Restoration of Chromatin Based Information behind Replication Forks

1:00pm - 2:00pm / Monday 19th November 2018 / Venue: Lecture Theatre 2 Life Sciences Building
Type: Seminar / Category: Research / Series: GSTT Seminar Series
  • Admission: Free event
  • Add this event to my calendar
    (?)

    When you click on "Add this event to my calendar" your browser will download an ics file.

    Microsoft Outlook: Download the file, then you may be able to click on "Save & Close" to save it to your calendar. If that doesn't work go into Outlook, click on the File tab, then on Open, then Import. Select "Import an iCalendar (.ic or vCalendar file (.vcs)" then click on Next. Find the .ics file and click on OK.

    Google Calendar: download the file, then go into your calendar. On the right where it says "Other calendars" click on the arrow icon and then click on Import calendar. Click on Browse and select the .ics file, then click on Import.

    Apple Calendar: download the file, then you can either drag it to Calendar or import the file by going to File > Import > Import and choosing the .ics file.

Speaker: Constance Alabert (University of Dundee)

During lineage propagation, cells must duplicate their genetic and epigenetic information to maintain cell identity. However, the mechanisms underlying the maintenance of epigenetic information in dividing cells remain largely unknown. In S phase, progression of DNA replication forks provokes a genome-wide disruption of the epigenetic information. While nucleosomes are rapidly reassembled on newly replicated DNA, full restoration of epigenetic information is not completed until after mitosis. Our aim is to dissect the mechanisms that restore epigenetic information on newly replicated DNA. To this end we take advantage of the Nascent Chromatin Capture (NCC), a novel technology that allows the analysis of proteins associated with newly replicated DNA. We aim to identify and functionally characterize key players in the restoration of the epigenetic information in cycling cells and at specific loci. We aim to further investigate the pathological role of the newly identified chromatin factors, which are deregulated in human diseases as cancer. Altogether, these integrated approaches should provide new insights into the molecular mechanisms that coordinate genome and epigenome maintenance across cell generations.