Skip to main content

Publications

What type of publication do you want to show?

2024

2023

2022

Long-Range Interactions Boost Singlet Exciton Diffusion in Nanofibers of π-Extended Polymer Chains (vol 12, pg 8188, 2021)

Prodhan, S., Giannini, S., Wang, L., & Beljonne, D. (2022). Long-Range Interactions Boost Singlet Exciton Diffusion in Nanofibers of π-Extended Polymer Chains (vol 12, pg 8188, 2021). JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 13(4), 1002. doi:10.1021/acs.jpclett.2c00127

DOI
10.1021/acs.jpclett.2c00127
Journal article

2021

Long-Range Interactions Boost Singlet Exciton Diffusion in Nanofibers of π-Extended Polymer Chains

Prodhan, S., Giannini, S., Wang, L., & Beljonne, D. (2021). Long-Range Interactions Boost Singlet Exciton Diffusion in Nanofibers of π-Extended Polymer Chains. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 12(34), 8188-8193. doi:10.1021/acs.jpclett.1c02275

DOI
10.1021/acs.jpclett.1c02275
Journal article

Efficient energy transport in an organic semiconductor mediated by transient exciton delocalisation

Sneyd, A., Fukui, T., Paleček, D., Prodhan, S., Wagner, I., Zhang, Y., . . . Rao, A. (2021). Efficient energy transport in an organic semiconductor mediated by transient exciton delocalisation. In D. Congreve, C. Nielsen, A. J. Musser, & D. Baran (Eds.), Physical Chemistry of Semiconductor Materials and Interfaces XX (pp. 9). SPIE. doi:10.1117/12.2594688

DOI
10.1117/12.2594688
Conference Paper

Long-range interactions boost singlet exciton diffusion in nanofibers of $\pi$-extended polymer chains

DOI
10.26434/chemrxiv-2021-6s3s3
Preprint

Long-range interactions boost singlet exciton diffusion in nanofibers of $\pi$-extended polymer chains

DOI
10.33774/chemrxiv-2021-6s3s3
Preprint

Long-Range Electrostatics Supercharge Exciton Transport

Sneyd, A., Fukui, T., Beljonne, D., Manners, I., Friend, R., Rao, A., & Prodhan, S. (2021). Long-Range Electrostatics Supercharge Exciton Transport. In Proceedings of the 13th Conference on Hybrid and Organic Photovoltaics. Fundació Scito. doi:10.29363/nanoge.hopv.2021.046

DOI
10.29363/nanoge.hopv.2021.046
Conference Paper

2020

Design Rules to Maximize Charge-Carrier Mobility along Conjugated Polymer Chains

Prodhan, S., Qiu, J., Ricci, M., Roscioni, O. M., Wang, L., & Beljonne, D. (2020). Design Rules to Maximize Charge-Carrier Mobility along Conjugated Polymer Chains. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 11(16), 6519-6525. doi:10.1021/acs.jpclett.0c01793

DOI
10.1021/acs.jpclett.0c01793
Journal article

2019

2018

A Model Exact Study of the Properties of Low-Lying Electronic States of Perylene and Substituted Perylenes.

Giri, G., Prodhan, S., Pati, Y. A., & Ramasesha, S. (2018). A Model Exact Study of the Properties of Low-Lying Electronic States of Perylene and Substituted Perylenes.. The journal of physical chemistry. A, 122(43), 8650-8658. doi:10.1021/acs.jpca.8b08656

DOI
10.1021/acs.jpca.8b08656
Journal article

Symmetrized density matrix renormalization group algorithm for low-lying excited states of conjugated carbon systems: Application to 1,12-benzoperylene and polychrysene

Prodhan, S., & Ramasesha, S. (2018). Symmetrized density matrix renormalization group algorithm for low-lying excited states of conjugated carbon systems: Application to 1,12-benzoperylene and polychrysene. Physical Review B, 97(19). doi:10.1103/physrevb.97.195125

DOI
10.1103/physrevb.97.195125
Journal article

2017

Exact wave packet dynamics of singlet fission in unsubstituted and substituted polyene chains within long-range interacting models

Prodhan, S., & Ramasesha, S. (2017). Exact wave packet dynamics of singlet fission in unsubstituted and substituted polyene chains within long-range interacting models. Physical Review B, 96(7). doi:10.1103/physrevb.96.075142

DOI
10.1103/physrevb.96.075142
Journal article

2016

Correlated electronic properties of some graphene nanoribbons: A DMRG study

Goli, V. M. L. D. P., Prodhan, S., Mazumdar, S., & Ramasesha, S. (2016). Correlated electronic properties of some graphene nanoribbons: A DMRG study. Physical Review B, 94(3). doi:10.1103/physrevb.94.035139

DOI
10.1103/physrevb.94.035139
Journal article

2014

Model for triplet state engineering in organic light emitting diodes.

Prodhan, S., Soos, Z. G., & Ramasesha, S. (2014). Model for triplet state engineering in organic light emitting diodes.. The Journal of chemical physics, 140(21), 214313. doi:10.1063/1.4880276

DOI
10.1063/1.4880276
Journal article