LATEX Exercise Sheet 2

Toby Hall

1 Brackets and Arrays

$$\left(\frac{1+\left.\frac{\partial f}{\partial y}\right|_{(0,0)}}{1-\left.\frac{\partial f}{\partial x}\right|_{(0,0)}}\right)^{2}.$$

$$\left(\begin{array}{cc} 2-\lambda & 1\\ 1 & 2-\lambda \end{array}\right)$$

$$\left(\begin{array}{cc} 2-\lambda & 1\\ 1 & 2-\lambda \end{array}\right)$$

$$\left(\begin{array}{cc} 2-\lambda & 1\\ 1 & 2-\lambda \end{array}\right)$$

$$\Theta(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0. \end{cases}$$

Lemma 1.1 Homotopy is a congruence on the category Top.

2 Environments

Let $f: M \to M$ be a homeomorphism. Then the following are equivalent:

- 1. f has a fine sequence of filtrations.
- 2. f does not have any C^0 Ω -explosions.
- 3. $\Omega(f) = R(f)$.

$$\gamma_1(n) = T_1^n(x_1) - \sum_{j=1}^n T_1^{n-j}(v_1(j)). \tag{1}$$

I'm using \verb.

$$d[\varphi(x), \varphi(x')] = d[\theta(x, \varphi(x)), \theta(x', \varphi(x'))]$$

$$\leq d[\theta(x, \varphi(x)), \theta(x', \varphi(x))] + d[\theta(x', \varphi(x)), \theta(x', \varphi(x'))]$$

P	c_P	π_P	Type	$\rho(P)$	r(P)
	10110	(13425)	fo	$\{2/5\}$	1/2
$ s_5^2 $	10010	(12435)	pA	[1/3, 1/2]	1/3
s_{5}^{3}	10001	(12345)	fo	$\{1/5\}$	1/2

3 All things new

Let $f: G \to G$ be a homomorphism.

$$\left|\begin{array}{cc} 2-\lambda & -1\\ 3 & 1-\lambda \end{array}\right| = \lambda^2 - 3\lambda + 5.$$

Definition

An *irrational number* is a real number which isn't rational.

Theorem 3.1 The orbit bijects with the cosets of the stabilizer.

Aside 1 I didn't write this, you know.

Theorem 3.2 (Cayley-Hamilton) Every matrix satisfies its own characteristic equation.

4 Labels

Theorem 3.1 is very useful. Lemma 1.1 (on page 1) is silly. There is a mistake in equation (1). Section 2 is my favourite so far. The interested reader should consult [BM] or [BH] for further details.

References

- [BM] Bell, H. and Meyer, K. "Limit periodic functions, adding machines and solenoids." J. of Dynamics and Differential Equations 7 (1995), 409-415.
- [BH] Bestvina, M. and Handel, M. "Train tracks for surface homeomorphisms." Topology **34** (1995), 109–140.