
MATH549 Exercise Sheet 6

Deadline for submission: Monday 10th November

Please try to do as much of this sheet as you can before the tutorial

Please don’t continue working on this sheet into week 7

Introduction

There are no new topics covered in this sheet, just some exercises which are designed

to help you to develop your Maple programming skills.

Exercises 1 and 2 are less difficult than the others: you’re given an explicit al-

gorithm to implement as a Maple procedure. Exercises 3 to 5 are more extended

investigations of a variety of topics, and are intended to mimic the sort of program-

ming that you might end up doing for your project: if you can do all the steps of any

one of these exercises, you’re doing quite well.

You should certainly start by trying exercises 1 and 2. Don’t feel you have to

attempt all of the other exercises (though the more you do, the more practice

you’ll get). It’s better if you can do one of these harder exercises completely, rather

than doing bits of all three.

You should put the programs that you write in separate files. Thus any programs

you write for exercise 1 should be in a file yourname1.txt, any for exercise 2 should be

in yourname2.txt, and so on. In addition you should submit a single Maple worksheet

yourname6 which reads in each of the files in turn, and then has a number of commands

testing and experimenting with the programs. It’s a good idea to restart before each

new exercise in this worksheet.
Make sure that your programs are well commented, and include appropriate error

handling. Make sure that your Maple worksheet includes adequate commentary on

what you’re doing (in text mode).

As usual, you can find some hints on the module webpage.

1



Exercise 1: Russian multiplication

The Russian Multiplication Algorithm, described below, is a method for multiply-

ing two positive integers M and N . Write a program which carries it out: thus

RussianMultiplication(M,N) should return the number M × N . (What it does

isn’t very exciting, then . . . ) If you can, include a line or two of text in your work-

sheet explaining why the algorithm works (this is a mathematical question).

The algorithm

Suppose we want to multiply two positive integers M and N . We assume that M ≤ N

(if not, swap them round). We use one other variable R (the “running total”).

a) Let

R =

{

0 if M is even

N if M is odd.

b) As long as M > 1, repeat the following steps in order:

i) Halve M (ignoring any remainder).

ii) Double N .

iii) If M is odd then add N to R.

c) Then the answer is R.

For example, if we want to multiply 19 and 13, then the triple (M, N, R) starts as

(13, 19, 19) (we have R = 19 since M is odd), and then in successive steps becomes:

(6, 38, 19); (3, 76, 95); and (1, 152, 247). So 19 × 13 = 247.

Exercise 2: Cornacchia’s algorithm

Let p be a prime number and d be an integer between 1 and p − 1. Cornacchia’s

algorithm solves the Diophantine equation x2 + dy2 = p: that is, it either gives

integers x and y which satisfy the equation, or asserts that no solution (in integers)

exists.
Write a program which carries out Cornacchia’s algorithm: that is, Cornacchia(p,d)

should return the x and y values of a solution, if one exists, and otherwise should re-
turn FAIL.

Find all of the solutions given by the algorithm for which p is between 2 and 97,

checking that each one really is a solution. (There are 203 such solutions in total.)

The algorithm

a) Find an integer x0 with (p− 1)/2 < x0 < p such that x2
0 + d is divisible by p. If

there is no such x0, then the Diophantine equation has no solution.

b) Let a = p, b = x0, and l = b√pc (the greatest integer less than or equal to
√

p).

2



c) As long as b > l, repeat the following: set r = a mod b, set a = b, and set b = r.

d) If (p − b2)/d is not a perfect square, then the Diophantine equation has no

solution. Otherwise, a solution is:

x = b, y =

√

p − b2

d
.

Exercise 3: The Hailstone iteration again

Recall the Hailstone iteration from Exercise sheet 5.

a) Write a program HailstoneSequence(n) which returns the Hailstone sequence

of an integer n ≥ 1 (as a list). Thus HailstoneSequence(11) should return the

list [11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1].

b) Write another program HailstoneMax(n) which returns the maximum entry of

the Hailstone sequence of n. (It’ll almost certainly be easiest if you use your

program HailstoneSequence within HailstoneMax.) Make a list of the values

of HailstoneMax(n) as n goes from 1 to 1000. Which is the most common

value in the list?

c) Write a program HailstonePlot(maxn, minshow, maxshow) which does the

following: for each n between 1 and maxn, it computes the Hailstone sequence

of n. Then for each entry h in the Hailstone sequence which is between minshow

and maxshow, it plots a point with coordinates (n, h). You should use the Maple

command pointplot (in the plots package) to produce the plot.

Figure 1 shows an example of what you should aim for. (Try some other exam-

ples too.)

(The point of minshow is that low values are very common in Hailstone se-

quences: if you want to run HailstonePlot with larger values of maxn, then it

will be substantially faster if you set, say, minshow=50, thus omitting all these

low values from the plot.)

d) Can you explain the “ghostly” diagonal lines in the plot? (This is a mathematical

question, though if you can deduce the equations of some of these lines you might

like to verify your reasoning using Maple.)

Exercise 4: The Burau representation

This exercise is about representations of certain groups, but if you know nothing about

group theory or representation theory you can still do it. There’s a brief explanation

of what it’s all about at the end.
Let n ≥ 3 be an integer. To each non-zero integer i with −(n − 1) ≤ i ≤ (n − 1),

associate an n by n matrix M i
n(t) as follows.

3



Figure 1: HailstonePlot(350,1,1000)

• Suppose i > 0. Then make M i
n(t) by starting with the n by n identity matrix,

and changing the following entries: the one in position (i, i) to 1 − t; the one

in position (i + 1, i + 1) to 0; the one in position (i, i + 1) to t; and the one in

position (i + 1, i) to 1. Thus, for example, M2
5 (t) is the matrix













1 0 0 0 0
0 1 − t t 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1













.

(A good way to look at it is: start with the n by n identity matrix, and then

change a 2 by 2 block, with top left corner in position (i, i), to
1 − t t

1 0
.)

• Suppose i < 0. Then similarly start with the n by n identity matrix, and change

a 2 by 2 block with top left corner in position (−i,−i) to
0 1
1

t
1 − 1

t

. Thus, for

example, M−4
5

(t) is the matrix













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1

t
1 − 1

t













.

a) Write a program BurauGenerator(n,i) which returns the matrix M i
n(t). Check

that BurauGenerator(5,2) and BurauGenerator(5,-4) give the examples shown

above.

b) Now write a program BurauMatrix(n,L), where L is a list of non-zero integers

between −(n− 1) and (n− 1), which returns the product of the matrices M i
n(t)

4



for each i in the list. For example, BurauMatrix(3,[1,1,-2,-1]) should return

M1
3 (t)M1

3 (t), M−2
3

(t)M−1
3

(t) =





0 1 − t + t2 t − t2

0 1 − t t
1

t2
1

t
− 1

t2
1 − 1

t



 .

As a check, make sure that BurauMatrix(4,[2,3,2,-3,-2,-3]) returns the

4 by 4 identity matrix.

c) Write a program BurauMatrixEval(n,L,s), where s is a complex number,

which returns BurauMatrix(n,L) evaluated at t = s. For example,

BurauMatrixEval(4,[1,2,-3],-1+I) should give









2 − i −1 + 3i 0 −2i
1 0 0 0
0 1 0 0
0 0 −(1 + i)/2 (3 + i)/2









,

which is what you get when you put t = −1 + i in BurauMatrix(4,[1,2,-3]).

d) Write a program BurauMatrixMaxAbsEigenvalue(n,L,s) which returns the ab-

solute value of the eigenvalue of BurauMatrixEval(n,L,s) which has largest

absolute value. (That is: the eigenvalues of this matrix are complex numbers.

Take the absolute values of each of those numbers, and return the biggest.)

Note that you should calculate the eigenvalues numerically (i.e. using evalf),

since it isn’t possible to compute them symbolically when n is large. Check that

BurauMatrixMaxAbsEigenvalue(4,[1,2,-3],-1+I) gives 2.2754, which is the

size of the eigenvalue 2.1428 + 0.7655i of the matrix in c).

e) Write a program BurauPlot(n,L) which plots a graph of

BurauMatrixMaxAbsEigenvalue(n,L,e2πix) as x goes from 0 to 1. For example,

BurauPlot(4,[1,2,-3]) should produce the graph of Figure 2.

f) Write a program RandomBurau(n, length) which calls BurauPlot(n,L), where

L is a random list with length elements (each between −(n − 1) and (n − 1)).

Try RandomBurau(10,30);.

Background

(For anyone interested with some knowledge of group and representation theory.)

For n ≥ 3, the n-braid group Bn is generated by the n − 1 elements σ1, . . . , σn−1,

with relations σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 2, and σiσj = σjσi when-

ever i and j are more than 1 apart (its elements can be thought of as braids with

n strings). The Burau representation R is a representation of Bn in the space of

invertible n by n matrices whose entries are polynomials in t and 1/t. In the above,

BurauMatrix(4,[1,2,-3]) is R(σ1σ2σ
−1
3

). This exercise is motivated by an ongoing

research project: the maximum values attained by the plots are lower bounds for the

topological entropy of the braids concerned.

5



Figure 2: BurauPlot(4,[1,2,-3])

Exercise 5: The Logistic map

In this exercise, I’ve deliberately not given any guidance about the Maple methods

to be used, but just set a problem to be answered using Maple. Any approach which

gives the right answers is acceptable, but you’ll probably find it easier if you write

some procedures rather than just typing commands into your worksheet.

For each r between 0 and 4, the logistic map fr : [0, 1] → [0, 1] is defined by

fr(x) = rx(1 − x). The second iterate f2
r is defined by

f2
r (x) = fr(fr(x)) = rfr(x)(1 − fr(x)) = r(rx(1 − x))(1 − rx(1 − x))

= −r3x4 + 2r3x3 − (r3 + r2)x2 + r2x.

Similarly f3
r (x) = fr(fr(fr(x))), f4

r (x) = fr(fr(fr(fr(x)))), and so on.

a) x∗ is a period 3 point of fr if f3
r (x∗) = x∗, but fr(x

∗) 6= x∗. Find the period 3

points of f3.5 and of f3.9 (floating point, not exact).

Given (this isn’t obvious) that there is some value r0 such that fr has no period

3 points for any r < r0, but has period 3 points for all r > r0, find r0 to 6

decimal places.

b) A period 3 point x∗ of fr is stable if

−1 <
df3

r

dx
(x∗) < 1.

Given (this isn’t obvious) that there is a value r1 such that fr has stable period

3 points for all r0 < r < r1, but not for any r > r1, find r1 to 6 decimal places.

6


	Introduction
	1. Russian multiplication
	2. Cornacchia's algorithm
	3. The Hailstone iteration
	4. The Burau representation
	5. The Logistic map

