### Module Details

 The information contained in this module specification was correct at the time of publication but may be subject to change, either during the session because of unforeseen circumstances, or following review of the module at the end of the session. Queries about the module should be directed to the member of staff with responsibility for the module.
 Title GO HIGHER MATHS Code GOHI002 Coordinator Mr SH Kearns Faculty of Humanities and Social Sciences S.H.Kearns@liverpool.ac.uk Year CATS Level Semester CATS Value Session 2023-24 Level 3 FHEQ Whole Session 5

### Aims

To provide key functional skills at foundation level mathematics and so satisfy the maths requirement for entry to university first degree courses as well as act as a refresher course for those whose maths qualifications are of some years standing.

### Learning Outcomes

(LO1) Students will be able to use foundation level mathematical skills for academic purposes and in everyday life.

(LO2) Students will be able to calculate, evaluate and present statistical data.

(LO3) Students will be demonstrate an understanding of basic mathematical concepts.

(LO4) Students will be able to perform basic maths functions with confidence.

(S1) Students will demonstrate basic mathematical problem solving skills.

(S2) Students will be able to manipulate numbers and apply mathematical awareness in practical contexts (e.g., measuring, weighing, estimating and applying formulae).

(S3) Students will demonstrate confidence in working collaboratively with peers and learning with respect for others in a spirit of co-operation.

### Syllabus

A typical syllabus for the module is as follows, although the precise order of delivery may change from time to time:

Addition, subtraction, multiplication and division: Order rational numbers; Highest Common Factors (HCFs); Least Common Multiples (LCMs); prime numbers and prime factors; indices and powers; square roots, percentages and decimals; fractions, integers, and ratio; use of calculator;

Algebra: Understanding expressions, notation and symbols, manipulating and solving simple equations (linear inequalities and expressions, understanding terms); plot equations, simple co-ordinates, linear functions;

Geometry: Properties of angles, lines, triangles, and quadrilaterals; calculating angles; rotation and symmetry, congruence and similarity, scale; Pythagoras’ theorem (2D and 3D shapes); perimeters, areas, and diameter etc;

Measures: Scaling up and down; converting measurements; estimating; speed, distance, and bearings;

Statistics and Probabi lity: Handling statistics and data; bias; data collection and design; types of data; calculating mean, median, and mode; interpretation and inference.

### Teaching and Learning Strategies

Teaching Method 1 - Workshops
Description: Interactive sessions to develop understanding of key topics
Attendance Recorded: Yes
Notes: Workshops take a variety of forms, normally starting with a demonstration of problems associated with the topic of the day, followed by small groups working through a series of similar examples, or individual work on a set of problems. Staff are on hand to help with difficulties or explain topics in more depth.The whole works towards completing a series of maths assessments and workbook.

### Teaching Schedule

 Lectures Seminars Tutorials Lab Practicals Fieldwork Placement Other TOTAL Study Hours 28 28 Timetable (if known) Private Study 22 TOTAL HOURS 50

### Assessment

EXAM Duration Timing
(Semester)
% of
final
mark
Resit/resubmission
opportunity
Penalty for late
submission
Notes
Examination 1 There is a resit opportunity. This is an anonymous assessment. Assessment Schedule (When): Semester One    50
Examination 2 There is a resit opportunity. This is an anonymous assessment. Assessment Schedule (When) :Semester 2    50
CONTINUOUS Duration Timing
(Semester)
% of
final
mark
Resit/resubmission
opportunity
Penalty for late
submission
Notes

### Recommended Texts

Show/Hide 1

show/hide text

Show/Hide 2

show/hide text

Show/Hide 3

Show/Hide text