Study ›  Undergraduate courses

Mathematics with Ocean and Climate Sciences

Apply for this course

Ready to apply? You can apply for this course online now using the UCAS website. The deadline for UK students to apply for this course is 25 January 2023.

The deadline for international students is 30 June 2023.

Add choice to your UCAS application

Use these details to apply for this course through UCAS:

  • University name: University of Liverpool
  • Course: Mathematics with Ocean and Climate Sciences G1F7
  • Location: Main site
  • Start date: 25 September 2023

Related courses

There are sixteen courses related to Mathematics with Ocean and Climate Sciences that you might be interested in.

Get a prospectus or course leaflet

Change country or region

We’re showing entry requirements and other information for applicants with qualifications from: United Kingdom.

Commonly selected...

Change to the United Kingdom

More countries and regions...


Not on the list?

If your country or region isn’t listed here, please contact us with any questions about studying with us.

Bachelor of Science

Bachelor of Science (BSc) is a bachelor’s degree awarded for an undergraduate programme in the sciences.

Course overview

Climate change is a major challenge we all currently face. Combing Ocean Sciences with Maths, this programme will equip you with the skills and knowledge to be able to understand some of the most important issues facing the scientific community, providing an excellent foundation for a career in the Ocean Sciences.

Introduction

Predicting climate and climate change is a major challenge facing the scientific community.

The oceans regulate the climate of the planet through storing and transporting heat and carbon as well as modifying properties of the overlying atmosphere. Complex issues such as climate change and sea level rise can only be understood if the role of the ocean and atmosphere is fully appreciated.

This degree provides an understanding of how the ocean and atmosphere operate in the climate system, as well as offering a strong grounding in mathematics. It is offered in collaboration between the Department of Mathematics in the School of Physical Sciences and the internationally renowned National Oceanography Centre in Liverpool, providing excellent preparation for careers in computer modelling in oceanography, meteorology or environmental monitoring.

You will acquire a broad knowledge of mathematics and the analytical and numerical techniques for solving problems, and the ability to apply those techniques with confidence. You will gain an understanding of how the climate system behaves, how the atmosphere and ocean transport heat, why jets and eddies emerge on a rotating planet, how tracers are transported and mixed, and how these processes affect the growth of phytoplankton.

The degree in Mathematics with Ocean and Climate Sciences at Liverpool is accredited by the Institute of Marine Engineering, Science and Technology.

A number of the School’s degree programmes involve laboratory and field work. Fieldwork is carried out in various locations, ranging from inner city to coastal and mountainous environments. We consider applications from prospective disabled students on the same basis as all other students, and reasonable adjustments will be considered to address barriers to access.

What you'll learn

  • Problem solving
  • Analytical techniques
  • Data management
  • Numerical techniques
  • How the climate system behaves
  • How to monitor and detect change in various environments
  • Insights into sustainability and mitigation strategies

Course content

Discover what you'll learn, what you'll study, and how you'll be taught and assessed.

Year one

Students acquire mathematical skills including calculus and dynamic modelling, as well as obtaining a grounding in ocean and climate sciences.

Compulsory modules

Calculus I (MATH101)

Credits: 15 / Semester: semester 1

​At its heart, calculus is the study of limits. Many quantities can be expressed as the limiting value of a sequence of approximations, for example the slope of a tangent to a curve, the rate of change of a function, the area under a curve, and so on. Calculus provides us with tools for studying all of these, and more. Many of the ideas can be traced back to the ancient Greeks, but calculus as we now understand it was first developed in the 17th Century, independently by Newton and Leibniz. The modern form presented in this module was fully worked out in the late 19th Century. MATH101 lays the foundation for the use of calculus in more advanced modules on differential equations, differential geometry, theoretical physics, stochastic analysis, and many other topics. It begins from the very basics – the notions of real number, sequence, limit, real function, and continuity – and uses these to give a rigorous treatment of derivatives and integrals for real functions of one real variable.​ ​

CALCULUS II (MATH102)

Credits: 15 / Semester: semester 2

This module, the last one of the core modules in Year 1, is built upon the knowledge you gain from MATH101 (Calculus I) in the first semester. The syllabus is conceptually divided into three parts: Part I, relying on your knowledge of infinite series, presents a thorough study of power series (Taylor expansions, binomial theorem); part II begins with a discussion of functions of several variables and then establishes the idea of partial differentiation together with its various applications, including chain rule, total differential, directional derivative, tangent planes, extrema of functions and Taylor expansions; finally, part III is on double integrals and their applications, such as finding centres of mass of thin bodies. Undoubtedly, this module, together with the other two core modules from Semester 1 (MATH101 Calculus I and MATH103 Introduction to linear algebra), forms an integral part of your ability to better understand modules you will be taking in further years of your studies.

Climate, Atmosphere and Oceans (ENVS111)

Credits: 15 / Semester: semester 1

​Climate, Atmosphere and Oceans provides an understanding of how the climate system operates. The module draws on basic scientific principles to understand how climate has evolved over the history of the planet and how the climate system is operating now. Attention is particularly paid to the structure and circulation of the atmosphere and ocean, and how they both interact. The course emphases acquiring mechanistic insight and drawing upon order of magnitude calculations. Students gain quantitative skills by completing a series of coursework exercises. Students address the Net Zero carbon goal via group work involving digital storytelling.

Introduction to Linear Algebra (MATH103)

Credits: 15 / Semester: semester 1

Linear algebra is the branch of mathematics concerning vector spaces and linear mappings between such spaces. It is the study of lines, planes, and subspaces and their intersections using algebra.

Linear algebra first emerged from the study of determinants, which were used to solve systems of linear equations. Determinants were used by Leibniz in 1693, and subsequently, Cramer’s Rule for solving linear systems was devised in 1750. Later, Gauss further developed the theory of solving linear systems by using Gaussian elimination. All these classical themes, in their modern interpretation, are included in the module, which culminates in a detailed study of eigenproblems. A part of the module is devoted to complex numbers which are basically just planar vectors. Linear algebra is central to both pure and applied mathematics. This module is an essential pre-requisite for nearly all modules taught in the Department of Mathematical Sciences.

Marine Ecosystems: Diversity, Processes and Threats (ENVS122)

Credits: 15 / Semester: semester 2

This module introduces the range of diversity of marine ecosystems using example environments from around the world. Each week a new ecosystem will be covered, with the main organisms, key processes and human threats to the ecosystem described and explored. Central to this module are interactive discussion sessions that will build an understanding of how marine ecosystems are expected to respond to the human-induced changes of the anthropocene.​​

Introduction to Statistics using R (MATH163)

Credits: 15 / Semester: semester 2

Students will learn fundamental concepts from statistics and probability using the R programming language and will learn how to use R to some degree of proficiency in certain contexts. Students will become aware of possible career paths using statistics.

Study Skills (Ocean Sciences) (ENVS103)

Credits: 15 / Semester: whole session

This module is designed to introduce students to key concepts and skills in Ocean Sciences (e.g. use of specific software, development of laboratory and analytical skills, fieldwork experience) as well as the development of generic skills, specifically communication skills (through writing essay, technical reports, oral and poster presentations), teamwork and time management. The module also comprises introduction to academic integrity, how to access scientific literature and how to use a bibliographic software. Tutorials with an assigned individual tutor take place in groups of typically 6-7 students, typically once every 2 weeks.

NEWTONIAN MECHANICS (MATH122)

Credits: 15 / Semester: semester 2

​ This module is an introduction to classical (Newtonian) mechanics. It introduces the basic principles like conservation of momentum and energy, and leads to the quantitative description of motions of bodies under simple force systems. It includes angular momentum, rigid body dynamics and moments of inertia. MATH122 provides the foundations for more advanced modules like MATH228, 322, 325, 326, 423, 425 and 431.

Programme details and modules listed are illustrative only and subject to change.

Our curriculum

The Liverpool Curriculum framework sets out our distinctive approach to education. Our teaching staff support our students to develop academic knowledge, skills, and understanding alongside our graduate attributes:

  • Digital fluency
  • Confidence
  • Global citizenship

Our curriculum is characterised by the three Liverpool Hallmarks:

  • Research-connected teaching
  • Active learning
  • Authentic assessment

All this is underpinned by our core value of inclusivity and commitment to providing a curriculum that is accessible to all students.

Course options

Studying with us means you can tailor your degree to suit you. Here's what is available on this course.

Global Opportunities

University of Liverpool students can choose from an exciting range of study placements at partner universities worldwide. Choose to spend a year at XJTLU in China or a year or semester at an institution of your choice.

What's available on this course?

Year in China

Immerse yourself in Chinese culture on an optional additional year at Xi'an Jiaotong Liverpool University in stunning Suzhou.

  • Learn Chinese
  • Study in a bustling world heritage city
  • Improve employment prospects
  • Study Chinese culture
  • 30 minutes from Shanghai
  • Learn new skills

Read more about Year at XJTLU, China

Language study

Every student at The University of Liverpool can study a language as part of, or alongside their degree. You can choose:

  • A dedicated languages degree
  • A language as a joint or major/ minor degree
  • Language modules (selected degrees)
  • Language classes alongside your studies

Read more about studying a language

Your experience

Day to day teaching will take place across campus, with computer based learning taking place in the Central Teaching Laboratories, a state-of-the-art facility for practical work.

Our staff are all actively involved in marine and climate research and bring the results of their research into your lectures and laboratories. Our staff collaborate with scientists from the National Oceanography Centre, which has a research centre on the Liverpool campus.

Your course will be delivered by the Department of Mathematical Sciences and the Department of Earth, Ocean and Ecological Sciences.

Virtual tour

Careers and employability

Graduates of the Climate Science degree programme will have sound knowledge of the fundamental science behind climate change, skills to detect and monitor change in a range of environments and insight into sustainability and mitigation strategies. Together, these skills will help tackle our ability to detect and respond to our changing climate.

89.5% of environmental sciences students are in work and/or further study 15 months after graduation.

Discover Uni, 2018-19.

The employability options after graduating from this programme are extensive and include:

  • Government agencies (Environment Agency, Met Office)
  • Environmental consultancy and management
  • Climate research
  • Accountancy and insurance brokers
  • Education
  • Renewable energy industries

Preparing you for future success

At Liverpool, our goal is to support you to build your intellectual, social, and cultural capital so that you graduate as a socially-conscious global citizen who is prepared for future success. We achieve this by:

  • Embedding employability within your , through the modules you take and the opportunities to gain real-world experience offered by many of our courses.
  • Providing you with opportunities to gain experience and develop connections with people and organisations, including student and graduate employers as well as our global alumni.
  • Providing you with the latest tools and skills to thrive in a competitive world, including access to Handshake, a platform which allows you to create your personalised job shortlist and apply with ease.
  • Supporting you through our peer-to-peer led Careers Studio, where our career coaches provide you with tailored advice and support.

Fees and funding

Your tuition fees, funding your studies, and other costs to consider.

Tuition fees

Tuition fees cover the cost of your teaching and assessment, operating facilities such as libraries, IT equipment, and access to academic and personal support. Learn more about tuition fees, funding and student finance.

Additional costs

We understand that budgeting for your time at university is important, and we want to make sure you understand any course-related costs that are not covered by your tuition fee. This includes the cost of a lab coat, food and drink during compulsory field courses, and dissertation expenses.

Find out more about the additional study costs that may apply to this course.

Additional study costs

We understand that budgeting for your time at university is important, and we want to make sure you understand any course-related costs that are not covered by your tuition fee. This includes the cost of a lab coat, food and drink during compulsory field courses, and dissertation expenses.

Students should expect to cover the following costs.

Lab coat:

Approximately £10-20. Students are advised to purchase a lab coat before the start of their studies. The first lab practical will take place in teaching week one and all students are required to wear a lab coat.

Compulsory field courses:

The School will usually cover the cost of accommodation and travel for year one and three field courses. Students will cover the cost of sustenance.

Project/dissertation costs:

The School may provide a budget of up to £200 for certain field or lab-based projects. Desk-based projects receive no budget from the School.

Find out more about additional study costs.

Scholarships and bursaries

We offer a range of scholarships and bursaries to help cover tuition fees and help with living expenses while at university.

Scholarships and bursaries you can apply for from the United Kingdom

Entry requirements

The qualifications and exam results you'll need to apply for this course.

My qualifications are from: United Kingdom.

Your qualification Requirements

About our typical entry requirements

A levels

ABB

Applicants with the Extended Project Qualification (EPQ) are eligible for a reduction in grade requirements. For this course, the offer is BBB with A in the EPQ.

You may automatically qualify for reduced entry requirements through our contextual offers scheme.

If you don't meet the entry requirements, you may be able to complete a foundation year which would allow you to progress to this course.

Available foundation years:

GCSE 4/C in English and 4/C in Mathematics
Subject requirements

Including Mathematics and one other science. Acceptable sciences: Further Mathematics, Physics, Chemistry, Biology, Geology, Geography, Applied Science, Environmental Science.

For applicants from England: where a science has been taken at A level (Chemistry, Physics or Biology), a pass in the science practical of each subject will be required.

BTEC Level 3 National Extended Diploma

D*DD in relevant diploma

International Baccalaureate

33 points including 5 at Higher Level in Mathematics and one other science, no score below 4.

Irish Leaving Certificate H1, H2, H2, H2, H3, H3 including H2 or above in Mathematics and a second science
Scottish Higher/Advanced Higher

Not accepted without Advanced Highers at ABB including Mathematics and 1 other science

Welsh Baccalaureate Advanced Accepted at Grade B with AB at A levels including Mathematics and 1 other science
Access 45 Level 3 credits in graded units in a relevant Diploma, including 30 at Distinction and a further 15 with at least Merit. 15 Distinctions are required in each of Mathematics and a second science. GCSE Mathematics and English at grade C/4 also required.
International qualifications

Many countries have a different education system to that of the UK, meaning your qualifications may not meet our entry requirements. Completing your Foundation Certificate, such as that offered by the University of Liverpool International College, means you're guaranteed a place on your chosen course.

Contextual offers: reduced grade requirements

Based on your personal circumstances, you may automatically qualify for up to a two-grade reduction in the entry requirements needed for this course. When you apply, we consider a range of factors – such as where you live – to assess if you’re eligible for a grade reduction. You don’t have to make an application for a grade reduction – we’ll do all the work.

Find out more about how we make reduced grade offers.

About our entry requirements

Our entry requirements may change from time to time both according to national application trends and the availability of places at Liverpool for particular courses. We review our requirements before the start of the new UCAS cycle each year and publish any changes on our website so that applicants are aware of our typical entry requirements before they submit their application.

Recent changes to government policy which determine the number of students individual institutions may admit under the student number control also have a bearing on our entry requirements and acceptance levels, as this policy may result in us having fewer places than in previous years.

We believe in treating applicants as individuals, and in making offers that are appropriate to their personal circumstances and background. For this reason, we consider a range of factors in addition to predicted grades, widening participation factors amongst other evidence provided. Therefore the offer any individual applicant receives may differ slightly from the typical offer quoted in the prospectus and on the website.

Alternative entry requirements

Changes to Mathematics with Ocean and Climate Sciences BSc (Hons)

See what updates we've made to this course since it was published. We document changes to information such as course content, entry requirements and how you'll be taught.

7 June 2022: New course pages

New course pages launched.