Skip to main content
What types of page to search?

Alternatively use our A-Z index.

Dr Chao Huang
BSc, PhD

Lecturer
School of Computer Science and Informatics

Research outputs

What type of research output do you want to show?

2025

AutoTestForge: A Multidimensional Automated Testing Framework for Natural Language Processing Models

Xing, H., Tian, C., Zhao, L., Ma, Z., Wang, W., Zhang, N., . . . Duan, Z. (2025). AutoTestForge: A Multidimensional Automated Testing Framework for Natural Language Processing Models. ACM Transactions on Software Engineering and Methodology. doi:10.1145/3783995

DOI
10.1145/3783995
Journal article

Bridging Dimensions: Confident Reachability for High-Dimensional Controllers

Geng, Y., Baldauf, J. B., Dutta, S., Huang, C., & Ruchkin, I. (2025). Bridging Dimensions: Confident Reachability for High-Dimensional Controllers. In Lecture Notes in Computer Science (pp. 381-402). Springer Nature Switzerland. doi:10.1007/978-3-031-71162-6_20

DOI
10.1007/978-3-031-71162-6_20
Chapter

Case Study: Runtime Safety Verification of Neural Network Controlled System

Yang, F., Zhan, S. S., Wang, Y., Huang, C., & Zhu, Q. (2025). Case Study: Runtime Safety Verification of Neural Network Controlled System. In Unknown Conference (pp. 205-217). Springer Nature Switzerland. doi:10.1007/978-3-031-74234-7_13

DOI
10.1007/978-3-031-74234-7_13
Conference Paper

Directly Forecasting Belief for Reinforcement Learning with Delays

Wu, Q., Wang, Y., Zhan, S. S., Wang, Y., Lin, C. W., Lv, C., . . . Huang, C. (2025). Directly Forecasting Belief for Reinforcement Learning with Delays. In Proceedings of Machine Learning Research Vol. 267 (pp. 67810-67832).

Conference Paper

Scaling Value Iteration Networks to 5000 Layers for Extreme Long-Term Planning

Wang, Y., Wu, Q., Ashley, D. R., Faccio, F., Li, W., Huang, C., & Schmidhuber, J. (2025). Scaling Value Iteration Networks to 5000 Layers for Extreme Long-Term Planning. In Proceedings of Machine Learning Research Vol. 267 (pp. 64914-64936).

Conference Paper

2024

Analytically Determining the Robustness of Binarized Neural Networks

Alzahrani, S. M., Schewe, S., Huang, C., & Huang, X. (2024). Analytically Determining the Robustness of Binarized Neural Networks. In 2024 International Conference on Machine Learning and Applications (ICMLA) (pp. 597-604). IEEE. doi:10.1109/icmla61862.2024.00087

DOI
10.1109/icmla61862.2024.00087
Conference Paper

Kinematics-aware Trajectory Generation and Prediction with Latent Stochastic Differential Modeling

Jiao, R., Wang, Y., Liu, X., Zhan, S. S., Huang, C., & Zhu, Q. (2024). Kinematics-aware Trajectory Generation and Prediction with Latent Stochastic Differential Modeling. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 565-572). IEEE. doi:10.1109/iros58592.2024.10802438

DOI
10.1109/iros58592.2024.10802438
Conference Paper

RealDriftGenerator: A Novel Approach to Generate Concept Drift in Real World Scenario

Lin, B., Huang, C., Zhu, X., & Jin, N. (2024). RealDriftGenerator: A Novel Approach to Generate Concept Drift in Real World Scenario. In 2024 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 1124-1129). IEEE. doi:10.1109/smc54092.2024.10831569

DOI
10.1109/smc54092.2024.10831569
Conference Paper

State-Wise Safe Reinforcement Learning with Pixel Observations

Zhan, S. S., Wang, Y., Wu, Q., Jiao, R., Huang, C., & Zhu, Q. (2024). State-Wise Safe Reinforcement Learning with Pixel Observations. In Proceedings of Machine Learning Research Vol. 242 (pp. 1187-1201).

Conference Paper

Variational Delayed Policy Optimization

Wu, Q., Zhan, S. S., Wang, Y., Wang, Y., Lin, C. W., Lv, C., . . . Huang, C. (2024). Variational Delayed Policy Optimization. In Advances in Neural Information Processing Systems Vol. 37.

Conference Paper

2023

Joint Differentiable Optimization and Verification for Certified Reinforcement Learning

Wang, Y., Zhan, S., Wang, Z., Huang, C., Wang, Z., Yang, Z., & Zhu, Q. (2023). Joint Differentiable Optimization and Verification for Certified Reinforcement Learning. In Proceedings of the ACM/IEEE 14th International Conference on Cyber-Physical Systems (with CPS-IoT Week 2023) (pp. 132-141). ACM. doi:10.1145/3576841.3585919

DOI
10.1145/3576841.3585919
Conference Paper

Safety-Assured Design and Adaptation of Connected and Autonomous Vehicles

Chen, X., Fan, J., Huang, C., Jiao, R., Li, W., Liu, X., . . . Zhu, Q. (2023). Safety-Assured Design and Adaptation of Connected and Autonomous Vehicles. In Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems (pp. 735-757). Springer International Publishing. doi:10.1007/978-3-031-28016-0_26

DOI
10.1007/978-3-031-28016-0_26
Chapter

Verification and Design of Robust and Safe Neural Network-enabled Autonomous Systems

Zhu, Q., Li, W., Huang, C., Chen, X., Zhou, W., Wang, Y., . . . Fu, F. (2023). Verification and Design of Robust and Safe Neural Network-enabled Autonomous Systems. In 2023 59th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 1-8). IEEE. doi:10.1109/allerton58177.2023.10313451

DOI
10.1109/allerton58177.2023.10313451
Conference Paper

2022

2021

Bounding Perception Neural Network Uncertainty for Safe Control of Autonomous Systems

Wang, Z., Huang, C., Wang, Y., Hobbs, C., Chakraborty, S., & Zhu, Q. (2021). Bounding Perception Neural Network Uncertainty for Safe Control of Autonomous Systems. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 1745-1750). IEEE. doi:10.23919/date51398.2021.9474204

DOI
10.23919/date51398.2021.9474204
Conference Paper

Safety-Assured Design and Adaptation of Learning-Enabled Autonomous Systems

Zhu, Q., Huang, C., Jiao, R., Lan, S., Liang, H., Liu, X., . . . Xu, S. (2021). Safety-Assured Design and Adaptation of Learning-Enabled Autonomous Systems. In Proceedings of the 26th Asia and South Pacific Design Automation Conference (pp. 753-760). ACM. doi:10.1145/3394885.3431623

DOI
10.1145/3394885.3431623
Conference Paper

2020

Know the unknowns

Zhu, Q., Li, W., Kim, H., Xiang, Y., Wardega, K., Wang, Z., . . . Choi, H. (2020). Know the unknowns. In Proceedings of the 39th International Conference on Computer-Aided Design (pp. 1-9). ACM. doi:10.1145/3400302.3415768

DOI
10.1145/3400302.3415768
Conference Paper

Opportunistic Intermittent Control with Safety Guarantees for Autonomous Systems

Huang, C., Xu, S., Wang, Z., Lan, S., Li, W., & Zhu, Q. (2020). Opportunistic Intermittent Control with Safety Guarantees for Autonomous Systems. In 2020 57th ACM/IEEE Design Automation Conference (DAC) (pp. 1-6). IEEE. doi:10.1109/dac18072.2020.9218742

DOI
10.1109/dac18072.2020.9218742
Conference Paper

Navigating Discrete Difference Equation Governed WMR by Virtual Linear Leader Guided HMPC

Huang, C., Chen, X., Tang, E., He, M., Bu, L., Qin, S., & Zeng, Y. (2020). Navigating Discrete Difference Equation Governed WMR by Virtual Linear Leader Guided HMPC. In 2020 IEEE International Conference on Robotics and Automation (ICRA) (pp. 151-157). IEEE. doi:10.1109/icra40945.2020.9197375

DOI
10.1109/icra40945.2020.9197375
Conference Paper

Efficient System Verification with Multiple Weakly-Hard Constraints for Runtime Monitoring

Wu, S. -L., Bai, C. -Y., Chang, K. -C., Hsieh, Y. -T., Huang, C., Lin, C. -W., . . . Zhu, Q. (2020). Efficient System Verification with Multiple Weakly-Hard Constraints for Runtime Monitoring. In Unknown Book (Vol. 12399, pp. 497-516). doi:10.1007/978-3-030-60508-7_28

DOI
10.1007/978-3-030-60508-7_28
Chapter

ReachNN*: A Tool for Reachability Analysis of Neural-Network Controlled Systems

Fan, J., Huang, C., Chen, X., Li, W., & Zhu, Q. (2020). ReachNN*: A Tool for Reachability Analysis of Neural-Network Controlled Systems. In Unknown Conference (pp. 537-542). Springer International Publishing. doi:10.1007/978-3-030-59152-6_30

DOI
10.1007/978-3-030-59152-6_30
Conference Paper

SAW: A Tool for Safety Analysis of Weakly-Hard Systems

Huang, C., Chang, K. -C., Lin, C. -W., & Zhu, Q. (2020). SAW: A Tool for Safety Analysis of Weakly-Hard Systems. In Unknown Book (Vol. 12224, pp. 543-555). doi:10.1007/978-3-030-53288-8_26

DOI
10.1007/978-3-030-53288-8_26
Chapter

2019

Towards Verification-Aware Knowledge Distillation for Neural-Network Controlled Systems: Invited Paper

Fan, J., Huang, C., Li, W., Chen, X., & Zhu, Q. (2019). Towards Verification-Aware Knowledge Distillation for Neural-Network Controlled Systems: Invited Paper. In 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (pp. 1-8). IEEE. doi:10.1109/iccad45719.2019.8942059

DOI
10.1109/iccad45719.2019.8942059
Conference Paper

Formal verification of weakly-hard systems

Huang, C., Li, W., & Zhu, Q. (2019). Formal verification of weakly-hard systems. In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control (pp. 197-207). ACM. doi:10.1145/3302504.3311811

DOI
10.1145/3302504.3311811
Conference Paper

Exploring weakly-hard paradigm for networked systems

Huang, C., Wardega, K., Li, W., & Zhu, Q. (2019). Exploring weakly-hard paradigm for networked systems. In Proceedings of the Workshop on Design Automation for CPS and IoT (pp. 51-59). ACM. doi:10.1145/3313151.3313165

DOI
10.1145/3313151.3313165
Conference Paper

2018

Design Automation for Intelligent Automotive Systems

Lan, S., Huang, C., Wang, Z., Liang, H., Su, W., & Zhu, Q. (2018). Design Automation for Intelligent Automotive Systems. In 2018 IEEE International Test Conference (ITC) (pp. 1-10). IEEE. doi:10.1109/test.2018.8624723

DOI
10.1109/test.2018.8624723
Conference Paper

2017

Probabilistic Safety Verification of Stochastic Hybrid Systems Using Barrier Certificates

Huang, C., Chen, X., Lin, W., Yang, Z., & Li, X. (2017). Probabilistic Safety Verification of Stochastic Hybrid Systems Using Barrier Certificates. In ACM Transactions on Embedded Computing Systems Vol. 16 (pp. 1-19). Association for Computing Machinery (ACM). doi:10.1145/3126508

DOI
10.1145/3126508
Conference Paper

Switched Linear Multi-Robot Navigation Using Hierarchical Model Predictive Control

Huang, C., Chen, X., Zhang, Y., Qin, S., Zeng, Y., & Li, X. (2017). Switched Linear Multi-Robot Navigation Using Hierarchical Model Predictive Control. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (pp. 4331-4337). International Joint Conferences on Artificial Intelligence Organization. doi:10.24963/ijcai.2017/605

DOI
10.24963/ijcai.2017/605
Conference Paper

2016

Family patronage, institutional patronage, and work family conflict: women’s employment status and subjective well-being in urban China

Wu, Y., Wang, P., & Huang, C. (2016). Family patronage, institutional patronage, and work family conflict: women’s employment status and subjective well-being in urban China. The Journal of Chinese Sociology, 3(1). doi:10.1186/s40711-016-0041-2

DOI
10.1186/s40711-016-0041-2
Journal article

Tool for analyzing interference problems in aspect-oriented designs

Chen, X., Huang, C., Zhang, Y. F., & Mei, Y. M. (2016). Tool for analyzing interference problems in aspect-oriented designs. Ruan Jian Xue Bao Journal of Software, 27(3), 633-644. doi:10.13328/j.cnki.jos.004985

DOI
10.13328/j.cnki.jos.004985
Journal article

A Linear Programming Relaxation Based Approach for Generating Barrier Certificates of Hybrid Systems

Yang, Z., Huang, C., Chen, X., Lin, W., & Liu, Z. (2016). A Linear Programming Relaxation Based Approach for Generating Barrier Certificates of Hybrid Systems. In Unknown Conference (pp. 721-738). Springer International Publishing. doi:10.1007/978-3-319-48989-6_44

DOI
10.1007/978-3-319-48989-6_44
Conference Paper

2015

Method of automatic test case generation for safety-critical scenarios in train control systems

Chen, X., Jiang, P., Zhang, Y. F., Huang, C., & Zhou, Y. (2015). Method of automatic test case generation for safety-critical scenarios in train control systems. Ruan Jian Xue Bao Journal of Software, 26(2), 269-278. doi:10.13328/j.cnki.jos.004780

DOI
10.13328/j.cnki.jos.004780
Journal article

Research on reliability and correctness assurance methods and techniques for device drivers

Zhang, Y. F., Huang, C., Ou, J. S., Tang, E. Y., & Chen, X. (2015). Research on reliability and correctness assurance methods and techniques for device drivers. Ruan Jian Xue Bao Journal of Software, 26(2), 239-253. doi:10.13328/j.cnki.jos.004778

DOI
10.13328/j.cnki.jos.004778
Journal article