LATEX Exercise Sheet 3

Toby Hall

1 Packages

Here are some properties of a pseudo-Anosov homeomorphism $f: M \to M$:

- (pA 1) The stable and unstable foliations of f are unique up to multiplication of the measures by positive constants.
- (pA 2) $h(f) = \log \lambda$.
- (pA 3) If M has genus g, and n_p is the number of singular points and boundary components at which the invariant foliations of f have p prongs, then

$$\sum_{p=1}^{\infty} n_p(2-p) = 4(1-g).$$

(pA 4) The periodic points of f are dense in M.

$$\int_{C} f(z) dz = 2\pi i \sum_{\text{poles } z} R_{z}.$$

$$H^{p}(X) \times H_{p+q}(X, \widehat{A}) \xrightarrow{\cap} H_{q}(X, \widehat{A})$$

$$\downarrow^{\partial} \qquad \qquad \downarrow^{\partial}$$

$$H^{p}(X) \times H_{p+q-1}(\widehat{A}) \xrightarrow{\cap} H_{q-1}(\widehat{A})$$

2 Graphics

Figure 1 is my first example.

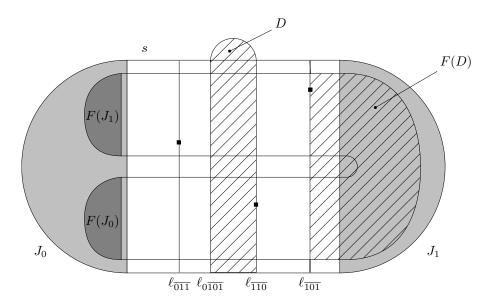


Figure 1: A 1-pruning disk in the horseshoe

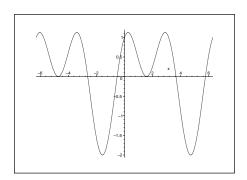


Figure 2: The graph of $y = \sin x + \cos 2x$

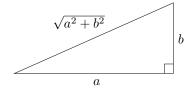
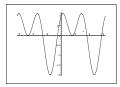
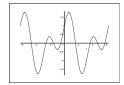


Figure 3: Pythagoras's theorem





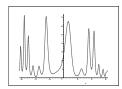


Figure 4: $\sin x + \cos 2x$ Figure 5: $\sin 2x + \cos x$ Figure 6: $e^{\sin 2x + \cos x^2}$

3 The End

Theorem 3.1 (Artin, 1925) The group $\pi_1 B_{0,n}$ admits a presentation with generators $\sigma_1, \ldots, \sigma_{n-1}$ and defining relations:

$$\sigma_i \sigma_j = \sigma_j \sigma_i \qquad |i - j| \ge 2$$

 $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \qquad 1 \le i \le n-2.$

Proof. (The proof given here is due to Fadell and Van Buskirk, 1962). Let B_n be the abstract group with the presentation of Theorem 3.1. Until we have established the isomorphism between B_n and $\pi_1 B_{0,n}$ we will use the symbols $\tilde{\sigma}_1, \ldots, \tilde{\sigma}_{n-1}$ for elements of $\pi_1 B_{0,n}$, with $i: B_n \to \pi_1 B_{0,n}$ defined by $i(\sigma_i) = \tilde{\sigma}_i$ for $1 \le i \le n-1$. The elements $\tilde{\sigma}_i$ have already been defined pictorially: we now give an equivalent definition which is more precise. Recall the covering projection $p: F_{0,n} \to B_{0,n}$. Choose the point $p((1,0),\ldots,(n,0)) = \tilde{z}^0$ as base point for the group $\pi_1 B_{0,n}$. Lift loops based at \tilde{z}^0 in $B_{0,n}$ to paths in $F_{0,n}$ with initial point $((1,0),\ldots,(n,0))$. Then the generator $\tilde{\sigma}_i \in \pi_1 B_{0,n}$ is represented by the path $\mathcal{F}(t)$ in $F_{0,n}$ given by

$$\mathcal{F}(t) = ((1,0), \dots, (i-1,0), \mathcal{F}_i(t), \mathcal{F}_{i+1}(t), (i+2,0), \dots, (n,0)),$$

where $\mathcal{F}_i(t) = (i + t, -\sqrt{t - t^2})$ and $\mathcal{F}_{i+1}(t) = (i + 1 - t, \sqrt{t - t^2})$. That is, $\mathcal{F}(t)$ is constant on all but the *i*th and i + 1st strings, and interchanges those two in a nice way.

The proof of Theorem 3.1 will be by induction on n, and will exploit the relationship already developed between $\pi_1 B_{0,n}$ and $\pi_1 F_{0,n}$. Let

$$\tilde{\nu} \colon \pi_1\left(B_{0,n}, \tilde{z}^0\right) \to \Sigma_n$$

be defined as follows: Let $\tilde{\alpha} \in \pi_1 B_{0,n}$ be represented by a loop

$$\tilde{g}: (I, \{0, 1\}) \rightarrow (B_{0,n}, \tilde{z}^0)$$

and let $g = (g_1, \ldots, g_n) : (I, \{0\}) \to (F_{0,n}, z^0)$ be the unique lift of \tilde{g} . Define

$$\tilde{\nu}(\alpha) = \begin{pmatrix} g_1(0), \dots, g_n(0) \\ g_1(1), \dots, g_n(1) \end{pmatrix} \in \Sigma_n.$$

The kernel of the homomorphism $\tilde{\nu}$ is the pure braid group $\pi_1 F_{0,n}$. Corresponding to the homomorphism $\tilde{\nu}$ is the homomorphism

$$\nu \colon B_n \to \Sigma_n$$

from the abstract group B_n to the symmetric group Σ_n on n letters defined by

$$\nu(\sigma_i) = (i, i+1)$$
 $1 \le i \le n-1$.

Let $P_n = \ker \nu$. The proof can be completed as a consequence of the following lemma:

Lemma 3.2 The homomorphism $i: B_n \to \pi_1 B_{0,n}$ is an isomorphism onto if $i|_{P_n}$ is an isomorphism onto $\pi_1 F_{0,n}$.

Proof. (Lemma 3.2). The homomorphism ν is clearly surjective, since the transpositions $\{\nu(\sigma_i)\}$ generate Σ_n . Hence we have a commutative diagram

with exact rows. Applying the Five Lemma, we obtain the desired result. This completes the proof of Lemma 3.2.

Theorem 3.1 now follows.