceedings of the 16th edition of the International Conference on Articial Intelligence and Law. ACM. doi:10.1145/3086512.3086520DOI: 10.1145/3086512.3086520
Bollegala, D. (2017). Dynamic feature scaling for online learning of binary classifiers. Knowledge-Based Systems, 129, 97-105. doi:10.1016/j.knosys.2017.05.010DOI: 10.1016/j.knosys.2017.05.010
Hakami, H., & Bollegala, D. (2017). A classification approach for detecting cross-lingual biomedical term translations. NATURAL LANGUAGE ENGINEERING, 23(1), 31-51. doi:10.1017/S1351324915000431DOI: 10.1017/S1351324915000431
Alshehri, A., Coenen, F., & Bollegala, D. (2017). Accurate Continuous and Non-intrusive User Authentication with Multivariate Keystroke Streaming. In Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. SCITEPRESS - Science and Technology Publications. doi:10.5220/0006497200610070DOI: 10.5220/0006497200610070
Cui, X., Coenen, F., & Bollegala, D. (2017). Effect of Data Imbalance on Unsupervised Domain Adaptation of Part-of-Speech Tagging and Pivot Selection Strategies.. In LIDTA@PKDD/ECML Vol. 74 (pp. 103-115). PMLR. Retrieved from http://proceedings.mlr.press/v74/
Al-Zeyadi, M., Coenen, F., & Lisitsa, A. (2017). User-to-User Recommendation using the Concept of Movement Patterns: A Study using a Dating Social Network. In Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. SCITEPRESS - Science and Technology Publications. doi:10.5220/0006494601730180DOI: 10.5220/0006494601730180
2016
Alshehri, A., Coenen, F., & Bollegala, D. (2016). Towards Keystroke Continuous Authentication Using Time Series Analytics.. In M. Bramer, & M. Petridis (Eds.), SGAI Conf. (pp. 325-339). Springer. Retrieved from https://doi.org/10.1007/978-3-319-47175-4
Coenen, F. P., Alshehri., & Bollegala. (2016). Keyboard Usage Authentication using Multi-variant Time Series Analysis. In Springer LNCS. Porto, Portugal.
Cross-domain Sentiment Classification using Sentiment Sensitive Embeddings (Journal article)
Bollegala, D., Mu, T., & Goulermas, Y. (2016). Cross-domain Sentiment Classification using Sentiment Sensitive Embeddings. IEEE Transactions on Knowledge and Data Engineering, 28(02), 389-410. doi:10.1109/TKDE.2015.2475761DOI: 10.1109/TKDE.2015.2475761
Rajendran, P., Bollegala, D., & Parsons, S. (2016). Assessing Weight of Opinion by Aggregating Coalitions of Arguments. In COMPUTATIONAL MODELS OF ARGUMENT Vol. 287 (pp. 431-438). doi:10.3233/978-1-61499-686-6-431DOI: 10.3233/978-1-61499-686-6-431
Contextual stance classification of opinions: A step towards enthymeme reconstruction in online reviews. (Conference Paper)
Rajendran, P., Bollegala, D., & Parsons, S. (2016). Contextual stance classification of opinions: A step towards enthymeme reconstruction in online reviews.. In ArgMining@ACL. The Association for Computer Linguistics. Retrieved from https://aclanthology.org/volumes/W16-28/
Bollegala, D., Alsuhaibani, M., Maehara, T., & Kawarabayashi, K. -I. (2016). Joint Word Representation Learning Using a Corpus and a Semantic Lexicon.. In D. Schuurmans, & M. P. Wellman (Eds.), AAAI (pp. 2690-2696). AAAI Press. Retrieved from http://www.aaai.org/Library/AAAI/aaai16contents.php
2015
Joint Word Representation Learning Using a Corpus and a Semantic Lexicon (Journal article)
Bollegala, D., Mohammed, A., Maehara, T., Kawarabayashi, K. -I., & AAAI. (2016). Joint Word Representation Learning Using a Corpus and a Semantic Lexicon. THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2690-2696. Retrieved from http://gateway.webofknowledge.com/
Prediction of User Ratings of Oral Presentations using Label Relations (Conference Paper)
Yamasaki, T., Fukushima, Y., Furuta, R., Sun, L., Aizawa, K., & Bollegala, D. (2015). Prediction of User Ratings of Oral Presentations using Label Relations. In Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia. ACM. doi:10.1145/2813524.2813533DOI: 10.1145/2813524.2813533
Sloane, R., Osanlou, O., Lewis, D., Bollegala, D., Maskell, S., & Pirmohamed, M. (2015). Social media and pharmacovigilance: A review of the opportunities and challenges. BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 80(4), 910-920. doi:10.1111/bcp.12717DOI: 10.1111/bcp.12717
Sato, H., Hasegawa, Y., Bollegala, D., & Iba, H. (2015). Improved sampling using loopy belief propagation for probabilistic model building genetic programming. SWARM AND EVOLUTIONARY COMPUTATION, 23, 1-10. doi:10.1016/j.swevo.2015.02.002DOI: 10.1016/j.swevo.2015.02.002
Bollegala, D., Kontonatsios, G., & Ananiadou, S. (2015). A Cross-Lingual Similarity Measure for Detecting Biomedical Term Translations. PLoS One, 10(6). doi:10.1371/journal.pone.0126196DOI: 10.1371/journal.pone.0126196
Unsupervised Cross-Domain Word Representation Learning (Conference Paper)
Bollegala, D., Maehara, T., & Kawarabayashi, K. -I. (2015). Unsupervised Cross-Domain Word Representation Learning. In Proceedings of the conference. Association for Computational Linguistics. Meeting Vol. 1 (pp. 730-740). Beijing, China,. doi:10.3115/v1/P15-1071DOI: 10.3115/v1/P15-1071
Bollegala, D., Maehara, T., & Kawarabayashi, K. -I. (2015). Embedding Semantic Relations into Word Representations. In PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI) (pp. 1222-1228). Retrieved from http://gateway.webofknowledge.com/
Simultaneous Higher-order Relation Prediction via Collective Incidence Matrix Embedding (Journal article)
Nori, N., Bollegala, D., & Kashima, H. (2015). Simultaneous Higher-order Relation Prediction via Collective Incidence Matrix Embedding. Transactions of the Japanese Society for Artificial Intelligence, 30(2), 459-465. doi:10.1527/tjsai.30.459DOI: 10.1527/tjsai.30.459
Kuyten, P., Bollegala, D., Hollerit, B., Prendinger, H., & Aizawa, K. (2015). A Discourse Search Engine Based on Rhetorical Structure Theory. In Unknown Conference (pp. 80-91). Springer International Publishing. doi:10.1007/978-3-319-16354-3_10DOI: 10.1007/978-3-319-16354-3_10
Embedding Semantic Relations into Word Representations. (Conference Paper)
Bollegala, D., Maehara, T., & Kawarabayashi, K. -I. (2015). Embedding Semantic Relations into Word Representations.. In Q. Yang, & M. J. Wooldridge (Eds.), IJCAI (pp. 1222-1228). AAAI Press. Retrieved from http://ijcai.org/proceedings/2015
Interest Prediction via Users' Actions on Social Media (Journal article)
Nori, N., Bollegala, D., & Ishizuka, M. (2015). Interest Prediction via Users' Actions on Social Media. Transactions of the Japanese Society for Artificial Intelligence, 30(4), 613-625. doi:10.1527/tjsai.30_613DOI: 10.1527/tjsai.30_613
Unsupervised Cross-Domain Word Representation Learning. (Journal article)
Bollegala, D., Maehara, T., & Kawarabayashi, K. -I. (2015). Unsupervised Cross-Domain Word Representation Learning.. CoRR, abs/1505.07184.
2014
Bollegala, D., Maehara, T., Yoshida, Y., Kawarabayashi, K. -I., & AAAI. (2015). Learning Word Representations from Relational Graphs. In PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (pp. 2146-2152). Retrieved from http://gateway.webofknowledge.com/
A Dimension Reduction Approach to Multinomial Relation Prediction (Journal article)
Nori, N., Bollegala, D., & Kashima, H. (2014). A Dimension Reduction Approach to Multinomial Relation Prediction. Transactions of the Japanese Society for Artificial Intelligence, 29(1), 168-176. doi:10.1527/tjsai.29.168DOI: 10.1527/tjsai.29.168
Learning Word Representations from Relational Graphs. (Journal article)
Bollegala, D., Maehara, T., Yoshida, Y., & Kawarabayashi, K. -I. (2014). Learning Word Representations from Relational Graphs.. CoRR, abs/1412.2378.
Bollegala, D., Weir, D., & Carroll, J. (2014). Learning to Predict Distributions of Words Across Domains. In PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1 (pp. 613-623). Retrieved from http://gateway.webofknowledge.com/
2013
Mining for analogous tuples from an entity-relation graph (Conference Paper)
Bollegala, D., Kusumoto, M., Yoshida, Y., & Kawarabayashi, K. I. (2013). Mining for analogous tuples from an entity-relation graph. In IJCAI International Joint Conference on Artificial Intelligence (pp. 2064-2070).
Multi-tweet Summarization of Real-Time Events (Conference Paper)
Khan, M. A. H., Bollegala, D., Liu, G., & Sezaki, K. (2013). Multi-tweet Summarization of Real-Time Events. In 2013 International Conference on Social Computing. IEEE. doi:10.1109/socialcom.2013.26DOI: 10.1109/socialcom.2013.26
Bollegala, D., & Shutova, E. (2013). Metaphor interpretation using paraphrases extracted from the web.. PloS one, 8(9), e74304. doi:10.1371/journal.pone.0074304DOI: 10.1371/journal.pone.0074304
Learning non-linear ranking functions for web search using probabilistic model building GP (Conference Paper)
Sato, H., Bollegala, D., Hasegawa, Y., & Iba, H. (2013). Learning non-linear ranking functions for web search using probabilistic model building GP. In 2013 IEEE Congress on Evolutionary Computation. IEEE. doi:10.1109/cec.2013.6557983DOI: 10.1109/cec.2013.6557983
Cross-Domain Sentiment Classification Using a Sentiment Sensitive Thesaurus (Journal article)
Bollegala, D., Weir, D., & Carroll, J. (2013). Cross-Domain Sentiment Classification Using a Sentiment Sensitive Thesaurus. IEEE Transactions on Knowledge and Data Engineering, 25(8), 1719-1731. doi:10.1109/tkde.2012.103DOI: 10.1109/tkde.2012.103
Minimally Supervised Novel Relation Extraction Using a Latent Relational Mapping (Journal article)
Bollegala, D., Matsuo, Y., & Ishizuka, M. (2013). Minimally Supervised Novel Relation Extraction Using a Latent Relational Mapping. IEEE Transactions on Knowledge and Data Engineering, 25(2), 419-432. doi:10.1109/tkde.2011.250DOI: 10.1109/tkde.2011.250
Improving relational similarity measurement using symmetries in proportional word analogies (Journal article)
Bollegala, D., Goto, T., Duc, N. T., & Ishizuka, M. (2013). Improving relational similarity measurement using symmetries in proportional word analogies. Information Processing & Management, 49(1), 355-369. doi:10.1016/j.ipm.2012.05.007DOI: 10.1016/j.ipm.2012.05.007
Jointly Learning Similarity Transformations for Textual Entailment (Journal article)
Yokote, K. -I., Bollegala, D., & Ishizuka, M. (2013). Jointly Learning Similarity Transformations for Textual Entailment. Transactions of the Japanese Society for Artificial Intelligence, 28(2), 220-229. doi:10.1527/tjsai.28.220DOI: 10.1527/tjsai.28.220
2012
A preference learning approach to sentence ordering for multi-document summarization (Journal article)
Bollegala, D., Okazaki, N., & Ishizuka, M. (2012). A preference learning approach to sentence ordering for multi-document summarization. Information Sciences, 217, 78-95. doi:10.1016/j.ins.2012.06.015DOI: 10.1016/j.ins.2012.06.015
A Context Expansion Method for Supervised Word Sense Disambiguation (Conference Paper)
Tacoa, F., Bollegala, D., & Ishizuka, M. (2012). A Context Expansion Method for Supervised Word Sense Disambiguation. In 2012 IEEE Sixth International Conference on Semantic Computing. IEEE. doi:10.1109/icsc.2012.27DOI: 10.1109/icsc.2012.27
Multinomial relation prediction in social data: A dimension reduction approach (Conference Paper)
Nori, N., Bollegala, D., & Kashima, H. (2012). Multinomial relation prediction in social data: A dimension reduction approach. In Proceedings of the National Conference on Artificial Intelligence Vol. 1 (pp. 115-121).
Similarity is not entailment - Jointly learning similarity transformations for textual entailment (Conference Paper)
Yokote, K. I., Bollegala, D., & Ishizuka, M. (2012). Similarity is not entailment - Jointly learning similarity transformations for textual entailment. In Proceedings of the National Conference on Artificial Intelligence Vol. 2 (pp. 1720-1726).
Probabilistic model building GP with Belief propagation (Conference Paper)
Sato, H., Hasegawa, Y., Bollegala, D., & Iba, H. (2012). Probabilistic model building GP with Belief propagation. In 2012 IEEE Congress on Evolutionary Computation. IEEE. doi:10.1109/cec.2012.6256483DOI: 10.1109/cec.2012.6256483
Cross-Language Latent Relational Search between Japanese and English Languages Using a Web Corpus (Journal article)
Duc, N. T., Bollegala, D., & Ishizuka, M. (2012). Cross-Language Latent Relational Search between Japanese and English Languages Using a Web Corpus. ACM Transactions on Asian Language Information Processing, 11(3), 1-33. doi:10.1145/2334801.2334805DOI: 10.1145/2334801.2334805
AUTOMATIC ANNOTATION OF AMBIGUOUS PERSONAL NAMES ON THE WEB (Journal article)
Bollegala, D., Matsuo, Y., & Ishizuka, M. (2012). AUTOMATIC ANNOTATION OF AMBIGUOUS PERSONAL NAMES ON THE WEB. Computational Intelligence, 28(3), 398-425. doi:10.1111/j.1467-8640.2012.00449.xDOI: 10.1111/j.1467-8640.2012.00449.x
Improving the Accuracy of Attribute Extraction using the Relatedness between Attribute Values (Journal article)
Bollegala, D., Tani, N., & Ishizuka, M. (2012). Improving the Accuracy of Attribute Extraction using the Relatedness between Attribute Values. Transactions of the Japanese Society for Artificial Intelligence, 27(4), 245-252. doi:10.1527/tjsai.27.245DOI: 10.1527/tjsai.27.245
Measuring the Degree of Synonymy between Words Using Relational Similarity between Word Pairs as a Proxy (Journal article)
BOLLEGALA, D., MATSUO, Y., & ISHIZUKA, M. (2012). Measuring the Degree of Synonymy between Words Using Relational Similarity between Word Pairs as a Proxy. IEICE Transactions on Information and Systems, E95.D(8), 2116-2123. doi:10.1587/transinf.e95.d.2116DOI: 10.1587/transinf.e95.d.2116
2011
Collaborative exploratory search in real-world context (Conference Paper)
Tani, N., Bollegala, D., Chandrasiri, N., Okamoto, K., Nawa, K., Iitsuka, S., & Matsuo, Y. (2011). Collaborative exploratory search in real-world context. In Proceedings of the 20th ACM international conference on Information and knowledge management - CIKM '11. ACM Press. doi:10.1145/2063576.2063909DOI: 10.1145/2063576.2063909
Interest prediction on multinomial, time-evolving social graphs (Conference Paper)
Nori, N., Bollegala, D., & Ishizuka, M. (2011). Interest prediction on multinomial, time-evolving social graphs. In IJCAI International Joint Conference on Artificial Intelligence (pp. 2507-2512). doi:10.5591/978-1-57735-516-8/IJCAI11-417DOI: 10.5591/978-1-57735-516-8/IJCAI11-417
Relation adaptation: Learning to extract novel relations with minimum supervision (Conference Paper)
Bollegala, D., Matsuo, Y., & Ishizuka, M. (2011). Relation adaptation: Learning to extract novel relations with minimum supervision. In IJCAI International Joint Conference on Artificial Intelligence (pp. 2205-2210). doi:10.5591/978-1-57735-516-8/IJCAI11-368DOI: 10.5591/978-1-57735-516-8/IJCAI11-368
Using multiple sources to construct a sentiment sensitive thesaurus for cross-domain sentiment classification (Conference Paper)
Bollegala, D., Weir, D., & Carroll, J. (2011). Using multiple sources to construct a sentiment sensitive thesaurus for cross-domain sentiment classification. In ACL-HLT 2011 - Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies Vol. 1 (pp. 132-141).
Cross-language latent relational search: Mapping knowledge across languages (Conference Paper)
Duc, N. T., Bollegala, D., & Ishizuka, M. (2011). Cross-language latent relational search: Mapping knowledge across languages. In Proceedings of the National Conference on Artificial Intelligence Vol. 2 (pp. 1237-1242).
Improving Relational Search Performance using Relational Symmetries and Predictors (Journal article)
Goto, T., Tuan Duc, N., Danushka, B., & Ishizuka, M. (2011). Improving Relational Search Performance using Relational Symmetries and Predictors. Transactions of the Japanese Society for Artificial Intelligence, 26(6), 649-656. doi:10.1527/tjsai.26.649DOI: 10.1527/tjsai.26.649
An adaptive differential evolution algorithm (Conference Paper)
Noman, N., Bollegala, D., & Iba, H. (2011). An adaptive differential evolution algorithm. In 2011 IEEE Congress of Evolutionary Computation (CEC). IEEE. doi:10.1109/cec.2011.5949891DOI: 10.1109/cec.2011.5949891
Differential evolution with self adaptive local search (Conference Paper)
Noman, N., Bollegala, D., & Iba, H. (2011). Differential evolution with self adaptive local search. In Proceedings of the 13th annual conference on Genetic and evolutionary computation - GECCO '11. ACM Press. doi:10.1145/2001576.2001725DOI: 10.1145/2001576.2001725
RankDE (Conference Paper)
Bollegala, D., Noman, N., & Iba, H. (2011). RankDE. In Proceedings of the 13th annual conference on Genetic and evolutionary computation - GECCO '11. ACM Press. doi:10.1145/2001576.2001814DOI: 10.1145/2001576.2001814
Total Environment for Text Data Mining (Journal article)
Sunayama, W., Takama, Y., Bollegala, D., Nishihara, Y., Tokunaga, H., Kushima, M., & Matsushita, M. (2011). Total Environment for Text Data Mining. Transactions of the Japanese Society for Artificial Intelligence, 26(4), 483-493. doi:10.1527/tjsai.26.483DOI: 10.1527/tjsai.26.483
From actors, politicians, to CEOs (Conference Paper)
Bollegala, D., Matsuo, Y., & Ishizuka, M. (2011). From actors, politicians, to CEOs. In Proceedings of the 20th international conference companion on World wide web - WWW '11. ACM Press. doi:10.1145/1963192.1963200DOI: 10.1145/1963192.1963200
Automatic Discovery of Personal Name Aliases from the Web (Journal article)
Bollegala, D., Matsuo, Y., & Ishizuka, M. (2011). Automatic Discovery of Personal Name Aliases from the Web. IEEE Transactions on Knowledge and Data Engineering, 23(6), 831-844. doi:10.1109/tkde.2010.162DOI: 10.1109/tkde.2010.162
Semi-supervised Discourse Relation Classification with Structural Learning (Conference Paper)
Hernault, H., Bollegala, D., & Ishizuka, M. (2011). Semi-supervised Discourse Relation Classification with Structural Learning. In Unknown Conference (pp. 340-352). Springer Berlin Heidelberg. doi:10.1007/978-3-642-19400-9_27DOI: 10.1007/978-3-642-19400-9_27
Using Graph Based Method to Improve Bootstrapping Relation Extraction (Conference Paper)
Li, H., Bollegala, D., Matsuo, Y., & Ishizuka, M. (2011). Using Graph Based Method to Improve Bootstrapping Relation Extraction. In Unknown Conference (pp. 127-138). Springer Berlin Heidelberg. doi:10.1007/978-3-642-19437-5_10DOI: 10.1007/978-3-642-19437-5_10
Relation Representation and Indexing Method for a Fast and High Precision Latent Relational Web Search Engine (Journal article)
Tuan Duc, N., Bollegala, D., & Ishizuka, M. (2011). Relation Representation and Indexing Method for a Fast and High Precision Latent Relational Web Search Engine. Transactions of the Japanese Society for Artificial Intelligence, 26(2), 307-312. doi:10.1527/tjsai.26.307DOI: 10.1527/tjsai.26.307
A Supervised Classification Approach for Measuring Relational Similarity between Word Pairs (Journal article)
BOLLEGALA, D., MATSUO, Y., & ISHIZUKA, M. (2011). A Supervised Classification Approach for Measuring Relational Similarity between Word Pairs. IEICE Transactions on Information and Systems, E94-D(11), 2227-2233. doi:10.1587/transinf.e94.d.2227DOI: 10.1587/transinf.e94.d.2227
A Web Search Engine-Based Approach to Measure Semantic Similarity between Words (Journal article)
Bollegala, D., Matsuo, Y., & Ishizuka, M. (2011). A Web Search Engine-Based Approach to Measure Semantic Similarity between Words. IEEE Transactions on Knowledge and Data Engineering, 23(7), 977-990. doi:10.1109/tkde.2010.172DOI: 10.1109/tkde.2010.172
2010
A Sequential Model for Discourse Segmentation (Conference Paper)
Hernault, H., Bollegala, D., & Ishizuka, M. (2010). A Sequential Model for Discourse Segmentation. In Unknown Conference (pp. 315-326). Springer Berlin Heidelberg. doi:10.1007/978-3-642-12116-6_26DOI: 10.1007/978-3-642-12116-6_26
Using Relational Similarity between Word Pairs for Latent Relational Search on the Web (Conference Paper)
Duc, N. T., Bollegala, D., & Ishizuka, M. (2010). Using Relational Similarity between Word Pairs for Latent Relational Search on the Web. In 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. IEEE. doi:10.1109/wi-iat.2010.167DOI: 10.1109/wi-iat.2010.167
A semi-supervised approach to improve classification of infrequent discourse relations using feature vector extension (Conference Paper)
Hernault, H., Bollegala, D., & Ishizuka, M. (2010). A semi-supervised approach to improve classification of infrequent discourse relations using feature vector extension. In EMNLP 2010 - Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference (pp. 399-409).
A supervised ranking approach for detecting relationally similar word pairs (Conference Paper)
Bollegala, D. (2010). A supervised ranking approach for detecting relationally similar word pairs. In 2010 Fifth International Conference on Information and Automation for Sustainability. IEEE. doi:10.1109/iciafs.2010.5715681DOI: 10.1109/iciafs.2010.5715681
Towards semi-supervised classification of discourse relations using feature correlations (Conference Paper)
Hernault, H., Bollegala, D., & Ishizuka, M. (2010). Towards semi-supervised classification of discourse relations using feature correlations. In Proceedings of the SIGDIAL 2010 Conference: 11th Annual Meeting of the Special Interest Group onDiscourse and Dialogue (pp. 55-58).
Exploiting Symmetry in Relational Similarity for Ranking Relational Search Results (Conference Paper)
Goto, T., Duc, N. T., Bollegala, D., & Ishizuka, M. (2010). Exploiting Symmetry in Relational Similarity for Ranking Relational Search Results. In Unknown Conference (pp. 595-600). Springer Berlin Heidelberg. doi:10.1007/978-3-642-15246-7_55DOI: 10.1007/978-3-642-15246-7_55
Relational duality (Conference Paper)
Bollegala, D. T., Matsuo, Y., & Ishizuka, M. (2010). Relational duality. In Proceedings of the 19th international conference on World wide web - WWW '10. ACM Press. doi:10.1145/1772690.1772707DOI: 10.1145/1772690.1772707
A bottom-up approach to sentence ordering for multi-document summarization (Journal article)
Bollegala, D., Okazaki, N., & Ishizuka, M. (2010). A bottom-up approach to sentence ordering for multi-document summarization. Information Processing & Management, 46(1), 89-109. doi:10.1016/j.ipm.2009.07.004DOI: 10.1016/j.ipm.2009.07.004
2009
Measuring the similarity between implicit semantic relations from the web (Conference Paper)
Bollegala, D. T., Matsuo, Y., & Ishizuka, M. (2009). Measuring the similarity between implicit semantic relations from the web. In Proceedings of the 18th international conference on World wide web - WWW '09. ACM Press. doi:10.1145/1526709.1526797DOI: 10.1145/1526709.1526797
Measuring the similarity between implicit semantic relations using web search engines (Conference Paper)
Bollegala, D., Matsuo, Y., & Ishizuka, M. (2009). Measuring the similarity between implicit semantic relations using web search engines. In Proceedings of the Second ACM International Conference on Web Search and Data Mining - WSDM '09. ACM Press. doi:10.1145/1498759.1498815DOI: 10.1145/1498759.1498815
A relational model of semantic similarity between words using automatically extracted lexical pattern clusters from the web (Conference Paper)
Bollegala, D., Matsuo, Y., & Ishizuka, M. (2009). A relational model of semantic similarity between words using automatically extracted lexical pattern clusters from the web. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing Volume 2 - EMNLP '09. Association for Computational Linguistics. doi:10.3115/1699571.1699617DOI: 10.3115/1699571.1699617
2008
Mining for personal name aliases on the web (Conference Paper)
Bollegala, D., Honma, T., Matsuo, Y., & Ishizuka, M. (2008). Mining for personal name aliases on the web. In Proceeding of the 17th international conference on World Wide Web - WWW '08. ACM Press. doi:10.1145/1367497.1367679DOI: 10.1145/1367497.1367679
Automatically Extracting Personal Name Aliases from the Web (Conference Paper)
Bollegala, D., Honma, T., Matsuo, Y., & Ishizuka, M. (2008). Automatically Extracting Personal Name Aliases from the Web. In Unknown Conference (pp. 77-88). Springer Berlin Heidelberg. doi:10.1007/978-3-540-85287-2_8DOI: 10.1007/978-3-540-85287-2_8
WWW sits the SAT: Measuring relational similarity on the web (Conference Paper)
Bollegala, D., Matsuo, Y., & Ishizuka, M. (2008). WWW sits the SAT: Measuring relational similarity on the web. In Frontiers in Artificial Intelligence and Applications Vol. 178 (pp. 333-337). doi:10.3233/978-1-58603-891-5-333DOI: 10.3233/978-1-58603-891-5-333
A Co-occurrence graph-based approach for personal name alias extraction from anchor texts (Conference Paper)
Bollegala, D., Matsuo, Y., & Ishizuka, M. (2008). A Co-occurrence graph-based approach for personal name alias extraction from anchor texts. In IJCNLP 2008 - 3rd International Joint Conference on Natural Language Processing, Proceedings of the Conference Vol. 2 (pp. 865-870).
2007
An integrated approach to measuring semantic similarity between words using information available on the Web (Conference Paper)
Bollegala, D., Matsuo, Y., & Ishizuka, M. (2007). An integrated approach to measuring semantic similarity between words using information available on the Web. In NAACL HLT 2007 - Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics, Proceedings of the Main Conference (pp. 340-347).
Measuring semantic similarity between words using web search engines (Conference Paper)
Unknown. (2007). Measuring semantic similarity between words using web search engines. In Proceedings of the 16th international conference on World Wide Web - WWW '07. ACM Press. doi:10.1145/1242572.1242675DOI: 10.1145/1242572.1242675
2006
Disambiguating personal names on the web using automatically extracted key phrases (Journal article)
Bollegala, D., Matsuo, Y., & Ishizuka, M. (2006). Disambiguating personal names on the web using automatically extracted key phrases. Frontiers in Artificial Intelligence and Applications, 141, 553-557.
Spinning multiple social networks for Semantic Web (Conference Paper)
Matsuo, Y., Hamasaki, M., Nakamura, Y., Nishimura, T., Hasida, K., Takeda, H., . . . Ishizuka, M. (2006). Spinning multiple social networks for Semantic Web. In Proceedings of the National Conference on Artificial Intelligence Vol. 2 (pp. 1381-1387).
Extracting Key Phrases to Disambiguate Personal Names on the Web (Conference Paper)
Bollegala, D., Matsuo, Y., & Ishizuka, M. (2006). Extracting Key Phrases to Disambiguate Personal Names on the Web. In Unknown Conference (pp. 223-234). Springer Berlin Heidelberg. doi:10.1007/11671299_24DOI: 10.1007/11671299_24
A bottom-up approach to sentence ordering for multi-document summarization (Conference Paper)
Bollegala, D., Okazaki, N., & Ishizuka, M. (2006). A bottom-up approach to sentence ordering for multi-document summarization. In Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the ACL - ACL '06. Association for Computational Linguistics. doi:10.3115/1220175.1220224DOI: 10.3115/1220175.1220224
2005
A Machine Learning Approach to Sentence Ordering for Multidocument Summarization and Its Evaluation (Conference Paper)
Bollegala, D., Okazaki, N., & Ishizuka, M. (2005). A Machine Learning Approach to Sentence Ordering for Multidocument Summarization and Its Evaluation. In Unknown Conference (pp. 624-635). Springer Berlin Heidelberg. doi:10.1007/11562214_55DOI: 10.1007/11562214_55