Publications
Selected publications
- Toward Reliable Autonomous Robotic Assistants Through Formal Verification: A Case Study (Journal article - 2016)
- Modal Resolution: Proofs, Layers and Refinements (Journal article - 2019)
- Formal Specification and Verification of Autonomous Robotic Systems: A Survey (Journal article - 2018)
- A Resolution-Based Theorem Prover for Kn: Architecture, Refinements, Strategies and Experiments (Journal article - 2020)
- A Corroborative Approach to Verification and Validation of Human–Robot Teams (Journal article - 2020)
2024
Model Construction for Modal Clauses
Hustadt, U., Papacchini, F., Nalon, C., & Dixon, C. (2024). Model Construction for Modal Clauses. In Lecture Notes in Computer Science (pp. 3-23). Springer Nature Switzerland. doi:10.1007/978-3-031-63501-4_1
Parameterized Verification of Leader/Follower Systems via Arithmetic Constraints
Kourtis, G., Dixon, C., & Fisher, M. (2024). Parameterized Verification of Leader/Follower Systems via Arithmetic Constraints. IEEE Transactions on Software Engineering, 50(9), 2458-2471. doi:10.1109/tse.2024.3440587
Security-Minded Verification of Cooperative Awareness Messages
Farrell, M., Bradbury, M., Cardoso, R. C., Fisher, M., Dennis, L. A., Dixon, C., . . . Maple, C. (2024). Security-Minded Verification of Cooperative Awareness Messages. IEEE Transactions on Dependable and Secure Computing, 21(4), 4048-4065. doi:10.1109/tdsc.2023.3345543
2023
Adaptive Cognitive Agents: Updating Action Descriptions and Plans
Stringer, P., Cardoso, R. C., Dixon, C., Fisher, M., & Dennis, L. A. (2023). Adaptive Cognitive Agents: Updating Action Descriptions and Plans. In Lecture Notes in Computer Science (pp. 345-362). Springer Nature Switzerland. doi:10.1007/978-3-031-43264-4_22
Buy One Get 14 Free: Evaluating Local Reductions for Modal Logic
Nalon, C., Hustadt, U., Papacchini, F., & Dixon, C. (2023). Buy One Get 14 Free: Evaluating Local Reductions for Modal Logic. In Lecture Notes in Computer Science (pp. 382-400). Springer Nature Switzerland. doi:10.1007/978-3-031-38499-8_22
Dialogue Explanations for Rule-Based AI Systems
Xu, Y., Collenette, J., Dennis, L., & Dixon, C. (2023). Dialogue Explanations for Rule-Based AI Systems. In Lecture Notes in Computer Science (pp. 59-77). Springer Nature Switzerland. doi:10.1007/978-3-031-40878-6_4
2022
Local is Best: Efficient Reductions to Modal Logic K
Papacchini, F., Nalon, C., Hustadt, U., & Dixon, C. (2022). Local is Best: Efficient Reductions to Modal Logic K. JOURNAL OF AUTOMATED REASONING, 66(4), 639-666. doi:10.1007/s10817-022-09630-6
Local is Best: Efficient Reductions to Modal Logic K (Sep, 2022, 10.1007/s10817-022-09630-6)
Papacchini, F., Nalon, C., Hustadt, U., & Dixon, C. (2022). Local is Best: Efficient Reductions to Modal Logic K (Sep, 2022, 10.1007/s10817-022-09630-6). JOURNAL OF AUTOMATED REASONING, 66(4), 1099. doi:10.1007/s10817-022-09633-3
Verifiable autonomy: From theory to applications
Dennis, L., Dixon, C., & Fisher, M. (2022). Verifiable autonomy: From theory to applications. AI COMMUNICATIONS, 35(4), 421-431. doi:10.3233/AIC-220115
Parameterized verification of leader/follower systems via first-order temporal logic (vol 58, pg 440, 2022)
Kourtis, G., Dixon, C., Fisher, M., & Lisitsa, A. (2022). Parameterized verification of leader/follower systems via first-order temporal logic (vol 58, pg 440, 2022). FORMAL METHODS IN SYSTEM DESIGN, 60(2), 325-326. doi:10.1007/s10703-023-00408-z
Formal Modelling and Runtime Verification of Autonomous Grasping for Active Debris Removal
Farrell, M., Mavrakis, N., Ferrando, A., Dixon, C., & Gao, Y. (2022). Formal Modelling and Runtime Verification of Autonomous Grasping for Active Debris Removal. FRONTIERS IN ROBOTICS AND AI, 9. doi:10.3389/frobt.2021.639282
Implementing Durative Actions with Failure Detection in GWENDOLEN
Stringer, P., Cardoso, R. C., Dixon, C., & Dennis, L. A. (2022). Implementing Durative Actions with Failure Detection in GWENDOLEN. In Unknown Book (Vol. 13190, pp. 332-351). doi:10.1007/978-3-030-97457-2_19
Journal-First: Formal Modelling and Runtime Verification of Autonomous Grasping for Active Debris Removal
Farrell, M., Mavrakis, N., Ferrando, A., Dixon, C., & Gao, Y. (2022). Journal-First: Formal Modelling and Runtime Verification of Autonomous Grasping for Active Debris Removal. In INTEGRATED FORMAL METHODS, IFM 2022 Vol. 13274 (pp. 39-44). doi:10.1007/978-3-031-07727-2_3
Local Reductions for the Modal Cube
Nalon, C., Hustadt, U., Papacchini, F., & Dixon, C. (2022). Local Reductions for the Modal Cube. In AUTOMATED REASONING, IJCAR 2022 Vol. 13385 (pp. 486-505). doi:10.1007/978-3-031-10769-6_29
2021
Parameterized verification of leader/follower systems via first-order temporal logic
Kourtis, G., Dixon, C., Fisher, M., & Lisitsa, A. (2021). Parameterized verification of leader/follower systems via first-order temporal logic. FORMAL METHODS IN SYSTEM DESIGN, 58(3), 440-468. doi:10.1007/s10703-022-00390-y
Use and usability of software verification methods to detect behaviour interference when teaching an assistive home companion robot: A proof-of-concept study
Koay, K. L., Webster, M., Dixon, C., Gainer, P., Syrdal, D., Fisher, M., & Dautenhahn, K. (2021). Use and usability of software verification methods to detect behaviour interference when teaching an assistive home companion robot: A proof-of-concept study. Paladyn, Journal of Behavioral Robotics, 12(1), 402-422. doi:10.1515/pjbr-2021-0028
A Review of Verification and Validation for Space Autonomous Systems
Cardoso, R. C., Kourtis, G., Dennis, L. A., Dixon, C., Farrell, M., Fisher, M., & Webster, M. (2021). A Review of Verification and Validation for Space Autonomous Systems. Current Robotics Reports, 2(3), 273-283. doi:10.1007/s43154-021-00058-1
Verification for space robotics
Cardoso, R. C., Farrell, M., Kourtis, G., Webster, M., Dennis, L. A., Dixon, C., . . . Lisitsa, A. (2021). Verification for space robotics. In SPACE ROBOTICS AND AUTONOMOUS SYSTEMS (Vol. 131, pp. 377-408). Retrieved from https://www.webofscience.com/
An Overview of Verification and Validation Challenges for Inspection Robots
Fisher, M., Cardoso, R. C., Collins, E. C., Dadswell, C., Dennis, L. A., Dixon, C., . . . Webster, M. (2021). An Overview of Verification and Validation Challenges for Inspection Robots. ROBOTICS, 10(2). doi:10.3390/robotics10020067
Efficient Local Reductions to Basic Modal Logic
Papacchini, F., Nalon, C., Hustadt, U., & Dixon, C. (2021). Efficient Local Reductions to Basic Modal Logic. In Unknown Book (Vol. 12699, pp. 76-92). doi:10.1007/978-3-030-79876-5_5
Theorem Proving Using Clausal Resolution: From Past to Present
Dixon, C. (2021). Theorem Proving Using Clausal Resolution: From Past to Present. In Lecture Notes in Computer Science (pp. 19-27). Springer International Publishing. doi:10.1007/978-3-030-89716-1_2
2020
Multi-Scale Verification of Distributed Synchronisation
Gainer, P., Linker, S., Dixon, C., Hustadt, U., & Fisher, M. (2020). Multi-Scale Verification of Distributed Synchronisation. Formal Methods in System Design. doi:10.1007/s10703-020-00347-z
Exploring the effects of environmental conditions and design choices on IoT systems using formal methods
Webster, M., Breza, M., Dixon, C., Fisher, M., & McCann, J. (2020). Exploring the effects of environmental conditions and design choices on IoT systems using formal methods. JOURNAL OF COMPUTATIONAL SCIENCE, 45. doi:10.1016/j.jocs.2020.101183
Verifying autonomous robots: Challenges and reflections
Dixon, C. (2020). Verifying autonomous robots: Challenges and reflections. In Leibniz International Proceedings in Informatics, LIPIcs Vol. 178. doi:10.4230/LIPIcs.TIME.2020.1
A Resolution-Based Theorem Prover for Kn: Architecture, Refinements, Strategies and Experiments
Nalon, C., Hustadt, U., & Dixon, C. L. (2020). A Resolution-Based Theorem Prover for Kn: Architecture, Refinements, Strategies and Experiments. Journal of Automated Reasoning, 64(3), 461-484. doi:10.1007/s10817-018-09503-x
Formal Verification of Astronaut-Rover Teams for Planetary Surface Operations
Webster, M., Dennis, L. A., Dixon, C., Fisher, M., Stocker, R., & Sierhuis, M. (2020). Formal Verification of Astronaut-Rover Teams for Planetary Surface Operations. In 2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020). doi:10.1109/aero47225.2020.9172303
Security-Minded Verification of Space Systems
Maple, C., Bradbury, M., Yuan, H., Farrell, M., Dixon, C., Fisher, M., & Atmaca, U. I. (2020). Security-Minded Verification of Space Systems. In 2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020). doi:10.1109/aero47225.2020.9172563
Taxonomy of Trust-Relevant Failures and Mitigation Strategies
Tolmeijer, S., Weiss, A., Hanheide, M., Lindner, F., Powers, T. M., Dixon, C., & Tielman, M. L. (2020). Taxonomy of Trust-Relevant Failures and Mitigation Strategies. In HRI '20: Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction (pp. 3-12). Cambridge, UK: ACM/IEEE. doi:10.1145/3319502.3374793
Theorem Proving for Pointwise Metric Temporal Logic Overthe Naturals via Translations
Hustadt, U., Ozaki, A., & Dixon, C. (2020). Theorem Proving for Pointwise Metric Temporal Logic Overthe Naturals via Translations. Journal of Automated Reasoning. doi:10.1007/s10817-020-09541-4
A Corroborative Approach to Verification and Validation of Human–Robot Teams
Webster, M., Western, D., Araiza-Illan, D., Dixon, C., Eder, K., Fisher, M., & Pipe, A. (2020). A Corroborative Approach to Verification and Validation of Human–Robot Teams. International Journal of Robotics Research, 39(1), 73-99. doi:10.1177/0278364919883338
2019
A Summary of Formal Specification and Verification of Autonomous Robotic Systems
Luckcuck, M., Farrell, M., Dennis, L. A., Dixon, C., & Fisher, M. (2019). A Summary of Formal Specification and Verification of Autonomous Robotic Systems. In INTEGRATED FORMAL METHODS, IFM 2019 Vol. 11918 (pp. 538-541). doi:10.1007/978-3-030-34968-4_33
Using Threat Analysis Techniques to Guide Formal Verification: A Case Study of Cooperative Awareness Messages
Farrell, M., Bradbury, M., Yuan, H., Fisher, M., Dennis, L., Dixon, C., & Maple, C. (2019). Using Threat Analysis Techniques to Guide Formal Verification: A Case Study of Cooperative Awareness Messages. In International Conference on Software Engineering and Formal Methods.
Modular Verification of Autonomous Space Robotics
Farrell, M., Cardoso, R. C., Dennis, L. A., Dixon, C., Fisher, M., Kourtis, G., . . . Webster, M. (2019). Modular Verification of Autonomous Space Robotics. Retrieved from http://arxiv.org/abs/1908.10738v1
Modal Resolution: Proofs, Layers and Refinements
Nalon, C., Dixon, C., & Hustadt, U. (2019). Modal Resolution: Proofs, Layers and Refinements. ACM Transactions on Computational Logic, 20(4). doi:10.1145/3331448
Sublogics of a Branching Time Logic of Robustness
McCabe-Dansted, J., Dixon, C. L., French, T., & Reynolds, M. (2019). Sublogics of a Branching Time Logic of Robustness. Information and Computation, 266. doi:10.1016/j.ic.2019.02.003
Analysing Security Protocols Using Scenario Based Simulation
Al-Shareefi, F., Lisitsa, A., & Dixon, C. (2019). Analysing Security Protocols Using Scenario Based Simulation. In VERIFICATION AND EVALUATION OF COMPUTER AND COMMUNICATION SYSTEMS, VECOS 2019 Vol. 11847 (pp. 47-62). doi:10.1007/978-3-030-35092-5_4
Formal verification of synchronisation, gossip and environmental effects for wireless sensor networks
Webster, M., Breza, M., Dixon, C., Fisher, M., & McCann, J. (2019). Formal verification of synchronisation, gossip and environmental effects for wireless sensor networks. Electronic Communications of the EASST, 76.
2018
The Power of Synchronisation: Formal Analysis of Power Consumption in Networks of Pulse-Coupled Oscillators
Gainer, P., Linker, S., Dixon, C., Hustadt, U., & Fisher, M. (2018). The Power of Synchronisation: Formal Analysis of Power Consumption in Networks of Pulse-Coupled Oscillators. Quantitative Evaluation of Systems. Retrieved from http://arxiv.org/abs/1709.04385v3
Multi-Scale Verification of Distributed Synchronisation
Gainer, P., Linker, S., Dixon, C., Hustadt, U., & Fisher, M. (2018). Multi-Scale Verification of Distributed Synchronisation. Retrieved from http://arxiv.org/abs/1809.10655v1
Formal Specification and Verification of Autonomous Robotic Systems: A Survey
Luckcuck, M., Farrell, M., Dennis, L. A., Dixon, C., & Fisher, M. (2019). Formal Specification and Verification of Autonomous Robotic Systems: A Survey. ACM COMPUTING SURVEYS, 52(5). doi:10.1145/3342355
Clarification of Ambiguity for the Simple Authentication and Security Layer
Al-Shareefi, F., Lisitsa, A., & Dixon, C. (2018). Clarification of Ambiguity for the Simple Authentication and Security Layer. In Unknown Conference (pp. 189-203). Springer International Publishing. doi:10.1007/978-3-319-91271-4_13
Evaluating pre-processing techniques for the separated normal form for temporal logics
Hustadt, U., Nalon, C., & Dixon, C. (2018). Evaluating pre-processing techniques for the separated normal form for temporal logics. In CEUR Workshop Proceedings Vol. 2162 (pp. 34-48).
2017
Abstract State Machines and System Theoretic Process Analysis for Safety-Critical Systems
Al-Shareefi, F., Lisitsa, A., & Dixon, C. (2017). Abstract State Machines and System Theoretic Process Analysis for Safety-Critical Systems. In 20th Brazilian Symposium on Formal Methods. Recife, Brazil.
Frontiers of Combining Systems - 11th International Symposium (FroCoS)
Dixon, C., & Finger, M. (Eds.) (2017). Frontiers of Combining Systems - 11th International Symposium (FroCoS). Springer.
CRutoN: Automatic Verification of a Robotic Assistant's Behaviours
Gainer, P., Dixon, C. L., Dautenhahn, K., Fisher, M., Hustadt, U., Saunders, J., & Webster, M. (2017). CRutoN: Automatic Verification of a Robotic Assistant's Behaviours. In Lecture Notes in Computer Science Vol. 10471 (pp. 119-133). Torino, Italy: Springer Nature. Retrieved from https://link.springer.com/chapter/10.1007/978-3-319-67113-0_8
K<inf>S</inf>P: A resolution-based prover for multimodal K abridged report
Nalon, C., Hustadt, U., & Dixon, C. (2017). K<inf>S</inf>P: A resolution-based prover for multimodal K abridged report. In IJCAI International Joint Conference on Artificial Intelligence (pp. 4919-4923).
Theorem Proving for Metric Temporal Logic over the Naturals
Hustadt, U., Ozaki, A., & Dixon, C. (2017). Theorem Proving for Metric Temporal Logic over the Naturals. In Lecture Notes in Computer Science Vol. 10395 (pp. 326-343). Springer Nature. doi:10.1007/978-3-319-63046-5_20
Towards Robots for Social Engagement
Cucco, E., Fisher, M. D., Dennis, L. A., Dixon, C. L., Webster, M., Broecker, B., . . . Tuyls, K. (n.d.). Towards Robots for Social Engagement. In Workshop on Human-Robot Engagement in the Home, Workplace and Public Spaces.
11th International Symposium on Frontiers of Combining Systems, FroCoS 2017
11th International Symposium on Frontiers of Combining Systems, FroCoS 2017 (2017). (Vol. 10483 LNAI).
Investigating Parametric Influence on Discrete Synchronisation Protocols Using Quantitative Model Checking
Gainer, P., Linker, S., Dixon, C., Hustadt, U., & Fisher, M. (2017). Investigating Parametric Influence on Discrete Synchronisation Protocols Using Quantitative Model Checking. In QUANTITATIVE EVALUATION OF SYSTEMS (QEST 2017) Vol. 10503 (pp. 224-239). doi:10.1007/978-3-319-66335-7_14
2016
Probabilistic Model Checking of Ant-Based Positionless Swarming
Gainer, P., Dixon, C., & Hustadt, U. (2016). Probabilistic Model Checking of Ant-Based Positionless Swarming. In Lecture Notes in Computer Science. Sheffield: Springer Verlag (Germany).
Toward Reliable Autonomous Robotic Assistants Through Formal Verification: A Case Study
Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K. L., . . . Saez-Pons, J. (2016). Toward Reliable Autonomous Robotic Assistants Through Formal Verification: A Case Study. IEEE Transactions on Human-Machine Systems, 46(2), 186-196. doi:10.1109/THMS.2015.2425139
K<sub>S</sub>P: A Resolution-Based Prover for Multimodal K
Nalon, C., Hustadt, U., & Dixon, C. (2016). K<sub>S</sub>P: A Resolution-Based Prover for Multimodal K. In AUTOMATED REASONING (IJCAR 2016) Vol. 9706 (pp. 406-415). doi:10.1007/978-3-319-40229-1_28
2015
Knowledge and time
Dixon, C., Nalon, C., & Ramanujam, R. (2015). Knowledge and time. In H. van Ditmarsh, J. Y. Halpern, W. van der Hoek, & B. Kooi (Eds.), Unknown Book (pp. 205-259). College Publications.
An intelligent process model: predicting springback in single point incremental forming
Khan, M. S., Coenen, F., Dixon, C., El-Salhi, S., Penalva, M., & Rivero, A. (2015). An intelligent process model: predicting springback in single point incremental forming. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 76(9-12), 2071-2082. doi:10.1007/s00170-014-6431-1
A Modal-Layered Resolution Calculus for K
Nalon, C., Hustadt, U., & Dixon, C. (2015). A Modal-Layered Resolution Calculus for K. In AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS (TABLEAUX 2015) Vol. 9323 (pp. 185-200). doi:10.1007/978-3-319-24312-2_13
Ordered Resolution for Coalition Logic
Hustadt, U., Gainer, P., Dixon, C., Nalon, C., & Zhang, L. (2015). Ordered Resolution for Coalition Logic. In AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS (TABLEAUX 2015) Vol. 9323 (pp. 169-184). doi:10.1007/978-3-319-24312-2_12
Predicting "springback" using 3D surface representation techniques: A case study in sheet metal forming
El Salhi, S., Coenen, F., Dixon, C., & Khan, M. S. (2015). Predicting "springback" using 3D surface representation techniques: A case study in sheet metal forming. EXPERT SYSTEMS WITH APPLICATIONS, 42(1), 79-93. doi:10.1016/j.eswa.2014.07.041
Proceedings of Towards Autonomous Robotic Systems - 16th Annual Conference
Dixon, C., & Tuyls, K. (Eds.) (2015). Proceedings of Towards Autonomous Robotic Systems - 16th Annual Conference (Vol. 9287). Springer.
Towards Autonomous Robotic Systems
Dixon, C., & Tuyls, K. (Eds.) (2015). Towards Autonomous Robotic Systems. In . Springer International Publishing. doi:10.1007/978-3-319-22416-9
2014
A resolution-based calculus for Coalition Logic
Nalon, C., Zhang, L., Dixon, C., & Hustadt, U. (2014). A resolution-based calculus for Coalition Logic. Journal of Logic and Computation, 24(4), 883-917. doi:10.1093/logcom/ext074
A Resolution Prover for Coalition Logic
Nalon, C., Zhang, L., Dixon, C., & Hustadt, U. (2014). A Resolution Prover for Coalition Logic. In EPTCS 146, 2014, pp. 65-73. Retrieved from http://dx.doi.org/10.4204/EPTCS.146.9
On and On the Temporal Way
Dixon, C., & Fisher, M. (n.d.). On and On the Temporal Way. In Unknown Book (Vol. 42, pp. 85-57). EasyChair. doi:10.29007/sz8j
A resolution calculus for the branching-time temporal logic CTL
Zhang, L., Hustadt, U., & Dixon, C. (2014). A Resolution Calculus for the Branching-Time Temporal Logic CTL. ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 15(1). doi:10.1145/2529993
Formal Verification of an Autonomous Personal Robotic Assistant
Webster, M., Salem, M., Dixon, C., Fisher, M., & Dautenhahn, K. (2014). Formal Verification of an Autonomous Personal Robotic Assistant. In AIAA Symposium 2014 Workshop on Formal Verification in Human Machine Systems (FVHMS 2014) (pp. 0). Palo Alto, CA: AIAA. Retrieved from https://www.aaai.org/Library/Symposia/Spring/ss14-02.php
Clausal Resolution for Modal Logics of Confluence
Nalon, C., Marcos, J., & Dixon, C. (2014). Clausal Resolution for Modal Logics of Confluence. In AUTOMATED REASONING, IJCAR 2014 Vol. 8562 (pp. 322-336). Retrieved from https://www.webofscience.com/
Formal verification of an autonomous personal robotic assistant
Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K. L., & Dautenhahn, K. (2014). Formal verification of an autonomous personal robotic assistant. In AAAI Spring Symposium - Technical Report Vol. SS-14-02 (pp. 74-79).
Safe and Trustworthy Autonomous Robotic Assistants
Webster, M., Dixon, C., & Fisher, M. (2014). Safe and Trustworthy Autonomous Robotic Assistants. [Paper]. Retrieved from http://www.spacesafetymagazine.com/
2013
Can You Trust Your Robotic Assistant?
Amirabdollahian, F., Dautenhahn, K., Dixon, C., Eder, K., Fisher, M., Koay, K. L., . . . Webster, M. (2013). Can You Trust Your Robotic Assistant?. In SOCIAL ROBOTICS, ICSR 2013 Vol. 8239 (pp. 571-573). Retrieved from https://www.webofscience.com/
Predicting Features in Complex 3D Surfaces Using a Point Series Representation: A Case Study in Sheet Metal Forming
El-Salhi, S., Coenen, F., Dixon, C., & Khan, M. S. (2013). Predicting Features in Complex 3D Surfaces Using a Point Series Representation: A Case Study in Sheet Metal Forming. In Unknown Conference (pp. 505-516). Springer Berlin Heidelberg. doi:10.1007/978-3-642-53914-5_43
Deductive temporal reasoning with constraints
Dixon, C., Konev, B., Fisher, M., & Nietiadi, S. (2013). Deductive temporal reasoning with constraints. JOURNAL OF APPLIED LOGIC, 11(1), 30-51. doi:10.1016/j.jal.2012.07.001
2012
Labelled Tableaux for Temporal Logic with Cardinality Constraints
Dixon, C., Konev, B., Schmidt, R. A., & Tishkovsky, D. (2012). Labelled Tableaux for Temporal Logic with Cardinality Constraints. In 14TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2012) (pp. 111-118). doi:10.1109/SYNASC.2012.47
Towards temporal verification of swarm robotic systems
Dixon, C., Winfield, A. F. T., Fisher, M., & Zeng, C. (2012). Towards temporal verification of swarm robotic systems. ROBOTICS AND AUTONOMOUS SYSTEMS, 60(11), 1429-1441. doi:10.1016/j.robot.2012.03.003
Verifying Brahms Human-Robot Teamwork Models
Stocker, R., Dennis, L., Dixon, C., & Fisher, M. (2012). Verifying Brahms Human-Robot Teamwork Models. In Unknown Conference (pp. 385-397). Springer Berlin Heidelberg. doi:10.1007/978-3-642-33353-8_30
Finding Correlations between 3-D Surfaces: A Study in Asymmetric Incremental Sheet Forming
Khan, M. S., Coenen, F., Dixon, C., & El-Salhi, S. (2012). Finding Correlations between 3-D Surfaces: A Study in Asymmetric Incremental Sheet Forming. In Unknown Conference (pp. 366-379). Springer Berlin Heidelberg. doi:10.1007/978-3-642-31537-4_29
Analysing robot swarm behaviour via probabilistic model checking
Konur, S., Dixon, C., & Fisher, M. (2012). Analysing robot swarm behaviour via probabilistic model checking. ROBOTICS AND AUTONOMOUS SYSTEMS, 60(2), 199-213. doi:10.1016/j.robot.2011.10.005
A Labelled Tableau Approach for Temporal Logic with Constraints
Dixon, C., Konev, B., Schmidtand, R., & Tishkovsky, D. (2012). A Labelled Tableau Approach for Temporal Logic with Constraints. In R. Schmidt, & F. Papacchini (Eds.), 19th Automated Reasoning Workshop (pp. 23-24). Manchester: School of Computer Science, The University of Manchester. Retrieved from http://arw2012.cs.man.ac.uk/
Classification Based 3-D Surface Analysis: Predicting Springback in Sheet Metal Forming
Khan, M. S., Coenen, F., Dixon, C., & El-Salhi, S. (2012). Classification Based 3-D Surface Analysis: Predicting Springback in Sheet Metal Forming. Journal of Theoretical and Applied Computer Science, 6(2), 45-59.
Identification of Correlations Between 3D Surfaces Using Data Mining Techniques: Predicting Springback in Sheet Metal Forming
El-Salhi, S., Coenen, F., Dixon, C., & Khan, M. S. (2012). Identification of Correlations Between 3D Surfaces Using Data Mining Techniques: Predicting Springback in Sheet Metal Forming. In Unknown Conference (pp. 391-404). Springer London. doi:10.1007/978-1-4471-4739-8_30
2011
A misuse-based network Intrusion Detection System using Temporal Logic and stream processing
Ahmed, A., Lisitsa, A., & Dixon, C. (2011). A misuse-based network Intrusion Detection System using Temporal Logic and stream processing. In 2011 5th International Conference on Network and System Security (pp. 1-8). IEEE. doi:10.1109/icnss.2011.6059953
A Formal Semantics for Brahms
Stocker, R., Sierhuis, M., Dennis, L., Dixon, C., & Fisher, M. (2011). A Formal Semantics for Brahms. In COMPUTATIONAL LOGIC IN MULTI-AGENT SYSTEMS Vol. 6814 (pp. 259-274). Retrieved from https://www.webofscience.com/
Towards Temporal Verification of Emergent Behaviours in Swarm Robotic Systems
Dixon, C., Winfield, A., & Fisher, M. (2011). Towards Temporal Verification of Emergent Behaviours in Swarm Robotic Systems. In Unknown Conference (pp. 336-347). Springer Berlin Heidelberg. doi:10.1007/978-3-642-23232-9_30
The Application of AI Techniques to Deformation in Metal Manufacturing
Dixon, C., Coenen, F., & Khan, M. (2011). The Application of AI Techniques to Deformation in Metal Manufacturing. In WAR (pp. 17-18). Glasgow: University of Glasgow.
2010
CTL-Like Fragments of a Temporal Logic of Robustness
McCabe-Dansted, J. C., & Dixon, C. (2010). CTL-Like Fragments of a Temporal Logic of Robustness. In 2010 17th International Symposium on Temporal Representation and Reasoning (pp. 11-18). IEEE. doi:10.1109/time.2010.7
Formal Verification of Probabilistic Swarm Behaviours
Konur, S., Dixon, C., & Fisher, M. (2010). Formal Verification of Probabilistic Swarm Behaviours. In SWARM INTELLIGENCE Vol. 6234 (pp. 440-447). Retrieved from https://www.webofscience.com/
CTL-RP: A computation tree logic resolution prover
Zhang, L., Hustadt, U., & Dixon, C. (2010). CTL-RP: A computation tree logic resolution prover. AI COMMUNICATIONS, 23(2-3), 111-136. doi:10.3233/AIC-2010-0463
2009
Taming the Complexity of Temporal Epistemic Reasoning
Dixon, C., Fisher, M., & Konev, B. (2009). Taming the Complexity of Temporal Epistemic Reasoning. In FRONTIERS OF COMBINING SYSTEMS, PROCEEDINGS Vol. 5749 (pp. 198-213). Retrieved from https://www.webofscience.com/
Deductive verification of simple foraging robotic behaviours
Behdenna, A., Dixon, C., & Fisher, M. (2009). Deductive verification of simple foraging robotic behaviours. International Journal of Intelligent Computing and Cybernetics, 2(4), 604-643. doi:10.1108/17563780911005818
A Refined Resolution Calculus for CTL
Zhang, L., Hustadt, U., & Dixon, C. (2009). A Refined Resolution Calculus for CTL. In AUTOMATED DEDUCTION - CADE-22 Vol. 5663 (pp. 245-260). Retrieved from https://www.webofscience.com/
2008
Practical first-order temporal reasoning
Dixon, C., Fisher, M., Konev, B., & Lisitsa, A. (2008). Practical first-order temporal reasoning. In TIME 2008: 15TH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS (pp. 156-163). doi:10.1109/TIME.2008.15
2007
Tractable Temporal Reasoning
Dixon, C., Fisher, M., & Konev, B. (2007). Tractable Temporal Reasoning. In 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (pp. 318-323). Retrieved from https://www.webofscience.com/
Temporal Logics of Knowledge and their Applications in Security
Dixon, C., Fernández Gago, M. -C., Fisher, M., & van der Hoek, W. (2007). Temporal Logics of Knowledge and their Applications in Security. Electronic Notes in Theoretical Computer Science, 186, 27-42. doi:10.1016/j.entcs.2006.11.043
Clausal resolution for normal modal logics
Nalon, C., & Dixon, C. (2007). Clausal resolution for normal modal logics. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 62(3-4), 117-134. doi:10.1016/j.jalgor.2007.04.001
Message from the Chairs
Message from the Chairs (2007). In 14th International Symposium on Temporal Representation and Reasoning (TIME'07) (pp. vii). IEEE. doi:10.1109/time.2007.51
Temporal logic with capacity constraints
Dixon, C., Fisher, M., & Konev, B. (2007). Temporal logic with capacity constraints. In FRONTIERS OF COMBINING SYSTEMS, PROCEEDINGS Vol. 4720 (pp. 163-+). Retrieved from https://www.webofscience.com/
2006
Is there a future for deductive temporal verification?
Dixon, C., Fisher, M., & Konev, B. (2006). Is there a future for deductive temporal verification?. In TIME 2006: THIRTEENTH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS (pp. 11-+). Retrieved from https://www.webofscience.com/
Anti-prenexing and prenexing for modal logics
Nalon, C., & Dixon, C. (2006). Anti-prenexing and prenexing for modal logics. In LOGICS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS Vol. 4160 (pp. 333-345). doi:10.1007/11853886_28
Normal Modal Resolution: Preliminary Results
Nalon, C., & Dixon, C. (2006). Normal Modal Resolution: Preliminary Results. In Brazilian Workshop on Logical and Semantic Frameworks, with Applications (pp. unknown). unknown: pre-proceedings.
Using temporal logics of knowledge for specification and verification—a case study
Dixon, C. (2006). Using temporal logics of knowledge for specification and verification—a case study. Journal of Applied Logic, 4(1), 50-78. doi:10.1016/j.jal.2005.08.003
Verification Within the KARO Agent Theory
Hustadt, U., Dixon, C., Schmidt, R. A., Fisher, M., Meyer, J. -J. C., & van der Hoek, W. (2006). Verification Within the KARO Agent Theory. In NASA Monographs in Systems and Software Engineering (pp. 193-225). Springer London. doi:10.1007/1-84628-271-3_7
2005
On formal specification of emergent behaviours in swarm robotic systems
Winfield, A. F. T., Sa, J., Gago, M. C. F., Dixon, C., & Fisher, M. (2005). On formal specification of emergent behaviours in swarm robotic systems. In International Journal of Advanced Robotic Systems Vol. 2 (pp. 363-370).
Alternating automata and temporal logic normal forms
Dixon, C., Bolotov, A., & Fisher, M. (2005). Alternating automata and temporal logic normal forms. ANNALS OF PURE AND APPLIED LOGIC, 135(1-3), 263-285. doi:10.1016/j.apal.2005.03.002
Mechanising first-order temporal resolution
Konev, B., Degtyarev, A., Dixon, C., Fisher, M., & Hustadt, U. (2005). Mechanising first-order temporal resolution. INFORMATION AND COMPUTATION, 199(1-2), 55-86. doi:10.1016/j.ic.2004.10.005
First-order temporal verification in practice
Fernandez-Gago, M. C., Hustadt, U., Dixon, C., Fisher, M., & Konev, B. (2005). First-order temporal verification in practice. JOURNAL OF AUTOMATED REASONING, 34(3), 295-321. doi:10.1007/s10817-005-7354-1
Resolution for Synchrony and No Learning,
Nalon, C., Dixon, C., & Fisher, M. (2005). Resolution for Synchrony and No Learning,. In Proceedings of Advances in Modal Logic Vol. 5 (pp. 231-248). UK: King's College Publications.
Theorem-Proving for Discrete Temporal Logic
Reynolds, M., & Dixon, C. (2005). Theorem-Proving for Discrete Temporal Logic. HANDBOOK OF TEMPORAL REASONING IN ARTIFICIAL INTELLIGENCE, 1, 279-313. Retrieved from https://www.webofscience.com/
2004
Temporal representation and reasoning (TIME)
Artale, A., Dixon, C., Fisher, M., & Franconi, E. (2004). Temporal representation and reasoning (TIME). JOURNAL OF LOGIC AND COMPUTATION, 14(1), 1. doi:10.1093/logcom/14.1.1
Journal of Logic and Computation: Special Issue on Temporal Representation and Reasoning
Artale, A., Dixon, C., Fisher, M., & Franconi, E. (Eds.) (2004). Journal of Logic and Computation: Special Issue on Temporal Representation and Reasoning (Vol. 14). Oxford University Press.
Miss Scarlett in the ballroom with the lead piping
Dixon, C. (2004). Miss Scarlett in the ballroom with the lead piping. In ECAI 2004: 16TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS Vol. 110 (pp. 995-996). Retrieved from https://www.webofscience.com/
Tableaux for logics of time and knowledge with interactions relating to synchrony
Dixon, C., Nalon, C., & Fisher, M. (2004). Tableaux for logics of time and knowledge with interactions relating to synchrony. Journal of Applied Non-Classical Logics, 14(4), 397-445. doi:10.3166/jancl.14.397-445
Using temporal logics of knowledge in the formal verification of security protocols
Dixon, C., Gago, M. C. F., Fisher, M., & van der Hoek, W. (2004). Using temporal logics of knowledge in the formal verification of security protocols. In 11TH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS (pp. 148-151). doi:10.1109/TIME.2004.1314432
2003
Tableaux for temporal logics of knowledge: Synchronous systems of perfect recall or no learning
Dixon, C., Nalon, C., & Fisher, M. (2003). Tableaux for temporal logics of knowledge: Synchronous systems of perfect recall or no learning. In TIME-ICTL 2003: 10TH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING AND FOURTH INTERNATIONAL CONFERENCE ON TEMPORAL LOGIC, PROCEEDINGS (pp. 62-71). Retrieved from https://www.webofscience.com/
Towards the implementation of first-order temporal resolution: the expanding domain case
Konev, B., Degtyarev, A., Dixon, C., Fisher, M., & Hustadt, U. (2003). Towards the implementation of first-order temporal resolution: the expanding domain case. In TIME-ICTL 2003: 10TH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING AND FOURTH INTERNATIONAL CONFERENCE ON TEMPORAL LOGIC, PROCEEDINGS (pp. 72-82). Retrieved from https://www.webofscience.com/
2002
On the Relationship between -automata and Temporal Logic Normal Forms
Bolotov, A. (2002). On the Relationship between -automata and Temporal Logic Normal Forms. Journal of Logic and Computation, 12(4), 561-581. doi:10.1093/logcom/12.4.561
Clausal resolution in a logic of rational agency
Dixon, C., Fisher, M., & Bolotov, A. (2002). Clausal resolution in a logic of rational agency. ARTIFICIAL INTELLIGENCE, 139(1), 47-89. doi:10.1016/S0004-3702(02)00196-0
Algorithms for guiding clausal temporal resolution
Gago, M. C. F., Fisher, M., & Dixon, C. (2002). Algorithms for guiding clausal temporal resolution. In KI2002: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS Vol. 2479 (pp. 235-249). Retrieved from https://www.webofscience.com/
Combinations of modal logics
Bennett, B., Dixon, C., Fisher, M., Hustadt, U., Franconi, E., Horrocks, I., & De Rijke, M. (2002). Combinations of modal logics. ARTIFICIAL INTELLIGENCE REVIEW, 17(1), 1-20. doi:10.1023/A:1015057926707
2001
Reasoning about agents in the KARO framework
Hustadt, U., Dixon, C., Schmidt, R. A., Fisher, M., Meyer, J. J., & van der Hoek, W. (2001). Reasoning about agents in the KARO framework. In EIGHTH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS (pp. 206-213). doi:10.1109/TIME.2001.930719
Multi-agent systems research into the 21st century
D'Inverno, M., & Luck, M. (2001). Multi-agent systems research into the 21st century. In KNOWLEDGE ENGINEERING REVIEW Vol. 16 (pp. 271-275). doi:10.1017/S0269888901000169
Annals of Mathematics and Artificial Intelligence: Special Issue on Temporal Representation and Reasoning
Dixon, C., Finger, M., Fisher, M., & Reynolds, M. (Eds.) (2001). Annals of Mathematics and Artificial Intelligence: Special Issue on Temporal Representation and Reasoning (Vol. 30). Springer.
Clausal temporal resolution
Fisher, M., Dixon, C., & Peim, M. (2001). Clausal temporal resolution. ACM Transactions on Computational Logic, 2(1), 12-56. doi:10.1145/371282.371311
Verification within the KARO Agent Theory
Hustadt, U., Dixon, C., Schmidt, R. A., Fisher, M., Meyer, J. -J., & van der Hoek, W. (2001). Verification within the KARO Agent Theory. In Unknown Conference (pp. 33-47). Springer Berlin Heidelberg. doi:10.1007/3-540-45484-5_3
2000
Normal forms and proofs in combined modal and temporal logics
Hustadt, U., Dixon, C., Schmidt, R. A., & Fisher, M. (2000). Normal forms and proofs in combined modal and temporal logics. In FRONTIERS OF COMBINING SYSTEMS Vol. 1794 (pp. 73-87). Retrieved from https://www.webofscience.com/
Resolution for branching time temporal logics: Applying the temporal resolution rule
Bolotov, A., & Dixon, G. (2000). Resolution for branching time temporal logics: Applying the temporal resolution rule. In SEVENTH INTERNATIONAL WORKSHOP ON TEMPORAL REPRESENTATION AND REASONING - TIME 2000, PROCEEDINGS (pp. 163-172). doi:10.1109/TIME.2000.856598
Resolution-based proof for multi-modal temporal logics of knowledge
Dixon, C., & Fisher, M. (2000). Resolution-based proof for multi-modal temporal logics of knowledge. In SEVENTH INTERNATIONAL WORKSHOP ON TEMPORAL REPRESENTATION AND REASONING - TIME 2000, PROCEEDINGS (pp. 69-78). doi:10.1109/TIME.2000.856587
1999
Clausal Resolution for CTL
Bolotov, A., Dixon, C., & Fisher, M. (1999). Clausal Resolution for CTL. In Unknown Conference (pp. 137-148). Springer Berlin Heidelberg. doi:10.1007/3-540-48340-3_13
Removing irrelevant information in temporal resolution proofs
Dixon, C. (1999). Removing irrelevant information in temporal resolution proofs. JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 11(1), 95-121. doi:10.1080/095281399146634
1998
A Tableau-Based Proof Method for Temporal Logics of Knowledge and Belief
Wooldridge, M., Dixon, C., & Fisher, M. (1998). A Tableau-Based Proof Method for Temporal Logics of Knowledge and Belief. Journal of Applied Non-Classical Logics, 8(3), 225-258. doi:10.1080/11663081.1998.10510944
Resolution for temporal logics of knowledge
Dixon, C., Fisher, M., & Wooldridge, M. (1998). Resolution for temporal logics of knowledge. JOURNAL OF LOGIC AND COMPUTATION, 8(3), 345-372. doi:10.1093/logcom/8.3.345
Temporal resolution using a breadth-first search algorithm
Dixon, C. (1998). Temporal resolution using a breadth-first search algorithm. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 22(1-2), 87-115. doi:10.1023/A:1018942108420
The Set of Support strategy in temporal resolution
Dixon, C., & Fisher, M. (1998). The Set of Support strategy in temporal resolution. In FIFTH INTERNATIONAL WORKSHOP ON TEMPORAL REPRESENTATION AND REASONING - PROCEEDINGS (pp. 113-120). doi:10.1109/TIME.1998.674140
1997
Temporal resolution: Removing irrelevant information
Dixon, C. (1997). Temporal resolution: Removing irrelevant information. In FOURTH INTERNATIONAL WORKSHOP ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS (pp. 4-11). doi:10.1109/TIME.1997.600775
1996
A resolution-based proof method for temporal logics of knowledge and belief
Fisher, M., Wooldridge, M., & Dixon, C. (1996). A resolution-based proof method for temporal logics of knowledge and belief. In Unknown Conference (pp. 178-192). Springer Berlin Heidelberg. doi:10.1007/3-540-61313-7_72
Search strategies for resolution in temporal logics
Dixon, C. (1996). Search strategies for resolution in temporal logics. In Unknown Conference (pp. 673-687). Springer Berlin Heidelberg. doi:10.1007/3-540-61511-3_121
Temporal resolution: a breadth-first search approach
Dixon, C. (n.d.). Temporal resolution: a breadth-first search approach. In Proceedings Third International Workshop on Temporal Representation and Reasoning (TIME '96) (pp. 120-127). IEEE Comput. Soc. Press. doi:10.1109/time.1996.555690
1994
A graph-based approach to resolution in temporal logic
Dixon, C., Fisher, M., & Barringer, H. (n.d.). A graph-based approach to resolution in temporal logic. In Unknown Conference (pp. 415-429). Springer-Verlag. doi:10.1007/bfb0014002