Skip to main content
What types of page to search?

Alternatively use our A-Z index.

Research outputs

What type of research output do you want to show?

2026

Empirical Study of Social Bias in Medical Question Answering via Large Language Models

Xiao, X., Zhao, J., Payne, T. R., & Fang, M. (2026). Empirical Study of Social Bias in Medical Question Answering via Large Language Models. In Lecture Notes in Computer Science (pp. 3-16). Springer Nature Switzerland. doi:10.1007/978-3-032-00652-3_1

DOI
10.1007/978-3-032-00652-3_1
Chapter

2025

Self Data Augmentation for Open Domain Question Answering

Zhang, Q., Zheng, M., Chen, S., Liu, H., & Fang, M. (2025). Self Data Augmentation for Open Domain Question Answering. ACM Transactions on Information Systems, 43(2), 1-35. doi:10.1145/3707449

DOI
10.1145/3707449
Journal article

HASARD: A BENCHMARK FOR VISION-BASED SAFE REINFORCEMENT LEARNING IN EMBODIED AGENTS

Tomilin, T., Fang, M., & Pechenizkiy, M. (2025). HASARD: A BENCHMARK FOR VISION-BASED SAFE REINFORCEMENT LEARNING IN EMBODIED AGENTS. In 13th International Conference on Learning Representations Iclr 2025 (pp. 9304-9336).

Conference Paper

Integrating Large Language Models with Reinforcement Learning for Generalization in Strategic Card Games: Extended Abstract

Xia, W., Fang, M., Guo, Z., Du, Y., & Xu, B. (2025). Integrating Large Language Models with Reinforcement Learning for Generalization in Strategic Card Games: Extended Abstract. In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems Aamas (pp. 2795-2797).

Conference Paper

MONTE CARLO PLANNING WITH LARGE LANGUAGE MODEL FOR TEXT-BASED GAME AGENTS

Shi, Z., Fang, M., & Chen, L. (2025). MONTE CARLO PLANNING WITH LARGE LANGUAGE MODEL FOR TEXT-BASED GAME AGENTS. In 13th International Conference on Learning Representations Iclr 2025 (pp. 72995-73015).

Conference Paper

RuAG: LEARNED-RULE-AUGMENTED GENERATION FOR LARGE LANGUAGE MODELS

Zhang, Y., Xiao, P., Wang, L., Zhang, C., Fang, M., Du, Y., . . . Zhang, Q. (2025). RuAG: LEARNED-RULE-AUGMENTED GENERATION FOR LARGE LANGUAGE MODELS. In 13th International Conference on Learning Representations Iclr 2025 (pp. 23316-23339).

Conference Paper

TACKLING DATA CORRUPTION IN OFFLINE REINFORCEMENT LEARNING VIA SEQUENCE MODELING

Xu, J., Yang, R., Qiu, S., Luo, F., Fang, M., Wang, B., & Han, L. (2025). TACKLING DATA CORRUPTION IN OFFLINE REINFORCEMENT LEARNING VIA SEQUENCE MODELING. In 13th International Conference on Learning Representations Iclr 2025 (pp. 67875-67903).

Conference Paper

TOWARDS EMPOWERMENT GAIN THROUGH CAUSAL STRUCTURE LEARNING IN MODEL-BASED REINFORCEMENT LEARNING

Cao, H., Feng, F., Fang, M., Dong, S., Yang, T., Huo, J., & Gao, Y. (2025). TOWARDS EMPOWERMENT GAIN THROUGH CAUSAL STRUCTURE LEARNING IN MODEL-BASED REINFORCEMENT LEARNING. In 13th International Conference on Learning Representations Iclr 2025 (pp. 88829-88863).

Conference Paper

What If London Bridge Is Closed? Feature-Aware Subgraph Augmentation for Modeling Road Network Structure Changes

Cheng, T., Can Ozkan, M., Fang, M., & Zhang, X. (2025). What If London Bridge Is Closed? Feature-Aware Subgraph Augmentation for Modeling Road Network Structure Changes. IEEE Transactions on Intelligent Transportation Systems, 1-14. doi:10.1109/tits.2025.3601234

DOI
10.1109/tits.2025.3601234
Journal article

2024

Augmenting biomedical named entity recognition with general-domain resources.

Yin, Y., Kim, H., Xiao, X., Wei, C. H., Kang, J., Lu, Z., . . . Chen, Q. (2024). Augmenting biomedical named entity recognition with general-domain resources.. Journal of biomedical informatics, 159, 104731. doi:10.1016/j.jbi.2024.104731

DOI
10.1016/j.jbi.2024.104731
Journal article

Unsupervised Multiple Choices Question Answering Via Universal Corpus

Zhang, Q., Ge, H., Chen, X., & Fang, M. (2024). Unsupervised Multiple Choices Question Answering Via Universal Corpus. In ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 11771-11775). IEEE. doi:10.1109/icassp48485.2024.10446538

DOI
10.1109/icassp48485.2024.10446538
Conference Paper

Human-Guided Moral Decision Making in Text-Based Games

Shi, Z., Fang, M., Chen, L., Du, Y., & Wang, J. (2024). Human-Guided Moral Decision Making in Text-Based Games. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 38 (pp. 21574-21582). Association for the Advancement of Artificial Intelligence (AAAI). doi:10.1609/aaai.v38i19.30155

DOI
10.1609/aaai.v38i19.30155
Conference Paper

Large Language Models Are Neurosymbolic Reasoners

Fang, M., Deng, S., Zhang, Y., Shi, Z., Chen, L., Pechenizkiy, M., & Wang, J. (2024). Large Language Models Are Neurosymbolic Reasoners. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 38 (pp. 17985-17993). Association for the Advancement of Artificial Intelligence (AAAI). doi:10.1609/aaai.v38i16.29754

DOI
10.1609/aaai.v38i16.29754
Conference Paper

Dynamic Truck–UAV Collaboration and Integrated Route Planning for Resilient Urban Emergency Response

Long, Y., Xu, G., Zhao, J., Xie, B., & Fang, M. (2023). Dynamic Truck–UAV Collaboration and Integrated Route Planning for Resilient Urban Emergency Response. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT. doi:10.1109/TEM.2023.3299693

DOI
10.1109/TEM.2023.3299693
Journal article

MaDi: Learning to Mask Distractions for Generalization in Visual Deep Reinforcement Learning

Grooten, B., Taylor, M. E., Tomilin, T., Mahmood, A. R., Vasan, G., Fang, M., . . . Mocanu, D. C. (2024). MaDi: Learning to Mask Distractions for Generalization in Visual Deep Reinforcement Learning. In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems Aamas Vol. 2024-May (pp. 733-742).

Conference Paper

MedINST: Meta Dataset of Biomedical Instructions

Han, W., Fang, M., Zhang, Z., Yin, Y., Song, Z., Chen, L., . . . Chen, Q. (2024). MedINST: Meta Dataset of Biomedical Instructions. In Findings of the Association for Computational Linguistics: EMNLP 2024 (pp. 8221-8240). Association for Computational Linguistics. doi:10.18653/v1/2024.findings-emnlp.482

DOI
10.18653/v1/2024.findings-emnlp.482
Conference Paper

Policy Learning from Tutorial Books via Understanding, Rehearsing and Introspecting

Chen, X. H., Wang, Z., Du, Y., Jiang, S., Fang, M., Yu, Y., & Wang, J. (2024). Policy Learning from Tutorial Books via Understanding, Rehearsing and Introspecting. In Advances in Neural Information Processing Systems Vol. 37.

Conference Paper

RetrievalQA: Assessing Adaptive Retrieval-Augmented Generation for Short-form Open-Domain Question Answering

Zhang, Z., Fang, M., & Chen, L. (2024). RetrievalQA: Assessing Adaptive Retrieval-Augmented Generation for Short-form Open-Domain Question Answering. In Findings of the Association for Computational Linguistics ACL 2024 (pp. 6963-6975). Association for Computational Linguistics. doi:10.18653/v1/2024.findings-acl.415

DOI
10.18653/v1/2024.findings-acl.415
Conference Paper

Revisiting Catastrophic Forgetting in Large Language Model Tuning

Li, H., Ding, L., Fang, M., & Tao, D. (2024). Revisiting Catastrophic Forgetting in Large Language Model Tuning. In Findings of the Association for Computational Linguistics: EMNLP 2024 (pp. 4297-4308). Association for Computational Linguistics. doi:10.18653/v1/2024.findings-emnlp.249

DOI
10.18653/v1/2024.findings-emnlp.249
Conference Paper

TASK ADAPTATION FROM SKILLS: INFORMATION GEOMETRY, DISENTANGLEMENT, AND NEW OBJECTIVES FOR UNSUPERVISED REINFORCEMENT LEARNING

Yang, Y., Zhou, T., He, Q., Han, L., Pechenizkiy, M., & Fang, M. (2024). TASK ADAPTATION FROM SKILLS: INFORMATION GEOMETRY, DISENTANGLEMENT, AND NEW OBJECTIVES FOR UNSUPERVISED REINFORCEMENT LEARNING. In 12th International Conference on Learning Representations Iclr 2024.

Conference Paper

2023

Prescribed Safety Performance Imitation Learning From a Single Expert Dataset

Cheng, Z., Shen, L., Zhu, M., Guo, J., Fang, M., Liu, L., . . . Tao, D. (2023). Prescribed Safety Performance Imitation Learning From a Single Expert Dataset. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 45(10), 12236-12249. doi:10.1109/TPAMI.2023.3287908

DOI
10.1109/TPAMI.2023.3287908
Journal article

Lottery Pools: Winning More by Interpolating Tickets without Increasing Training or Inference Cost

Yin, L., Liu, S., Fang, M., Huang, T., Menkovski, V., & Pechenizkiy, M. (2023). Lottery Pools: Winning More by Interpolating Tickets without Increasing Training or Inference Cost. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 37 (pp. 10945-10953). Association for the Advancement of Artificial Intelligence (AAAI). doi:10.1609/aaai.v37i9.26297

DOI
10.1609/aaai.v37i9.26297
Conference Paper

Dual-Modality Co-Learning for Unveiling Deepfake in Spatio-Temporal Space

Guan, J., Zhou, H., Guo, Z., Hu, T., Deng, L., Quan, C., . . . Zhao, Y. (2023). Dual-Modality Co-Learning for Unveiling Deepfake in Spatio-Temporal Space. In PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023 (pp. 85-94). doi:10.1145/3591106.3592284

DOI
10.1145/3591106.3592284
Conference Paper

Shared dynamics learning for large-scale traveling salesman problem

Xu, Y., Fang, M., Chen, L., Du, Y., Xu, G., & Zhang, C. (2023). Shared dynamics learning for large-scale traveling salesman problem. ADVANCED ENGINEERING INFORMATICS, 56. doi:10.1016/j.aei.2023.102005

DOI
10.1016/j.aei.2023.102005
Journal article

A Survey for Efficient Open Domain Question Answering

Zhang, Q., Chen, S., Xu, D., Cao, Q., Chen, X., Cohn, T., & Fang, M. (2023). A Survey for Efficient Open Domain Question Answering. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 14447-14465). Association for Computational Linguistics. doi:10.18653/v1/2023.acl-long.808

DOI
10.18653/v1/2023.acl-long.808
Conference Paper

Dynamic Sparsity Is Channel-Level Sparsity Learner

Yin, L., Li, G., Fang, M., Shen, L., Huang, T., Wang, Z., . . . Liu, S. (2023). Dynamic Sparsity Is Channel-Level Sparsity Learner. In Advances in Neural Information Processing Systems Vol. 36.

Conference Paper

How Do Large Language Models Capture the Ever-changing World Knowledge? A Review of Recent Advances

Zhang, Z., Fang, M., Chen, L., Namazi-Rad, M. -R., & Wang, J. (2023). How Do Large Language Models Capture the Ever-changing World Knowledge? A Review of Recent Advances. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics. doi:10.18653/v1/2023.emnlp-main.516

DOI
10.18653/v1/2023.emnlp-main.516
Conference Paper

NLG Evaluation Metrics Beyond Correlation Analysis: An Empirical Metric Preference Checklist

Nimah, I., Fang, M., Menkovski, V., & Pechenizkiy, M. (2023). NLG Evaluation Metrics Beyond Correlation Analysis: An Empirical Metric Preference Checklist. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1240-1266). Association for Computational Linguistics. doi:10.18653/v1/2023.acl-long.69

DOI
10.18653/v1/2023.acl-long.69
Conference Paper

REST: Enhancing Group Robustness in DNNs Through Reweighted Sparse Training

Zhao, J., Yin, L., Liu, S., Fang, M., & Pechenizkiy, M. (2023). REST: Enhancing Group Robustness in DNNs Through Reweighted Sparse Training. In Unknown Conference (pp. 313-329). Springer Nature Switzerland. doi:10.1007/978-3-031-43415-0_19

DOI
10.1007/978-3-031-43415-0_19
Conference Paper

STAY MORAL AND EXPLORE: LEARN TO BEHAVE MORALLY IN TEXT-BASED GAMES

Shi, Z., Fang, M., Xu, Y., Chen, L., & Du, Y. (2023). STAY MORAL AND EXPLORE: LEARN TO BEHAVE MORALLY IN TEXT-BASED GAMES. In 11th International Conference on Learning Representations Iclr 2023.

Conference Paper

Self-imitation Learning for Action Generation in Text-based Games

Shi, Z., Xu, Y., Fang, M., & Chen, L. (2023). Self-imitation Learning for Action Generation in Text-based Games. In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics (pp. 703-726). Association for Computational Linguistics. doi:10.18653/v1/2023.eacl-main.50

DOI
10.18653/v1/2023.eacl-main.50
Conference Paper

2022

Learning Granularity-Unified Representations for Text-to-Image Person Re-identification

Shao, Z., Zhang, X., Fang, M., Lin, Z., Wang, J., & Ding, C. (2022). Learning Granularity-Unified Representations for Text-to-Image Person Re-identification. In Proceedings of the 30th ACM International Conference on Multimedia (pp. 5566-5574). ACM. doi:10.1145/3503161.3548028

DOI
10.1145/3503161.3548028
Conference Paper