Investigating the interaction between immune cells and biomaterial scaffolds

Description

A plethora of biomaterial scaffolds are researched worldwide for a broad range of tissue applications but consideration of their immune compatibility is often neglected until further down the translational pipeline.  By this point considerable time and resources may have been wasted if these scaffolds are subsequently found to have a detrimental effect on cell response and hence are no longer usable for their intended application.  This project aims to incorporate immunocompatibility assessment early in the design of scaffold structures and determine what architectures elicit a response.

We seek a motivated student with a strong interest in biomaterial scaffold design and their immunocompatibility.  This PhD project focuses on developing scaffolds of different geometric design using several fabrication technologies (melt electrospinning, melt electrowriting, bioink and extrusion-based printing) and assessing their cellular interactions using a variety of cell types.  This PhD project will provide fascinating insight into the design considerations of scaffolds, which are frequently fabricated for a broad range of different applications in tissue regeneration but their impact on immune response is often overlooked until further down the translational pipeline.

Project objectives will include:

1. Fabrication of scaffolds using several different technologies to create 2D and 3D structures of variable architecture

2. Physicochemical characterisation of these scaffolds (e.g. surface chemistry, mechanical properties)

3. Assessment of direct and indirect cell response to these scaffolds using cell lines and primary cells

4. Assessment of macrophage, T cell, and mast cell response to these scaffolds

5. Assessment of complement activation to these scaffolds

You will undertake a variety of experiments and learn a range of new skills, including fibre production (electrospinning, melt electrowriting, bioink and extrusion-based printing), primary and immortal cell culture, macrophage, T cell and mast cell response, complement activation, imaging (SEM/confocal), in vitro assays, direct/indirect culture, mechanical testing, degradation studies. 

You will be supervised by a collaborative team from the Department of Eye and Vision Science, Institute of Life Course and Medical Sciences (Dr Lucy Bosworth) and Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (Dr Neill Liptrott).  The supervisory team has wide-ranging expertise and will provide training and support in all relevant laboratory and analytical techniques.

 

Availability

Open to students worldwide

Funding information

Self-funded project

This opportunity is for a self-funded student or student who has secured funding from an independent body.  There is no financial support available from Liverpool for this study.  Please see website for PhD student fees at the University of Liverpool: https://www.liverpool.ac.uk/study/postgraduate-research/fees-and-funding/fees-and-costs/

Supervisors

References

  • Bosworth, L.A., Lanaro, M., O’Loughlin, D.A., D’Sa, R.A., Woodruff, M.A. and Williams, R.L., 2021. Melt electro-written scaffolds with box-architecture support orthogonally oriented collagen. Biofabrication, 14(1), p.015015.
  • Bosworth, L.A., Doherty, K.G., Hsuan, J.D., Cray, S.P., D’Sa, R.A., Pineda Molina, C., Badylak, S.F. and Williams, R.L., 2021. Material characterisation and stratification of conjunctival epithelial cells on electrospun poly (ε-caprolactone) fibres loaded with decellularised tissue matrices. Pharmaceutics, 13(3), p.318.
  • Kumar, D., Cain, S.A. and Bosworth, L.A., 2019. Effect of topography and physical stimulus on hMSC phenotype using a 3D in vitro model. Nanomaterials, 9(4), p.522.
  • Vandebriel, R., David, C., Vermeulen, J., & N. J. Liptrott (2022). An inter-laboratory comparison of an NLRP3 inflammasome activation assay and dendritic cell maturation assay using a nanostructured lipid carrier and a polymeric nanomedicine, as exemplars. Drug Delivery and Translational Research
  • David, C. A. W., M. E. Del Castillo Busto, S. Cuello-Nunez, H. Goenaga-Infante, M. Barrow, D. G. Fernig, P. Murray, M. J. Rosseinsky, A. Owen, and N. J. Liptrott. (2021) "Assessment of Changes in Autophagic Vesicles in Human Immune Cell Lines Exposed to Nano Particles." Cell Biosci 11, no. 1 : 133
  • David, C. A. W., M. Barrow, P. Murray, M. J. Rosseinsky, A. Owen, and N. J. Liptrott. (2021) "In Vitro Determination of the Immunogenic Impact of Nanomaterials on Primary Peripheral Blood Mononuclear Cells." Int J Mol Sci 21, no. 16
  • Liptrott, N. J., M. Giardiello, T. O. McDonald, S. P. Rannard and A. Owen (2018). "Assessment of interactions of efavirenz solid drug nanoparticles with human immunological and haematological systems." J Nanobiotechnology 16(1): 22.
  • Liptrott, N. J., M. Giardiello, T. O. McDonald, S. P. Rannard and A. Owen (2017). "Lack of interaction of lopinavir solid drug nanoparticles with cells of the immune system." Nanomedicine (Lond) 12(17): 2043-2054.