
The Coloured Jones FunctionP. M. Melvin1 and H. R. Morton21 Department of Mathematics, Bryn Mawr College, Bryn Mawr, PA 19010, USA2 Department of Pure Mathematics, University of Liverpool, Liverpool L69 3BX, UKAppears in Commun. Math. Phys. 169 (1995), 501-520.Abstract. The invariants JK;k of a framed knot K coloured by the irreducible SU(2)q-module of dimension k are studied as a function of k by means of the universal R-matrix.It is shown that when JK;k is written as a power series in h with q = eh, the coe�cientof hd is an odd polynomial in k of degree at most 2d + 1. This coe�cient is a Vassilievinvariant of K. In the second part of the paper it is shown that as k varies, these invariantsspan a d-dimensional subspace of the space of all Vassiliev invariants of degree d for framedknots. The analogous questions for unframed knots are also studied.IntroductionA framed knot K in the 3-sphere determines an SU(2)q invariant JK;k for each positiveinteger k by using the irreducible SU(2)q-module of dimension k to `colour' the knot. Theseinvariants, sometimes called the coloured Jones invariants of K, are Laurent polynomialsin q1=4 with integer coe�cients. Setting q = eh, each coloured Jones invariant can beexpanded as a rational power seriesJK;k(h) = 1Xd=0 Jd(k)hdin the variable h. Together they form a single function of h and the colour k, the colouredJones function of K. We shall study the dependence of this function on k.Our main result, Theorem 1.6, is that the coe�cient Jd(k) of hd in the expansion ofJK;k is an odd polynomial in k of degree at most 2d+ 1. Furthermore, if K has the zeroframing then the term in k2d+1 vanishes, and so in this case Jd(k) is of degree at most2d�1. An extension to the case of framed links is given in Theorem 1.7. These results haveproved fruitful in our study with Kirby [7] of algebraic properties of the SU(2)-quantuminvariants of 3-manifolds introduced by Witten [14] and Reshetikhin-Turaev [12].In the spirit of Vassiliev's �nite type invariants, we note that for each k the coe�cientJd(k) of hd in JK;k is an invariant of K of degree d, that is of type d but not of type d� 1.By varying k we can �nd, by the result above, at most d+1 independent invariants. In factthere is always a relation among the coe�cients of the polynomial Jd, since Jd(1) = 0 ford > 0, and so Jd(k) can provide at most d independent invariants. By considering the valuesof these invariants on certain `chord diagrams' in the sense of Bar-Natan [2] (correspondingto linear combinations of knots), we show that Jd(k) does in fact determine d independentframed Vassiliev invariants of degree d (Corollary 2.4).If K has the zero framing, then Jd(k) is of degree at most 2d� 1 in k, and so providesat most d � 1 independent unframed invariants of degree d as k varies. Evidence points1



toward a much lower bound of d + 1 for the degree of Jd, and a consequent reduction tobd=2c in the number of independent invariants. We show by another explicit calculationon chord diagrams that there are in general at least this number of independent unframedinvariants of degree d arising as values of the coloured Jones function (Corollary 2.9).We conclude with a conjecture about determining the Alexander polynomial from thecoloured Jones function.x1. Calculations from the universal R-matrixThe coloured Jones invariants JK;k of a framed knot K can be calculated from a closedbraid representation of K using Drinfeld's universal R-matrix for SU(2)q [4], as describedin Reshetikhin and Turaev [11]. We shall use this approach to produce a state sum forJK;k which will be seen to reduce to a �nite sum when calculating JK;k up to terms in hd,where q = exp(h).Recall that the R-matrix is an invertible element of the topological tensor productG 
 G, where G is the deformed universal enveloping algebra Uh(su(2) 
 C). It can bewritten, following Kirby and Melvin [6], asR = 1Xn=0 sn(h)Xn 
 Y n exp( 14h(H + nI)
 (H � nI))wheresn(h) = (s� s�1)nsn=2 [n]! ; s = exp( 12h) ; [n] = sinh( 12hn)sinh( 12h) = sn � s�ns� s�1and X, Y and H are generators of G satisfying the relations[H;X] = 2X ; [H;Y ] = �2Y ; [X;Y ] = [H] = sinh(12hH)sinh(12h) :We shall also make use of the element � = exp(12hH) in G which is sometimes called theenhancement of R.As is shown below, the elements R�1 and � can all be expressed as sums of `boundeddegree' in the following sense. Any element in G
n can be written as a power series in h withcoe�cients in F
n, where F is the algebra of complex polynomials in the noncommutingvariables X, Y and H. Rearranging the terms in this series produces a sum of the formXj2J cj(h)�j1 
 � � � 
 �jnin which the �jk are monomials in X, Y and H, and the coe�cients cj(h) are complexpower series in h. The index set J may be in�nite, but we allow only �nitely many2



coe�cients cj of any given order, where the order ord (c) of a power series c(h) =P1i=0 cihiis the smallest i for which ci 6= 0. Such a sum is said to have bounded degree ifdeg (�jk) � ord (cj)for each j in J and all k = 1; : : : ; n. Equivalently, the coe�cient of hd is a linear combi-nation of tensor products of monomials of degree at most d. Observe that sums, productsand exponentials of bounded degree sums are again of bounded degree.It is clear that � = exp(hH=2) has bounded degree. Indeed� = 1Xm=0 cm(h)�mwith cm(h) = hm=(2mm!) and �m = Hm. The same is true of R�1.Proposition 1.1. The universal R-matrix for SU(2)q and its inverse can be written assums of bounded degree, R�1 =Xj2J c�j (h)��j 
 ��jwhere ��j and ��j are monomials of degree not exceeding the order of cj .Proof. Write R = P1n=0 Sn exp(Tn), where Sn = sn(h)Xn 
 Y n (for sn as above) andTn = 14h (H+nI)
(H�nI). Evidently Tn is of bounded degree, as is Sn since ord (sn) = n.Thus the product Sn exp(Tn) is a sum of bounded degree in which all the monomials whichappear are of degree at least n, and it follows that R is of bounded degree. Using theformula R�1 = (S 
 I)R where S is the antiautomorphism of G de�ned by S(H) = �H,S(X) = �sX, S(Y ) = �s�1Y (see x3.1.6 in [11]), it is not hard to show that R�1 =R�1(h) = R(�h), and so R�1 is of bounded degree as well.Remark. The index set J can be chosen explicitly to be the set of triples (n; a; b) of non-negative integers, with ��nab 
 ��nab = XnHa 
 Y nHb, andc�nab(h) = sn(�h) 1Xd=max (a;b)(�1)d+b�da��db�n2d�a�b4dd! (�h)d:This formula is not essential for what follows, although it can be useful to note that Xand Y occur in ��nab and ��nab with the same degree.Now suppose that a framed knot K has been presented as the closure of a braidB on n strings. The universal R-matrix and its inverse can be used to represent B byan automorphism Bk of the tensor product V 
nk for each irreducible G-module Vk. Inparticular, if B is written as a word in the braid generators �"i , for 1 � i < n and " = �1,then Bk is the corresponding composition of automorphisms �R"i = (PiRi)", where Pi is theinterchange of the ith and (i+ 1)st factors of V 
nk , and Ri is the action of R in the samefactors: B = �"1i1 � � ��"cic Bk = �R"1i1 � � � �R"cic :3



The invariant JK;k can then be calculated as a weighted trace of Bk, namelyJK;k = Tr (�
nBk);where � is the element exp(12hH) regarded as an endomorphism of the module Vk by theaction of H on Vk. In other words, we must compose Bk with �
� � �
� and then take theordinary trace on V 
nk , as described in [11]. (For more general quantum group invariants,an orientation is required onK; the preceeding construction is for the downward orientationthrough the braid, and a dual construction is needed for the opposite orientation. Thisdistinction disappears for SU(2)q since the modules Vk are self dual.)We next produce a states sum for JK;k. By the previous proposition, each automor-phism �R"i can be written as an in�nite linear combination Pj2J c"j �R"ij of endomorphisms�R"ij . Explicitly �R+ij maps x
 y (in the ith and (i+ 1)st factors of V 
nk ) to �+j (y)
 �+j (x)while �R�ij maps it to ��j (y) 
 ��j (x). The e�ect of this endomorphism at a crossing isillustrated (suppressing the subscript j) in Figure 1 by showing the crossing with �� onthe overcrossing string and �� on the undercrossing string.
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Figure 1This yields the state sum Bk = Pj1;:::;jc2J(c"1j1 R"1i1j1 � � � c"cjc R"cicjc); where each choice ofindices j1; : : : ; jc in J , corresponding to a choice of one term in R�1 for each of the crossingsof B, is to be thought of as a state. To obtain JK;k we must compose Bk with �
n, andso we extend the state to include a choice of non-negative integers m1; : : : ;mn specifyingone term in � = P cm�m at the top of each braid string. Thus a state S of the braid Bconsists of a choice of indices j1; : : : ; jc in J for the crossings and of non-negative integersm1; : : : ;mn for the tops of the strings. Setting cS = c"1j1 � � � c"cjc cm1 � � � cmn , we haveJK;k =XS cS Tr (BS)where BS is the endomorphism (Hm1 
 � � � 
 Hmn) (R"1i1j1 � � �R"cicjc) of V 
nk determinedby S. Observe that the coe�cient cS does not depend on the colour k, whereas theendomorphism BS does.We now show how to replace BS by a monomial MS in G, regarded as an endomor-phism of Vk, with Tr (BS) = Tr (MS). This method has been discussed by Lawrence [8]and developed in a diagrammatic form by Kau�man [5].To de�ne MS, recall that the endomorphism BS is built up from endomorphisms��j 
��j of Vk
Vk at each crossing of B, as shown in Figure 1, together with endomorphisms4



�m of Vk at the top of each string. Following Kau�man, view the monomials ��j , ��j and�m as `beads' which are free to move along the strings past the individual crossings, andmay be multiplied when they occur next to one another. Thus the endomorphism BSwill take a vector of the form x1 
 � � � 
 xn to a tensor product y1 
 � � � 
 yn of vectors,each of which is the result of operating on one of the vectors xi by the beads which it haspassed on its way from the bottom of the braid to the top. In particular, if B induces thepermutation � in the sense that the string at position i at the top of the braid is joinedto position �(i) at the bottom, then yi =  ix�(i) where  i is the product (from top tobottom) of the beads on the ith string. Now de�neMS =  1 �  �(1) � � � �n�1(1)which is just the product of all the beads on the single string K obtained by closing thebraid B. For example, in the state of the diagram for the �gure-eight knot in Figure 2,the monomial MS is �1�+2 ��3 �3��1 �+2 �+4 �2��1 ��3 �+4 .
µ

1

µ
2

µ
3

α
_

1

α
_

3

α+
2

α
+
4

β
_

1

β+
2

β
_

3

β
+
4

Figure 2Proposition 1.2. For each state S, the trace of the endomorphism BS of V 
nk is equalto the trace of the monomial MS on Vk, and soJK;k(h) =XS cS(h) Tr (MS):summed over all states. 5



Proof. Choose a basis e1; : : : ; ek for Vk and denote the associated matrix for any endo-morphism  of Vk by ( ij), so that  ej =P ijei. Then BS maps ej1 
 � � � 
 ejn to 1ej�(1) 
 � � � 
  nej�(n) = kXi1;:::;in=1 i11;j�(1)ei1 
 � � � 
  inn;j�(n)ein :and so Tr (BS) = kXj1;:::;jn=1 j11;j�(1) � � � jnn;j�(n)= kXj=1( 1 �  �(1) � � � �n�1(1))jj = Tr (MS):Each state S thus makes a contribution cS Tr (MS) to the invariant JK;k. The coe�-cient cS does not depend on the colour k, nor does the monomial MS . Dependence on karises only on taking the trace ofMS in Vk. The polynomial nature of the dependence on kwill already appear in the contribution of each individual state, and will be determined bya calculation of Tr (MS) in terms of k. Before making this calculation, we note a restrictionon the degree of MS which arises from the bounded degree of the terms in the universalR-matrix. This will eventually give the desired control on the degree of k relative to thatof h in JK;k(h).Proposition 1.3. deg (MS) � 2 ord (cS) for each state S.Proof. The coe�cient cS is the product Qci=1 c"iji Qni=1 cmi and soord (cS) = cXi=1 ord (c"iji ) + nXi=1 ord (cmi)since order is additive on products. Now each term c"j �"j 
 �"j and cm�m in the state Sis chosen from a sum of bounded degree, so deg (�"j) � ord (c"j), deg (�"j ) � ord (c"j) anddeg (�m) � ord (cm). The monomial MS is the product in some order of the monomials�"j , �"j and �m chosen by the state S and sodegMS = cXi=1 deg�"iji + cXi=1 deg �"iji + nXi=1 deg�mi� 2 cXi=1 ord (c"iji ) + nXi=1 ord (cmi) � 2 ord (cS):We now analyse the dependence on k of the trace of an arbitrary monomial M in X,Y and H, when operating on the G-module Vk.6



Proposition 1.4. Let M be a monomial in X, Y and H, and consider the trace of Mon the irreducible G-module Vk of dimension k, expanded as a power series Tr (M) =P1i=0Ml(k)hl in h. Then the coe�cient Ml(k) of hl is an odd polynomial in k of degreeat most l + deg (M) + 1.Proof. Following [6], but with slightly modi�ed notation, set m = k=2 and choose a basisfor Vk consisting of weight vectors e�m+1; e�m+2 : : : ; em with the property thatXej = [m+ j] ej+1Y ej = [m� j + 1] ej�1Hej = (2j � 1) ej ;where [n] = sinh(12hn)= sinh(12h). These relations extend to all j � m (mod 1) by settingej = 0 for j � �m and for j > m. The de�nitions given in this way of Xe�m and ofY em+1 are consistent, since [0] = 0.The monomial M can be represented diagramatically by its pro�le, consisting of asequence of rising, falling and level edges corresponding to the sequence of appearances ofX, Y and H in M , read from right to left. For example, when M = H2XY 2X3H thepro�le is
Now set d(M) = degX(M)� degY (M), which is just the �nal level of the pro�le withinitial level zero. We claim that Tr (M) = 0 if d(M) 6= 0, and otherwise that the vectorsej are eigenvectors for M on Vk with eigenvalues �j (depending on k), so thatTr (M) = mXj=�m+1�j :Indeed, it is clear from the e�ect ofX, Y andH on ej thatMej is a multiple of ej+d(M), andthe claim follows immediately. Thus we need only consider those M for which d(M) = 0.(Note that all the monomials MS de�ned from the states of a knot diagram have thisproperty, because of the balance between the degrees of X and Y in each pair �
 �.)Let us then assume that d(M) = 0, and compute the eigenvalues �j de�ned byMej =�jej . Suppose that there are p rising edges in the pro�le, starting at levels a1; : : : ; ap andq horizontal edges at levels b1; : : : ; bq. There must also be p falling edges �nishing at levelsa1; : : : ; ap, since the net change of level is d(M) = 0. Now each horizontal edge at levelb contributes 2(j + b) � 1 to �j , as H then appears at level b, to feature as Hej+b. Arising edge from level a to level a + 1 contributes [m + (j + a)], from the appearance of7



Xej+a, while a falling edge from level a+ 1 to level a contributes [m� (j + a)], from theappearance of Y ej+a+1. Thus�j = pYi=1[m+ (j + ai)][m� (j + ai)] qYi=1(2(j + bi)� 1):Now it is an easy calculus exercise to show that the coe�cient of hl in the powerseries expansion of [n] is a polynomial in n of degree at most l+ 1, and it follows that thecorresponding coe�cient �jl in the expansion�j = 1Xi=0 �jlhlis a polynomial in j and k of degree l+2p+ q = l+deg (M). In fact, �jl is even in k. Thisis immediate from the fact that [m+ (j + ai)][m� (j + ai)] is an even function of k = 2m,which follows from the identity 2 sinh(m+ n) sinh(m� n) = cosh(2m)� cosh(2n). SinceMl(k) = mXj=�m+1�jl;the proposition is a consequence of the following lemma.Lemma 1.5. Let p be a polynomial of degree d. Then the function f de�ned on integersk by f(k) = mXj=�m+1 p(j);where m = k=2, is an odd polynomial of degree d+ 1.Proof. First observe that there exists a polynomial P of degree d + 1 such that p(x) =P (x) � P (x � 1), a `discrete integral' of p. For example, for pd = xd+1 � (x � 1)d+1the polynomial Pd = xd+1 will do. But p can be written as a linear combination p =Pdn=0 anpn, since p0; : : : ; pd clearly span the space of polynomials of degree � d, and soP =Pdn=0 anPn is the desired integral.Now mXj=�m+1 p(j) = mXj=�m+1(P (j)� P (j � 1)) = P (m)� P (�m);which proves the lemma, and thus the proposition.We now give the proof of our main theorem on the dependence of the coloured SU(2)qinvariants JK;k of a framed knot K on the colour k, the dimension of the module Vk.8



Theorem 1.6. Write the coloured Jones invariant JK;k of a framed knot K as a powerseries JK;k(h) = 1Xd=0 Jd(k)hdin h, where q = exp(h). Then Jd(k) is an odd polynomial in k of degree at most 2d + 1.Furthermore, the coe�cient ad of k2d+1 in Jd(k) depends only on the framing a on K ,namely ad = ad=(4dd!).It su�ces to construct, for each d, a series JdK;k(h) which agrees with JK;k(h) upto degree d in h, and which is an odd polynomial in k of degree at most 2d + 1 withcoe�cient of k2d+1hd equal to ad=(4dd!). To accomplish this, consider the state sumJK;k(h) =PS cS(h)Tr (MS) given in Proposition 1.2. Expand each trace as a power seriesTr (MS) = P1l=0MSl(k)hl in h, and write Tr (MS)jd for the partial sum Pdl=0MSl(k)hl.Now set JdK;k(h) = XS;oS�d cS(h) Tr (MS)j(d�oS)where for convenience we write oS for ord (cS). Observe that this sum is �nite sincedS = deg (MS) � 2oS � 2d, by Proposition 1.3, and there are only �nitely many monomialsof any given degree.It is clear that JK;k(h) and JdK;k(h) agree up to degree d in h. The last propositionshows that each MSl(k) which appears in JdK;k(h) is an odd polynomial in k withdeg (MSl) � l + dS + 1 � 2d+ 1;where the last inequality follows from the inequalities l � d�oS , dS � 2oS (by Proposition1.3) and oS � d. Thus JdK;k(h) is an odd polynomial in k of degree at most 2d+ 1.It remains to compute the coe�cient ad of k2d+1hd in JdK;k(h). To get any contributionof degree 2d + 1 in k from a state S, all the inequalities above must become equalities,giving oS = d, dS = 2d and l = 0. Thusad = XS;dS=2oS=2d aSwhere aS denotes the coe�cient of k2d+1h0 in the expansion of Tr (MS). We will showthat this sum depends only on the framing a of KFirst observe that since dS = 2d for the states S in the sum, the coe�cient aS isindependent of the order of the variables in the monomial MS . Indeed, for any monomialM , write aM for the coe�cient of kdeg (M)+1h0 in the expansion of Tr (M). Now if M 0 isa reordering of M , then it follows from the commutation relations [H;X] = 2X, [H;Y ] =�2Y and [X;Y ] = [H] = H + O(h) that M = M 0 + N + O(h), where N is a sum ofmonomials of degree less that deg (M). Since N does not contribute to aM , by Proposition1.4, we have aM = aM 0 .Since dS = 2oS for the states S under consideration, it follows from the proof ofProposition 1.3 that S must select the term �0 = 1 from the sum � for each of the strings9



of the braid representing K. Now let K 0 be any knot presented as a braid with the samenumber of positive and negative crossings as K. Fix a bijection ' from the crossings of Kto the crossings of K 0, respecting sign. This induces a bijection ' between the states ofK and of K 0 which select �0 from each appearance of �, namely if S assigns �"j 
 �"j to acrossing x of K, then '(S) makes the same assignment to '(x). The coe�cients cS andc'(S) are then equal, but the monomialsMS and M'(S) are in general di�erent, because ofthe di�erent order in which the crossings appear on the two knots. These two monomialsare however the product of the same elements �"j and �"j and di�er only in the order ofthese elements. It follows from the observation above that aS = a'(S), and so ad is thesame for K and for K 0. Now it is clearly always possible to choose K 0 as the unknot withthe same framing as K, given by the sum of the signs of the crossings, and so ad dependsonly on the framing.Thus it su�ces to compute the coe�cient ad of k2d+1 for the a-framed unknot . Itis well known that J;k = sa(k2�1)=2[k](cf. x3.27 in [6]). An easy exercise shows that the power series sa(k2�1)=2 =P si(k)hi and[k] = P bi(k)hi satisfy deg (si) = 2i and deg (bi) � i + 1. It follows that adk2d+1 is theleading term in the product sd(k)b0(k). Since sd(k) = ad(k2 � 1)d=(4dd!) and b0(k) = k,we have ad = ad=(4dd!).Remark. The function JK;k(h)=[k], which is multiplicative under connected sums of knots,may be considered in place of JK;k(h). It follows from the analysis above that JK;k(h)=[k]can be written as a power series in h and k where the coe�cient of hd is an even polynomialin k of degree at most 2d. The coe�cients of k2dhd are exactly the coe�cients ad calculatedabove, and hence vanish for the zero framing when d > 0.LinksThe methods used above can be readily extended to cover the case of framed links. Let Lbe a framed link with jLj components fLig. Write JL;k for the SU(2)q invariants of L inwhich the component Li is coloured by the irreducible G-module of dimension ki, wherek = (k1; : : : ; kjLj).Theorem 1.7. Write JL;k(h) = 1Xd=0 Jd(k)hdas a power series in h, where q = exp(h). Then Jd(k) = k1 : : : kjLjPd(k), where Pd(k) is apolynomial in k of total degree at most 2d which is an even function of each variable ki.Proof. As in the case of a knot, there is a state sumJL;k(h) =XS cS(h) TrSassociated with a closed braid presentation for L. A state S is a choice for each crossing of aterm c�j (h)��j 
��j from a bounded sum for the R-matrix or its inverse, and a choice for the10



top of each braid string of a term cm(h)�m in a sum for the enhancement �. The productof the coe�cients de�nes cS(h), a power series in h of order oS . The choice of monomials��j 
 ��j and cm(h)�m de�nes an endomorphism BS of a tensor product of modules Vkionce a colouring k of L has been chosen. This is determined by colouring each braid stringwith the module chosen for its component of L. Now JL;k =PS cS(h)Tr (BS). As before,we may picture the selection of terms made by a state S as a collection of individualmonomials ��j , ��j and �m attached to the strings. Each component Li of L determines amonomialM iS, of degree diS, given by composing the monomials attached to that string inthe order in which they occur. It follows that Tr (BS) =QTr (M iS), by the same argumentwe used in the case of a knot, which gives the state sum above withTrS = jLjYi=1Tr (M iS):Proceeding as in the proof of Theorem 1.6, consider the trace of each monomial M iSon Vki as a power series Tr (M iS) = P1l=0M iSl(ki)hl. The product of these series givesan expansion P1l=0MSl(k)hl for TrS whose �nite truncation up to degree d in h will bedenoted by TrS jd. By Proposition 1.4, the coe�cients M iSl(ki) are odd polynomials in kiof degree at most l+ diS +1. Thus MSl(k) is a sum of products of odd polynomials in theki of total degree at most l+ dS + n, where dS =P diS is the total degree of S. It followsthat TrS jd = (k1 : : : kn) is a polynomial in k of total degree at most d+ dS which is an evenfunction of each ki.Now consider the state sumJdL;k(h) = XS;oS�d cS(h) TrSj(d�oS);which evidently agrees with JL;k(h) to degree d in h. The use of bounded degree sums forR� and � ensures that dS = P diS � 2oS, and so this sum is �nite. The remarks in thelast paragraph show that each TrS j(d�oS) is the product of k1 : : : kn with a polynomial ink, even in each ki, of total degree at most d � oS + dS � d + oS � 2d. Hence so is JdL;k,which completes the proof.Remark. It is interesting to note that a further restriction arises on states S in this casein that the pro�le of each individual monomial M iS must return to level zero in order forthe state to contribute anything to the sum. While the form of the R-matrix guaranteesthis for every state in the case of a knot, it is not always the case for states of a link, andmany states may thus be immediately excluded from the sum.Even for a knot K (or link) with few crossings and a small value of d, this state sumis not a practical method for calculating JK;k. It does however give theoretical boundson the information carried by JK;k for any knot, when we retain only terms up to hd, asit is evident that knowledge of the coe�cient Jd(k) for d + 1 values of k will determineJd(k) completely. We take up this theme in the next section, where we discuss the Vassilievinvariants of degree d which can arise from the coloured Jones invariants. Some calculations11



in this setting prove to be feasible using the states approach and lead to results about theindependence of the invariants Jd(k) as k varies.x2. The space of Jones invariants of degree dLet K denote the real vector space of formal linear combinations of oriented framed knotsin the 3-sphere. Any real-valued invariant of oriented framed knots can be viewed as anelement of the dual space K�. Most of the invariants considered here will be evaluationsJ(a) = eva � J of polynomial invariants J ,K J�! P eva��! R;where J is a linear map to the space P of all real polynomials, a is a real number andeva(p) = p(a). One may then consider the subspace J of K� spanned by all real evaluationsof J , and use the following standard result from linear algebra to compute its dimensionwhen J is of �nite rank. In particular dimJ = rkJ .Lemma 2.1. Let T : V ! Pn be a linear map from a vector space V into the space Pnof polynomials of degree at most n, and let T be the subspace of V � spanned by all realevaluations of T . Then dimT = rkT .Proof. For any set F of n + 1 real numbers, the evaluations evi for i 2 F generate thedual space of Pn. Indeed, any polynomial p in Pn is determined by its values on F , andso p = Pi2F p(i) pi where the pi are the unique polynomials in Pn with pi(j) = �ij forall i and j in F (explicitly pi(x) = Qj2Fni(x � j)=(i � j)). Thus for e in P�n we havee =Pi2F e(pi) evi. It follows that T = im(T �), and so dimT = rkT � = rkT .Now for each choice of d, consider the polynomial invariant Jd : K ! P whose valueon a framed knot K is the coe�cient of hd in the coloured Jones function of K, denotedJd;K (the subscript K was suppressed in the last section since we were not consideringthe knot as a variable). Our goal in this section is to study the space Jd spanned by theevaluations Jd(k) for all k, whose elements will be called framed Jones invariants of degreed. In particular, we will compute the dimension of Jd.We shall also consider the `unframed' invariants Jud = Jd � � : K ! P and theirevaluations Jud (k), where � : K ! K is the projection which changes all framings to thezero framing. In other words the value of Jud (k) on a framed knot K is the coe�cientJud;K(k) of hd in the coloured Jones invariant JuK;k(h) of the knot K with the zero framing.These invariants, which are insensitive to framings, span the space J ud of unframed Jonesinvariants of degree d.The results of the last section provide the following upper bounds on the dimensionsof Jd and J ud .Theorem 2.2 dimJ0 = dimJ u0 = 1. If d > 0 then im(Jd) � P02d+1 and im(Jud ) � P02d�1,where Pon denotes the space of odd polynomials of degree at most n with 1 as a root, andso dimJd � d and dimJ ud � d� 1. 12



Proof. The last statement of Theorem 1.6 shows that J0(k) = Ju0 (k) = k for all knots, andso J0 = J u0 is the 1-dimensional space of constant knot invariants.Now assume d > 0. In Theorem 1.6 we showed that the values of the Jones invariantsof degree d are odd polynomials of degree at most 2d + 1 in the framed case and ofdegree at most 2d � 1 in the unframed case. Furthermore JK;1 = 1 for any knot Ksince the R-matrix acts trivially on the 1-dimensional representation (cf. x4.14 in [6]),and so Jd(1) = Jud (1) = 0 for d > 0. The last statement follows from Lemma 2.1, sincedimPo2d+1 = d and dimPo2d�1 = d� 1.Remarks. (1) To obtain an explicit formula for the dependency of the invariants Jd(k) ask varies, apply the proof of Lemma 2.1 with F = P [ �P for any set P of d+ 1 positiveintegers. Since Jd is odd, this givesJd(k) =Xi2P 0@ Yj2Pni k(k2 � j2)i(i2 � j2) 1A Jd(i):Since Jd(1) = 0, we may choose P to contain 1 and obtain a sum over the d values in P n1.(2) Evidence points to the polynomials Jud having degree at most d+ 1, which wouldimply dimJ ud � bd=2c, where b c is the greatest integer function (see the conjectures atthe end of the paper).We now turn to the question of independence of the coloured Jones invariants, inquest of lower bounds for the dimensions of Jd and J ud .It is known that the framed and unframed coloured Jones functions of a knot K withframing a di�er by a phase, namely JK;k(h) = eaxhJuK;k(h) where x = (k2 � 1)=4 (see forexample x3.27 in [6]). It is instructive to expand these series to see the e�ect of the framingon the coe�cients, and also to squeeze out a little more information about the spaces Jdfor small d. First write Jud (k) = kjd(x), where j0 = 1 and jd (for d > 0) is a polynomialinvariant of unframed knots of degree < d with no constant term. One then computesJd(k) = k dXn=0 anxnn! jd�n(x)where as above a is the framing and x = (k2 � 1)=4.For example J1(k) = kax = a k(k2 � 1)=4, and so J1 is 1-dimensional, generated bythe framing. For d = 2 we have j2(x) = bx for some knot invariant b (independent of theframing), and so J2(k) = k(a2x2=2 + bx) = a2 k(k2 � 1)2=32 + b k(k2 � 1)=4. It is nothard to show that 6b = 1 � 24�, where � is the Casson invariant of +1 surgery on theknot (or equivalently � = 12�00(1) where � is the Alexander polynomial of K). Hence J2is 2-dimensional, generated by the Casson invariant and the square of the framing. Forhigher values of d, one must work a little harder to establish independence of the invariantswhich arise.In general, we will show that dimJd � d by calculating the invariants Jd for d suitablychosen linear combinations of framed knots. A similar calculation will show dimJ ud �13



bd=2c. The use of linear combinations of knots rather that single knots is a matter ofconvenience, encouraged by the behaviour of invariants such as Jd on certain alternatingsums of knots derived from Vassiliev's theory of `�nite type' invariants. For the reader'sconvenience, we now give a brief review of this theory following the excellent account ofBar-Natan [2], which should be consulted for further details.Vassiliev invariantsConsider the space K1 of linear combinations of immersed curves, that is framed im-mersions of the oriented circle in the 3-sphere with a �nite number of transverse self-intersections or nodes. Write Kd for the subspace generated by immersed curves withexactly d nodes. Thus K = K0, and K1 is the direct sum �Kd.Now any framed knot invariant V can be extended to an invariant of immersed curvesby de�ning V ( ) = V ( )� V ( )inductively on the number of nodes. This invariant on K1 can be thought of as a restrictionof the original invariant. In particular Kd can be viewed as a subspace of K for each dby identifying any immersed curve in Kd with the alternating sum of the 2d framed knotsobtained by resolving each node, and the invariant on Kd is just the restriction of V tothis subspace. Observe that these subspaces form a descending sequence, K = K0 � K1 �K2 � � � � .A real valued framed knot invariant V will be called a (framed) Vassiliev invariant oftype d if V jKj = 0 for all j > d, that is V is zero on all immersed curves with more that dnodes. The Vassiliev invariants of type d form a subspace Vd of K�, the annihilator of thesubspace Kd+1 � K, and clearly V0 � V1 � V2 � � � � . The invariants in Vd n Vd�1, that isof type d but not of type d� 1, will be said to be of degree d.Birman and Lin [3] have shown that the Jones invariants Jd(k) and Jud (k) are Vassilievinvariants of type d (in fact they are of degree d, as will be seen below), as is the coe�cientof hd in the power series expansion of any other quantum group invariant of framed knots.Thus the spaces Jd and J ud of Jones invariants of degree d are subspaces of Vd. It will beshown below that JdTVd�1 = 0, and so all non-trivial Jones invariants of degree d are ofdegree d in the Vassiliev sense.The value of any invariant of type d on an immersed curve with d nodes can be readilyshown to depend only on the way in which the 2d points in the pre-image of the d nodesare paired in the circle, and not on any other features of the immersion (including theframing). This information can be coded in a `chord diagram', which consists of a circlewith d chords indicating the pairs of points to be identi�ed in the immersion. The chordsare simply used as combinatorial guides to the eye; any intersections between chords arequite immaterial.For example, the two immersed curves shown in Figure 3 both determine the samechord diagram. Any invariant of type 3 will have the same value on these two curves,although invariants of higher type may well di�er.14



Figure 3An invariant V of type d thus determines a linear functional on the space spannedby all chord diagrams with d chords, which in turn induces a functional DdV on a certainquotient Ad of this space by a set of explicit linear relations, called the 4T relations byBar-Natan. As the notation suggests, it is often helpful to think of V as a polynomial ofdegree d and of DdV as the dth derivative of V . Following Bar-Natan we write Wd for thedual space of Ad, and call the elements of Wd (framed) weight systems of degree d. Thefunction Dd : Vd !Wdis clearly linear with kernel Vd�1. In fact Dd is onto by a result of Kontsevich (see [2]for a proof), and so Wd �= Vd=Vd�1. Indeed, by using an integral construction to �nd anelement of Ad for every knot, Kontsevich produces a section Wd ! Vd to Dd which is anisomorphism onto a complement of Vd�1 in Vd.The preceding discussion can be understood in terms of the commutative diagramsKd i����! K K�d i� ���� K�p??y ??yV p�x?? x??inclusionAd ����!DdV R Wd  ����Dd Vdwhere i is the inclusion and p is the projection sending any immersed curve to its chorddiagram. Observe that p� is 1� 1 and so the projection Dd : Vd !Wd can be regarded asthe restriction of i� to Vd.The weight systems determined by the Jones functionWe now investigate the weight systems Hd(k) = DdJd(k) of the Jones invariants Jd(k),and the subspace Hd of Wd which they span. These weight systems can be regarded asevaluations of a polynomial valued weight system Hd : Ad ! P for the polynomial Jonesinvariant Jd, and there is a commutative diagramKd i����! Kp??y ??yJdAd ����!Hd P15



for each d. Observe that Hd is of �nite rank since Jd is, by Theorem 2.2, and so dimHd =rkHd by Lemma 2.1.Theorem 2.3. The image of the polynomial weight system Hd contains the space Po2d+1of all odd polynomials of degree at most 2d+ 1 with 1 as a root, and so dimHd � d.Combining this result with the inequality dimJd � d of Theorem 2.2 shows that theprojection Ddj : Jd ! Hdis an isomorphism of rank d. Thus we haveCorollary 2.4. (a) The space Jd of framed Jones invariants of degree d > 0 and thecorresponding space Hd of weight systems are both of dimension d. Their associated mapsJd and Hd have common image equal to the space of all odd polynomials of degree at most2d+ 1 with 1 as a root.(b) JdTVd�1 = 0 (since kerDd = Vd�1). In other words, the non-trivial Jonesinvariants of degree d are of Vassiliev degree d.Proof of 2:3. It is enough to exhibit d linearly independent polynomials in the image ofHd, since im(Hd) � im(Jd) � Po2d+1, by Theorem 2.2. It is convenient to allow d to vary,and we shall simply write J(D) for the polynomial Hd(D) when D has d chords. Thisde�nes a map J : A = �Ad ! Pwhich encodes all the weight systems under consideration, with J jAd = Hd. For conve-nience we denote the variable in the polynomial P (D) by k.Thus we must exhibit chord diagrams D1; : : : ; Dd, each with d chords, such that thepolynomials J(D1); : : : ; J(Dd) are independent.A simpler version of the state sum calculation for knots in the previous section allowscalculation of J(D) as a sum of traces of monomials. In its �nal form it is the special caseof a more general result of Bar-Natan determining a weight system from any representationof a classical Lie algebra. Here we use a method based on the quantum group and the knotinvariants.Start with some immersed curve � with chord diagram D, presented as a closed braidwith d nodes. If � is regarded as an alternating sum of knots by the embedding Kd � K,then J(D) is the coe�cient Jd;�(k) of hd in J�;k(h), the corresponding alternating sumof Jones functions. Instead of using this alternating sum, however, we can work directlywith the braid presentation of the immersed curve � and represent each node by theendomorphism �R � �R�1, as explained in the previous section. This endomorphism mapsx 
 y to P �i(x) 
 �i(y), where P�i 
 �i is a bounded degree sum for the elementQ = R� P (R�1) in G 
 G (P is the interchange map). The invariant J�;k(h) can then becalculated by a state sum as before, and we are interested in the coe�cient of hd.To compute this coe�cient, observe that R�1 = I
 I � (X 
Y + 14H 
H)h+O(h2),and so Q = Q1h + O(h2) where Q1 = X 
 Y + Y 
 X + 12H 
 H. Every state involvesa choice of a term from Q for each node, together with terms for the crossings in thebraid and the ends of the braid strings. Since each term in Q has a factor of at least h,the resulting invariant must have a factor of hd. To get a non-zero contribution to the16



coe�cient Jd;� of hd, we therefore need only consider states S which assign one term fromQ1 to each node, namely X 
 Y , Y 
X or 12H 
H, and which make trivial assignmentsto every crossing or end of braid string. There is an associated monomialMS of degree 2din X, Y and 1p2 H, obtained by reading round the immersed curve, andJ(D) =XS Tr0(MS)where MS operates on the module Vk and Tr0(MS) is the value of the trace when h = 0.The state S can be indicated on the chord diagram by labelling the endpoints of eachchord according to the term chosen for the corresponding node; for example if X 
 Y isassigned to the node then the endpoints are labelled X and Y . Then MS is given byreading round the circle. This can be seen as a special case of Bar-Natan's prescription for�nding a weight system from a representation of a semi-simple Lie algebra; the essentiallink with his work is that the linear term Q1 in the quantum group is a multiple of thequadratic Casimir of the Lie algebra. This fact is used by Piunikhin [10] in identifying theweight systems arising from quantum group knot invariants with those found directly fromthe use of Lie algebras and chord diagrams, as it is a feature of general quantum groupsand not just SU(2)q.We shall now make use of this state sum in calculating J(D) explicitly for somediagrams D. The simplest diagram is the trivial diagram with no chords, and evidentlyJ() = Tr0(I) = ksince Vk is k-dimensional.Next consider the diagram F with exactly one chord. The value of J(F ), whichcan be thought of as the `framing contribution' for the coloured Jones invariants, can becalculated from the state sum on F as Tr0(XY + Y X + 12HH) (the Casimir again). Thistrace can be determined by direct computation or by observing that J(F ) is the coe�cientof h in the coloured Jones function for the planar immersed curve � with one node. SinceJ�;k(h) = (exh � e�xh)[k], where x = 14 (k2 � 1), we haveJ(F ) = Tr0(XY + Y X + 12HH) = 12k(k2 � 1):More generally consider the diagrams Ti with i chords, one horizontal and the restvertical, as shown in Figure 4.
Ti = i-1

Figure 4In particular T0 =  and T1 = F . We will show how to calculate J(Ti) below, but�rst we describe an operation on chord diagrams that will be useful for building furtherexamples. 17



Construction. From two chord diagramsD1 and D2, construct a connected sum D = D1D2by breaking each apart at some point on the circle, and then joining the two together(preserving orientations). The new diagram depends on the choice of breaking points, butit can be shown that any Vassiliev invariant will have the same value on all the connectedsums of D1 and D2. In particular, for the Jones invariants we have:Lemma 2.5. J(D1)J(D2) = kJ(D1D2):Proof. Choose immersed curves �1 and �2 corresponding to the diagrams D1 and D2.Then a connected sum �1�2 in the obvious sense corresponds to a sum D1D2. Nowcalculate J�1�2;k in terms of the alternating sum of knots, each of which will have the formK1K2, the connected sum of two knots. Since the coloured Jones function satis�es therelation JK1;kJK2;k = [k]JK1K2;k for framed knots, the lemma follows readily.It follows from the lemma that adding a trivial chord to any diagram D has the e�ectof multiplying the polynomial J(D) by the factor J(F )=k,J(FD) = 12 (k2 � 1)J(D):There is a similar result, needed for the calculation of J(Ti), when certain non-trivialchords are added to D.Lemma 2.6 Let D be a nontrivial chord diagram. Construct a new diagram D+ byadding a chord that `crosses' exactly one chord of D near one of its endpoints p. ThenJ(D+) = 12(k2 � 5)J(D).Proof. It is enough to show J(FD) � J(D+) = 2J(D), where the trivial chord in FD isadded just to one side of the point p as shown below.
D =

p

D+ =
p

FD =
p(Note: Bar-Natan proves a general result [1] that V (FD)� V (D+) is a multiple of V (D)when V arises from a Lie algebra representation.)Fix a state S on D, and suppose that S assigns the generator � to p. Then startingat p, the monomialMS can be written as a product �M for some monomialM , and so Scontributes Tr0(�M) to J(D).There are exactly three states on FD, and equally on D+, which extend S, accordingto the three possible choices X 
 Y , Y 
 X and 12H 
 H for the extra chord. The sumof the monomials for these states is (�XY + �Y X + 12�HH)M on FD and (X�Y +Y �X+ 12H�H)M on D+. The di�erence of their traces is Tr0(�̂M), where �̂ = [�;X]Y +[�; Y ]X + 12 [�;H]H. Since �̂ = 2� + O(h2) for � = X, Y and H, as is readily veri�ed,these states contributute 2Tr0(�M) to J(FD)� J(D+).Summing over all states S on D now gives the lemma.18



Finally consider the diagrams Di = F i�1Td�i+1 for i = 1; � � � ; d, each with d chords.Observe that Di can be constructed from F i by adding d � i parallel chords as in thelemma, and so J(Di) = (12(k2 � 5))d�iJ(F i). Since J(F i) = k(12 (k2 � 1))i, it follows thatJ(Di) = k�k2 � 52 �d�k2 � 1k2 � 5�i:Any linear relation among these polynomials will give a relation P aif i, where the ai arereal numbers and f(k) = (k2 � 1)=(k2 � 5). This is impossible unless ai = 0 for all i,since otherwise the polynomial P aixi has only a �nite number of roots while f(k) takeson in�nitely many values as k varies. Thus the polynomials J(Di) are independent, andTheorem 2.3 is proved.The unframed caseThe weight systems Hud (k) = DdJud (k) for the unframed Jones invariants Jud (k) span asubspace Hud of the space Wd of all degree d weight systems, whose dimension can becalculated as the rank of the corresponding polynomial weight system Hud : Ad ! P. Asin the framed case, these weight systems can be encoded in a single linear mapJu : A = �Ad ! P;de�ned on a chord diagram D with d chords to be the coe�cient of hd in the unframedJones function Ju�;k(h), where � is any immersed curve with diagramD. To calculate Ju(D)using a state sum, we must alter the matrix Q used for the nodes of � to incorporate acorrection factor for the framing. Indeed the endomorphism associated with a node is nowe�xh �R� exh �R�1, where x = 14(k2 � 1), and so we replace Q by Qu = Qu1h+O(h2) whereQu1 = Q1 � 2xI 
 I. Thus we must include states in which both ends of some chords arelabelled with p�2x I.We then have Ju() = k and Ju(F ) = 0, as expected, and the same multiplicativeformula for connected sums of diagrams as in the framed case. In particular Ju(FD) = 0for any D. There is an analogue of Lemma 2.6 as well, giving the polynomial Ju(D+)in terms of polynomials for simpler diagrams. It should be observed, however, that thispolynomial depends on which chord of D is `crossed' by the new chord of D+.Lemma 2.7. Let D be a nontrivial chord diagram with a chosen chord C. Constructtwo new diagrams D� and D+, where D� is obtained by deleting the chord C, and D+is obtained by adding a new chord to D that `crosses' C near one of its endpoints p, asshown below. Then Ju(D+) = �2Ju(D)� (k2 � 1)Ju(D�):
D =

p

C
D� = D+ =

p

C19



Proof. It is enough to show Ju(FD)�Ju(D+) = 2Ju(D)+(k2�1)Ju(D�) since Ju(FD) =0. As in the framed case, we �x a state S on D with label � on p, and write MS = �M .The contribution to Ju(FD) � Ju(D+) of the corresponding states on FD � D+ isTr0(�̂M), where �̂ = [�;X]Y +[�; Y ]X+ 12 [�;H]H�2x[�; I]I (for x = 14 (k2�1) as usual).Now �̂ equals 2�+O(h2) for � = X, Y or 1p2 H, but vanishes for � = p�2x I, and so thecontribution is 2Tr0(�M) in the former case and nothing in the latter. Summing over allstates gives Ju(FD)� Ju(D+) = 2(Ju(D) + 2xJu(D�)); the right hand side is the resultof omitting those states for which C is labelled by �2x I 
 I. Since 4x = k2� 1, the proofis complete.Using this lemma, we give a lower bound for the dimension of the space Hud of weightsystems of unframed Jones invariants.Theorem 2.8. The image of the polynomial weight system Hud contains the space P0d+1of all odd polynomials of degree at most d+1 with 1 as a root, and so dimHud � bd=2c.Proof. Set X = T2 and consider the d-chord diagrams Di = Xi�1Td�2(i�1) for i =1; : : : ; bd=2c, where the chord diagrams Ti are de�ned above. Observe that Di can be con-structed from Xi by adding d�2i parallel chords which `cross' exactly one of the chords Cin Xi. By the lemma we have Ju(Di) = (�2)d�iJu(Xi), since deleting C from Xi leavesone trivial chord. Applying the lemma again we have Ju(X) = �2Ju(F )�(k2�1)Ju() =k(1� k2), and so Ju(Xi) = k(1� k2)i by the multiplicative property of Ju. This givesJu(Di) = (�2)d�2i k(1� k2)i;and these polynomials clearly span P0d+1 since they are of di�erent degrees.Combining Theorems 2.2 and 2.8 gives the following estimate for the dimension of thespace J ud of unframed Jones invariants of degree d.Corollary 2.9. bd=2c � dimJ ud � d� 1:It is likely that in fact dimJ ud = bd=2c, which would be implied by Theorems 2.2and 2.8, together with the following conjecture on the degrees of the coe�cients in theunframed Jones function JuK;k(h).Conjecture 1. The coe�cient Jud (k) of hd in JuK;k(h) has degree at most d + 1 in k;equivalently, the coe�cient of hd in JuK;k(h)=[k], which is an even polynomial in k, hasdegree at most d.Assuming Conjecture 1, extract the terms in hdkd from JuK;k(h)=[k] to writeJuK;k(h)=[k] =X bdkdhd + terms in klhd; l < d;and set JK(h) =P bdhd.Conjecture 2. The Alexander polynomial �K(t) of a knot K is determined by thecoloured Jones function of K. In particular, �K(eh) = 1=JK(h):20
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