Skip to main content

Dr Xingyu Zhao
PhD

Lecturer
School of Computer Science and Informatics

Research outputs

Selected research outputs

  1. BayLIME: Bayesian Local Interpretable Model-Agnostic Explanations (Conference Paper - 2020)
  2. Interval Change-Point Detection for Runtime Probabilistic Model Checking (Conference Paper - 2020)
  3. Assessing safety-critical systems from operational testing: A study on autonomous vehicles (Journal article - 2020)
  4. Probabilistic Model Checking of Robots Deployed in Extreme Environments (Conference Paper - 2018)
  5. A Safety Framework for Critical Systems Utilising Deep Neural Networks (Conference Paper - 2020)
What type of research output do you want to show?

2026

Runtime Monitoring and Enforcement of Conditional Fairness in Generative AIs

Cheng, C. -H., Wu, C., Zhao, X., Bensalem, S., & Ruess, H. (2026). Runtime Monitoring and Enforcement of Conditional Fairness in Generative AIs. In Lecture Notes in Computer Science (pp. 73-91). Springer Nature Switzerland. doi:10.1007/978-3-032-05435-7_5

DOI
10.1007/978-3-032-05435-7_5
Chapter

2025

SIDA: Social Media Image Deepfake Detection, Localization and Explanation with Large Multimodal Model

Huang, Z., Hu, J., Li, X., He, Y., Zhao, X., Peng, B., . . . Cheng, G. (2025). SIDA: Social Media Image Deepfake Detection, Localization and Explanation with Large Multimodal Model. In 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 28831-28841). IEEE. doi:10.1109/cvpr52734.2025.02685

DOI
10.1109/cvpr52734.2025.02685
Conference Paper

Uncertainty-oriented dynamic topology optimization for cross-scale concurrent design considering improved size-controlling strategy

Zhao, X., Wang, L., & Liu, Y. (2025). Uncertainty-oriented dynamic topology optimization for cross-scale concurrent design considering improved size-controlling strategy. Reliability Engineering & System Safety, 257, 110819. doi:10.1016/j.ress.2025.110819

DOI
10.1016/j.ress.2025.110819
Journal article

Risk Controlled Image Retrieval

Cai, K., Lu, C. X., Zhao, X., Huang, W., & Huang, X. (2025). Risk Controlled Image Retrieval. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 39 (pp. 27224-27232). Association for the Advancement of Artificial Intelligence (AAAI). doi:10.1609/aaai.v39i26.34931

DOI
10.1609/aaai.v39i26.34931
Conference Paper

Hyper-CycleGAN: A New Adversarial Neural Network Architecture for Cross-Domain Hyperspectral Data Generation

He, Y., Seng, K. P., Ang, L. M., Peng, B., & Zhao, X. (2025). Hyper-CycleGAN: A New Adversarial Neural Network Architecture for Cross-Domain Hyperspectral Data Generation. Applied Sciences, 15(8), 4188. doi:10.3390/app15084188

DOI
10.3390/app15084188
Journal article

Safety analysis in the era of large language models: A case study of STPA using ChatGPT

Qi, Y., Zhao, X., Khastgir, S., & Huang, X. (2025). Safety analysis in the era of large language models: A case study of STPA using ChatGPT. Machine Learning with Applications, 19, 100622. doi:10.1016/j.mlwa.2025.100622

DOI
10.1016/j.mlwa.2025.100622
Journal article

A Reinforcement Learning Method for UAV Delivery Scheduling under Dynamic Pricing

Hu, Z., Cao, Y., Jiang, K., Jo, M., Xiao, L., & Zhao, X. (2025). A Reinforcement Learning Method for UAV Delivery Scheduling under Dynamic Pricing. IEEE Transactions on Cognitive Communications and Networking, 1. doi:10.1109/tccn.2025.3630060

DOI
10.1109/tccn.2025.3630060
Journal article

Data Augmentation for Continual RL via Adversarial Gradient Episodic Memory

Wu, S., Zhao, X., & Huang, X. (2025). Data Augmentation for Continual RL via Adversarial Gradient Episodic Memory. In Lecture Notes in Computer Science (pp. 182-196). Springer Nature Singapore. doi:10.1007/978-981-96-6585-3_13

DOI
10.1007/978-981-96-6585-3_13
Chapter

ProTIP: Probabilistic Robustness Verification on Text-to-Image Diffusion Models Against Stochastic Perturbation

Zhang, Y., Tang, Y., Ruan, W., Huang, X., Khastgir, S., Jennings, P., & Zhao, X. (2025). ProTIP: Probabilistic Robustness Verification on Text-to-Image Diffusion Models Against Stochastic Perturbation. In Lecture Notes in Computer Science (pp. 455-472). Springer Nature Switzerland. doi:10.1007/978-3-031-73411-3_26

DOI
10.1007/978-3-031-73411-3_26
Chapter

The Impact of Live Polling Quizzes on Student Engagement and Performance in Computer Science Lectures: A Post-COVID19 Study

Zhao, X. (2025). The Impact of Live Polling Quizzes on Student Engagement and Performance in Computer Science Lectures: A Post-COVID19 Study. In Proceedings of the 17th International Conference on Computer Supported Education (pp. 291-298). SCITEPRESS - Science and Technology Publications. doi:10.5220/0013218700003932

DOI
10.5220/0013218700003932
Conference Paper

2024

Is Difficulty Calibration All We Need? Towards More Practical Membership Inference Attacks

He, Y., Li, B., Wang, Y., Yang, M., Wang, J., Hu, H., & Zhao, X. (2024). Is Difficulty Calibration All We Need? Towards More Practical Membership Inference Attacks. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security (pp. 1226-1240). ACM. doi:10.1145/3658644.3690316

DOI
10.1145/3658644.3690316
Conference Paper

Instance-Level Safety-Aware Fidelity of Synthetic Data and its Calibration

Cheng, C. -H., Stöckel, P., & Zhao, X. (2024). Instance-Level Safety-Aware Fidelity of Synthetic Data and its Calibration. In 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC) (pp. 2354-2361). IEEE. doi:10.1109/itsc58415.2024.10920032

DOI
10.1109/itsc58415.2024.10920032
Conference Paper

Augmenting Scenario Description Languages for Intelligence Testing of Automated Driving Systems

Tang, Y., Bruto Da Costa, A. A., Irvine, P., Dodoiu, T., Zhang, Y., Zhao, X., . . . Jennings, P. (2024). Augmenting Scenario Description Languages for Intelligence Testing of Automated Driving Systems. In 2024 IEEE Intelligent Vehicles Symposium (IV) (pp. 1112-1118). IEEE. doi:10.1109/iv55156.2024.10588707

DOI
10.1109/iv55156.2024.10588707
Conference Paper

ODD-based Query-time Scenario Mutation Framework for Autonomous Driving Scenario databases

Tang, Y., Raj, D., Zhao, X., Zhang, X., Bruto da Costa, A. A., Khastgir, S., & Jennings, P. (2024). ODD-based Query-time Scenario Mutation Framework for Autonomous Driving Scenario databases. In 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2197-2203). IEEE. doi:10.1109/icra57147.2024.10610412

DOI
10.1109/icra57147.2024.10610412
Conference Paper

Hyper-Cyclegan: A New Adversarial Neural Network Architecture for Cross-Domain Hyperspectral Data Generation

DOI
10.2139/ssrn.4830451
Preprint

TARP-VP: Towards Evaluation of Transferred Adversarial Robustness and Privacy on Label Mapping Visual Prompting Models

Chen, Z., Huang, X., Ruan, W., Wang, F., Zhang, Y., & Zhao, X. (2024). TARP-VP: Towards Evaluation of Transferred Adversarial Robustness and Privacy on Label Mapping Visual Prompting Models. In Advances in Neural Information Processing Systems 37 (pp. 6776-6796). Neural Information Processing Systems Foundation, Inc. (NeurIPS). doi:10.52202/079017-0217

DOI
10.52202/079017-0217
Conference Paper

What, Indeed, is an Achievable Provable Guarantee for Learning-Enabled Safety-Critical Systems

Bensalem, S., Cheng, C. -H., Huang, W., Huang, X., Wu, C., & Zhao, X. (2024). What, Indeed, is an Achievable Provable Guarantee for Learning-Enabled Safety-Critical Systems. In Unknown Conference (pp. 55-76). Springer Nature Switzerland. doi:10.1007/978-3-031-46002-9_4

DOI
10.1007/978-3-031-46002-9_4
Conference Paper

2023

Cycle-Consistent Generative Adversarial Network Architectures for Audio Visual Speech Recognition

He, Y., Seng, K. P., Ang, L. -M., & Zhao, X. (2023). Cycle-Consistent Generative Adversarial Network Architectures for Audio Visual Speech Recognition. In 2023 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC) (pp. 1-6). IEEE. doi:10.1109/icspcc59353.2023.10400358

DOI
10.1109/icspcc59353.2023.10400358
Conference Paper

The Unnecessity of Assuming Statistically Independent Tests in Bayesian Software Reliability Assessments

Salako, K., & Zhao, X. (2023). The Unnecessity of Assuming Statistically Independent Tests in Bayesian Software Reliability Assessments. IEEE Transactions on Software Engineering, 1-9. doi:10.1109/tse.2022.3233802

Journal article

2022

The Unnecessity of Assuming Statistically Independent Tests in Bayesian Software Reliability Assessments

DOI
10.48550/arxiv.2208.00462
Preprint

Bridging Formal Methods and Machine Learning with Global Optimisation

Huang, X., Ruan, W., Tang, Q., & Zhao, X. (2022). Bridging Formal Methods and Machine Learning with Global Optimisation. In Lecture Notes in Computer Science (pp. 1-19). Springer International Publishing. doi:10.1007/978-3-031-17244-1_1

DOI
10.1007/978-3-031-17244-1_1
Chapter

2021

Reliability Assessment and Safety Arguments for Machine Learning Components in System Assurance

DOI
10.48550/arxiv.2112.00646
Preprint

Dependability Analysis of Deep Reinforcement Learning based Robotics and Autonomous Systems through Probabilistic Model Checking

DOI
10.48550/arxiv.2109.06523
Preprint

2020

Assessing Safety-Critical Systems from Operational Testing: A Study on Autonomous Vehicles

DOI
10.48550/arxiv.2008.09510
Preprint

Assessing safety-critical systems from operational testing: A study on autonomous vehicles

Zhao, X., Salako, K., Strigini, L., Robu, V., & Flynn, D. (2020). Assessing safety-critical systems from operational testing: A study on autonomous vehicles. INFORMATION AND SOFTWARE TECHNOLOGY, 128. doi:10.1016/j.infsof.2020.106393

DOI
10.1016/j.infsof.2020.106393
Journal article

On reliability assessment when a software-based system is replaced by a thought-to-be-better one

Littlewood, B., Salako, K., Strigini, L., & Zhao, X. (2020). On reliability assessment when a software-based system is replaced by a thought-to-be-better one. RELIABILITY ENGINEERING & SYSTEM SAFETY, 197. doi:10.1016/j.ress.2019.106752

DOI
10.1016/j.ress.2019.106752
Journal article

A Safety Framework for Critical Systems Utilising Deep Neural Networks

Zhao, X., Banks, A., Sharp, J., Robu, V., Flynn, D., Fisher, M., & Huang, X. (2020). A Safety Framework for Critical Systems Utilising Deep Neural Networks. In Computer Safety, Reliability, and Security (Vol. 12234, pp. 244-259). Springer Nature. doi:10.1007/978-3-030-54549-9_16

DOI
10.1007/978-3-030-54549-9_16
Chapter

2019

UAS Operators Safety and Reliability Survey: Emerging Technologies towards the Certification of Autonomous UAS

Osborne, M., Lantair, J., Shafiq, Z., Zhao, X., Robu, V., Flynn, D., & Perry, J. (2019). UAS Operators Safety and Reliability Survey: Emerging Technologies towards the Certification of Autonomous UAS. In 2019 4TH INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY (ICSRS 2019) (pp. 203-212). doi:10.1109/icsrs48664.2019.8987692

DOI
10.1109/icsrs48664.2019.8987692
Conference Paper

The Application of Machine Learning and Low Frequency Sonar for Subsea Power Cable Integrity Evaluation

Tang, W., Flynn, D., Brown, K., Valentin, R., & Zhao, X. (2019). The Application of Machine Learning and Low Frequency Sonar for Subsea Power Cable Integrity Evaluation. In OCEANS 2019 MTS/IEEE SEATTLE. Retrieved from https://www.webofscience.com/

Conference Paper

The Design of a Fusion Prognostic Model and Health Management System for Subsea Power Cables

Tang, W., Flynn, D., Brown, K., Valentin, R., & Zhao, X. (2019). The Design of a Fusion Prognostic Model and Health Management System for Subsea Power Cables. In OCEANS 2019 MTS/IEEE SEATTLE. Retrieved from https://www.webofscience.com/

Conference Paper

Towards Integrating Formal Verification of Autonomous Robots with Battery Prognostics and Health Management

DOI
10.48550/arxiv.1909.03019
Preprint

Assessing the Safety and Reliability of Autonomous Vehicles from Road Testing

Zhao, X., Robu, V., Flynn, D., Salako, K., & Strigini, L. (2019). Assessing the Safety and Reliability of Autonomous Vehicles from Road Testing. In 2019 IEEE 30TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING (ISSRE) (pp. 13-23). doi:10.1109/ISSRE.2019.00012

DOI
10.1109/ISSRE.2019.00012
Conference Paper

Machine learning methods for wind turbine condition monitoring: A review

Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, D., Barnes, M., . . . Nenadic, G. (2019). Machine learning methods for wind turbine condition monitoring: A review. RENEWABLE ENERGY, 133, 620-635. doi:10.1016/j.renene.2018.10.047

DOI
10.1016/j.renene.2018.10.047
Journal article

2018

Probabilistic Model Checking of Robots Deployed in Extreme Environments

Zhao, X., Robu, V., Flynn, D., Dinmohammadi, F., Fisher, M., & Webster, M. (2019). Probabilistic Model Checking of Robots Deployed in Extreme Environments. In THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE (pp. 8066-8074). Retrieved from https://www.webofscience.com/

Conference Paper

Verifiable Self-Certifying Autonomous Systems

Fisher, M., Collins, E., Dennis, L., Luckcuck, M., Webster, M., Jump, M., . . . Zhao, X. (2018). Verifiable Self-Certifying Autonomous Systems. In 2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW) (pp. 341-348). IEEE. doi:10.1109/issrew.2018.00028

DOI
10.1109/issrew.2018.00028
Conference Paper

Conservative claims for the probability of perfection of a software-based system using operational experience of previous similar systems

Zhao, X., Littlewood, B., Povyakalo, A., Strigini, L., & Wright, D. (2018). Conservative claims for the probability of perfection of a software-based system using operational experience of previous similar systems. RELIABILITY ENGINEERING & SYSTEM SAFETY, 175, 265-282. doi:10.1016/j.ress.2018.03.032

DOI
10.1016/j.ress.2018.03.032
Journal article

2017

Modeling the probability of failure on demand (<i>pfd</i>) of a 1-out-of-2 system in which one channel is "quasi-perfect"

Zhao, X., Littlewood, B., Povyakalo, A., Strigini, L., & Wright, D. (2017). Modeling the probability of failure on demand (<i>pfd</i>) of a 1-out-of-2 system in which one channel is "quasi-perfect". RELIABILITY ENGINEERING & SYSTEM SAFETY, 158, 230-245. doi:10.1016/j.ress.2016.09.002

DOI
10.1016/j.ress.2016.09.002
Journal article

2016

Conservative Claims about the Probability of Perfection of Software-based Systems

Zhao, X., Littlewood, B., Povyakalo, A., & Wright, D. (2015). Conservative Claims about the Probability of Perfection of Software-based Systems. In 2015 IEEE 26TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING (ISSRE) (pp. 130-140). Retrieved from https://www.webofscience.com/

Conference Paper

2014

A Dependability Case Construction Approach Based on Dependability Deviation Analysis

Zhang, D. J., Lu, M. Y., & Zhao, X. Y. (2014). A Dependability Case Construction Approach Based on Dependability Deviation Analysis. Applied Mechanics and Materials, 543-547, 3682-3687. doi:10.4028/www.scientific.net/amm.543-547.3682

DOI
10.4028/www.scientific.net/amm.543-547.3682
Journal article

2012

A New Approach to Assessment of Confidence in Assurance Cases

Zhao, X., Zhang, D., Lu, M., & Zeng, F. (2012). A New Approach to Assessment of Confidence in Assurance Cases. In Unknown Conference (pp. 79-91). Springer Berlin Heidelberg. doi:10.1007/978-3-642-33675-1_7

DOI
10.1007/978-3-642-33675-1_7
Conference Paper

2011

Variance Analysis Based Software Fault Localization

Variance Analysis Based Software Fault Localization (2011). In Unknown Conference (pp. 333-339). ASME Press. doi:10.1115/1.859858.paper46

DOI
10.1115/1.859858.paper46
Conference Paper