
MATH549 Exercise Sheet 4

Deadline for submission: Monday 27th October
Please try to do as much of this sheet as you can before the tutorial

1 Introduction

This first sheet on Maple works in much the same way as the LATEX sheets – you
should work through the steps sequentially, ending up with a file to email to me by
the deadline above.

Maple is an extensive program, and it isn’t possible to cover all of its features in
these sheets. The same is true of LATEX, but at least with LATEX there’s a “common
core” of features which can be taught in an introductory course, and which are enough
to typeset most documents. With Maple, the particular features you are likely to need
depend very much on your field of study.

One of the most important skills to learn is therefore how to use Maple’s help sys-
tem effectively. The Maple sheets are designed with this in mind. Much of this sheet
is taken up with sequences of Maple commands for you to type in. Please don’t just
type them in and go on to the next section: look up the commands in the
help system, study the additional examples given there, and experiment
with other uses of the commands. Only by doing this will you learn to use
Maple well. When it comes to the exercises, some of them just require you to do
things which are similar to what you’ve already seen, but others require you to search
the help system to find relevant commands.

There are hints for some of the harder exercises on the module webpage. Please
don’t turn to the hints until you’ve spent some time attempting the exer-
cises without them. Remember that there is no credit given for your solutions to
these problem sheets, and you’ll learn Maple better if you do the exercises without
help.

2 A Brief Tour of Some Maple Commands

The aim of this section is to give you an idea of some of the things that Maple can
do. Please don’t just type in exactly the commands which you find on this sheet:
experiment with them, looking them up in the online help system if necessary.

2.1 Using Maple as a calculator

Start up the “Maple 11 Classic Worksheet” as you did in Sheet 3. Please make sure
you’re using the Classic Worksheet version (with an orange icon), rather than the
version with a red icon. Type the following in the Maple window (don’t type the > at
the beginning of each line – this is the prompt which Maple gives you – but do type
the semicolon at the end of each line).

1

>1+1;
>2^5;
>2^1000;
>factorial(500);
>2/3+1/4;
>2.0/3+1/4;
>Pi^2;
>evalf(Pi^2);
>evalf(Pi^2,1000);

Note that Maple works with exact arithmetic (using integers and fractions) wher-
ever possible. However, if you give it floating point numbers as input (for example,
2.0 rather than 2), then it will produce (approximate) floating point results, to as
many decimal digits as you require. The evalf command produces a floating point
approximation.

>?evalf;

Browse through the help entry for evalf, clicking on some of the links within the
help topic. Note in particular the Examples section: often looking at such examples
is the quickest way to understand how a command works. I encourage you to look at
the help pages for each command which you use in this Brief Tour (and afterwards),
and to experiment as much as possible with each command. Note that you can also
get help on a command by putting your cursor anywhere within the command in your
worksheet and hitting F1.

Return to your Maple worksheet by selecting Untitled (1) from the Window

menu (or close the help page by typing CTRL-F4: this is a good idea as otherwise
you’ll find you soon have 25 help pages open). Save your worksheet with a filename
such as test. You should do all your experimentation in this worksheet, which you
won’t submit to me: you’ll do the exercises which come later in a separate worksheet,
which is what you’ll submit.

>sin(Pi/4);
>sin(1);
>evalf(sin(1));
>arcsin(1/2);
>arcsin(2);
>evalf(arcsin(2));
>evalc(arcsin(2));
>5/16<8/27;
>evalb(5/16<8/27);
>ifactor(243290200817664);
>isprime(243290200817664);

>nextprime(243290200817664);

>isprime(243290200817737);

2

2.2 Variables

The following lines show how you can assign values to variables:

>a:=7; # set the variable a equal to 7
>a; # show the value of variable a
>b:=a*5;
>a:=a^2: # note the colon, which suppresses output.
>a;
>a*b;
>restart;
>a;

is the comment symbol in Maple, which works just like % in LATEX. There’s no
need for you to type these comments: I put them in when there’s something I want
you to notice about the examples. The restart command clears all variables, as if
you’d restarted Maple.

2.3 Working with functions

>f:=(x+1)^6 + (x-1)^6;
>g:=expand(f);

>factor(f);
>factor(g);

>eval(f,x=0);

>h:=diff(f,x); # The derivative of f with respect to x.

>k:=subs(x=t,h);
>int(h,x); # indefinite integral w.r.t. x

>int(h,x=-1..0); # definite integral

>ComplicatedFunc:=sin(x^2)*exp(-3*cos(x^3)+log(x^2+1))/(1+exp(x));
>complicatedfunc;
>ComplicatedFunc; # Maple is case-sensitive

>simplify(ComplicatedFunc);

>eval(ComplicatedFunc,x=0);

>eval(ComplicatedFunc,x=2);

>yikes:=diff(ComplicatedFunc,x);

>latex(yikes);

>int(ComplicatedFunc,x=0..1); # Even Maple can’t do impossible things

>evalf(int(ComplicatedFunc,x=0..1)); # But it can approximate them

>TS:=series(ComplicatedFunc,x,10); # Taylor series about x=0 up to term in x^9

>poly:=convert(TS, polynom); # What does this do?

>coeff(poly,x,7);

The next few lines illustrate an alternative way of defining and working with
functions. Note carefully the difference between what we’re doing here and what we
did above.

>restart;
>f:=x -> (x+1)^6 + (x-1)^6;

3

>f(0);
>f(5);
>f(t);
>g:=D(f);

>g(t);

>int(g(x),x);

>int(g(x),x=-1..0);

The second approach is generally better for all but the simplest purposes. When
you write f := x -> x^2 you’re really defining a function, and Maple will treat it
as such; on the other hand, when you write f := x^2, Maple will just insert x^2 in
place of every f that it sees. The following is a simple example of what can go wrong
with this approach if you’re not careful:

>f:=x^2+3*x-2;
> # you type in lots of stuff, and after a while go...
>x:=3;
>f; # Oops

The input to a function doesn’t have to be a number. For example, it could be
another function: in the following, F is a function which returns the coefficient of x7 in
the Taylor series expansion about x = 0 of its input (in fact there’s a Maple function
coeftayl which does this).

>restart;
>F:=f->coeff(convert(series(f(x),x,8),polynom),x,7);

>F(sin);
>ComplicatedFunc:= x->sin(x^2)*exp(-3*cos(x^3)+log(x^2+1))/(1+exp(x));

>F(ComplicatedFunc);

Here are some examples with functions of two or more variables:

>restart;
>f:=(x+1)^3+3*x^2*(x+2*y)^3+y^3;

>expand(f);

>collect(f,x);
>collect(f,y);

>eval(f,[x=1,y=-1]);

>diff(f,x,y); # d^2f/dxdy

>diff(f,x,x,y); # d^3f/dxdxdy

>g:=(x,y,z)->x*exp(y)*cos(z)+sin(z)/exp(y);

>g(2,1,Pi);

>diff(g(x,y,z),y,z,z);

>D[2,3,3](g);

>H:=(f,n)->coeff(convert(series(f(x),x,n+1),polynom),x,n);

>H(exp,4);

4

2.4 Features of the Maple worksheet.

a) Try right-clicking on some of the blue output lines in your worksheet. Experi-
ment with the options in the pop-up menu, and notice how these options differ
for different types of output (e.g. numbers, functions). As you work through
the exercise sheet, get into the habit of right-clicking new types of output that
you come across (e.g. matrices, lists, sets) to see what options are available.

b) A command in the Maple worksheet is executed when you put your cursor on it
and press ENTER. It is not executed simply by virtue of being in your worksheet.
As a result, commands in the worksheet are executed in the order in which
you’ve pressed ENTER on them, not necessarily the order in which they appear.
For example, suppose that you spend several hours working on your favourite
polynomial, f:=x^3-x^2+x-1;. You save your worksheet and go to bed, start-
ing on it again early next morning. You open the worksheet, go to the bottom,
and type diff(f,x);. Maple gives the answer 0: this is because you haven’t
executed the commands in the worksheet since you opened it. You can either
go through pressing ENTER on each command, or choose Execute->Worksheet

from the Edit menu.
A useful shortcut in Maple is to type % to mean “the result of the last com-
mand executed”. Thus, for example, having typed int(1/x^2,x); you can type
eval(%,x=2); to evaluate the answer at x = 2. Note, though, that it does not
mean “the result of the command immediately above me in the worksheet”.
Using % carelessly can lead to errors which are quite difficult to track down. It’s
almost always better to assign the results of your commands to names, which
can then be used later.

c) If you want to insert some command in the middle of your worksheet, you can
type CTRL-J or CTRL-K, which put a new > prompt just after or just before the
line your cursor is on.

d) If you type CTRL-T, then Maple switches to text mode, in which you can type
headings, explanatory comments, and so on. When you’re in text mode, a tool
bar appears with drop-down boxes to choose fonts etc. Type CTRL-M to switch
back to maths mode. You could experiment with some of the other commands
in the Insert menu too.

e) The black “square brackets” which appear on the left hand side of your work-
sheet denote execution groups. When you press ENTER while your cursor is
anywhere in an execution group, the whole group is executed.

To put several commands into one execution group, press SHIFT-ENTER rather
than just ENTER between the commands. As a simple example, try entering the
following, with SHIFT-ENTER between each pair of lines:

>x:=7:
y:=3:
x*y;

Notice how the “square bracket” encloses all three lines. If you now go back and
change the second line to y:=12: and press ENTER, you can see that the whole

5

execution group is executed. This can be a very useful technique.

You can break up an execution group by putting the cursor at the beginning
of the line where you want to split it and hitting F3; and you can join sev-
eral existing commands into a single execution group by selecting them all and
hitting F4.

2.5 Solving equations and plotting

>restart;
>f:=x^5+3*x^4-10*x^2-16*x-8;
>solve(f=0,x);
>solve(f>0,x);
>plot(f,x=-3..2.5); # explains the output of the previous line

>g:=x^3+4*x^2-2*x-1;

>solve(g=0,x); # Maple can solve, complicated answer

>fsolve(g=0,x);

>h:=x^4-3*x^3+1;
>solve(h=0,x); # Maple can’t solve

>fsolve(h=0,x);
>plot(h,x=-infinity..infinity); # main features of graph

>solve(sin(x)=2*cos(2*x),x);
>evalf(%);
>plot([sin(x),2*cos(2*x)],x=-Pi..Pi); # compare with output of previous lines

>solutions:=solve({x^2+y^2=1,x*y=1/2},{x,y});

>allvalues(solutions);
>with(plots): # See section 3

>implicitplot([x^2+y^2=1,x*y=1/2],x=-2..2,y=-2..2,color=[red,blue]);

2.6 Exercises

Start a new Maple worksheet and save it as yourname4. Go to text mode and put
your name at the top, followed by Exercise 2.6a) on a new line, then revert to
maths mode. As you work through the exercises in this and later sections, start each
exercise with the exercise number in this way, and also use text mode to insert any
relevant comments on what you’re doing. If you get stuck, remember there are some
hints on the module webpage.

a) Find the smallest prime number which is bigger than 10,000,000.

b) Put Exercise 2.6b) at the start of a new line. Enter the function

f(x) =
ex sin(2x)

x2 + 1

using the notation f := exp(x)*. . . Find f(1) to 20 decimal places. Find df
dx ,

and get Maple to produce the LATEX code necessary to insert the result in a

6

LATEX document. Plot both f(x) and its Taylor series expansion about x = 0

up to the term in x10, using the range −1 ≤ x ≤ 1 (put both graphs on the
same axes). Now repeat this exercise using instead the notation f := x ->

exp(x)*. . .

c) Look up the help on the dsolve command, and use it to solve the differential
equation

d2y

dx2
+ y = 0 y(0) = 1, y(

π

2
) = 0.

Similarly, solve
dy

dx
= (x− 1)y + 1 y(0) = 1,

and plot the solution y(x) in the range −2 ≤ x ≤ 2.

d) Type ?index[functions] to get a list of all Maple functions. Browse through
the list and pick out any three that look interesting to you. Look at the help
information on them, and write a command using each one with a short expla-
nation of what the command is doing. For example, you could write:

The following sets a to be the greatest integer less than or equal to 15/7.
a := floor(15/7);

(Try to make your examples as interesting as you can, and certainly not just
copies of examples in the Maple help system.)

3 Packages

Save your file yourname4, and go back to the file test to work through the following
commands.

Additional functions are contained in Maple’s packages. To get a list of all the
available packages, type ?index[packages];. If you want help on, for example,
LinearAlgebra, the Linear Algebra package, you can either click on the link to it
from this list or type ?LinearAlgebra;.

You can load up the package, so making its commands available, by typing

>with(LinearAlgebra);

(end with a colon instead of a semicolon if you don’t want to see a list of all the
new functions which are available).

7

3.1 Using the LinearAlgebra package

Try out the following lines and spend some time looking at the help for various
functions in LinearAlgebra.

>with(LinearAlgebra):

>M:=<<2,1,0,1>|<1,2,0,0>|<2,1,-3,1>|<1,1,1,0>>;
>N:=Matrix([[2,1,3],[1,3,2],[2,1,1]]); # Alternative method
>Determinant(M);
>Id:=IdentityMatrix(4); # Why not I:=IdentityMatrix(4);?
>M+Id;
>M.Id;
>P:=M-t*Id;
>Determinant(P);
>CharacteristicPolynomial(M,t);

>C:=Column(Id,2);
>M.C;
>SubMatrix(M,[2..3],[2..4]);

Incidentally, with long command names like CharacteristicPolynomial, Maple’s
command completion is useful. Try typing Char followed by CTRL-SPACE, then Pol

followed by CTRL-SPACE. A word of explanation is in order concerning the two different
notations for multiplication: why do we write t*Id, but M.Id and M.C? The answer
is that, in Maple, commutative multiplication is denoted *, while non-commutative
multiplication is denoted with a dot. And you know that matrix multiplication is
non-commutative, don’t you?

3.2 Exercises

It’s probably a good idea to type restart; in your worksheet yourname4 before
starting each new set of exercises. Remember that you need to load LinearAlgebra

before starting to work with matrices.

a) Let A be the matrix

(
1 2
3 4

)
and B be the matrix

(
1 2
2 4

)
. Use Maple

to multiply A and B together, find the eigenvalues and eigenvectors of each
(include some text which interprets the answers that Maple gives here), and
invert each of them (what answer does Maple give when you try to invert B?).

Use Maple to multiply the matrices

 a b c
d e f
g h i

 and

 j k l
m n p
q r s

. What is

the determinant of the result? Factorize your answer.

b) Load the numtheory package. Enter the commands divisors(28);, tau(28);,
and sigma(28);, adding a line to explain what each command is doing.

8

4 Lists, Sets, Loops, and Conditionals

Starting in sheet 5, you’ll be learning about programming in Maple. The topics treated
in this section, while they may not immediately seem as relevant as those treated so
far, are going to be very important.

4.1 Lists

A list is, well, a list: any list of any valid Maple objects. You enter a list by putting it
in square brackets, separating the different elements with commas. Try the following
commands, which do things such as finding the length of a list, extracting elements
of lists, concatenating lists, and so on. (Remember to return to the worksheet test

to try out these lines.)

>list1:=[2,4,6,8];
>list2:=[-3,-7,15];
>nops(list1);

>op(list1); # ‘‘removes square brackets’’

>list1[2];
>list1[3];
>list1[-1];
>list1[-2];
>list1[2..4];
>list1[5];
>op(2..4,list1);

>list3:=[0,op(list1),10];

>list4:=[op(list1), op(list2)];

>list5:=[op(1..3,list4),-100,op(4..nops(list4),list4)];

>list6:=[egg,f,list3,x->x^2];

>list6[4];
>list6[4](3);

Two useful commands are seq, which you can use to generate a list following some
regular pattern; and map, which you can use to apply a function to every element of
a list.

>list1:=[seq(i,i=0..20)]; # or you could write list1:=[$0..20];

>list2:=[seq(sin(Pi/i),i=1..6)]; # or list2:=[sin(Pi/i) $ i=1..6];

>list3:=[seq(i^2+1,i=0..10)]; # or list3:=[i^2+1 $ i=0..10];

>map(factorial,list1);

>map(evalf,list2);

>map(x->x^2,list1);

>map(isprime,list3);

Following on from the last example, you can use the commands select and remove

to find all elements of a list which do or don’t satisfy some predicate (a predicate is a
function, like isprime, which returns one of the boolean values true or false).

>list1:=[$0..100]:
>select(isprime,list1);

9

>list2:=remove(isprime,list1);

>with(numtheory):

>MyPredicate := n-> tau(n)=8; # returns true if n has exactly 8 divisors

>select(MyPredicate,list1);

4.2 Sets

A set is like a list, except that

• It can only contain one copy of each element, and

• Maple keeps its elements in an order of its choosing, rather than the order you
enter them.

>set1:={2,4,6,5,4,3,2,1};
>set2:={seq(i^2,i=1..3)};

>{op(set1),op(set2)};

>[op(set1),op(set2)];
>set1 intersect set2;
>member(5,set1);
>member(5,set2);

4.3 Loops

In the following examples, the code for each example is spread over several lines (to
make its structure clearer). Each example begins with the > prompt. When entering
such examples, press SHIFT-ENTER rather than just ENTER at the end of each line
but the last, to avoid Maple complaining about ‘‘premature end of input”. (The
indentation in these examples makes no difference to Maple, but it makes them easier
for a human to read.)

>for i from 3 to 9 do
print(i);

end do;

>for i from 21 to 32 by 2 do

print (i); print(factorial(i));
end do;

>for i from 2 to 5 do
for j from 2 to 5 do

print(i,j,i*j);
end do;

end do;

>for i from 2 to 5 do
for j from i to 5 do

print(i,j,i*j);
end do;

end do;

10

>list1:=[2,3,5,7,11];
>for i in list1 do

print(2*i);
end do;

>ProductSoFar:=1:
SumSoFar:=0:
for i from 1 to 10 do

ProductSoFar:=ProductSoFar*i;
SumSoFar:=SumSoFar+i;

end do: # Try replacing this : with ;
ProductSoFar;
SumSoFar;

>i:=1:
while i<1000 do

print(i);
i:=2*i;

end do:

4.4 Conditionals (if . . . then . . . else)

Try the following. Note that elif means “else if”, that <= means ≤, and that <>

means 6=.

>for i from 0 to 10 do
print(i);
if i>5 then

print("i is greater than 5");
end if;

end do;
>for i from 0 to 10 do

print(i);
if i mod 2 = 0 then

print("i is even");
else

print("i is odd");
end if;

end do;

(Similarly, wrap each of the following examples in
for i from 0 to 10 do print(i); ... end do;)

if i<>3 and isprime(i) then

print("i is prime and isn’t 3");
end if;

if i<4 or not isprime(i) then

print("i is small or not prime");
end if;

if i<4 then

11

print("i is small");
elif i<=7 then

print("i is medium-sized");
else

print("i is big");
end if;

4.5 Exercises

Some of these exercises are quite hard. Remember the hints on the module webpage.

a) Make two lists, one containing the values i2 + 2i + 3 for 1 ≤ i ≤ 10, and the

other containing the (floating point) values i
i2+1

for 3 ≤ i ≤ 8. Use op to obtain

a new list by putting the values in the second list at the end of the first, adding
the value −13 at the front.

b) Set list1 be any list of integers that you choose, provided that it contains both
positive and negative values. Write a for statement which computes the sum
of the elements of list1. Write another for statement (involving if) which
computes the sum of the positive elements of list1.

c) Set list2 to be any list of the same length as list1. Write a for statement
which creates a new list list3 which interleaves the elements of list1 and
list2: that is,
[list1[1], list2[1], list1[2], list2[2], ...]

d) Write a line of text in your file explaining what the following does:

>old:=2:
new:=3;
while new-old<100 do

old:=new;
new:=nextprime(new);

end do:
old;
new;

e) A perfect number is one which is the sum of its proper divisors. For example,
6 is perfect since it has divisors 1, 2, 3 (and 6), and 1 + 2 + 3 = 6. The next
perfect number is 28 = 1 + 2 + 4 + 7 + 14. Write a predicate IsPerfect, and
use it to find the two other perfect numbers which are less than 10000.

5 Submission

Send me an email (t.hall@liv.ac.uk), attaching your Maple worksheet yourname4.
Please tidy it up before sending it, and make sure that is only contains solutions to
the exercises, not any other test commands you may have typed.

A Lists and Arrays

If you use lists a lot, you’ll sooner or later come across the following error message:

12

Error, assigning to a long list, please use arrays.

This happens if you have a list with more than 100 elements, and you try to change
one of them:

>list1:=[seq(i,i=1..101)]:

>list1[1]:=2; # Maple complains about this.

The reason for this is that, because of the way Maple stores lists in the computer
memory, every time you change an element the whole list needs to be copied within
memory. For a long list this can obviously be very time-consuming.

The solution, as the error message suggests, is to use an Array instead of a list.
Changing elements of an Array is efficient: in addition, an Array can be multi-
dimensional, and its indices can cover any range rather than always starting at 1.
The disadvantage is that you have to specify the size (or at least the maximum size)
of an Array when you create it, and afterwards you can’t make it grow or shrink.

My advice, at least initially, is to use lists when you can, and Arrays when you
have to — probably for one of the following reasons:

• You want to modify elements of a long list.

• You need more than one dimension.

• Your program runs too slowly using lists.

It’s probably best to ignore the rest of this appendix, but to remember that it’s here
if you start to have problems with lists.

To make things even more complicated, there is also something called an array.
An array is the old-fashioned version of an Array, which you’re advised not to use
any more. . .

Before looking at some examples of how to use Arrays, note that you can convert
between lists and Arrays. Thus if you really want to do what Maple wouldn’t let
you do above, you can type

>list1:=[seq(i,i=1..101)]:

>Array1:=Array(list1); # convert the list to an Array

>Array1[1]:=2; # now we’re allowed to modify an element

>list1:=convert(Array1,list); # convert the array back to a list

Of course, this is very wicked: you’re deliberately doing what Maple advised you
not to. Don’t expect it to be efficient. But if your program runs as fast as you need
it to, then what do you care?

Here are some examples of the use of Arrays.

>A:=Array(1..20); # A is an array with room for 20 elements

>for i from 1 to 10 do A[i]:=i^2; end do: # We just assign to the first 10

>ArrayElems(A); # Here are the elements of A. "(5)=25" means A[5] is 25

>A[15]:=-11;
>ArrayElems(A); # notice that A[11] to A[14] still don’t have any value.

>for i from 11 to 20 do A[i]:=-i; end do: # assign to everything else

13

>ArrayElems(A);

>A[21]:=15; # Maple doesn’t like this.

>B:=Array([seq(i^2,i=1..10)]); # Makes list and converts to array

>C:=Array(-3..1); # C has room for 5 elements, labelled C[-3] through to C[1]

>for i from -3 to 1 do C[i]:=2^i; end do:
>ArrayElems(C);

>E:=Array(1..3,1..4); # A two-dimensional array.

>for i from 1 to 3 do for j from 1 to 4 do E[i,j]:=x^i*y^j; end do; end do:

>ArrayElems(E);

>print(E);

>F:=Array(-1..1,-1..1,-1..1); # A three-dimensional array.
>for i from -1 to 1 do for j from -1 to 1 do for k from -1 to 1 do

F[i,j,k] := x^i*y^j*z^k;
end do; end do; end do:
>ArrayElems(F);

>print(F); # Try double clicking on the output.

>map(x->x^3,F); # Double click on the output.

14

	1 Introduction
	2 A Brief Tour of Some Maple Commands
	2.1 Using Maple as a calculator
	2.2 Variables
	2.3 Working with functions
	2.4 Features of the Maple worksheet.
	2.5 Solving equations and plotting
	2.6 Exercises

	3 Packages
	3.1 Using the LinearAlgebra package
	3.2 Exercises

	4 Lists, Sets, Loops, and Conditionals
	4.1 Lists
	4.2 Sets
	4.3 Loops
	4.4 Conditionals (if … then … else)
	4.5 Exercises

	5 Submission
	A Lists and Arrays

