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Abstract

Homfly skeins and the Hopf link
Sascha Lukac

This thesis exhibits skeins based on the Homfly polynomial and their relations
to Schur functions. The closures of skein-theoretic idempotents of the Hecke
algebra are shown to be specializations of Schur functions. This result is applied
to the calculation of the Homfly polynomial of the decorated Hopf link. A closed
formula for these Homfly polynomials is given. Furthermore, the specialization
of the variables to roots of unity is considered.

The techniques are skein theory on the one side, and the theory of symmetric
functions in the formulation of Schur functions on the other side. Many previously
known results have been proved here by only using skein theory and without using
knowledge about quantum groups.
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Wihrend meiner Schulzeit versuchte
ich den Grund zu finden, weshalb —1
multipliziert mit —1 wirklich +1
ergibt. Da O das neutrale Nichts ist,
mufs —1 etwas Fehlendes sein, das
einer Ergainzung bedarf. Die Summe
von zwei negativen Zahlen ist immer
negativ. Die Multiplikation jedoch
scheint die Ordnung von negativ,
neutral und positiv zu transzendieren:
Das Negative multipliziert mit dem
Negativen wird positiv.

Nach meiner Promotion erkannte ich,
wie wichtig der Ubergang vom
Unverstandnis zum Wunsch nach
Verstiandnis ist. Die Analogie zwischen
der uns umgebenden Welt und der
Mathematik ist begrenzt. Vielleicht
verlauft diese Grenze bereits durch die
Gleichheit von —1 - —1 und +1.

Whilst at school I tried to understand
why —1 multiplied by —1 becomes +1.
If 0 is the neutral nothing then —1 is
something missing which requires a
completion. The sum of two negative
numbers is always negative. But the
multiplication seems to transcend the
order of negative, neutral and positive:
The negative multiplied by the negative
becomes positive.

On completion of my thesis I realized
how important the transition is from
not understanding to the wish to
understand. The analogy between our
surrounding world and Mathematics is
lvmited. Perhaps this limit already
passes through the equality of —1-—1
and +1.
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Introduction

This work exhibits skeins based on the Homfly polynomial and their relations
to Schur functions. The results are applied to the calculation of the Homfly
polynomial of the decorated Hopf link. Furthermore, the specialization of the
variables to roots of unity is considered.

The techniques are skein theory on the one side, and the theory of symmetric
functions in the formulation of Schur functions on the other side.

Part of the results are new. For the other results, the approach is new by using
skein theory rather than information about quantum groups. This approach has
the benefit of generalizing previously known results in many cases.

The first two chapters describe the necessary background of symmetric func-
tions and Homfly skeins. The skeins are based on framed tangles which can be
interpreted either as ribbons and annuli with oriented cores or as tangle diagrams
with the blackboard framing.

The Homfly skein of the disc with 2n boundary points (with suitable ‘ori-
entations’) becomes an algebra by defining the multiplication as stacking two
diagrams one above the other. This algebra H, is isomorphic to the Hecke al-
gebra which is a deformation of the group algebra of the symmetric group on n
letters. Idempotents of H, indexed by Young diagrams with n cells occur in a
natural way as described e.g. in [9], [11], [2], [3] and [25]. T give an account of
Blanchet’s explicit semi-simple decomposition of H, and remark in lemma 2.5.6
that the basis elements behave in a nice way under the inclusion H, ® 1 C H,,;;.

The closure of the idempotent of H,, indexed by a Young diagram A\ becomes
an element (), of the skein of the annulus. It is natural to expect that the map
A = @y from the algebra of Young diagrams to the skein of the annulus is an
injective algebra homomorphism. This has been proved e.g. in [1], but Aiston’s
proof used results about quantum groups. The skein-theoretic proof given in
chapter 3 was motivated by Kawagoe’s ideas in [14]. I interpret the Q)4,’s as the
i-th complete symmetric function, and I show that the A-Schur function in the
{Q4.} has the same eigenvalue as @), under some linear map. This eventually
leads to the identification of s)({Qg,}) with @,.



In chapter 4 T describe the Homfly polynomial (), u) of the Hopf link with
decorations () and (), on its components. The results are new. The determi-
nantal formula in theorem 4.4.2 for (), u) in the case of the substitution v = s~
for some integer N > 2 was motivated by the results for special cases. It was
suggested by a formula in the case N = 2 by [19], and in the case N > 2 and s
and x substituted by certain roots of unity it was motivated by the formula for
the modular transformation matrix S at the end of section 2.3 in [16]. If A and
p have at most N rows then the formula expresses (A, ) after the substitution
v = s~V as the quotient of two (N x N)-minors of the infinite Vandermonde
matrix V = (s20=D0=1), .o, The denominator is the principal minor, and the
numerator is given by choosing rows Ay_;;; + ¢ and columns py_j11 + j for
iwj=1,...,N.

In theorems 4.3.4 and 4.3.6 I give a compact formula for the power series

= Yiso(A, ¢) XY, where ¢; denotes the column diagram of length ¢, and (\) =

)
é)\>, () is the Homfly polynomial of 5. From this, (\, x) can be calculated directly
as a Schur function.

In chapter 5 we substitute the variables x,v and s of the Homfly polynomial
by roots of unity, s?*N =1, z¥ = 5! and v = s V. In this setting, it turns
out that the Homfly polynomial of any decorated link does not change when we
replace the decoration )\ by @Q» whenever A— )’ lies in the ideal Iy, of the ring of
Young diagrams that is generated by co —cn,cni1, N2, ... and djyq, ..., djon 1.

This ideal Iy, and the quotient ring J/Ix,; are considered in chapter 6 which
is an algebraic account independent of any skein calculations. It is known that
the quotient )/In,; has a basis consisting of the Young diagrams that lie in the
(N — 1) x l-rectangle. This has been proved by Aiston [1] by using algebraic
geometry. [ prove the result using only the Littlewood-Richardson rule. The
new ingredient here is the algorithm in section 6.4 that produces for any Young
diagram X an element X of ) such that A — X lies in Iy, and either A is equal to
zero, or it is up to a sign a Young diagram in the (N — 1) x [-rectangle.

Chapter 7 interprets the results of the previous chapter in a discrete lattice
model of Yy = Y/Iy, where Iy C Iy, is an ideal of Y. The elements of Yy
that lie in Iy; form a locally finite family of hyperplanes. Quotienting Yy by
In; is the same as quotienting the lattice model by a discrete group of Euclidean
isometries generated by the reflections in this family of hyperplanes. The Young
diagrams in the (N — 1) x [-rectangle correspond to a fundamental simplex next
to the origin. The sign appearing in A is seen to be the parity of the number
of reflections that are needed to bring the lattice point A to this fundamental
simplex.

In chapter 8 I describe the multiplication in Yy;. In particular, I show that
the empty Young diagram appears as a summand of the product of two Young



diagrams in the (N — 1) x [-diagrams if and only if the two Young diagrams are
dual to each other, i.e. they are up to a rotation the complement of each other
in a N x k-rectangle for some £ > 1. This result enables us to show in theorem
8.2.9 that the matrix H indexed by Young diagram in the (N — 1) x [-rectangle
and having the value of the Homfly polynomial of the Hopf link decorated by @,
and @, at the position (\, u) is quasi-Hermitian, i.e. HH is a scalar multiple of
the identity matrix after the substitutions s = z=V N and z by a root
of unity of order 2N (I + N). Previously known proofs used the knowledge about
modular categories, e.g. as in [1] and, more skein-theoretically, in [3].

The Young diagram o(\) derives from A by adding an initial row of length [
and removing then all initial columns of length N. One can show that oV(\) =
A. Hence, the cyclic group Zy operates on the set of Young diagrams in the
(N — 1) x [-rectangle. In chapter 9 I give a skein theoretic proof of a result
by Kohno and Takata [16] about the Homfly polynomial after the substitution
of its variables by roots of unity. The result is that knowledge of the Homfly
polynomial of a link L with decorations @)y,..., @, on its components and the
linking matrix of L is sufficient to calculate the Homfly polynomial of L decorated
with Qga1(n), ..., Qgar(y) On its components for any integers a;.

The second part of chapter 9 explains two approaches that relate the Homfly
polynomial of a link L decorated with @5, ..., @, on its components to the Homfly
polynomial of L decorated with Q,v, ..., Q,v on its components. Here, A" derives
from A by interchanging rows and columns. Provided one substitutes the variables
of the Homfly polynomial by suitable roots of unity, these two Homfly polynomials
turn out to be the complex conjugate of each other. One of the two approaches
is new, the other approach appeared in [16] in a non-skein-theoretic formulation.

In chapter 10 I classify the ring homomorphisms from Yy ; to C. In lemma
10.2.1 T characterize these ring homomorphisms by (N — 1)-tuples of complex
numbers called Young-solutions. In section 10.3 I assign to every Young-solution
a o-orbit of Young diagrams in the (N — 1) X [-rectangle in a canonical way. It
turns out that the number of ring homomorphisms that are assigned the same o-
orbit is equal to the number of Young diagrams in this orbit. The number of ring
homomorphisms from Yy, to C is thus equal to the number of Young diagrams
in the (N — 1) x [-rectangle. At the end of this chapter, I relate Young-solutions
and the Homfly polynomials of the decorated Hopf link.

Chapter 11 explains the relation between Homfly polynomials of links deco-
rated by @,’s and the Uy(sl(N))-invariants. This has been done in [1], but the
proof given there had some gaps which are filled here. The results in this chapter
are an application of the general theory of quantum-link-invariants as explained
e.g. in [22], [15], [12], [13], and [4]. Earlier chapters are independent of this
account on quantum groups, thus keeping skein theory and quantum groups on
their own grounds.

, U =8



Chapter 1

Symmetric functions and Young
diagrams

1.1 Symmetric functions

This exposition of symmetric functions is based on the first chapter of [17].

We denote by Z[zy,...,x,] the ring of integer polynomials in n variables.
It contains the subring A, of symmetric polynomials, i.e. polynomials that are
invariant under any permutation of the variables z1,...,z,. We have

A =@ A

k>0

where AF is the Z-submodule of A,, that consists of the homogeneous polynomials
of degree k, together with the zero polynomial.
For any m > n > 0 we have a ring homomorphism

Llxy, ... xp] = Zlzy, ..., Ty,

which maps zy,11, ..., %, to zero and keeps any other x; invariant. This restricts
to a module homomorphism Aﬁl — AZ for any m > n > 0 and k£ > 0. These
maps are always surjective, and are bijective for m > n > k. We thus define the
Z-module A* to be the inverse limit of the Z-modules A¥,

AF = lim A%,
e
An element of A* is a sequence f = (f,)n>0, where each f, = fu(z1,...,3,) is
a homogeneous symmetric polynomial of degree k, and fp,(z1,...,7,,0,...,0) =
fo(x1, ..., x,) for any m > n > 0. We define the ring A of symmetric functions



in countably many variables x, zs,... by

A=Ak

k>0

where the multiplication is componentwise, i.e.

(fUa fis - -)(gﬂagla .- ) = (ng(]a figrs - )

The ring A is commutative since Z[zy,...,2,] is commutative for any n. The
word ‘function’ is used in the context of the inverse limit, instead of ‘polynomial’.
The r-th elementary symmetric function e, is defined by its generating func-

tion
E@t) =Y et =J[(1+xt).

r>0 i>1
The r-th complete symmetric function h, is defined by its generating function

H(t) =Y ht" =][(Q—a2t)"".

>0 i>1

We thus have

or, equivalently,

Y (=1)'erhy =0 (1.1.1)

r=0
for any n > 1. We define e, = h, =0 for r < 0.

Lemma 1.1.1 A is freely generated by ey, es, ... as a commutative algebra. It is
also freely generated by hy, ho, .. ..

A pre-partition is a non-empty (finite or infinite) sequence of non-negative
integers
)\ - ()\1,)\2,...)

in weakly decreasing order
AL > A >

such that only finitely many terms are non-zero. We define an equivalence relation
on the set of pre-partitions by saying that two pre-partitions are equivalent if they
differ by a (possibly infinite) number of zeros. An equivalence class is called a
partition. We shall consider partitions but we will mainly use pre-partitions in
our arguments. The easy exercise that the statements are correct for partitions
is left to the reader in each case.



A Young diagram denotes both a partition and a graphical description of this
partition. We represent a Young diagram A = (\,...) by an array of square
cells (of the same size) with A; cells in the i-th row, for i = 1,2,... where we
enumerate the rows from top to bottom and the columns from left to right. The
j-th cell in the i-th row has the coordinates (i,j). The content cn(c) of the cell
¢ = (i,7) is defined to be j — i. The hook length hl(c) of the cell ¢ is defined to
be 1 plus the number of cells to the right of ¢ plus the number of cells below c.
The number of cells of a Young diagram is denoted by |A|. The length [()\) is the
number of rows of A, i.e. Ny # 0 and A; = 0 for ¢ > [(\). The empty Young
diagram () is the partition (0).

A standard tableau of a Young diagram A is a labelling of the cells of A by
the integers 1,2,...,|\| which is increasing along each row from left to right,
and increasing along each column from top to bottom. The number of standard
tableaux for a Young diagram A is denoted by d). We have d, > 1 for any Young
diagram \.

We write A C p for Young diagrams A and p if the graphical description of
A is a subset of the graphical description of pu, i.e. if A\; < p; for all 7. For such
Young diagrams, p\A denotes the set of cells of p that do not lie in A.

Given a Young diagram ), we define the transposed Young diagram AV to be
the Young diagram that derives from A by the reflection in the main diagonal, i.e.
the cell (i,7) lies in A if and only if the cell (j,i) lies in A. We have (A\Y)" = X
for any Young diagram A. We have hl(i,j) = A\; —i + A\Y —j + 1.

The single row Young diagram with ¢ cells is denoted by d;, and the single
column Young diagram with i cells is denoted by ¢;. We have d;¥ = ¢; and
Cy = dg = (Z)

We consider a Young diagram A and an integer n > [(\). We define a sym-

metric polynomial s} in n variables x4, ..., z, by
Aj+n—j
n _ det(zi” Ticijn
STy my) = : :

det(z; ™ )1<ij<n

The numerator and denominator are anti-symmetric, hence the quotient s% is

symmetric in the variables z,...,xz,. It is a polynomial, indeed. We define
sk =0 for 0 < k < I(X). The A\-Schur function sy = (s%)n>0 lies in A because
SV (x1, .o 0, 0,...,0) = s%(xy, ..., x,) for any m > n (which is easily checked).

Lemma 1.1.2 The set of Schur functions sy for all Young diagrams X\ is a Z-
basis of A. The set of Schur functions sy such that |\| = k is a Z-basis of A* for
any k > 0.

The next lemma is sometimes called the Giambelli (or Jacobi-Trudi) formula.



Lemma 1.1.3 For anyn > I(\) and m > [(A\Y)

sx = det(hy—ivj)i<ij<n

= det(exy_iyj)i<ij<m-

This implies that s., = e; and s, = h; for any integer ¢ > 0.

The following multiplication rule for Schur functions is called Littlewood-
Richardson rule. A proof is given in chapter 1.9 of [17]. The concept of a strict
extension as given here is equivalent to Macdonald’s description.

Theorem 1.1.4 For any Young diagrams \ and j we have
SASu =) ax,Su

where af, = 0 unless A C v and |\ + |u| = |v|, in which case af, denotes the
number of strict extensions of X by p to v.

We have to know what a strict extension is.

Let A, u and v be Young diagrams such that A C v and |v| = |A| + |u|. An
extension ( of X by p to v is a labelling of the cells of ¥\\ with the integers
1,...,1(p) such that the label i appears yu; times, i = 1,...,[(p). Furthermore,
an extension has to satisfy the following two conditions. First, the labels are
strictly increasing downwards along every column of v. Second, the set of cells
) which derives from v by removing all cells with labels greater than or equal
to j has to be a Young diagram for any j = 1,... ().

An extension ¢ determines a word w({) which is the sequence of labels of
read from right to left and top-down.

An extension is called strict if for any label i and any prefix (i.e. initial
subword) of w(¢{) the number of occurrences of the label 7 is not less than the
number of occurrences of 7 + 1.

For example, the two extensions of (3,1) by (3,2) to (4,4,1) in figure 1.1
determine the words 1,2,2,1, 1 resp. 1,2,1,1,2. The second extension is therefore
strict whereas the first extension is not strict.

Remark The rows of any extension are weakly increasing when read from left to
right. This is because of the condition that () is a Young diagram for any label
i

Remark Let & > 1 be any integer. The number of extensions of (k,k—1,...,2,1)
by (k,1) to (k+1,k,...,2,1) is equal to k. Hence, any non-negative integer can
occur as a value for af, for suitable A, 1 and v.

Remark Instead of checking all prefixes of w((), one can, equivalently, check all
subwords of w(({) that arise as the set of cells that lie above and to the right of
some labelled cell of ¢. This alternative definition has been used in [1].



i1 - -

212

Figure 1.1: The two extensions of (3,1) by (3,2) to (4,4,1).

1.2 The ring of Young diagrams

Definition The ring of Young diagrams Y is the Z-module whose basis is the
set of all Young diagrams. The multiplication is defined by
A= > ax,V
v[=IA[+]ul
where the coefficients a3, are given by the Littlewood-Richardson rule as stated
in theorem 1.1.4.

Since the Schur functions sy are a linear basis for A by lemma 1.1.2, we get a
ring isomorphism from A to ) by mapping sy to A. This implies in particular that
Y is a commutative ring. Furthermore, the ring ) is the free commutative ring
generated by all column diagrams c¢;, ¢, ... which follows from lemma 1.1.1 and
the observation the s., = e;. Similarly, J is the free commutative ring generated
by the row diagrams d;,ds,.... We remark that the empty Young diagram () is
the neutral element for the multiplication. In ), we define ¢; = d; = 0 for integer
1 < 0.

The Giambelli formula from Lemma 1.1.3 becomes
Lemma 1.2.1 For any n > [(\) and m > [(\Y)

A= det(d)\i_i+j)1§z’,j§n
= det(cay_itj)i<ijm:

Equation (1.1.1) now takes the form

n

Y (=1)erdy =0 (1.2.2)

r=0
for any n > 1. Equivalently,
<Z(—1)TCTXT> (Z diXi> =1 (1.2.3)
r=0 1=0

where X is a variable.



Transposing induces a linear map from Y to . This map (called transposing
as well) is bijective because (A\V)" = \.

Lemma 1.2.2 Transposing is a ring automorphism of Y.

Proof Since Y is spanned by Young diagrams and generated by column diagrams,
it is sufficient to prove that (Ac;)” = AY(¢;)" for any Young diagram X and any
column diagram ¢;, i > 1. We remark that (¢;)" = d;.

The strict extensions of A by a column ¢; of length ¢ are in bijection with the
set of Young diagrams that derive from A by adding ¢ (unnumbered) cells so that
at most one cell is added to each row of A. To turn such a Young diagram into
a strict extension, one has to number the added cells with successive numbers
1,2,...,1 going the rows downwards.

Similarly, the strict extensions of A\ by a row d; of length ¢ are in bijection
with the set of Young diagrams that derive from A by adding ¢ (unnumbered)
cells so that at most one cell is added to each column of A.

This description of strict extensions is symmetric with respect to columns and
rows. Since transposing interchanges columns and rows, it induces a bijection of
the strict extensions of \ by ¢; and the strict extensions of AV by d;. &

1.3 The ring Vy

We fix an integer N > 1.

1.3.1 Definition

We denote by Iy the ideal of )V generated by the element ¢y — cy and all column
diagrams of length at least N + 1,

IN = <<CU —CNyCN+1,CN42;5 - - >>

We denote
yN — y/INa

and we shall denote the image of a Young diagram A under the quotient map
Y — Y/Iy by A, too.

Definition For a Young diagram A = (A, ..., Ay) with N rows we define \' to
be the Young diagram derived from A by removing all columns of length N,

)\, - ()\1 —)\N,...,)\Nfl _)\N)



Lemma 1.3.1 For a Young diagram X\ with N rows we have A — X € In. If A
has more than N rows then A € Iy.

Proof For a Young diagram A we have by the Giambelli formula that

A= det(eayirj)i<ii<b
CAY CAY+1 "7 CAY4b-1
CAY 1 Cry TO b2
_ 2‘ .2 ) 2 . (1.3-4)
CAY—b+1 CxY—bt2 *°°  CnY

where b denotes the length of \Y (which is equal to A;). If A has N rows then the
first row of the above determinant reads ¢y, cyi1,-..,Cnip_1. Since ¢y = 1 and
c¢; = 0 for ¢ > N in Yy, we can remove the first row and the first column of the
determinant without changing its value in ). Hence

Cay Tt CAY4b-2
A= :

CxY—bt+2 """ CxY

in YVy. The determinant on the right hand side is the Giambelli formula for the
Young diagram that derives from A by removing the first column (of length ).
By applying this argument Ay-times we get A = X in Vy.

If A has more than N rows, i.e. its length is greater than N, then each entry
of the first row of the determinant in equation (1.3.4) is equal to zero in Yy.
Hence A = 0 in YVy. &

We define the Z-submodule Ly of Y to be linearly spanned by all Young
diagrams with more than N rows and by the elements (A — \’) € Y for all Young
diagrams A with N rows,

Ly = (A= X, | Young diagrams A and g with [(A\) = N and I(u) > N + 1).
We clearly have
Y =Ly ® (\| Young diagrams \ with [(\) < N). (1.3.5)
Lemma 1.3.2 Ly is an ideal in Y.

Proof Since ) is generated by all the column diagrams ¢y, c,, ... it is sufficient
to verify that

ci(A—=\) € Ly for any i > 1 and any Young diagram A\ with [(\) = N

10



and
c;A € Ly for any ¢ > 1 and any Young diagram A with [(\) > N.

Let ¢ > N and let A be any Young diagram. Since ¢; is a subdiagram of any
summand of ¢; A\, we have that ¢;\ is a linear combination of Young diagrams with
more than N rows. Hence ¢; )\ lies in Ly.

Let 2 > 1 and let A be a Young diagram with more than N rows. Then ¢;A
is a linear combination of Young diagrams with more than N rows since A is a
subdiagram of each summand. Hence ¢;\ lies in Ly.

Let 1 <7 < N and A be a Young diagram with N rows. We denote by £ the
number of initial columns of length N of A\. By the multiplication rule for Young
diagrams we observe a bijection between the summands of ¢; A with N rows and
the summands of ¢;\ with at most N rows. The bijection being the removal of
k initial columns of length N. Hence ¢;(A — X') is a linear combination of Young
diagrams with more than N rows and terms (u—() where p and ¢ differ by & initial
columns of length N. The Young diagrams with more than N rows lie in Ly.
The terms (—() lie in Ly because p' = ', hence p—¢ = (u—p')—(C—') € L.
Hence, ¢;(A — \') € Ly. &

Corollary 1.3.3 We have Ly = Iy. The (images of the) Young diagrams with
less than N rows are a basis of V.

Proof The submodule Ly of Y is a subset of I by lemma 1.3.1. Since Ly is an
ideal, we have Ly = Iy. The Young diagrams with less than /N rows are a basis
of Yy because of the decomposition of Y in equation (1.3.5). &

1.3.2 Duality

We introduce the concept of duality for Young diagrams with respect to a fixed
integer N > 1. We consider a Young diagram A = (\y,...,Ay_1). The comple-
ment of A in the N x \{-rectangle is not a Young diagram. But after rotating this
complement through 180° it becomes a Young diagram denoted by A\* as depicted
in figure 1.2. We denote the dual of the column diagram c; by ¢ rather than
(¢;)*. We have ¢; = cy_; fori=1,...,N —1. We have ¢}, = ¢.

We have \f = A\; — Ay ;41 for i = 1,2,..., N. It is clear that (A\*)* = A for
any Young diagram A with less than N rows. Therefore, taking the dual is a
permutation of the Young diagrams with less than N rows.

We define

A ifl(A) <N

A=< (V) ifi(\) =N

0 if [(\) > N

Hence, the map A — A* induces a linear map Yy — yN

11



Figure 1.2: The dual of the Young diagram A = (6,4,3,3,1) with respect to
N =8 is equal to \* = (6,6,6,5,3,3,2).

Lemma 1.3.4 The map A\ — \* induces a ring automorphism of V.

Proof Since )y is spanned by all Young diagrams with less than N rows and
generated by the column diagrams cq,...,cy_1, it is sufficient to prove that
(Ack)* = X*¢; for any Young diagram with less than N rows and any column
diagram ¢, 1 < k < N — 1.

We have ¢ = cy_y in Yy for any integer k, (with the convention that ¢, =0
for k < 0), and we thus have to prove that

()\Ck)* = )\*0ka

for any Young diagram A with at most (N — 1) rows, and any integer k =
1,...,N—1

By ¢ and S we denote variables which are to have values zero or one. The
strict extensions of A by ¢, that have at most N rows are all those Young diagrams
()\1 + 1, -,)\N—l —|—6N_1,8N) for which E1+...+ten= k.

The strict extensions of A* by c¢y_; that have at most N rows are all those
Young diagrams (A} + (1,..., Ay _; +On_1, On) for which gy +---+ Oy = N — k.

Let us consider the sequence of integers

()\1+51;---;)\N71+5N71;5N) (136)

for some integers ¢4, ...,ey which are either equal to zero or one, and such that
€1+ -+en = k. This is not necessarily a Young diagram. To each such sequence
we associate the sequence of integers given by

()\1< + (]. - €N), )\; + (]_ — SN—I); Ceey )‘7\7—1 + (]. - 62), (]. — 81)). (137)

We claim that the sequence in equation (1.3.6) is a Young diagram (i.e. weakly
decreasing) if and only if the sequence in equation (1.3.7) is a Young diagram.

12



To see this, we note that the sum of the i-th entry of the first sequence and the
(N —i+1)-st entry of the second sequence is independent of i foralli =1,..., N
because

(Ni+e) + Ay + (=) = Ai+Av i +1
= M\ + 1.

Hence, the first sequence is weakly decreasing if and only if the second sequence
is weakly decreasing.

Remark that (1—ey)+...4+ (1 —e1) = N —k. We thus get a bijection of the
strict extensions of A by ¢, and strict extensions of A* by cy_, and associated
strict extensions correspond to dual Young diagrams. Therefore, (Ac)* = N ¢,
and thus (Ap)* = M*u* for any Young diagrams A and p. &

13



Chapter 2

Skein theory

2.1 Framed Homfly skeins

Our view is piecewise linear. We denote the interior of a manifold M by int(M)
and the boundary of M by OM. We always consider proper submanifolds N of
a manifold M, i.e. int(N) C int(M). By an isotopy of a submanifold N of a
manifold M we always understand that it is induced by a homeomorphism of M
which is isotopic to the identity relative to the boundary 0M.

Let F by a surface (with or without boundary) with a fixed orientation. Let
O =000, ={0,...,0} I {0ks1,...,00} be a collection of disjoint oriented
arcs in the boundary 9(F) such that the orientation of each arc #; of ©; (resp.
©,) agrees (resp. does not agree) with the induced orientation of 6; by F.

A ribbon tangle T in (F x (0,1),©) is a (possibly empty) collection of pairwise
disjoint disks { Dy, ..., Dy} (also called ribbons) and finitely many oriented annuli
{A;} in F x (0,1) with oriented cores such that

1 1
OF X (0,1) ﬂDi = 92'1 X {5} U9i2 X {5}, for some 92'1 S @1,9i2 S @2,

k
0F x (0,1)N | D = @x{%}
=1

A; € int(F) x (0,1) for all j.

We call any arc o in D; that joins points of §;, and 6;, a core. We orient each core
a ‘from aNb;, to anb,,’. The set OD;\(0D; N F) consists of two cores o U .
The orientations of a; and s are induced by different orientations of D;.

We write (F x (0,1)) for (F x (0,1),0).

Let A be a commutative ring. We denote by A’ the polynomial ring over A in
the variables z, ™', v, v™!, 5, s7" and 4, quotiented by the relation d(s — s™') =

vl — .

14



The framed Homfly skein S(F,©) is the free A'-module over the set of all
ribbon tangles in (F, ©) quotiented by the following relations

T =T if T and T" are isotopic ribbon tangles,

and the local relations in figures 2.1 and 2.2.

Ay vl

Figure 2.1: Defining relation for S(F x (0, 1), 9).

Figure 2.2: More defining relations for S(F x (0, 1),

We can isotope any ribbon tangle 7" such that it lies flat in F x [% — ¢, % + €]
for some ¢ > 0 which means that the projection of T" to F x % is an embedding
away from finitely many sets 7N (N; x (0,1)) C int(F) x (0,1) each consisting
of two local discs of T parallel to a disc N; in F.

It is straightforward to translate framed Homfly skeins into the language of
oriented diagrams by relating ‘flat’ ribbon tangles with diagrams of arcs and closed
curves. To a flat ribbon tangle T in (F x (0, 1), ©) we associate the diagram that
is given by the contraction of the ribbons and the annuli to their cores. This
is well defined up to isotopy. The cores inherit an orientation from the ribbon
tangle.

Each arc of ©® becomes a point under this contraction, and I' = I'y ¥ I’y =
{v, - W A{Vkat, .-, 72r} derives from © = O W O, by making some choice
Vi € 0;.

Let F be asurface and I' = Ty Wy = {7y, ..., Y%} W{Vks1,. -, Yor } be a set of
finitely many points of F. A diagram in (F,T") is a (possibly empty) collection
of pairwise disjoint (but we allow crossings) k oriented arcs each joining a point of
[’y and 'y, and finitely many oriented closed curves in F. The arcs without their
endpoints and the closed curves have to lie in int(F). The arcs are oriented from
their intersection with I'y to their intersection with I's. We denote the empty
diagram by ().

15



We call diagrams Dy and D, regularly isotopic if they differ by a sequence
of moves inside a disc where the moves are the identity on the boundary of this
disc. The allowed moves are Reidemeister moves II and III and an orientation
preserving homeomorphism of the disc as shown in figure 2.3. We call a sequence
of these moves a reqular isotopy. Note that this has no relation with the usual
meaning of isotopy, it is a concept only for diagrams.

)0 K enéa

Figure 2.3: Regular isotopy consists of Reidemeister moves 1T and ITI, and ‘wig-
gling curves’.

Recall that we denote by A’ the polynomial ring in z, 27", v,v™%, s,57! and 6,

quotiented by the relation d(s — s™') = v=! — .

The framed Homfly skein S(F,T) is the free A’-module over the set of all
diagrams in (F,T") quotiented by the following relations

T =T if T and T" are regularly isotopic,

and the local relations in figures 2.4 and 2.5.

Ao o)

Figure 2.4: Defining relation for S(F,T).

Figure 2.5: More defining relations for S(F,T').

Whenever (here and in the following) the orientation of the cores is not shown
then the diagrams represent all possible orientations.

The Whitney-trick is a regular isotopy that relates a straight arc with an arc
having two curls. It is depicted in figure 2.6. We can remove one of the curls

16



D To-of

Figure 2.6: The Whitney-trick realizes a cancellation of curls via a regular isotopy.

Figure 2.7: A derived relation in S(F,T).

at the expense of the additional factor zv~!, and we thus get the local relation

depicted in figure 2.7 which is valid in S(F,T).

Let G and G5 be diagrams in (F,T") and denote the associated ribbon tangles
in F x (0,1) by T} and T, (determined up to isotopy). We claim that G; and G
are equal in S(F,T) if and only if T} and T, are equal in S(F x (0,1),©). The
only non-trivial part of this claim is that if H; and Hy are isotopic ribbon tangles
in F x (0,1) then G; and G5 are equal in S(F,I'). If H; and H, are isotopic
then Gy derives from G, by regular isotopy and the local moves shown in figure
2.8 with any orientations on the components. The moves cannot be realized by a
regular isotopy in general. (But, e.g. in the sphere S? they are regularly isotopic).
But the diagrams become equal in S(F,T") since the curls can be removed at the
expense of the scalars which cancel. One has to rotate in some instances the
diagrams (or oneself) in order to apply the above local skein relations.

i
c

Figure 2.8: Moves in order to handle curls in diagrams.

o ot
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In what follows we shall be mainly concerned with skeins over the scalars
Zlx*t vE s 6] /((6(s — s71) = v — v)). But clearly, a skein makes sense for
any extension of this ring. We shall consider as well the subring of the rational
functions Q(z,v,s) generated by ! v*l s {(s* — s79)7! | i € I} for some
subset I C Z. Note that the term (s* — s7*)~' may cause problems when s is
substituted by some root of unity.

2.1.1 Useful maps

There are some interesting maps of a Homfly skein to itself without being module
homomorphisms.

Yol e x, vy, s =5 66
T . T —x, U —U, S S L 66
p oz v e s s 56

v, 7 and p extend to isomorphisms of the rational functions in x, v, s and §. They
induce isomorphisms of the scalars we are considering since (s —s1)d — (v™' —v)
is invariant under these maps.

We get maps from the Homfly skein to itself when we leave the diagrams
invariant and alter the scalars by 7 (resp. 7) because this preserves the skein
relations. In the case of p, one has to change all crossings of the diagram in order
that the skein relations are preserved.

2.2 The Homfly polynomial

Any diagram D in the skein S(R?) of the plane can be transformed via the skein
relations to a scalar multiple ¢ of the empty diagram (). An important result
states that the S(R?) is isomorphic to its scalars, i.e. the scalar ¢ is well defined.
This scalar is denoted as the Homfly polynomial x(D) of D. The word Homfly
is derived from the initial letters of some of the mathematicians who discovered
this invariant ([6], [21]).

A framed link in F x (0,1) is an oriented link together with a parallel curve
to each component, i.e. a longitude in the boundary of a regular neighbourhood
of each component. Every oriented link diagram determines a framed link by
choosing the blackboard parallel for each component. We shall consider only
diagrams of framed links whose blackboard framing gives the framing of the link.

Ribbon tangles in S(F x (0,1)) that consist only of embedded annuli with
oriented cores are an equivalent view of framed links, where, for each annulus
A, the core of A determines a link component, and a boundary curve of A (it

18



N v

Figure 2.9: The sign assigned to a crossing.

is irrelevant which one) determines a longitude in a regular neighbourhood N of
this link component.

A crossing of an oriented diagram in an oriented surface is given a sign ¢ = +1
as shown in figure 2.9 where we use the counterclockwise orientation of the local
disc. The sum of the signs is denoted as the writhe wr(D) of the diagram D. It
is a invariant under regular isotopy.

Let D be a diagram. One gets an invariant y" that does not involve the
variable = by setting x"(D) = (zv= 1)) D,

2.3 The Hecke algebra H,

We denote by H,, the skein of the disc [0, 1] x [0,1] with the set I' =Ty Wy =
{(n%rl, Dh<j<n @ {(n%rl, 0)}1<j<n and the standard (anti-clockwise) orientation.
We call the point (;ﬁ, 1) the j-th point at the top and (;h, 0) the j-th point at
the bottom.

The multiplication for diagrams D; and D, is given by stacking D; above
D,. This extends linearly to H,,. The multiplication is associative but not com-
mutative. Every diagram D in H, determines an element 7” of the symmetric
group S, on n letters, by saying that the j-th point at the top of the square
[0,1] x [0,1] is joined by an arc of D to the 7”(j)-th point at the bottom. We
have 7P1P2 = 7PigP2 in S, since we read the product of permutations from left
to right.

H,, is known to be isomorphic to the Hecke algebra.

For every permutation 7 € S,, there exists a unique braid w, (called a positive
permutation braid) such that w, determines 7 € S,,, and strings starting at the
points i and j at the top with 1 < i < j < n do not cross if 7(i) < 7(j), and they
cross only once (with the string starting at j overcrossing the string starting at
i) if w(i) > 7(j).

It turns out that the set {w, | 7 € S,,} is a basis for H,, (see [20] for a short
proof).

The juxtaposition of putting a diagram D; € H, to the left of Dy, € H,,
induces an inclusion H, ® H,, — H,, ..
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2.4 Idempotents in the Hecke algebra

This section describes the interpretation of Gyoja’s results [9] by Aiston and
Morton [2].

2.4.1 The building blocks a, and b,

We denote by [(7) the writhe of w,, which can also be expressed as the minimal
number of transpositions to form the permutation 7. We define

a, = Y (z71s)@w,

WESTL

in H, for any integer n > 0.
We denote by o; the elementary positive braid in which only strings ¢ and
i+ 1 cross once positively. The next lemma can be found as Lemma 8 in [2].

Lemma 2.4.1 We have o;a,, = vsa, and a,0; = xsa, forany 1 <i<n—1.

Since H,, is generated as an algebra by the elementary braids oy,...,0, 1, we
deduce that a, lies in the centre of H,,. Even more, for any element h of H, we
have ha, = a,h = ka,, for some scalar k.

In particular, a,a, is a scalar multiple «, of a,,. Lemma 2.4.2 shows that «,, is
non-zero. We define [n] = (s"—s ")/(s—s 1) = s" 145" 34 45 M4 g0t
for any integer n > 0. We define [n]! = [n][n —1]---[1].

Lemma 2.4.2 We have o, = s [n]! for any integer n > 1.

Proof Using lemma 2.4.1 we get that

Any = G Z (:zj’ls)l(”)uhr
WESTL

= a, Z (x’ls)l(”)(xs)l(”)

WESTL

= a, Z g2,

WESTL

We can write any permutation 7 from S,, uniquely as the product of a permutation
7 from S,_; and the cycle (m(n) (m(n)+1) ... n) of length n—m(n)+1. Therefore,

Y oAm = 3 ni:l G2Ur)+)

TES) TES,—1 1=0
n—1
— Z (SQI(T) Z S2Z>
TESH—1 1=0



=0 TESH—1
— " lsn s " Z SZZ(T)
s — S_l TESH—1
_ Snfl[n] Z 821(7‘).
TESH—1
We get by induction that
D i el ]

The proof of lemma 2.4.2 suggests a decomposition of a,,; given by

np1 = (0 @ 1)) (g1 + (2718) 0, + (2718)%0000—1 + -+ (27'8)" 000 1 - - 01)
(2.4.1)

This is because we can draw any positive permutation braid w, on n + 1 strings
in a unique way as the product of a positive permutation braid having a vertical
(n + 1)-st string and the braid 6,0p_1 - Or(ni1).-

We recall from subsection 2.1.1 the isomorphism 7 of the rational functions
in z, v and s given by z — 2, v + v and s — —s~'. We get a map from
H, to H, that is the identity on any diagram and behaves on the scalars as
7. We denote this map by 7 as well. It satisfies y(w + y) = v(w) + v(y) and
v(wy) = v(w)y(y) for any elements w and y of H, but we remark that it is not
an algebra homomorphism since it changes the scalars. We have that 72 is equal

to the identity. We denote

and 3, = v(a,). We remark that v(a,) = 7(a,), and v(a,) = 7(cv,) where 7 was
defined in subsection 2.1.1.

Lemma 2.4.3 We have b,b, = 3,b, for any integer n > 0.

Proof We have a,a, = apa,. Applying the map v we get v(a,)y(a,) =
v(aw)y(an), hence b,b, = B,by,. [ )

We recall the isomorphism p of the rational functions in z, v and s given by
z— 27 v v and s — s7'. We immediately deduce from the skein relations

of H, that the map which reflects any diagram in the plane and that behaves on
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the scalars as p induces a map from H, to H,. We denote this map by p as well.
It satisfies p(w +y) = p(w) + p(y) and p(wy) = p(w)p(y) for any elements w and
y of H, but we remark that it is not an algebra homomorphism. We have that
p? is equal to the identity.

When we consider H,, as an algebra over a subring of the rational functions
in z, v and s in which «,, is invertible then (1/a;)a, is an idempotent.

Lemma 2.4.4 We have p(ian) = a—lnan for any integer n > 0.
Proof We have
aip(an) = plo; )plan) = plo; 'an) = p((xs)"'an) = zsp(ay)
for any 1 <7 <mn — 1. Hence,
anp(an) = anplan).

Applying the map p to this equation we get

plan)an = plan)an.

The element a,, is central in H,, and therefore a,p(a,) = p(a,)a,. Therefore,
the terms on the right hand sides of the above two equations are equal, i.e.
anp(a,) = play)a,. We thus get

Since p and v commute, we get

Corollary 2.4.5 We have p (%ﬂbn) = ﬂinbn for any integer n > 0.

2.4.2 The quasi-idempotent e)

Here, we fix an integer n > 0 and consider only Young diagrams with n cells. For
any Young diagram A (with n cells) we construct a quasi-idempotent e, in H,, in
the following way.

We number the cells of any Young diagram g with the integers 1,2,...,n
from left to right and from top to bottom (as reading in a book). The map
(i,7) € X = (j,i) € AV determines therefore a permutation 7, on n letters. We
clearly have myv = 7;'. We define

Ex(a) =ay, ®ay, ® - ®ay,, € H,
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and
E,(0)=b,, ®a, Q- Qb
for any Young diagrams A and p. We define

ex = Ex(a)wr, Exv (bw, € H,

€ H,

Hi(p)

where w;; is the inverse braid of w,,. We note that e;, = a, and e., = b,.
It follows from Lemma 11 in [2] that for any element T' € H, there exists a
scalar ¢ such that

Er(a)TExv (b) = tEx(a)ws, Exv (b). (2.4.2)

Hence,

6%\ = (X)\E)
for some scalar ay. The scalar o; from lemma 2.4.2 is by definition equal to ay,
(this is a slight abuse of notation). One can also prove that

exe, =0 if X#p (2.4.3)
(of course under the condition that |A| = |ul).

Remark It might seem more natural to define ey = E)(a)ws, Eyv(b). The above
statements would remain true, but of course with some different scalars cy. This
is the point. If we define ey = E\(a)w,, E\xv(b) then €3 = 0 unless ) is a single
row or column diagram. This is because €3 contains the factor Eyv(b)E)(a) from
which on can extract a factor ay ® 1”2 from F)(a) and a factor by ® 1”2 from
Ey\v(b) if Ay > 2 and [(\) > 2. One can verify by a direct skein calculation that
beay = 0 in Hy, and therefore we deduce that Eyv(b)E)(a) =0 in H,.

Another reason is that the elements ey = Ej(a)w,, Exv(b)w;,! specialize to
quasi-idempotents of the group algebra C[S,,] after the substitutions z = v = s =
d = 1. (One has to consider C instead of Z.) This is explained in detail in [1].

The elements ey € H,, and the scalars «, are non-zero. This follows e.g. from
their specialization to C[S,]. The explicit formula for a, is
ay = [] s [hl(c)]. (2.4.4)
cEA
A proof is given in [26] (see [3] for an exposition).
We define

1
Yy = —ey € H,
Q)

which is an idempotent.

The standard closure of a braid (or a tangle) induces a linear map from H,, to
the skein of the plane. We give a short skein-theoretic proof that e, is non-zero.
In fact, we even prove more.
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Lemma 2.4.6 The Homfly polynomial of the closure of ey is non-zero for any
Young diagram \.

Proof We denote the number of cells of A by n. We specialize x = v =s = 1. The
scalars are now Z[0] where ¢ is an indeterminate. We shall consider the Homfly
polynomial of the closure of e). The skein relations for x = v = s = 1 imply that
we can switch any crossings and remove any curls without altering the Homfly
polynomial. Therefore, the Homfly polynomial of a diagram in the plane is equal
to ¢ where ¢ is the number of components of the diagram. We claim that the
closure of e, is a linear combination of diagrams with at most n components, and
that exactly one diagram occurs with n components (and non-zero coefficient).
This implies that the Homfly polynomial of the closure of e, is a polynomial in ¢§
of degree n and is thus non-zero. Hence, e is non-zero.

Clearly, the number of components of the closure of an (n,n)-braid is given
by the number of cycles in the cycle decomposition of the permutation of S,
determined by this braid. Since e, is a linear combination of (n, n)-braids, all the
appearing diagrams in the closure of ey have at most n components. It remains
to prove that exactly one summand of e, determines the identity permutation of
Sy

By simply using distributivity, we can write e, as a linear combination of
braids,

e\ = EA(a)wﬂE)\vw;; = Ztﬁﬁ
B

where
B = ywr,y'wy!
for some braids v and 4/ which appear as a summand in E)(a) resp. E,v(b).

First, we consider strings of [ that belong to the same component a,, of
E\(a). They do not cross in w,, since the r-th string of the component a,, is
joined to some string of the component byy which appear in order from left to
right in E\v(b) and the condition on positive permutation braids ensures that
these strings of w,, do not cross. Furthermore they do not cross in ' since they
belong to different components b,\]v and byy of Eyv(b). Finally, they do not cross
in w; " since they do not cross in wy, .

Similarly, strings of  that belong to the same component bAjv of E\v(b) do
not cross in either -, wy,, or w, .

Hence, if two strings of § cross in either v or 4/ then g = ’ywﬂfy’w;; cannot
determine the identity permutation. Since every a,, and b,\]y contains the identity
braid as a summand (with coefficient 1), we see that the identity braid g = id,
is the only summand of the closure of e) that has n components. Furthermore,
its coefficient is 1 as claimed. &
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0

Figure 2.10: The n-string braid T'(j) for n =7 and j = 4.

By equation 2.4.2 there exists for every central element B of H,, a scalar b
such that Bey = bey. We shall be interested in the tangle T( depicted on the
left of figure 2.12 which is the identity braid (on n strings) with a simple closed
curve encircling it. It is clearly central in H,,.

Lemma 2.4.7 We have
T(”)eA = C)\€x
in H, for any Young diagram X\ with n cells. The scalar cy is given by

()

vt —w B B B
ey = 2" ( — v g Z(SZ(/\’“ K _ g 2k)) )

k=1

Proof We denote by T'(j) the n-string braid o, - - - 03010109 - - - 0; as depicted in

figure 2.10. By equation (5.1) of the proof of theorem 17 in [2] we have
Ex(a)wr, T(j)Exv (b)w, = R e G

in H,, where p(j) is the cell of A numbered j in the standard tableau that reads

1,2,3,...,n from left to right and top to bottom.

We remark that the formula given in [2] differs from this one by a fram-
ing factor zv~! because they have used a framing different from the blackboard
framing.

The equation in figure 2.11 follows from the skein relation z~'o; —z0; ' = zid
(where z = (s —s~1)) which is applied to the upper right crossing. An equivalent
relation is depicted in figure 2.12. Inductively, we can therefore write 7 as the
linear combination

1

v —w LA
—id, + 220y 22U VT (n -5 +1).
s—8

T(n) — x2n
j=1
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0

Figure 2.12: An equivalent depiction of the equation in figure 2.11.

Hence, TMe, = ¢yey with

vl —w no. - -
o = a2 -+ vy 3 12 2(n=3) g2en(p(j))
s— S~ =
-1
on [V 2cen(p(y))
= 1 + vz Z S .
s— s~ =

Now

I(A) A
S = 3§ gk

j=1 k=11i=1

IA) g )
— 2282(1719
k=11i=1
A) Ap—1

:ZZS —k+1)

k=1 i=0
Ap—1

_ g2(—k+1) g2
s
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k=1 §
s 1A
— — (32(/\k—k) . 3_%).
s—87 i
Hence,
vl — v I(A)
ey = 2" — + U—lskz:I(SZ(/\k—k) _ S—2k)

L )

Lemma 2.4.8 The scalars c) are pairwise different and non-zero for all Young
diagrams .

Proof The statement is even true for z = 1. We have
-1 I(X)

ey = v _771) Ly ls 2(520"“7’“) ey
s—5 =

We can consider ¢, as a Laurent polynomial in v. The coefficient of v in ¢, is
(s —s71)~!, and therefore c is non-zero. Hence, c, is non-zero.

Let A and 1 be Young diagrams with ¢) = ¢,. Since s2%~%) — 572k = () for
k > 1()\), we deduce from ¢, = ¢, that

m (82(/\k-_k) - S_2k) — i(s2(nk——k) o S_Qk),
k=1 k=1

where m = max(l(\),[(n)). Hence

The sequences (A, — k) and (n — k), 1 < k < m, are strictly decreasing. The
above equality implies therefore that A\ =, for k=1,...,m, hence A\=17. &

2.5 Semi-simple decomposition of H,

This exposition follows the account of Blanchet in [3]. He describes an explicit
isomorphism from H,, to a disjoint sum of matrix algebras by generalizing Wenzl’s
results of [25]. We use the three-dimensional version H) of the Hecke algebra as
introduced in [2] where the arcs end at the centres of the cells of a Young diagram
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rather than along a straight line. This model supports the understanding of the
construction.

It is helpful but not necessary to know the value of the scalar a;, from equation
(2.4.4). The knowledge of «, allows to have a better control of the scalars in
lemma 2.5.4.

We fix the index n of H, throughout this section. Given standard tableaux ¢
and 7 of the same Young diagram A with n cells we construct an element oy, of
H,,. In this context we say that standard tableaux s and o are suitable for oy, if
s and o belong to the same Young diagram.

We denote by M;,; the algebra of (i x i)-matrices over the same ring as the
ring of scalars for H,,. We recall that d) denotes the number of standard tableaux
for the Young diagram A.

To simplify our notation, we denote the Young diagram that underlies a stan-
dard tableau ¢ by A(t). We use the notation of the Kronecker-delta ¢, which is
defined by d,s = 1 and 9,5 = 0 if 7 # s. We shall prove that o,a, = 0,504, for
any (suitable) standard tableaux ¢, 7, s and o. This implies that the linear map

@ MdedA — Hn
[A|l=n

mapping the basis element Fy, (that has all entries equal to zero except the entry
1 at the position (¢,7)) to ay, is an algebra homomorphism.

Being careful, we have to consider the scalars of H,. First of all, we can
consider the field Q(x,v,s) of rational functions in z, v and s. But we can
restrict the scalars to the subring of the field of rational functions in z, v and
s generated by 2+, v*! st and (st — s %) ! for i = 1,...,n. This is because
the idempotent yy = (1/ay)ey can be defined in this ring since the denominator
of ay is by equation (2.4.4) a product of terms (s/ — s7/) for j being the hook
length of some cell of A\. Since A has n cells in total, it is sufficient to consider
jg=1...,n.

We denote by y, the three-dimensional version of the idempotent correspond-
ing to A. Given a Young diagram A\ we can remove one of its extreme cells to get
a Young diagram p with one cell less. Given a standard tableau ¢ of A there is
a canonical way to choose an extreme cell by choosing the cell with the highest
number in t. We denote the resulting standard tableau by ¢. We denote by t*
the k-fold application of this removal of cells.

There is an obvious inclusion of the three-dimensional Hecke algebra H, in
the Hecke algebra H) by adding a straight arc that connects the boundary points
based at the removed cell. We denote this inclusion by g — ¢ ® 1.

Given a standard tableaux ¢ of a Young diagram A we define ®, in H, by

D = (Yagn-1) ® Ln—1) (Yagn—2) ® Ln—a) - - (1agy ® 11)ya
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where 1 is the identity braid on k strings. We remark that y»-1 ® 1,_; is the
identity braid. We define €2; in H) similarly as

Q= () Wy ® 11) - - (Yagn—2) @ Ln2) (Yan—1) ® 1n1).

Given standard tableaux ¢ and 7 of a Young diagram A we define an element oy,
in H, by
Qr = Ft¢tQ7-F;

where F} resp. F is a tangle that connects upwards resp. downwards the n
points arranged along the cells of A to the n points arranged along a line. We
number the points along the line by 1,2,...,n from left to right. The standard
tableau ¢ describes a numbering of the upper boundary points of Hy. We describe
in a recursive way the projection of this braid to the plane that contains the upper
n points of Hy. For ¢ =1,..., N we connect the points numbered N — 7 + 1 by
a line that goes only towards right and upwards, that is disjoint to all ¢+ — 1
previously drawn lines, and that is disjoint to the standard tableaux ¢'.

F is defined as the mirror image of F;.

Lemma 2.5.1 We have oy, a5, = 07504, for any (suitable) standard tableaur t,
T, s and o.

Proof We denote by n and p the Young diagrams given by the standard tableaux
7 resp. s. We first consider the case that n and p are different. We have in the
three-dimensional picture of oy, c, a product in which the factor y, appears in
(2, and the factor y, appears in ®;. Any product containing these factors is equal
to zero because of the three-dimensional equivalent of equation (2.4.3).

If the Young diagrams n and p are equal but 7 and s are different then there
exists a maximal integer k so that A(7%) = A(s¥) but A\(7FF1) # A(s**!). By the
same argument as above we deduce that 2. F~ F®, is equal to zero because we
have a product containing yy ++1) and yy+1). The other strings do not interfere
because of our definition of the connecting braids F. and Fj.

Finally, if 7 and s are equal, we have that

O Oy — Ft(I)tQTF,:FTq)TQO—F;
- Ft¢tQT¢TQUF;
= th)th—Fo__

= Oy

where we used that €2,®, = y,;). This is true because y,(y; ® 1)y, = v, in H,
for any Young diagram v and subdiagram ¢, |v| = |(| + 1. We finally show this
equality.
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First, we note that we can extract a factor E.v(b) ® 1 from E,v(b) at the
expense of a scalar 5. This is because the quasi-idempotent b; of H; satisfies
b;b; = B;b; for a non-zero scalar ;. We thus get

B (b)(Eev ® 1) = BE,v(b)

where
1(¢Y)
B=11I By
7=1
Similarly,
(E¢(a) ® 1)Ey(a) = aby(a)
where

1<)
a = H ;.
i=1
Second, we have that E¢v(b)E¢(a) is a quasi-idempotent of Hy with the same
scalar o as for E¢(a)E¢v(b). This follows from

e¢ = (E¢(a) B (b)) = acEe(a) E¢(b) = acec

by reading the involved diagrams from bottom to top which is an anti homomor-
phism that leaves the a; and b; invariant.
Hence,

W ® Y = g Ey(a) B O)((Eelo) B () @ DE, (0) B ()
= BB (0)(Fer () @ D((Fe(@) e (1) @ 1)

Q2acaf
(E¢(a) ® 1)E,(a)E,v(b)

= L B (B0 (B (0)Ee(a) @ 1) Ey(a) B (b)

2acaf

= Q%WEV(@)Euv(b)((Ecv(b)Eg(a)) ® 1)E,(a)E,v (b)

— L BB 0)E,()EN ()

2
v
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Lemma 2.5.2 The closure of cy, in the skein of the annulus is equal to zero if
t and T are different tableaux of the same Young diagram. The closure of oy is
equal to the closure of Y.

Proof The closure of oy, = Fi®,£,F; is equal to the closure of Q2 F~F,®, be-
cause we can move the factors around in the annulus, i.e. permute them cyclically.
By the same argument as in the proof of lemma 2.5.1 we have therefore that the
closure of «y; is equal to zero if £ and 7 are different, and the closure of ay; is
equal to the closure of yy). )

Lemma 2.5.3 The elements {cy,} of H, are linearly independent where t and T
range over all suitable standard tableaux of Young diagrams with n cells.

Proof Assume that
Z RirQgr = 0
t,T

for some scalars x;,. Let s and o be any suitable Young tableaux. Then multi-
plication of the above equation by a,, on the left and multiplication by a,, on
the right leads to

KsgOlss = 0

by lemma 2.5.1. In order to deduce that k, is equal to zero for all suitable Young
tableaux s and o, we have to show that g, is non-zero in H, for any standard
tableaux s.

As shown in lemma 2.5.2, the closure of a4, in the skein of the annulus is
equal to the closure of y,(,) in the skein of the annulus. Even the inclusion of the
closure yy(s) in the skein of the plane is non-zero by lemma 2.4.6. Hence, o is
non-zero in H,,. [ 3

Lemma 2.5.4 The elements «y, for any suitable standard tableaux t and T are
a basis for H, when the scalars are the field of rational functions in x,v and s.

Proof We recall that d, is the number of standard tableaux for the Young dia-
gram A. The number of elements oy, in H, is therefore given by 35—, d3 which
is known to be equal to n! by an argument about the standard decomposition of
the group algebra C[S, ] into a direct sum of matrix algebras.

Since the elements oy, are linearly independent, and the dimension of H,, is
n!, they form a basis. )

In order to define the oy, we only need the terms (s° — s7%) to be invertible
for all # > 1. The question is: If r is a subring of the field of rational functions
in which all the (s* — s7%) are invertible, are the oy, a basis for H,? They are
linearly independent over r, but do they span H,, over r? Blanchet claims in his
paper that this already follows from lemma 2.5.1. But it seems that the following
additional argument is necessary.
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Lemma 2.5.5 Let k be a field, and r be a subring of k. Let v be an algebra
automorphism of My, over the field k. If v restricts to an algebra endomorphism
¥ of My, over the ring r then % is an automorphism of the algebra M,, over
the ring r.

Proof We have to show that 7! is an algebra endomorphism over the ring r.
By the Noether-Skolem-Theorem (see e.g. [10]), we have that the automorphism
v of M, «, over the field k£ is the conjugation by some invertible element G of
M, ., whose entries lie in k.

That v restricts to an endomorphism over the ring r means that GDG ! has
entries in r for any (n x n)-matrix D whose entries lie in r. We have to show that
the entries of G=!DG lie in r as well since ! is the conjugation with G~

We denote by E;; the (n x n)-matrix that differs from the zero-matrix only
by the entry (i, j) which is equal to 1. For any (n X n)-matrices A and B we have

(Alile) (AquZ) T (AliBjn)
(A2;Bj1) (A2Bja) --- (A2Bjn)

AE;;B = : ’ : ! : ! = (AkiBji)1<ki<n
(AniBj1) (AniBj2) -+ (AniBjn)

for any 7,7 =1,..., N. Similarly,
BE;jjA = (ByiAjo)i1<pq<n-

This means that all the entries of AE;; B for all 1 <14, j < n are a permutation of
all the entries of BE;;A for all 1 < i,j < n. Hence, if all the entries of GE;;G™"
for 1 <i,j < n lie in the ring r then all the entries of G™'E;;G for 1 < 4,5 <n
lie in 7. Since the matrices Ej; are a linear basis over r, we have that G"'DG
has entries in r for any matrix D whose entries lie in r. &

We recall that for a standard tableau ¢ we defined ¢’ to be the standard tableau
derived from ¢ by deleting the cell with the highest label. Blanchet observes in
theorem 1.13 in [3] that

nel=" > W yhel).
ACu
= +1
By applying this result to the term (y, ® 1) in the middle of oy, ® 1 € H,, 11, one
gets in Hy, 4
Lemma 2.5.6 We have
@1 = Z Usg-

s'=t,o'=1

for any (suitable) tableaux t and T.
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Chapter 3

Closures of idempotents are
Schur functions

3.1 Introduction

The Hecke algebra H,, interpreted as the Homfly skein of the disk with 2n bound-
ary points with top-down orientation contains idempotents (1/cy)ey that are in-
dexed by Young diagrams with n cells. Their closures (), are known to be a basis
for the image of H,, under the closure map in the skein of the annulus.

Previous works have shown that the map from the algebra of Young diagrams
to the skein of the annulus mapping A to 2, is an algebra isomorphism. But
either the proofs used results beyond the scope of skein theory like [1] or they
were sketchy and had gaps like [14].

In theorem 3.5.6 we shall give a self contained proof solely based on skein
theory. The idea is to consider an element Sy, = det(Qdkmﬁ)lSi,jSl(,\) and to
show that it behaves in the same way as (), under the addition of a meridian
loop of the annulus. This is sufficient to deduce that Sy = Q).

The skein of the annulus C' with two boundary points has been considered
e.g. in [14], [8] and [18]. The version used here and in [18] enables us to define
a commutative multiplication for C" because the boundary points lie on different
boundary components of the annulus.

3.2 The skein C of the annulus

The Homfly skein of the annulus shall be denoted by C'. We furthermore choose an
orientation for the core of the annulus. In all our depictions, the annulus is given
the standard anti-clockwise orientation, and the core is oriented anti-clockwise as
well.
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Figure 3.1: The multiplication in the skein of the annulus C'

Figure 3.2: The closure map from H, to C.

Let D; and D, be two diagrams in the annulus S' x [0,1]. We can bring D,
into S' x [0,1/2), and Dy into S* x (1/2,1] by a regular isotopy. Then the product
of Dy and D is defined as the diagram D,;UD;. The product is commutative since
D, D, and D, D, differ by regular isotopy. The empty diagram is the identity.

The product of D; and D is depicted as putting the inward circle of the
annulus containing D; next to the outward circle of the annulus containing D,
as shown in figure 3.1.

Figure 3.2 depicts an annulus with a set of n oriented arcs. A disc is removed
from the annulus in such a way that we can insert a diagram from H,, such that
the orientations of the arcs match. This factors to a map from H,, to C, denoted
by A : D +— D. This is a special case of a wiring. We define @, to be the closure
of the idempotent y, of H, where n is the number of cells of A,

Q=14 eC.

We denote the image of H, in C' of the closing map by C,,. By C'; we denote
the submodule of C' spanned by all Cy, C1, .. .,

c, - <L2Jo cn> |
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Figure 3.3: Encircling a diagram in the annulus.

We define a linear map I' from C, to C'y that is the encircling of any diagram
in C, by a single loop as shown in figure 3.3. Similarly, " is the same map but
with the opposite orientation of the additional loop.

X € C; is defined as the closure of the braid o;_10;_5...0,. X; derives from
the diagram X;" by reversing the orientation. Any diagram D in the annulus
can be written in the skein of the annulus C' as a linear combination of totally
descending curves. It thus follows that X;" and X ; for all integers 7 and j generate
C'. In fact, Turaev proved in [23] that they generate C' freely as a commutative
algebra. We shall prove the weaker result that X;", X, ... generate C, freely as
a commutative algebra. The weighted degree of a monomial (X;7)7 - (X;F)7 is
defined as 171 + -+ + 4 Jk-

Lemma 3.2.1 The dimension of C is equal to the number of partitions of k.
The elements X7, X5, ... are algebraically independent in C.

Proof Inductively one proves that Cy is spanned by the monomials in {X;'} of
weighted degree k for any integer £ > 0. Hence, the dimension of Cj is at most
p(k) by which we denote the number of partitions of k. We denote by C<,, the
submodule of C; which is spanned by all elements of C}, 0 < k < n. Therefore,
the dimension of C<,, is at most p,, = p(0) + p(1) + - - - + p(n).

On the other hand, all the closures of ey lie in C<, provided that the Young
diagrams A have at most n cells. The closures of the e, are non-zero by lemma
2.4.6, and they are linearly independent since they have different eigenvalues un-
der the map I'. Hence, the dimension of C«,, is at least p,,. Hence, the dimension
of U<y, is equal to p,,. Since every element of C'<,, is a linear combination of mono-
mials in { X'} of weighted degree lower than or equal to n, these monomials have
to be linearly independent. Since this is true for all n > 0, we have that all the
monomials in {X;"} are linearly independent. [ )
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Figure 3.4: The multiplication in C".

3.3 The variant skein C’ of the annulus

We require an orientation of the core of the annulus. The orientation of the
annulus induces an orientation on each of its boundary curves. We call ¢; the
boundary curve for which this orientation agrees with the orientation of the par-
allel core. We call ¢y the other boundary component. We pick points v, € ¢; and
Y2 € c3. We denote by C” the skein S(S* x [0,1],T = {m} W {12}).

When we embed the annulus in the plane with the standard counter-clockwise
orientation and the core oriented counter-clockwise as well, then ¢; is the outer
boundary component, and ¢, the inner.

Similarly to C, we turn C' into an algebra. In the standard picture, the inner
boundary point of a diagram « comes together with the outer boundary point of
a diagram [ as shown in Figure 3.4.

The single straight arc e connecting the two marked points is the identity
element, as shown in figure 3.5. The commutativity is not immediate but nev-
ertheless turns out to be true as we shall see in lemma 3.3.3 and in the remark
following it.

The skein used in [14] has both of its two boundary points on the outer
boundary circle of the annulus. Furthermore, they lie at the right. There is a
map from C’ to this variant skein. First, one turns the annulus over to itself
keeping a vertical line fixed. Then one adds the arc from figure 3.6 from below.

We have two operations of C' on C’. If « is an element of C' and z is an element
of C" we define auxr as stacking « above x as shown in Figure 3.7. Similarly za is
defined as putting o below z.

We define a closing operation r +— 7 from C" to C' which means adding the
arc in figure 3.8 from above to a diagram r. In order that this is possible, the
annulus for C' has to be slightly larger than C’. The framing of the diagram 7 is
defined to be its blackboard framing. We remark that this closing operation is
not an algebra homomorphism. The linear map from H,, to C' given by closing a
tangle t is denoted by ¢ — ¢ as well. This should not lead to confusion.
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B

Figure 3.5: The identity e in C". Figure 3.6: A map between dif-
ferent skeins of the annulus after
turning the annulus over.

o

Figure 3.7: Operation of C on C' from the left.

Figure 3.8: The additional arc for the closure.

)

Figure 3.9: Map A’ from H,, to C".
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Figure 3.10: The arc a (at the left) and its inverse a™' (at the right).

For any integer n > 1 we have a linear map A’ : H, — C" as shown in figure
3.9. We denote the image of H,, under this map by C},. We define C", to be the
submodule of C' spanned by all Cj, C1, .. .,

={ye).

We shall use the notation Al : H,, — C" if it is necessary to emphasize n.

We shall denote by a the element of C' that is the image of the identity braid
15 of Hy under the map A’. It is the arc that joins the two boundary points of
C' as shown on the left in figure 3.10.

Lemma 3.3.1 For any integer n > 1 we have

n—1
= < U Cn_k_lak> .
k=0

Proof We have (U}_;C,, 1 1a*) C C! because
Ja* = AL [(v ® idjy1) k0%t - - 01]

for any v € Hy_g—1.

Since H, is spanned by braids, C] is spanned by the images under A’ of
braid diagrams. We prove for any n-string braid diagram S that Al(3) €
(UP_3C, . 1a"*) by induction on the number of crossings of 3.

If 5 has no crossings then it is the identity braid on n strings, hence Al (5) is
equal to a"'.

Let 8 have r > 1 crossings. Let 3 be another braid diagram on n strings that
differs from (3 by switching some crossings from under- to overcrossings or vice-
versa. Then 8 — 3 is in the Hecke algebra a linear combination of diagrams with
less than r crossings because of the skein relation. We may assume inductively
that the image under A/, of each of those summands lies in (U}_;C,_j_1a").
Hence

Al (B) € (UPZLC,__1a¥) if and only if A’ (B) € (UPZLC,__1a¥).
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We change the crossings of 8 in such a way to a new braid 3 so that the arc
¢ of A’ (3) which connects the boundary points is totally descending along its
orientation, and ¢ lies below any other component of A’ (5). Then ¢ is regularly
isotopic to a power of a, say a!, [ > 0.

The other components of A’ () are the closure of the braid that derives from
3 by deleting the (I+ 1) strings that belong to ¢. Hence A/ (5) € C_;_1a, hence
AL(B) € (U2 Cog-1a®) .

We immediately deduce
Corollary 3.3.2 (' is a graded commutative subalgebra of C".

We have thus proved that C', is linearly spanned as a left-module over C';. by the
powers of a. We can prove even more.

Lemma 3.3.3 C' is the polynomial algebra in a with the action of C'y on the
left.

Proof We have to show that the powers of a are linearly independent for coeffi-
cients in C';. So let us assume that

60€+Cla+0202+"'+cmam =0 (331)

for m > 0 and coefficients cg, ¢, . .., ¢, in Cy. The closure of e is equal to d times
the empty diagram (). The closure g; of a’ is very similar to X", and the g; are
algebraically independent in C', by essentially the same argument as in the proof
of lemma 3.2.1.

Taking the closure transforms the equation (3.3.1) in C, into the following
equation in C'y

CO(S(D +c1g91 + 2092 + -+ CGm = 0.

If we first multiply equation (3.3.1) by a* for some 1 < k < m then we get after
taking the closure that

Cogk + C1gk+1 + CoGkyo + -+ + CnGrym = 0.

We can summarize these (m + 1) equations in matrix form as

Y/ g2 Om Co 0
g 92 g3 0 Gmyt 1 0
92 g3 gs 0 Gmy2 co | =10
I9m 9m+1 Gm+2 " G2m Cm 0
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Figure 3.11: Depiction of lemma 3.4.1.

When we express the determinant of the (m + 1) x (m + 1)-matrix as a sum
via the Leibniz rule we see that the monomial ¢g>g4 - - - g2, appears only once and
its coefficient is equal to §. Since C, is freely generated by the empty diagram
and ¢, go, . . ., the determinant is non-zero. Since C'; is an integral ring, we can
embed it into a field k. Therefore the linear module endomorphism of C'?" given
by the matrix can be extended to a endomorphism of a vector space over the
field k. Since the determinant of this vector space endomorphism is equal to the
determinant of the module endomorphism, the module endomorphism is finally
seen to be injective. Hence (co, c1,...,¢n) = (0,0,...,0).

Hence e, a,a?, ... are linearly independent over C. )

Remark By essentially the same argument, C, as a right-module over C is the
polynomial algebra over C'y in a. Similarly, for either operation of C on C’, C" is
the Laurent polynomial algebra over C' in a.

3.4 Basic skein relations

Let D be an element of the skein of the annulus C'. The inclusion of the annulus
in the plane induces a (non-injective) linear map from the skein of the annulus C'
to the skein of the plane S(R?). We denote the Homfly polynomial of the image
of D in S(R?) by (D). The map D > (D) is an algebra homomorphism.

We define A} to be the element A’(a;) of C",, and A; to be the element A(a;)
of C'y for any integer : > 0. We recall that a;a; = «;a; for some non-zero scalar
«;. We define h; = iAi for any integer ¢ > 0, and we define h; = 0 for ¢ < 0.

The following lemma is depicted in figure 3.11.

Lemma 3.4.1 We have

= —(ed;) + ' Ala
o o
in C' for any integer i > 0.

40



i/ @ 4 {< U///
i
i

Figure 3.12: Moving crossings around in the annulus.

Proof We have
Aj+1 = (ai X ]-1)(]-i+1 + (IL'_IS)O'i + (I_IS)QO'Z'O'Z'_l + 4 (.'L'_IS)iO'Z'O'i_l v 0'1)

by equation (2.4.1). We consider the term A’((a; ® 1)o;0,_1 -+ -0;) as depicted
in figure 3.12. If 2 < j < i then we can move the braid o;0;_; - --0; around the
annulus to the top of a; where the braid is read as 0, 10,_2---0;_1 and these
(i — j + 1) crossings are swallowed by a; at the expense of the scalar (zs)"™7/*!.
We thus get

A'((a; ® 11)oi04_1 -+ 0;) = (x5) 7T Al(a;)a

for 2 < j <i. For j = 1 we have the summand A’((a; ® 1;)0;0;_1 - - - 01) which is
equal to eA;. We thus get

A;'+1 = A'(aiy1)
= A,(CLZ' ® ]_1) =+ Z(x_ls)i_jHA'((ai ® 11)0’i0'i_1 . 'O'j)

7=1
= Ala+ (z's) (ed;) + > s2 Al
i=2

_ it
= (z7's)'(ed;) + Aja ) g2i=i+1)
71=2

= (27's)"(eA;) + s '[i]ALa.
Since a;,1 = a;s'[i + 1] by lemma 2.4.2, we get

li+1] , xt s7i]
AL =T eay + 2
oy T (ed;) + o
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Figure 3.14: The closure of A;.

Lemma 3.4.2 We have

vlsh —ps™?

<hi+1> = <hz>

st — g7t
for any integer i > 0.

Proof Using the skein relations in figures 3.13 and 3.14 we deduce from lemma
3.4.1 by taking the closure and Homfly polynomial in R? that
-1

[i + 1])(28) ™" (hip1) = )

(hy) + s~ iz o (ws) " (hy) .

s— g1
Hence,
~1

i 1)t = () (52 + )

§— S

sty — sty 4+ sty — s
= (i) -

§— s~
-1 —i
stvT — s

s—s1
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We define B; to be the closure of the quasi-idempotent b; € H; in the skein of
the annulus.

Corollary 3.4.3 We have

1 1 vst —v7lsT
<5—Bi+1> = <EBZ> i i
i+l i -
for any integer i > 0.

Proof This follows directly from lemma 3.4.2 by applying the map v from sub-
section 2.4.1 which interchanges the quasi-idempotents a; and b;. [

We define an element
t; = a'(hie) — x " (eh;)
in C", for any integer i. We remark that ¢, = 0 for i <0.

Lemma 3.4.4 We have )
ti=(s'— S)MA;CL

Q;

for any integer i > 0.

Proof We have i) ) 1[ |
1+ " s™e
AL = A; — A
Qi1 i+1 o (6 ) + o i@

by lemma 3.4.1. By applying the map p from subsection 2.4.1 we get

i+1] , z' s[i]
— A ="(4 — Ala.
Qi1 i+l ai( e)+ o i

The right hand sides of the above two equations show that

i(Aie) — v (ed;)) = (s ' — s)mAga

Q; Q; Q;

for any integer i > 0. L]
Corollary 3.4.5 We have
ti = (s"7% — 5)z "vh;

for any integer 1.
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Proof From lemma 3.4.4 and the skein relation in figure 3.13 we deduce that

~

t; = (s'=s)ilz v(xs) hy

= (s'7% — 5)z " "wh;

for any integer ¢ > 0. This equation holds for negative integers 7 as well because
h; and t; are equal to zero for negative 7. &

Corollary 3.4.6 We have

(he) = z=% (
for any integer 1.

Proof We have t; = z'(h;e) — z%(eh;). Taking the closure we deduce

-1 _
t; = 2" (he)" — P

hi

sl—s

because the closure of eh; is equal to h; with a disjoint loop. By corollary 3.4.5
we immediately get

’1)71—1}

— (s - s)) h;.

(hie)" =z % (

s— S

Lemma 3.4.7 We have
titipn — it = (s° = (a7 (ehi)tjrn — a7/ (ehy)ti)
for any integers i and j.

Proof If either 7 or j is negative then the lemma is obviously true. Let i > 0
and 7 > 0 from now on. We have
[i + 1] 7 s7d]
A= eA;) +
Qi1 i+1 o ( Z) a;

Ala
by lemma 3.4.1. We multiply both sides by %A;-Ha (on the right) and get

+1

i + 1]+ 1]

Q10541

A;+1A;‘+1a:w(eAi)A;Haqu*l[ZHJ—F ]

AjaAlya.
QG0jy1 Q41
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We multiply both sides by the scalar (s™! — s)? and use lemma 3.4.4 to get

i+ 1 +1)(s7t =52, _ 7
SRS C T Ve

-1
(eAi)tj+1 +s titj+1.
Q1054 Q;

The left hand side of the above equation is invariant under the interchange of ¢
and j because C’, is commutative, and thus the right hand side is invariant under
this interchange. Hence,

_ z! _ _ x 7 _
(S t_ S) o (€Ai)t]‘+1 + s ltit]‘+1 = (S - S)F(eAj)tH—l + s ltjti-l-l-
7 J
Equivalently,
) ! x™
titip1 — titin = (8" = 1) | ——(eAi)tj1 — ——(eAj)tis1) | -
o, a;
)
3.5 Determinantal calculations
Lemma 3.5.1 For any integer r > 2 and integers iy, is, . . ., 1, we have an equal-

ity of (r x r)-determinants in C"

hile T hi1+7‘72e ti1+7‘71 ehil T ehi1+7‘72 ti1+7‘71
. . — 82(7‘71) . .

hie -+ hijr_oe t; 11 ehy, -+ ehj o tiiro1
when we set x = 1.

Proof The reason for the substitution z = 1 is the fact that we can then write
Lemma 3.4.7 in determinantal form as

ti tiv1
ti tit

ehi ti
€hj tj+1

= (s*—1) (3.5.2)

for any integers ¢ and j. Using the multilinearity of the determinant together
with t; = h;e — eh; we deduce from the above equation that

eh; ti
€hj tj+1

2

hie  tit1
hje tj+1

: (3.5.3)

which is our claim in the case r = 2.
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From equations (3.5.2) and (3.5.3) we deduce that

t;, t; h;e t;
R e I R (3.5.4)
tj tin hje i
From now on let » > 3. We see that
Liy tipr1 tigyo o liggr—1 hije tip1 tiyo -0 ligr—
Lip lip+1 tiy2 o lipgr—1 hie tip1 tiyo -0 ligr—

by developing the determinant on the left hand side by the first two columns,
applying equation (3.5.4) to each summand, and redeveloping the determinant.
By doing this successively for the columns 1 and 2, 2 and 3, ..., (r — 1) and r, we
deduce that

til e ti1+7‘—2 til-l—r—l hile e hi1+r—2€ ti1+7‘—1
: : == : :
ti, = lipggr—2 ligr—1 hie -+ hjir_0e Ti1r_1

On the other hand, if we use equation (3.5.2) instead of (3.5.4) in the above
argument, we get

biy = tigpr—2 lig4r—1 ehy, -+ ehjqr_a tiyr

: : : =(s"= 1" : :
Li, = tipr—2 ligr—1 ehi, -+ ehj o tiyr1

Hence

hile e hi1+1"72e ti1+7‘71 ehil e ehi1+7‘72 ti1+7‘71

. — 82(7‘71) .
hie -+ hij e ti 11 ehy, -+ ehj o ti1r1

We define

Sy = det(h/\i+j—z')1§i,j§l(/\) € Cn

where n = |A\|. We remark that we have proved the following theorem for the
case A equal to a row diagram already in Corollary 3.4.6.

Theorem 3.5.2 We have (Sxe)" = ¢\Sy in C with the scalar
—1 LX)

0 = v —_711 + st Z(ch—/\k) _ S2k)
55— S5 =t

when we set x = 1.
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Proof We shall set z = 1 throughout our calculations. For any elements o and
3 of the skein of the annulus C' we have (ae) - (Be) = (af)e in C'. Hence

She = det(h/\i-i-j—ie)lgi,jél()\)'
Similarly
eSx = det(ehy,1j—i)1<ij<i(n)-

We denote [(\) by n from now on. We remark that the closure (eS))" is equal
to Sy and a disjoint circle which can be removed at the expense of the scalar

(v —w)/(s—s7h).
By the multilinearity of the determinant we can write the difference of any
two (n X n)-determinants as a telescope sum of n (n X n)-determinants.

Yir o Yin 211 " Zin
Yn1 = Ynn Znl " Znn
n | Y11 0 Yk Y1k — 21k)  Z1k41 70 Z1in
k=1
Yn1 *°° Ynk—1 (ynk_znk) Zpnk+1 "' Znn

Applying this formula to the determinants for S)e and eS) we get
S,\e — 65)\ =

n hy e o haqr—oe Tatk—1 ehy 4k e el gn—1

k=1
hx,+1-n€ -+ haqk—1-n€ tr,4k-n €Mx,4kt1-n -+ €hy,

By lemma 3.5.1 we deduce
S)\e — 65)\ ==

n ehy, e ehyy ko Eark—1 €l gk < ehyn
Z g2(k—1) E . . . .
k=1

ehy,41-n - €hy,qk—1-n Troth—n €hx,4ht1-n -+ ehy,

The appearing n determinants are very special because each of them is a sum of
terms of the form of a ¢; above a product of h;’s. Therefore the closure of each
determinant is ¢; above a product of h;’s. Explicitly,

(Sxe)" — (eSy)" =

h/\l e h/\1+k72 t)\1+k71 h/\1+k e h)\1+n71

h/\n+17n h/\n+kflfn tr,+k—n h/\n+k+17n h)\n
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We know by corollary 3.4.5 that f; is a scalar multiple of h;. Hence

(Sxe)" — (eSy)" =

R NOW v haypr—2 Bikha+k—1 I +k o hygna

>

k=1
h/\n+lfn h)\n+kflfn Bnkh)\nJrkfn h)\n+k+17n h)\n

where (3;, = s2(b=1)(s!72(itk=0) _ 5)y. We use the notation o; = s*~2}~'y and
e = —s%~ v, hence Bir = a; + . By the multilinearity of the determinant we

get

(S,\e)/\ — (BS)\)A = (’71 + ...+ ’Yn)S)\ +

R NOW oo hyqk—2 arhy g1 haggk o by

>

k=1
h)\n‘i‘l—n e h)\n-l—k—l—n anh)\n-l-k—n h}\n—l—k—i—l—n cr hAn

We bring the sum over the determinants in a more appropriate form via the
general formula for variables w;; and oy,

n | Wir ot Wig—1 Q1Wi1g Wig4r -+ Winp
Z =
k=1 Wnp1 - Wpk—1 CpWpk Wpk+1 - Wnn
wir o Wip
(a1 + -+ ap)
Wp1 -+ Wnn

Applying this formula we get

(Sxe) = (eSy)" = (i +-+ %) + (1 + -+ ay) Sy
= (Bi1+-- =+ Bun)Sa

Since (eS))" = (v™' —v)/(s — 57') Sy, we have (Sye)”" = ¢\S\ with

-1

v — v
g = 71+511+"'+5nn
s— 8
—1 n
v —v -1 2(k—Ap,) 2%
= + vs S — 8.
Y |

We now formulate theorem 3.5.2 for general x.
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Theorem 3.5.3 We have (Sxe)" = q\Sx in Cy with the scalar

I(\)

-1
—on\|¥  —UV - - -
o =T 2|\l — +x 2|)\\US 1 Z(S2<k k) S%).
sS— S k=1

Proof We define two maps from C; to Cy. The map ® is the specialization of x
to 1. The map ® maps every diagram D to z~%"”)D. The maps ® and ® are not
inverse to each other in general. But, from the definition of the quasi-idempotent
a; € H; we see that ®®(A;) = A; for every integer i > 0. Since the scalar a; does
not involve z, we deduce that ®®(P) = P for every polynomial in h; = O%AZ In

particular, ®®(S,) = S. Hence ¢\ = 272 (gx|p—1)- L

We recall the linear maps I' and I from C, to C, as defined in section 3.2.
They encircle a diagram by a single loop with a specified orientation.

Corollary 3.5.4 We have T'(Sy) = ¢S\ and f‘(S,\) = (\S) where

vt — v 1(A)
—2|A —2[A, —1 2(k—X 2%k

Q= T "7_1+1' Alys ™ 7 (20 2w) — g2,

s—s =

vl — 1)
~ 2 2\, —1 2\ — -2
g = x"\‘i_ler‘/\'v e G

s—s Fet

for any Young diagram \.

Proof The equality I'(Sy) = ¢\S, is the statement of theorem 3.5.3. We recall
the map p from subsection 2.4.1. We have p(h;) = h; by lemma 2.4.4. Hence,
p(S\) = Sy because Sy is a polynomial in the h;. Hence, p(I'(Sy)) = ['(Sy), and
thus I'(Sy) = p(qa)Sh. L )

We recall that (), is the element of C'; which is the closure of the idempotent
(1/a)ey of H,. We thus have to consider some suitable subring of the rational
functions in x,v and s as the ring of scalars for the skein modules. We shall
describe the structure of the denominators appearing for (), in lemma 3.6.3.

Theorem 3.5.5 S, is equal to @\ for any Young diagram .

Proof (), is non-zero by lemma 2.4.6. Since the scalars ¢, and ¢, from lemma
2.4.7 and corollary 3.5.4 are equal, we have that S\ and @), are eigenvectors
with the same eigenvalue under the map r. Possibly, Sy = 0. The set of ),
for all Young diagrams A with n cells is a linear basis for C, by lemma 3.2.1.
Furthermore, the eigenvalues ¢, are pairwise different by lemma 2.4.8.
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Hence, we deduce that Sy is a scalar multiple of @) for any Young diagram
A with n cells. This scalar is a rational function in z, v and s, and it is possibly
equal to zero.

We denote the Young diagram consisting of a single cell by []. We have that
St = Q) = a; is the single core circle in the annulus. Hence, S” is equal to the
closure of the identity braid of H,,. On the other hand, by the multiplication rule
for Young diagrams, we have

"= )" dA

[A|=n

where d) is the number of standard tableaux of A\. Therefore,

St =3 d\Sh.

[A|=n

We have the following equality in the skein of the annulus

QL= > d\Qx.
[A|=n
This follows from the results in section 2.5 as we explain now. We have proved
that >, ags = id, € H,, where the sum is over all standard tableaux of Young
diagrams with n cells. The closure of any a, in the annulus is equal to (2, when
s is a standard tableaux of ). Finally, the closure of the identity braid of H,, is
the n-th power of the core of the annulus which is equal to )-.
Since Sy = ()5, we deduce from the above two equations that

Z drQx = Z dxSi.

[A|=n [A|l=n

Since {Q» | A has n cells} is a basis of C),, and any Sy lies in C,,, and any S)
differs from @, by a scalar, we get that Q) = S,. )

Theorem 3.5.6 The map A — @y is an isomorphism from the algebra of Young
diagrams to Cy provided that any ay is invertible in the ring of scalars.

Proof The ring of Young diagrams ) is a free Abelian ring generated by the
column diagrams cy, cg,.... This is also true when we consider ) as an algebra
over any subring of the rational functions in x,v and s.

(', is commutative, hence there is a unique algebra homomorphism that ex-
tends the map ¢; — ;. This becomes an algebra homomorphism for any ring
of scalars. In order that ()., is defined, we need the invertibility of the scalar
(s' —s71).

The @, for all Young diagrams A are linearly independent. Hence the map
Y — (. is injective. It is also surjective because the set of the ), for Young
diagrams A with n cells is a basis for C),. &
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3.6 Applications
We shall abbreviate (@) by (\).

Lemma 3.6.1 For any Young diagram A we have

flscn(:p) _ ,Usfcn(x)

v
(A) = H shl(z) _ ¢—hi(z)

XEA

Proof We have by corollary 3.4.3 that

k —1.1—¢ 1—1

<Ck>:HU S — USs

=1

(3.6.5)

gt — gt

By exercises 1.2.5 and 1.3.3 of [17] with ¢ = s?, a = vs, b =v~'s we deduce from
the above equation that

, 1+agd'X

Yl Xt = [T+«

i>0 iso 1+ bg' X

1+ vs?H X
= H eyl (3.6.6)
>0
and

a — chn(x)

—IScn(x) _ vs—cn(x)
ghl(z) _ g—hl(z) !

_ S?n()\) H Sl-l—cn(ac)—hl(:v)v

TEA

where n()) = 1% (i — 1) \;. The Schur function s, is understood to be expressed
as a polynomial in the elementary symmetric functions ey, es,... and then any
e; is replaced by (¢;). The isomorphism of Schur functions and Young diagrams
implies that sy = ()\) because D — (D) induces an algebra homomorphism from
C' to the scalars. By examples 2 and 3 in section 1.1 of [17] we have

2n(A) + >_(1 + en(z) — hi(z)) = 0.

TEA

Hence (\) = sy = [Tyen (v 1@ — ps—en(@)) /(shl@) _ g=hila)y, )
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Let F be an oriented surface. We recall that a framed link in F x (0,1)
is an embedded annulus with an oriented core. Let L be a framed link with
k components with a fixed numbering. Let S' x [0,1] be an annulus with an

oriented core. For diagrams D, ..., Dy in S' x [0, 1] we define the decoration of
L with D+, ..., D, as the link

(L; Dy, ..., Dy)

which derives from L by replacing each annulus L; by the annulus with the
diagram D); such that the orientations of the cores match. Each component of
each D; has a small blackboard neighbourhood in the annulus, and this turns the
decorated link (L; Dy, ..., Dy) into a framed link.

The linear extension of decorating satisfies the skein relations, and thus the
decoration of a framed link with elements of the skein of the annulus C' gives a
well defined element of the skein S(F x (0,1)).

Lemma 3.6.2 We have

X(L’ Q/\v""’QHV) = X(L’ QA?"'?QM)SH—S*l
- X(L’ Q/\’ ) Qﬂ)mem, v —v, s—>sT1

for any framed link L and any Young diagrams A, ..., n.

Proof We recall from subsection 2.4.1 the map v from H, to H, that simply
replaces s by —s~!. We similarly define 7 in other skeins, e.g. in the skein of the
annulus or the skein of the plane. v permutes the idempotents derived from the
quasi-idempotents a,, and b,. Hence ¥(Qq,) = Q.,. We have (nu)" = nVpu" by
lemma 1.2.2. Using the ring homomorphism Y — C from theorem 3.5.6, the
fact that ) is generated by column diagrams, and v(Qg,) = Q.,, we deduce that

Y(@Qr) = Qi
for any Young diagram A. Hence
V(L’ Q)\a ceey Qn) = (L’ Q)\Va e '7Q77V)

in the skein of the plane R2.
The second claim follows by repeating the same argument with the map 7
from subsections 2.1.1 and 2.4.1 instead of ~. &

The hook length hl(\) of a Young diagram A is defined as the maximum among
the hook lengths of its cells. We have hl(\) = A\; +1(\) — 1.
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Lemma 3.6.3 The element Q) of the skein of the annulus can be written as a
linear combination of diagrams Y ptpD where the scalars tp are fractions whose
denominators are products of terms (s* — s%) for 1 < i < hl()\).

Proof We have

Qx = det(hy, j-i)1<ij<ion
by theorem 3.5.5. We have by definition that hy = Q4 = (1/c4)ax, and we
know by lemma 2.4.2 that the denominator of oy, is a product of terms (s* —s~?),
1 < i < k. The maximum of the integers \; +j — ¢ with 1 < 4,5 < I()) is equal
to Ay + [(A) — 1 which is the hook length of A. &
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Chapter 4

The decorated Hopf link

4.1 The Hopf link

We consider the Hopf link with linking number 1 as depicted in figure 4.1. Let a
and b be any elements of the skein of the annulus. We denote by (a, b) the Homfly
polynomial of the Hopf link with decorations a and b on its components. We have
(a,b) = (b,a), and we abbreviate (Qx,Q,) by (A, u) for any Young diagrams A
and p.

The scalars we are looking at are rational functions in x, v and s to ensure
that the idempotents (1/ay)ey of the Hecke algebra exist.

In order to simplify the calculations of the Homfly polynomial of the decorated
Hopf link, we often specialize x to 1. The initial value of the Homfly polynomial
may be recovered from this specialized value as described in the next lemma.
This is similar to the proof of theorem 3.5.3.

Figure 4.1: The Hopf link.
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Lemma 4.1.1 Let 3 be an m-braid and v be an n-braid. Then
(05,3 = 433 5
Proof We get a variant of the Homfly polynomial by setting
X'(D) = (zv ) P)x(D)

for any link diagram D. This Homfly polynomial y" satisfies the skein relation
v7loy —vo; !t = (s —s71)id and a disjoint unknot can be removed at the expense
of the scalar (v™' — v)/(s — s7'). We see that x"(D) does not involve x for any
diagram D. Hence,

X(D) = a™ P\ (D)gmy

for any link diagram D. The writhe of the Hopf link with decorations B and
4 is equal to wr(/3) + wr(7y) + 2nm because the concept of decorations requires
the orientation of the braids to be parallel to the orientation of the core of the
annulus. Hence

(x7 VBB gAY = g (W) (3 A
= g~ ()W) pwr(B)twr(r)+2mm 3

_ xan<B, ’AY>:D:1-

) ’A7>x:1

Corollary 4.1.2 Let A and p be Young diagrams. Then

() = 221N |u|<)\, (1) z—1.

Proof The closures of the quasi-idempotents a, and b, of H, are sums of terms
fx_“”"(ﬁ)B where f is a power of +s and [ is an n-braid. Since the normalized
idempotents differ from the quasi-idempotents by a rational function in s, their
closures 4, and Q. are sums of terms fz—*"(%) B where f is a rational function
in s and f is an n-braid. By the relation of (), with Schur functions we can write
@» as a homogeneous polynomial in Qg (or Q.;) of degree [A|. Hence, Q) is a
sum of terms fz~%"® 3 where f is a rational function in s and 3 is a braid on |A|
strings. We can now apply lemma 4.1.1 to @5 and @, for any Young diagrams A

and p. We get (\, p) = 22NN 1), [ )
Lemma 4.1.3 We have

(@, 5){(Qx, c) = (Qx) (@, be).

for any elements b and ¢ of Cy and any Young diagram \.
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Proof Let A be any Young diagram and b and ¢ be any elements of C',. We
denote the number of cells of A by n. The element @\ of C} is the closure of
the idempotent derived from the quasi-idempotent e, of the Hecke algebra H,,.
The product of e, with any central element of H,, is a scalar multiple of e, by
equation (2.4.2). The identity braid on n strings encircled by a loop decorated
with b (resp. ¢) is obviously a central element of H,, and we denote it by b’
(resp. ¢'). The closure of O'c'yy is equal to the Hopf link decorated with @, on
one component and be on the other. The closure of 'y, (resp. c'y,) is equal to
the Hopf link with decorations b (resp. ¢) and Q.

There exists a scalar t such that b’ey, = te,. By closing the elements on both
sides of this equation, we see that t = (Qx,b)/ (@Q)). We know by lemma 2.4.6
that (@Q)) is non-zero. Similarly, c’ey = (Q», ¢)/ (@) ex. Hence,

iblcle)\ _ <Q)\a b> <2Q/\7 C> e
Qi (@Qx)"

Taking the closure and Homfly polynomial in the above equation, we get

(Qx,0){Qx, 0)
(@)

and therefore (@, b){(Q, c) = (Qxr) (Qx, bc). &

We immediately deduce from lemma 4.1.3 that

(Qx, bc) = (@)

Corollary 4.1.4 The linear map n — (\,n)/(\) from the ring of Young dia-
grams to the ring of rational functions in x, v and s is a ring homomorphism for
any Young diagram .

Since any Young diagram 7 can be written as a polynomial in column diagrams,
we only need to know the values of (), ¢;) for sufficiently many integer ¢ > 0 in
order to compute (A, 7). Hence, it is useful to define a formal power series

By (X) = <—i> (06 X7

for any Young diagram A.

For any formal power series P(X) whose coefficients are rational functions
in z, v and s we define s),(P (X)) as first expressing the Schur function s, as a
polynomial in the elementary symmetric functions eg, ey, ... and then replacing
any e; by the coefficient of X7 in P(X). We recall that s, = e, for any r > 0.
Note that this is well defined because the elementary symmetric functions are
algebraically independent in the ring of symmetric functions.

We state our above considerations in the following lemma.
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Lemma 4.1.5 We have
1

2 B(X)) = 73

(A, m)

for any Young diagrams A\ and n.

From corollary 4.1.2 we see how to recover E,(X) from the power series
E\(X),=1 where we substituted x by 1 in every coefficient of the power series.
We simply replace X by 22X X in Ey(X),—,. Equivalently, we have

Ex(z72NX) = B\ (X) a1

We define )
Hy\(X) = W go()\,dr)X’"

for any Young diagram A. The next lemma shows how E\(X) and H,(X) are
related.

Lemma 4.1.6 We have
E\(X)H)\(-X) =1

for any Young diagram \.

Proof We have by equation (1.2.3) that

(Z c,X’“) (Z dk(—X)k> =1

in the algebra of Young diagrams. By corollary 4.1.4 we have that the map
a — (X a)/ (A) is an algebra homomorphism from the algebra of Young diagrams
to the scalars for any Young diagram A. Hence

(Z %(MJX ) (Z %(A,d,g(_ X)k) —
&

The following lemma explains the relation between the power series E\(X)
and the power series Eyv(X) for the transposed Young diagram \.

Lemma 4.1.7 We have
Exw(=X)E\(X)gy_s1 =1

for any Young diagram \.
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O

Figure 4.2: The unknot with framing 1 and its 2-parallel.

Proof We have by lemma 3.6.2 that (\)
that (A, cx)gs_s—1 = (AY,dy). Hence

ss_s-1 = (AY) and in particular we have

Ex(X)yy 1 = S (A, d) X"

L )

4.2 Hopf link decorated with columns and rows

We now compute E,, (X) for any integer £ > 0. To do this, we start with a
surprisingly simple formula for (c, d;).

Lemma 4.2.1 We have

(ks dj) = (o) (dj) ¥
for any integers k > 0 and j > 0.

Proof We claim that

v (s — 2R g2 g

vl —w

(ck, dj) = (cx) (dj)

when we set x = 1. The lemma then follows from the above claim because
(ck,dj)y = x%*{c, d;),— by corollary 4.1.2. We shall prove our claim by expressing
the Homfly polynomial of a certain decorated link in two different ways and
comparing the results. The link in question is the 2-parallel of the unknot with
framing 1 as depicted in figure 4.2 decorated with ()., on one component and Qg
on the other component. We denote its Homfly polynomial by R.

Already in the Hecke algebra H;, the product of the positive curl on ¢ strings
and any quasi-idempotent ey, |A| = 4, is a scalar multiple of e). The scalar was
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calculated using skein theory in theorem 17 in [2] as f(\) = z**v Mg where
ny is twice the sum of the contents of all cells of A\. Since we specialize = to 1, we
have

FO) = vl
By removing the two curls in figure 4.2 after the decoration we get
R = f(ck)f(d;){ck, d;j)- (4.2.1)

The other way to calculate R is to consider first the product of Q., and (g, in
the skein of the annulus. R is the Homfly polynomial of the unknot with framing
1 decorated by the product of @, and Qg4,. Since the Q) multiply like Schur
functions by theorem 3.5.6, we get Q. Qu; = Qu, ;41 + Qpyyy; Where pigp is the
hook Young diagram with (a + b — 1) cells of which a are in the first column and
b are in the first row. Hence

R = f(pge1) (Brgrn) + f () (esr,) - (4.2.2)
From the above formula for f()) we deduce
flern) =v7's7  f(er), fdjpn) = 07's f(dy), funy) = vf(ce) f(dy).
We have by lemma 3.6.1

v s TF — pgk
<Ck+1> = W<Ck>’
vls) — s
(djt1) = m( i)
(s = 579) (s = 57
(k) = (0T = 0)(sh i1 — 5 F-7+1) (ck) (dj) -

By these relations we get from equation 4.2.2 that

R o= [(prge1) (egea) + f(pnrng) (Herg)
(el s2 F(d. (sF —sF)(vlsd —ws ) . .
- f( k) f(d]) (’Ufl _ v)(skﬂ _ Sik*j) < k> <d]>

—1.—k

+572F f(cr) £ (d;) (v i—v

v (s — 2R 4 g g

- 1 S (er) f(d;) {cx) (d;) - (4.2.3)

v —

Since f(c) and f(d;) are non-zero, we deduce from equations (4.2.1) and (4.2.3)

that (5% — g2iH) 2k
v (8% — VTR - 57) —w
(cr, dj) = (cx) (d;) v — v

when we set v = 1. &
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Corollary 4.2.2 We have
1 — p—lg=2k+1 32k X
1 —ovlsx?k X

(X) = Hy(2**X)

for any integer k > 0.

Proof As usual, it is sufficient to work with the substitution z = 1. We have to
show that

(1= v sX) e S (e ot X7 = (1 — vl 21 X) Y (d,) X,

(k) >0 7>0

The constant terms of the power series in the above equation are equal to 1. In
order that the coefficient of X7 on the left hand side agrees with the coefficient
of X7 on the right hand side, we have to show that

1 o b codi N = (d) — p—te— 2k (4.
@(Ck,dﬂ—v S<Ck>( ks dj—1) = (dj) (dj—1) (4.2.4)

after the substitution z = 1. By lemma 4.2.1 we can write the left hand side of
equation (4.2.4) as

v — 2R 4 gm2) g
(d;)

vl —w
Because

v—1(82(j—1) _ g20—1-k) 4 s2k) — g

—v7 s {d; 1)

vl —w

plgd Tl — pgitt

(dj) = (dj—1)
the left hand side of equation (4.2.4) can be transformed further into
((vlsjl s I (p (5% — $207F) 4 5 2) )
(si —s77) (vt —v)

] ’

pL(s20D) — G201k 4 g=2k) _y,

—v7 s — ) (dj_1) . (4.2.5)

v —

The right hand side of equation (4.2.4) is equal to

—1.j-1 _ o o—j+1
(v 5 vs _ U182k+1> (dj 1) . (4.2.6)

sl — 57

It is straightforward to confirm the equality of the terms in equations (4.2.5) and
(4.2.6), and thus equation (4.2.4) is proven. L

As an immediate consequence of corollary 4.2.2 and lemma 4.1.6 we get
Corollary 4.2.3 We have

14 vitsaa?X
1 4 p-lg2ktlg2k X

Ee, (X) Ey(2*X)

for any integer k > 0.
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4.3 Hopf link decorated with any Young dia-
grams

We shall from now on use symmetric functions as well. On the first sight this
seems to be superfluous because the ring of symmetric functions is isomorphic
to the ring of Young diagrams via the Schur functions. The crucial bonus of the
symmetric functions is that under certain circumstances a ring homomorphism p
from the symmetric functions to a ring R factors through the symmetric functions
in some finitely many variables. A necessary condition for this factorization is
that p maps the i-th elementary symmetric function e; to zero for all 7 large
enough. This condition is also sufficient in an appropriate extension of R (if it
exists). All one has to do in the case that p(e;) = 0 for all i > i, is to solve the
equation Y%, ple)t" = Hﬁ(’:l(l + xz;t) for xy,...,x;, in R where ¢ is a variable.

If we make the substitution v = s™ for some integer N > 0 then FE,(X)
becomes a polynomial in X of degree N. In fact, we shall be able in lemma 4.3.3
to solve the above equation without extending the ring of rational functions in x
and s.

In order to calculate the Homfly polynomial of the Hopf link decorated with
@ and @, we first have to improve our understanding of Schur functions by
proving lemma 4.3.1.

Definition Given a Young diagram A and elements rq,...,ry in a commutative
ring R, N > [()\), we denote by sx(r1,...,ry) the element of R that derives
from the Schur function sy in N variables xy,...,xy by substituting z; by r; for
i=1,...,N. Equivalently we shall use the notation ‘s,(r;) where i =1,..., N’

Lemma 4.3.1 Let N be a positive integer, and let A and p be Young diagrams
with at most N rows. Then

s (@ sl = suld T )¢V )

where q is a variable and 1 =1,..., N.

Proof The Schur polynomial sy is by definition the quotient of two (N x N)-
determinants in variables z1, ..., xy,

)\, i
sx(x oy) = axts(T1, ..., TN) _ det(xz_]-l—N ])
A 1y ydN a(s(xl,...,:[N) det(xiv_])

where t=1,...,Nand j=1,..., N. We thus get

piAN=i) arps(g" )

as (qlLH-N—i)
det (gl N-DO+N )
det (g FN=IN-)

sx(q
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wheres=1,...,Nand 7 =1,..., N. Note that the denominator is different from
zero. Since the determinant of a matrix is invariant under transposition we can
interchange ¢ and j in the determinant of the N x N-matrix in the denominator
and get

det (g TN=D+N=1))
det (q(N_i)(Mj +N—j))
det (g TN=D+N=1))

aurs(qN )

lLi+N7i)

sx(gq

We thus get
S}\(qui-l-N—i)aM_Hs(qN—i) _ det(q(uﬁN—i)(AﬁN—j))_
Dividing both sides by a;(¢" %) we get

. C det(gEN=DO+N=1)
S}\(qui-I-N—z)S#(qN—Z) — € (q : ’ . )
det(q(N*l)(N*J))

By interchanging A\ and p we derive

det(q(/\HrN*i)(uj +N*j))
det(q(N—i)(N—j))

/\i—i—N—i) N—z’) —

su(q sx(q
Using the invariance of the determinant under transposition we deduce from the
two above equations that

Mi+N*i) Nfi) —

sx(q Su(q

L )

Corollary 4.3.2 Let N be a positive integer, and let X\ and p be Young diagrams
with at most N rows. Then

Ni+N*i) Nfi) /\i+N7i) Nfi)

sx(aq su(ag = s,(aq sx(aq

where a and q are variables, and 1 =1,..., N.

Proof The Schur polynomial s, is a homogeneous polynomial of degree |A|.
Hence
sy(azy, ... ary) = aws)\(xl, Ce TN

Hence

sa(0g" V)5, (g 1) = P, (), (g, (4.3.7)

62



and

a0 V)33 (ag i) = aPHHg, (V)5 (N, (135)
Lemma 4.3.1 implies that the right hand side of equation (4.3.7) agrees with the
right hand side of (4.3.8). Hence the left hand side of equation (4.3.7) agrees with
the left hand side of equation (4.3.8) which is our claim. &

For (A) and (), u) we shall denote by an additional subscript N the substitu-
tion v = sV where N is a positive integer, i.e. we write (A), and (\, u)n. We
denote by E{(X) the substitution v = s~ in E\(X). Note that F{(X) is only
defined if N > I()) in order that (\), is different from zero.

Lemma 4.3.3 Let \ be a Young diagram and let N > I()\) be an integer. Then

N
EiV(X) — H(1 + SN+2)\i*2i+1x2\)\|X).

=1

Proof We consider a Young diagram A and an integer N > [()). An equivalent
formulation of our claim is that

N
E;\V(X)Izl — H(l + SfNJrlq/\iJeriX)

=1

where ¢ = s2. For the rest of the proof we always set 2 = 1 without indicating
this substitution by the usual subscript.
By equation (3.6.6) we have

. 00 1+,U82k+1X
E(D(X) = Z(c,&X = H 1+ p-lg2k+1 X"

>0 k=0

The substitution v = s~ reduces this to the finite product

N-—1
EéV(X) — H (1 + 87N+2k+1X)
k=0

N
= JJ1+s"#X). (4.3.9)
i=1
Note that this is our claim in the case A = ().

Let k£ be an integer, £ < N. By corollary 4.2.3 we have

1+vtsX
Ee (X) = 1+ o-lg2kt1x

Ey(X).

63



Substituting v = sV in the above equation and using equation (4.3.9) we get

1+sVHx XN ,
— H(l + SN—ZH—IX)
1 —|—SN 2k+1X P
k ) N )
— H(l +SN721+3X) H (1 _|_SNf2z+1X)

=1 i=k+1

Ej(X)

which is our claim in the case A = ¢;.
By lemma 4.1.5 we have s)(E., (X)) = (), ¢.)/ (¢,) for any r > 0. Hence

0 s(E)
N = S (EBo(X)

Restricting to 0 < r < N and substituting v = s we get

Sa(Ee, (X))

ey D
<)‘>N<)\, r>N S)\(EéV(X)) /\(ECT(X))
_ SCT(S_NH(]N_i)S g N+1 (en)i+N—i
sh(s NHigh—i) ( q )

where ¢ = 52, and i = 1, ..., N. By Corollary 4.3.2 with u = ¢, and « specialized

to s~V we deduce from the above equation that
1 N+ A N—i
(N, eryN = S, (s q ).
(Mn

In particular, we deduce from the above equation that (\, ¢,) = 0 forallr > N+1
because the r-th elementary symmetric function s., becomes zero when only N
of the infinitely many variables are substituted by non-zero terms. We thus get

N
1
EY(X) = ZT (A ey v X"
N
— ZSC —N+1 /\+N Z)XT‘
N
_ H g NH i+ N=i X)
because s, is the r-th elementary symmetric function. &

We now deduce a formula for Fy(X) from the formula for EY (X), N > I()).
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Theorem 4.3.4 We have

I(A) 14 o Lg2\i—2i+1,.200

_ 2 v s x

E\(X) = Ey(z”MX) 1_[1 1+ v-lg—2it1z2A X
‘]:

for any Young diagram \.

Proof For any integer N > [()\) we have that by lemma 4.3.3

N

EiV(X) _ H(1+SN+2)‘FZH1{E2|/\‘X)
i=1
I(A) N
_ H(1+SN+2AF21'+1$2\A|X) H (1+SN72i+1x2\)\|X).
=1 i=l(A)+1

In particular, for A equal to the empty Young diagram,

N
BN (X) = T[(1+ sV 2+1x),

i=1
which we had obtained earlier, too. Combining the above expressions for E{ (X)

and Ej (X) we get

HA) | 4 gN+2Xi=2i+1,21A] y
N _ N2
Ey (X) = By (z"X) H 1 + sN-2i+120[ X

=1

This means that the power series F)(X) and

OR] 4+ oy lg2N—2i+1 2 Y (43.10)

E@(xZ\)JX) ]1_[1 T - ol oY
are equal for any substitution v = s™" provided that N > [(}\).

The equality of E)(X) and the power series in (4.3.10) follows now from the
observation that if there exists an integer ny > 1 such that two rational functions
r1(v, s) and ro(v, s) in v and s are equal for any substitution v = ™™, n > nq,
then (v, s) = ra(v, s).

Equivalently, let (v, s) be a rational function in v and s that becomes zero
for any substitution v = s™", n > ng > 1. In order to show that r(v,s) = 0 we
write the rational function r(v,s) as the quotient of two polynomials in v and
s, say r(v,s) = p(v,s)/q(v,s). Now p(1,s) is a polynomial in s. For any n-th
root of unity ¢ we have p(1,{) = 0 provided that n > ny. The only polynomial
that has infinitely many roots is the zero polynomial. Hence p(1,s) = 0. Hence
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(v — 1) is a factor of p(v,s), i.e. there exists a polynomial py(v,s) such that
p(v,s) = (v —1)pa(v, s). Since (v — 1) is different from zero for any substitution
v=s"n>1, we have that ps(s~",s) = 0 for any n > ny. Applying the whole
argument again we find a polynomial p3(v, s) such that ps(v,s) = (v — 1)ps(v, s)
and p3(s™", s) = 0 for any n > ng. Applying this argument again and again, we
deduce that (v — 1)* is a factor of p;(v,s) for any k > 1. Hence p;(v,s) = 0,
hence r(v,s) = 0.
We have thus proved that

I\ 14+ v Lg2Ni—2+12M ¥

B 2| Vs T
E)\(X) = Ey(z"X) 1_[1 1+ o—ls—2ti 20X
J:

L )

By the definition of E)(X) we have that the coefficient of X in E\(X) is equal
to the scalar ¢, from corollary 3.5.4. In fact, we can verify this quickly as follows.

We have
I\ — i
] v 1 2/\ 2]+15L'2|)\‘ X

_ (2
E\(X) = MX) H 14 o lg2Hig2IN X

for any Young diagram A. We have that

14+bX + -

legX +..)——— T
(I aX )

=1+(@+b—c)X +---

for any formal power series. We have

Bp(a®X) = 1+ :EQ"\|771)X T
s— S

(M)
H(l +v*132)‘f*2j+1x2|A‘X) — 14+ (le“| ZszA]—2j+1) X4,

j=1

1(\) ey
[T(1+ v ts7%42MX) = 14 (v_le’“ > 3_2j+1) X+---

J=1 J=1

Hence, the coefficient of X in E\(X) is equal to
ol o () , o
22 U 123 g2 12§ 2

5§—5" = =

which is equal to



which is equal to ¢ given in corollary 3.5.4.
When we apply theorem 4.3.4 to the case A = ¢, and compare the result with
corollary 4.2.3 we note a number of cancellations in

I(A _ 9
()1+v 1420 —2j+1 .21\

i Lo ls7 22X

We prove in the next lemma that the number of fractions after cancellations is
given by the number of cells in the main diagonal of A which we denote by d(\).

Lemma 4.3.5 For any Young diagram A we have

R oy lg2Xi—2i 121 X d) 4 4y Lg2hi—2i+1221A x
jl;Il 14+ p-lg=2i+12N Y 1 4oy lgm 2N H2i-1 20 X
and the fractions at the right hand side admit no further cancellations.

Proof With p =s 2 and Y = v 's2?* X we have to show that

“ﬁ) L+p MY dﬁ) 1+pi MY

j=1

(4.3.11)

Equivalently, we show that
{T=21dN)+1<j<INPUN —i+1][1<i<dN)}

is a decomposition of the set of integers {1,2,...,l(\)}.

First, we note that the sequence (j — A;);>1 is strictly increasing and the
sequence (A — i+ 1);>1 is strictly decreasing. This implies that the elements of
each of the two sets on its own are pairwise different.

Second, we have 1 < j — \; <I(A) for all j =d(\) +1,...,l(\), and we have
1< N —i+1<I(\) foralli=1,...,d(\). Hence, it is sufficient to show that
the above two sets are disjoint, i.e.

A=A+ —i+1#0 (4.3.12)

foralli=1,...,d(\) and j =d(\) +1,...,1()).

In fact, equation (4.3.12) is true for all ¢ > 1 and j > 1. To see this, we note
that if the cell (7,7) lies in the Young diagram A then equation (4.3.12) denotes the
hook length of the cell (j,7) which is greater than zero. On the other hand, if the
cell (j,) does not lie in A then A\; <iand A/ < j, hence \; —j+ A/ —i+1 < —1.
Hence, equation (4.3.12) is also true in the case that the cell (j,4) does not lie in
A. We have thus proved equation (4.3.11).

Finally, there are no cancellations in [[°0} (14 p* V) /(1+pN ~*1Y") because
p occurs with non-positive exponents in the numerator, whereas p occurs with
positive exponents in the denominator. [ 3
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The combination of theorem 4.3.4, equation (3.6.6) and lemma 4.3.5 immedi-
ately gives the following formula for F)(X). This form has the benefit that we
can make the substitution v = s~ for any integer n > 0.

Theorem 4.3.6 We have

00 | 4 g2kt 2 X dQ) ¢ oy lg2hi—2it1 .20
E\(X)= :
/\( ) kl;IO 1 4+ p—lg2k+12(A X Faie 1+ v—1lg=2\/ +2i—1.2]A| ¥

for any Young diagram \.

By theorem 4.3.6 see that E)(X) derives from Ey(X) by replacing every factor
(140 1s2 241220 X)) of the denominator of Ey(X) by (14v s~ 2\ T2i- 152 X)
fori=1,...,d(\).

From theorem 4.3.6 we immediately deduce that Eyv(—X)E)\(X)s s—1. This
gives a second, independent proof of lemma 3.6.2.

4.4 Hopf link with specialization v = sV

Given Young diagrams A and p and an integer N > max(l(A),[(u)), we prove a
simple formula for the value of (\, i) after the substitution v = s™V.

Lemma 4.4.1 We have
O i) = st MO 2l g (Vi) (V)

wherei=1,...,N andk=1,...,N, and \ and pu are any Young diagrams, and
N is an integer, N > max(l()\),l(n)) and ¢ = s>

Proof By lemma 4.1.5 we have that
(A 1) = (A) 5u(Bx(X)) = sx(Ep(X))s,(Ex(X)).
By lemma 4.3.3 we have that
su(EY (X)) = sul0g" ™) = s, (V)
where o = s¥ N2 g =52 and i =1,..., N. Hence

Oy = (s M) Psy(gV ) (s Va2 g (MN )
SO D g2l g (N =) 5 (N =F)

where i =1,...,Nand k=1,...,N. [ )
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By extracting the factor ¢"V from each of the variables in lemma 4.4.1 we deduce
that

<)\7/'L>N = s(l—N)(\/\|+\M\)x2\/\||M|S}\(qN—i)Su(q)\k+N_k)
SOVEDIAD 2 g (47) 5, (),

It is tempting to conjecture that
<)\, /,L> = (1}718)(‘)‘|+‘m)x2|/\"N‘S/\(q*i)su(q)\k*k)‘

But this is not true in general because in the case A equal to a single cell and
i equal to the empty Young diagram the left hand side is simply the Homfly
polynomial of the unknot which is equal to (v™! —v)/(s — s~ 1) whereas the right
hand side is the product of a power of v~! and a Laurent polynomial in s.

We proceed to give an appealing formula for (A, p) .

Theorem 4.4.2 We have
N—i+1+i*1)(#N—j+1+j*1))

A
(1= () 21 et
det (g G-D)

<)‘7 M>N =S

wherei=1,...,N and 7 =1,...,N, and X\ and p are any Young diagrams, and
N is an integer, N > max(l(A\),l(u)) and q¢ = s>

Proof In the proof of lemma 4.3.1 we found that

det(q(/\HrN*i)(uj +N*j))
det(q(N—i)(N—j))

Ai+N—iy N—iy —

Su(q sx(q

Hence we deduce from lemma 4.4.1 that

Xi+N—i)(u;j+N—j
(L=N)(A+u]) 12\ 1] det (¢ )i +N—1))

det (q(N—i)(N—j))

<)‘a :U’>N =S

where 7+ = 1,...,N and 7 = 1,...,N. Since the determinant of a matrix is
unchanged under the simultaneous reversal of the order of all rows and of all
columns, we finally get

(q(/\N—i+1 +i—)(uN—j+1 +j_1))

(=N (1A +l) 2 1 FEF
det(q(ifl)(jfl))

<)‘7 M>N =S

where i =1,...,Nand j=1,...,N. )
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The determinants appearing in theorem 4.4.2 are derived from the following in-
finite Vandermonde matrix

Vo= (@) gy
1

11 1 1
1 ¢ ¢ ¢ ¢
1 ¢ ¢ ¢ ¢
= 1 q3 qﬁ q9 q12
1 q4 q8 q12 qlﬁ

The matrix (¢¢V0U=D),, .oy is the upper left (N x N) submatrix of V. It derives
from V' by choosing rows ¢ and columns j for 2 = 1,...,N and j = 1,..., N.
The matrix (¢A¥-ix T Dlv-jr1+i-1), , .y derives from V by choosing the rows
i + An_it1 and the columns j + uy_jyq fore=1,...,Nand j=1,...,N.

For example, with A = (2,1,1), p = (2,2) and N = 3 we get

1 ¢ ¢ 1 1 1
A\pys = s H2%%det| 1 ¢° ¢ |/det|1 q ¢?
1 q12 q16 1 q2 q4

= ¢+ D +a+ D"+ +1).
In the case N = 2, i.e. v = 572, we have a simple formula for the Homfly
polynomial of the Hopf link decorated with )4, and @4, for row diagrams d, and

dp of length a respectively b. We set [k] = (s* — s7%)/(s — s !) for any integer k.
Lemma 4.4.3 For integers a > 0 and b > 0 we have
(dg,dp)s = (xQS)“b[(a +1)(b+1)].

Proof By the above calculations we have

1 1 ‘
a b
(dy,dy)y = s~latb)g2eb 1 et
as 1 1
1 q
(a+1)(b+1) _q
— gt 2® T T T
S €T =
(ath) 2ab5(a+1)(b+1) S(a+1)(b+1) _ g—(a+1)(b+1)
— S T

= (2%5)®[(a + 1)(b+ 1)].
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Remark If we make the substitutions v = s 2 and 2 = 577 then (d,, d,) becomes
simply [(a + 1)(b + 1)]. This corresponds to the calculations of the Uy(sl(2))-
quantum invariant in [19] and [15]. We remark that the row diagram d, of length
a indexes the (a + 1)-dimensional irreducible representation of Uy(sl(2)).

Lemma 4.4.4 Let A\ and p by Young diagrams, and let n > 0 be an integer. If
n < max(({(\),l(p)) then (A, ), = 0. If n > max((L(A\),(u)) then (A, u), can be
written as the product of a power of s, a power of x, and a non-zero polynomial
in q = s with integer coefficients.

Proof By lemma 4.1.5 we have

(A i) = (N su(Ex(X)) = (1) sx(EL(X))

because (A, ) = (i, \). Using the expression in theorem 4.3.6 for F)(X) we can
make the substitution v = s~" for any integer n > 0. If n < max((I(\),(x)) then
either (\) or (1) becomes zero after substituting v = s™" by lemma 3.6.1, hence
(\, ) becomes zero after substituting v = s™.

If n > max((I(\), (1)) then we have by lemma 4.4.1 that
(A pi)n = s(l—N)(|>\\+|M|)x2|>\\\M\S/\(qn—i)su (q)\k-q-n_k)

where ¢ = 1,...,n and k = 1,...,n. Since a Schur function in finitely many
variables is a (symmetric) integer polynomial in its variables, we have that the
product s(¢" %)s,(¢* %) is an integer polynomial in ¢. It remains to show
that the two appearing Schur functions are non-zero. In fact, they are non-zero
even after substituting s = 1. Our claim is that s,(1,...,1) and s,(1,...,1) are
non-zero where the number of variables is n. We recall that sy(¢"™") = ()\), and
we get by lemma 3.6.1 that

STLSCn(y) — ansfcn(y)

A —
< >n JEA Shl(y) — s_hl(y)

n+en(y)]
= U g

Since [k] = (s* —s7%) /(s — s7') = sk 71 + k73 + .. + s7FF ] we have

SA(l’l""’l):g%Z)(y)'

Since we consider the case n > max(l()\), (1)) we have that the content of any cell
of A and of y is greater than (—n). Hence sy(¢" ?) becomes a positive number
after substituting s = 1 and is thus non-zero. The value of s,(¢**"*) after
substituting s = 1 is equal to s,(1,1,...,1) where the Schur function has n
variables. This is non-zero by the same argument as for s,(1,...,1). L]
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On first sight, Lemma 4.4.4 is surprising because the denominator of Q) is
non-trivial as described in lemma 3.6.3. But in fact, the Homfly polynomial of
any hnk with decorations of type QA can be written as a Laurent polynomial
in s after the substitutions # = s ¥ and v = s~V. This can be seen by an
argument using the Uy (sl(N))-invariants.
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Chapter 5

Roots of unity

5.1 Homfly polynomial at roots of unity

We fix integers N > 2 and [ > 1. We fix a complex number £ such that &V is a
primitve root of unity of order 2(I + N). We denote £~V by (. ‘
We shall work occasionally with the substitutions z = &, s = &V and v = £V°.

This can also be written as x = &, s = and v = s,

Lemma 5.1.1 Let L = Ly U...U Ly be a link diagram with k components. Let
L' be the element of the skein of the plane derived from L by decorating one
component with Q., for some j > N + 1, and all the other components decorated
by elements of the skein of the annulus involving denominators only of the type
(s* —s7%) for somei > 1.

Then the Homfly polynomial of L' becomes zero after the substitution v = s~ V.

Proof Let L, be the component decorated by Q.. , 7 > N + 1. We recall that
Q., is the closure of the idempotent (1/3;)b; € Hj in the skein of the annulus.

We arrange L as the closure of an (1,1)-tangle 7" in the plane so that the
closing arc belongs to the component L;. We now decorate the components of
L. This turns T in a (j,j)-tangle 7" involving denominators only of the type
(s — s7%). In the Hecke algebra H; we have that the product of 7" and b; is
a scalar multiple « of b;, and the scalar involves denominators only of the type
(s'—s7%). Hence, the Homfly polynomial of L’ is the product of a and the Homfly
polynomial of @, .

The Homfly polynomial of @, becomes zero after the substitution v = s~
because the factor for t = N + 1 is equal to zero in

N

S N R |

<ch>:Hv 5 vs :li[s

t _ o—t
i—1 S S

N41-t _ - N-1+t

st — gt
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which follows from lemma 3.6.1 for A = ¢;. The scalar « is well defined after the
substitution v = s~V and therefore the Homfly polynomial of L' becomes zero
after the substitution v = s~ . [ )

Corollary 5.1.2 We are allowed to make the substitutions x = &, v = s~ and

s = ( in the Homfly polynomial of any link L whose components are decorated by
any Qx.

Proof Any @, is a polynomial in the @).,. The monomials including )., with
t > N + 1 can be neglected because any decoration with them evaluates to zero
by lemma 5.1.1. The denominators of the remaining ()., with 1 < i < N only
involve (s* — s7%) for 1 < i < N which does not become zero for the substitution
s = (. The substitutions for x and v do not pose any problem. )

Lemma 5.1.3 Let L = Ly U ... U Ly be a link diagram with k components.
Let L' be the element of the skein of the plane derived from L by decorating one
component with Qg, for some i, [+1 <1 <[+ N—1, and all the other components
decorated by some Qx,Q,, .. ..

Then the Homfly polynomial of L' becomes zero after first making the substi-
tution v = s~V and then substituting s by C.

Proof First, we write all the decorations (), as polynomials in Q.,, Q.,,. ... By
lemma 5.1.1, the Homfly polynomials of all the summands involving some @,
with j > N +1 become zero after the substitution v = sV, Hence, it is sufficient
to prove that the Homfly polynomial of any link L with one component decorated
by Qg and all the other components decorated with @), for some 1 < k < N
becomes zero after the substitutions v = s™" and s = (.

By the same argument as in the proof of lemma 5.1.1 we write the decorated
link L' as the closure of some (4, 7)-tangle, and deduce that the Homfly polynomial
is the product of a scalar  and the Homfly polynomial of ()4,. The denominators
of a involve only (s/ — s77) with 1 < j < N because only the Young diagrams
¢i,...,cy are involved. Hence the substitution v = s™ and s = ( is allowed for
the scalar «, since the order of ( is greater than 2NV.

The Homfly polynomial of @ . after the substitution v = s and s = ( is

equal to
i lgt—1 ot

<Qdi>: HU °

t=1

CN+t_1 _ C—N—t—i—l

vst—! i
_t:Hl ¢t—=¢

St _ Sit

by lemma 3.6.1. None of the denominators is equal to zero because 1 < i <[+ N.
The numerator for ¢t = [ + 1 becomes zero. Hence this product is equal to zero.
Hence the Homfly polynomial of L’ which is the product of o and the Homfly
polynomial of @)y, is equal to zero. [
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2,2

Figure 5.1: Pulling a string through Q)...

Lemma 5.1.4 For a link with decorations of type QQx on its components we can
remove any component decorated by Q., without changing the value of the Homfly
polynomial provided we make the substitutions x = s~ and v =s"V.

Proof We recall that A; resp. A! is the closure of the quasi-idempotent a; € H;
in C; resp. C). Similarly, B; resp. B, is the closure of the quasi-idempotent
b; € H; in C; resp. C]. By lemma 5.1.1 we can assume that only decorations @)
are chosen where A is a column diagram of length up to N. We get

s (Aje) = 51 (eA;) + (s =) i+ 1]

Q; Q; Q41

Al

i+1

if we eliminate Ala from the first and the second equation in the proof of lemma
3.4.4. We get,

e ol B Ji+1]
B == em + (7 0B

by applying the map ~ from subsection 2.4.1. This is equivalent to

1 sT2p™ , i+ 1
E(Bie) =3 (eB;) — s 'o7i(s™! — s)(—l)Z[ﬁzl]BZ{H.
We apply to this equation the map to the variant skein of the annulus where the
two boundary points are on the same component. We get the skein relation in
figure 5.1 where k = s7'z7'(s™' — 5)(—1)![i + 1]. The box labelled 7 + 1 stands
for (1/ﬁi+1)bi+1 € Hi+1.

We recall that (1/8;)B; = @Q; by definition. When we join the boundary
points of (1/8nx41)bn41 by any tangle in R? then the Homfly polynomial of the
resulting skein element is a scalar multiple of (Q.,,,). This scalar involves only
denominators of type (s' —s7*) for 1 <i < N coming from the other decorations

of the kind Q. Since (Q.,,,) becomes zero after the substitution v = s™V, we
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Figure 5.2: Pulling an oriented arc through a component decorated with Q. .

QCN QCN QCN QCN

NG N N AN
PR SRR S

Figure 5.3: Pulling a differently oriented arc through a component decorated with

Qey-

see that the diagram at the very right in figure 5.1 can be neglected. The new
relation is depicted in figure 5.2 where we used regular isotopy. Similarly, the
relation in figure 5.3 follows. We note that these are not relations in the skein
of the plane. The equalities is only valid after evaluating the Homfly polynomial
and then making substitutions.

We can thus pull the component clear from the remaining link. We can
furthermore switch all the self crossings of the link without affecting the Homfly
polynomial after substitutions. We thus arrive at the unknot decorated with @), .
Since the switch of a crossing changes the writhe by 2, we arrive at the unknot
with writhe equal to either 0 or 1.

A positive curl decorated by ()., may be removed by expense of the scalar
N p~Ns NIN=1) a5 described in theorem 17 in [2]. This becomes 2V s after the
substitution v = s™V. When we substitute ¥ = s~! then this scalar becomes
equal to 1. We remark that the scalar £V*s" does not become 1 in general when
we make the substitution 22" = 572,

Finally, it follows from lemma 3.6.1 that the value of (Q.,) becomes equal
to 1 after the substitution v = s~. We have thus removed the component
decorated by @)., without affecting the Homfly polynomial of the link modulo
the substitutions. &

5.2 Skein of the annulus at roots of unity
We fix a complex number £ such that £V is a root of unity of order 2(I + N).

Given this choice of &, we define a partial map ay,; from the rational functions in
x, v and s to the complex numbers by making the substitutions z = ¢, s = £V,
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and v = &V * whenever this is well defined. The order of the substitutions might
affect whether it is well defined or not. The fraction (vs?+3N — 1)/(s2(+N) — 1)
becomes 1 after the substitution v = s~. Instead, the immediate substitution
of s by a 2(I + N)-th primitive root of unity leads to the denominator 0.

Definition Let v and w be rational functions in z, v and s. We write v = w if
ayn(v) = ay(w).

Definition Let a and b be any elements of the skein C' of the annulus over the
scalars Clz,v, s, (s* —s7%)7',i > 1]. Let L be a framed link and L; one of its

components. We decorate L; by a (or b) and all the other components by some
Qx, Qu, - ... We say that a = b if

X(La a, Q)\JQMJ .- ) = X(La ba QA;Q#J .. )

for all framed links L, for all components L; and for all Young diagrams A, 4, . . ..

Lemmas 5.1.1, 5.1.3, 5.1.4 can be reformulated as
Corollary 5.2.1 We have

Qe =0  forallj> N +1,
Qi =0  foralll+1<i<I+N-1,
QCN:®

The relation = satisfies the following property.

Lemma 5.2.2 Let a and b be elements of the skein C' of the annulus such that
a =>b. Then aQy = bQ), for any Young diagram .

Proof Let L be a link diagram and denote one of its components by L;. Denote
by L' the link diagram that is derived from L by taking the 2-parallel of the
component L, i.e. Ly becomes L{ULY. Then the decoration of L with a@, on the
component L; and ,’s for various Young diagrams ;. on the other components
is equal to the decoration of L' with @ on L} and @, on LY, and the @),’s on the
other components. The definition of @ = b implies that a@Q)y = bQ),. )

The map from the algebra ) of Young diagrams to the skein of the annulus
that maps a Young diagram A to () is an algebra homomorphism as shown in
theorem 3.5.6. From lemmas 5.1.1, 5.1.3, and 5.1.4 we deduce that this map
factors through the ideal of ) which is generated by

{dz+1, ooy i N1, CN — €0, CN41, CN42, « - - }

when we consider equivalence classes modulo ‘=’. We start in chapter 6 a careful
analysis of the algebra ) quotiented by this ideal.

77



Chapter 6

An ideal in the ring of Young
diagrams

6.1 The ideal Iy,

Throughout this chapter we fix integers N > 2 and [ > 1, and we denote [ + N
by m. The letter [ stands for ‘level’. We are considering rings, but all the results
remain true when we consider in later chapters the rings to be algebras over an
extension of Z in order to handle Homfly skeins involving the variables x, v and
s and the scalars C.

We define an ideal Iy in the ring Y of Young diagrams. The ideal is generated
by the row diagrams of lengths from (I +1) to (I + N — 1), the column diagrams
of length greater than /N, and the difference between the empty diagram and the
column diagram of length N,

[N,l = <<dz+1, ooy y_1,C0 — CN, CN41, CN425 - - >>

We denote by Yy, the quotient ring J/Ix, and by p the quotient ring homomor-
phism from Y to Yy,
p:Y— y/IN,l = VN,

We defined an ideal Iy in section 1.3. We clearly have Iy C Iy;, and thus the
quotient map Y — Y/In; = Yy, factors through YV /Iy = Yy.

We shall say that a Young diagram A lies (or is) in the (N — 1) X l-rectangle
if A has at most (N — 1) rows and at most [ columns. We shall prove in lemma
6.4.1 that for any Young diagram A\ we have either p(\) = 0 or there exists a
Young diagram g in the (N — 1) x [-rectangle so that p(A) = +p(p). In theorem
6.5.2 we shall prove that the set {p()\) | A lies in the (N — 1) x [-rectangle} is a
linear basis for V.
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For elements a and b of Y we shall say that a and b are equal in Yy, if
p(a) = p(b). Since the quotient map p is a ring homomorphism, we have that for
a square matrix with entries in ), the determinant does not change in Yy if we
replace any entry a of the matrix by an element that is equal in Yy, to a.

Remark If we add the row diagram d; to the generators of Iy; we get a larger
ideal Iy,;. In fact, Iy, = Y as we show now. If we added d;, y instead of d; to
the generators of Iy, we still get ) because dj.ny = (—1)V*!d; modulo Iy, by
lemma 6.3.1.

Lemma 6.1.1 Iy, =Y.
Proof We deduce from equation (1.2.2) for r = N + i that
d; = en—1dit1 — en—adipa + -+ (=1D)N iy

modulo Iy, for any integer ¢ > 1 because ¢y = ¢y and ¢; = 0 for j > N +1. Step
by step we deduce from this equation that d; € Iy, for all i =1 —1,1-2,...,1.
Hence, dy,...,di n_1 € Iy;. In particular, dy,...,dy € Iy, because [ > 1.
From equation (1.2.2) (or from the Giambelli formula) we deduce that any ¢;
is a polynomial in dy, ..., d;. Hence, ¢; € Iy, for j =1,..., N. Hence, ¢; € Iy,
for any j > 1. Hence, Iy, = ). )

6.2 Adding a row of length [

We recall the notation \ for a Young A with N rows from section 1.3. It denotes
the Young diagram that derives from A by removing all (initial) columns of length
N.

We define a map o on the set of Young diagrams in the (N — 1) x l-rectangle
by adding an initial row of length [ at the top of A and then removing all columns
of length N,

U()\la SR )\N71) = (l —AN-1, A = AN—1, - AN — )\N71)-

This map is extended linearly to the subspace spanned by the Young diagrams
in the (N — 1) x [-rectangle. It is easy to check that o™ (\) = X for any Young
diagram A in the (N —1) x[-rectangle. Figure 6.1 shows that o(4,3,2,2) = (5,2,1)
for N=5and [ ="7.

Lemma 6.2.1 The elements o()\) and d;\ are equal in Yy, for any Young dia-
gram X in the (N — 1) X [-rectangle.
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[ ] | [T 1]
]

Figure 6.1: Adding an initial row of length [ and removing all columns of length
N.

Proof Let A = (A1,...,Axy_1) be a Young diagram in the (N — 1) x [-rectangle.
Denote n = (I, A1, ..., Ax_1). Then ' = o(X) by definition.

We have by lemma 1.3.1 that  and 1’ are equal Yy, hence they are equal in
Y. It remains to show that n and d;\ are equal in Vy,.

The Giambelli formula applied to the Young diagram 7 gives

d; diy1 e dign
d)\lfl d)\l T d)\1+N72
n= . .
d/\N—l_N‘i‘l d/\N—l_N+2 T d>\N—1
When we consider this equality in Vy;, we can replace dj41,...,diyn—1 by zero.

By developing the determinant by the first row we get

dAl dAl—l—N—Q
n = d : :
Aay_1-n42 o+ iy,

= dA

in Yy,. L]

6.3 Row diagrams modulo [y

We start by proving a useful relation for row diagrams in Vy.
Lemma 6.3.1 We have
dpsr = (—1)N+DkgkG
in Yn, for any integer k > 0 and integer r, 0 <r <m — 1.
Proof By equation (1.2.3) we have
1= (i(—nicizi) (i djzj> (6.3.1)
i=0 =0
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in V. Using the relations for Yy,; we deduce that
1= (Z(—l)zcizz> S diZ + ) di
i=0 j=0 j=m

in Yn,. Looking at the exponents less than or equal to m we deduce that

1= <i(—1)icizi> (zl: djzj) + dpp 2™, (6.3.2)

=0 =0
hence
1 —d,2™ = <Z(—1)Zcizz> (Z djzj) .
=0 =0

Multiplication of both sides by 332, d¥ >™* and the use of the relations for Yy,
leads to

1= (i(—l)icizi> (g djzj) (gdgzmk> :

i=0
We remark that for any commutative algebra the inverse of a formal power series

ao + a1z + apz? + - - - with an invertible constant term ag is uniquely determined.
Hence, by comparing the above equation with equation (6.3.1) we deduce that

00 m—1 00
Zdjzj = (Z dr2r> (Z d]fnzmk> .
j=0 r=0 k=0

This implies that for k> 0and 0 <r <m —1

Aemar = dpdF .

Looking at the coefficient of 2™ on both sides of equation (6.3.2), we see that
0= (-1)"end; + dp,. Since cy = 1in Yy, we get d,, = (—1)V*1d;. Substituting
this in the above equation yields dgmyr = (—1)N+Vrgbd, TfI+1<r <m—1
then d, = 0 in Yy, hence dipir = 0 in Yy,. [ 3

The Young diagrams dj41, ..., d,_1 are equal to zero in Yy, and we thus get
Corollary 6.3.2 We have

d _ (_1)(N+1)kd§€dr Zfo <r< l,
hmotr = 0 fl+1<r<m-—1

in Yy, for any integer k > 0 and integer r, 0 <r <m — 1.
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The combination of lemma 6.2.1 and Corollary 6.3.2 shows that in Vy,; any
row diagram is either equal to zero or it is equal up to a sign to a Young diagram
in the (N — 1) x [-rectangle.

Corollary 6.3.3 We have

p ] (—)WEDEGE(G) if0 < <,
hmtr = 0 fl+1<r<m-—1

in Yn, for any integer k > 0 and integer r, 0 <r <m — 1.

6.4 Reduction of a Young diagram

We shall extend Corollary 6.3.3 by proving that any Young diagram is up to a
sign equal in Yy, to a Young diagram in the (N — 1) X [-rectangle.

a1
Definition For integers ¢, ..., q, we define an element : of Y by
qa G
a1 dqr(afl) T dqr(afj) g,
ta ) dgu—ta—1)y = dgo—tagy = dg

(where d, = 0 for r < 0).

The letter G stands for ‘Giambelli’. If ¢ > --- > ¢, > 0 then this (a X a)-
determinant is equal to a Young diagram by the Giambelli formula. If ¢y, ..., q,
are pairwise different non-negative integers then a permutation of rows shows
that this determinant is equal to a Young diagram up to a sign. If ¢; = ¢; for
different indices ¢ and j then this determinant is equal to zero. If some ¢; < 0
then this determinant is equal to zero.

The Giambelli formula for a Young diagram A = (Aq,..., Ay_1) takes the form

)\1—|—CL—1
()\1;)\2;---;)\11): )\z—FCL—Z
Aa
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By a permutation of rows we have for example

0 3
2 = — 2 = —Co.
3 G 0 G

Definition For a Young diagram A with at most (N — 1) rows we write
N+N—-1—i=km-+r;

for (uniquely determined) integers k; > 0and 0 <r; <m—1,i=1,...,N — 1.
We set K = k; +---+kx_1. The reduction \ of a Young diagram ) is defined as

( r
' I <N-1and 0<r; <m—1
foralli=1,...,N -1,

'v-1 ) 4

(_1)(N+1)KUK

= 0 if (A ) < N—landr,=m—1
for some 1 <i < N —1,
N if [((\) = N,
0 if (A\) > N+ 1.

\

We see that the reduction of a Young diagram is either equal to zero or it is
equal to a Young diagram inside the (N — 1) x [-rectangle up to a sign.

Example We consider the Young diagram A = (8,6,3,2) for N =5 and [ = 3.
We have m =1+ N = 8.

We have
N+N-—-1—1 = kEm+r;
8+5—-1—-1 = 1-8+43
6+5—1—-2 = 1-840
3+5—-1—-3 = 0-8+4
245—-—1—4 = 0-8+2.
Hence,

klz]_, kQZ]_, k3:0, k4:0andr1:3, TQZO, 7“3:4, Ty = 2.

Hence, K = ki + ko + k3 + k4 = 2. None of the r; is equal to m — 1 which is equal
to 7. We thus have

3 3 4
< 0 0 3
_ (1 \(+1)2 2 _ 2 _ 2
A= (-1) I = | =-0" |
2/ 2/ 0/a



where the minus sign appears because we have permuted the rows of the deter-
minant in order that they are decreasing downwards. In fact, they are strictly
decreasing, and by the Giambelli formula this determinant is equal to a Young
diagram (. The diagonal entries of the determinant are di,d;,d;,dy. Hence,
¢ =1(1,1,1,0). We have o(¢) = (3,1,1,1). Adding a further row of length [ = 3
at the top, we get the Young diagram (3,3, 1,1, 1) with the first column of length
N =5. We thus have 02(¢) = 0(3,1,1,1) = (2,2,0,0). We therefore finally have
A=—(2,2).

We remark that 7 = 0 for p = (8,6,3,2) with N = 6 and [ = 3 (because
ry = ry in this case).

For a Young diagram A in the (N — 1) x [-rectangle we have A = )\ because
ki =0 for every i = 1,..., N — 1. Hence the linear map J) — ) given by A — \
is the projection of ) to the submodule spanned by the Young diagrams in the
(N — 1) x l-rectangle.

Lemma 6.4.1 We have p(\) = p()\) for any Young diagram \.

Proof We first consider the case of a Young diagram A with at most N — 1 rows.
We have

klm +nr
A =
kn-im+ry-1 /4
dy, o dyyN o2
= dy+1-i 0 dyeN-1 (6.4.3)
d/\N—l_N+2 e d>\N—1
dy, e e N
= dkim-l—?'i—(N—?) e dkim—l dklm e dkim-i-ri—l dkim-l—?'i
d/\Nfl—N+2 d)\N71

where the above (N — 1) x (N — 1)-determinant shows the i-th row in detail for
some 1 < ¢ < N — 1. The entry dj,,, may or may not occur, depending whether
0<r,<N—-2oN-1<r,<m-1.

If r; = m — 1 then all entries of the i-th row become zero in Yy, by corollary
6.3.2. Hence the determinant becomes zero in Yy, i.e. p(A) = 0. On the other
hand, A = 0 in this case by definition. Hence p()\) = p()) in this case.
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We assume from now on that 0 < r, <m —1forallz=1,...,N —1. By
lemma 6.3.1 we can replace d,m,; by (—1)N*Dkdfid; for all j = 0,...,r;. Recall
that the determinant is of size (N —1) x (N —1). Hence, there are at most (N —1)
elements to the left of dj,,,, and so their indices lie between [+1 and m —1 modulo
m. Hence all the entries to the left of dy,,, become zero in Vy; by lemma 6.3.1.
Hence we have in Yy

dy, e coodypN—2
A = (—1)NV+Dki ki 0 v 0 dy e dpy d,,
day_,—N42 " coeday,

By applying this argument to every row in equation (6.4.3), we see that in Yy,

(]
\ = (_1)(N+1)KdlK

'n-1 ) &

where K =k +ko+---+ky_1. Since ry,...,ry_ are all different from (m — 1),
the above determinant is (up to a sign depending on a permutation of its rows)
equal to a Young diagram in the (N — 1) X [-rectangle, or it is zero. We can
therefore apply Lemma 6.2.1 and get

\ = (_1)(N+1)KO,K

'n-1 / 4

in Yy,;. Hence, A = \in Y, in the case that 0 <7, <m—1fori=1,..., N —1.
Hence, A = X in Yy, for every Young diagram \ with at most (N — 1) rows.

If A has N rows then A = X by definition, and p(\) = p(X\') by the above
case for Young diagrams with at most (N — 1) rows. Hence,

since p(\') = p(A) by lemma 1.3.1.
If A has at least N + 1 rows then A\ = 0 by definition, and p(A) = 0 by lemma

1.3.1. Hence, p(\) = p(X). &
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6.5 A basis for Vy;

We define the Z-submodule Ly, of Y to be the span of (A — A) for all Young
diagrams A, B
Ly;= (A=A X a Young diagram).

We have
Y =Lyn;® (N Young diagram A lies in the (N — 1) x [-rectangle) (6.5.4)

because, first, \ is either zero or up to a sign equal to a Young diagram in the
(N — 1) x [-rectangle, and second, A = ) if A lies in the (N — 1) x [-rectang]e.

The proof that Ly, is an ideal in ) depends on lemma 6.6.7 which will be
proved later.

Lemma 6.5.1 Ly, is an tdeal in Y.

Proof Since the ring of Young diagrams is generated by all the column diagrams
c1, Co, . .. it is sufficient to show that

¢i(A—X) € Ly, for any i > 1 and any Young diagram M.

We remark that Ly, contains all Young diagrams with more than /N rows and
all terms (a — @) for a € ).

Let i > N. Since ¢; is a subdiagram of every summand of ¢;(A — \'), they all
have more than N rows. Hence, c;(A — \) € Ly;.

Let A be a Young diagram with more than N rows, and let : > 1. We have
X = 0 by definition. Since X is a subdiagram of every summand of ¢; )\, we have
CZ()\ — X) S LNJ.

Let 1 <4 < N and let A be a Young diagram with less than N rows. We have
trivially

C; ()\ — X) = (CZ)\ - CZ_)\) + (Cz_)\ - CZX) - (CZX — CZX)

The first and the third summand lie in Ly, by definition. The second summand
is equal to zero by lemma 6.6.7. Hence ¢;(A — \) € Ly,.

Let 1 <4 < N and X be a Young diagram with N rows. We have A = X by
definition. We have trivially

CZ()\ — X) = Cz()\ - )\I) + CZ'()\I - Y)

The first summand lies in Ly, because it lies in Ly by lemma 1.3.2. The second
summand lies in Ly, by the previous case for Young diagrams with less than N
rows. Hence ¢;(A — \) € Ly,. [ )
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Theorem 6.5.2 The set {p(\) | A lies in the (N — 1) x | — rectangle} is a linear
basis for Yn,.

Proof We have p(\) = p()) by lemma 6.4.1, hence (A — X) € Iy;. Hence Ly, is
a submodule of I ;. Since Ly is an ideal in ), we have Ly; = Iy,;. By equation
(6.5.4) we see that the images of the Young diagrams in the (N — 1) x [-rectangle
are a basis for Yy . [ 3

6.6 Proof that ¢;\ = ¢\

The combinatorial Littlewood-Richardson rule via counting the number of strict
extensions is not suitable for algebraic computations. In order to prove lemma
6.6.7 we need a compact formula for the multiplication of a Young diagram by
a column diagram. Such a formula is provided in the next lemma using the
vector notation for Young diagrams. The essential simplification provided by
this lemma is that we do not have to restrict the addition of cells of ¢; to A so
that the resulting diagram is a Young diagram. If the resulting diagram is not a
Young diagram then the corresponding summand is equal to zero.

Lemma 6.6.1 Let q1,...,qy_1 be non-negative integers and let ¢ be an integer,
1<¢< N. Then

1 g1 +€1— €N
Ci : = Z : modulo Ly .
v ) T v teva—en /g
The variables €1, . ..,en are to have values in {0,1}.

Proof We start by proving the lemma for the case that ¢; > ¢o > --- > gy_1 are
non-negative integers. We have

aq
: :(ql_(N_2)7q2_(N_]-)a7qN—1)
dN-1 ) &

which is a Young diagram, say 1. We know by the Littlewood-Richardson rule
that the summands with up to N rows occurring in ¢;n in ) are all the Young
diagrams

(M + €1y sMv—1 +EN-1,EN) (6.6.5)

where the variables €1, ...,y are to have values 0 or 1 and their sum is equal to
t. This is because every summand in ¢;n derives from 1 by adding at most one
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cell to each row of 1. By removing a possible first row of length N we transform
the above Young diagram into

(m +e1—6eny.o s IN-1 T EN-1 —EN).
Writing the summands of ¢;n in determinantal form we get

a1 g1 +€1 —¢EN
ol | = = z (6.6.6)
an-1 ) T v tevai—en /g
up to summands with more than N rows and terms (n — ') where 1 has N rows.
The variables 1,...,ey are to have values 0 or 1, and they have to satisfy the
condition that the sequence in expression (6.6.5) is a Young diagram.
Now assume that for some ¢4, ...,y the sequence in expression (6.6.5) is not
a Young diagram, this means it is increasing at some point. Then we have for
some j, 1 <j <N —1, that n; +&; < nj41 + €41 where ny = 0. Since ¢; and
€j+1 can only have values 0 or 1, and 7n; > 7,41 because 1 is a Young diagram,
we deduce Ny = Mj+1 and €j = 0, Ej+1 = 1. Hence q; —|—6j —E&EN = (j+1 —|—6]‘+1 —E&N.
Then the corresponding determinant is equal to zero,

1 +€1—€EN
=0,

gN-1tTEN-1—EN /&

because the rows j and (j+1) are identical. Hence the right hand side of equation
(6.6.6) is not altered by extending the sum of determinants to all €1,...,ey so
that e; + - -- 4+ ey =4 and each variable ¢; has values in {0, 1}.

We have thus proved the lemma for the case ¢; > ¢o > -+ > qgy_1 > O.
The case that ¢i,...,qy_1 are pairwise different non-negative integers follows
immediately by a permutation of the rows of the determinants.

To finally prove the lemma we consider from now on the case that ¢;, = g;,
for some 1 < j; < jo < N — 1. In this case the left hand side of equation (6.6.6)
is equal to zero. We have to prove that the right hand side is equal to zero as
well.

First we note that for a summand corresponding to (g1, ...,ex) with g;, = ¢,
the determinant at the right hand side of equation (6.6.6) contains two identical
rows, hence it is equal to zero. We can thus restrict to those summands with
£j, = 0 and ¢;, = 1 and those summands with ¢;, = 1 and ¢;, = 0. We get a fixed
point free permutation of these summands by interchanging the values of ¢, and
€j,- The determinants of two corresponding summands add up to zero because
they differ by a transposition of the rows j; and j,. Hence the whole sum adds
up to zero. &
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Applying the reduction map A — X to lemma 6.6.1 leads to

Corollary 6.6.2 Let q,...,qy_1 be non-negative integers and let i be an integer,
1 <i<N. Then

qQ1 g1 +€1—EnN
& : = Z
aN-1 / & N\ gyor +eno —en o
The variables €4, ...,en are to have values 0 or 1.
If for an N-tuple (g1,...,en) we have gj +¢; —ey = m — 1 mod m for some

1 <53 < N —1 then this summand is equal to zero.

Proof The reduction of elements of Ly is equal to zero because A — A= \—
for any Young diagram \. Hence

>l

=0

¢ 1 +€1—€EN

Ci : = Z
v ) TV av o teva—en /g
If g +ej —ex =m —1 mod m for some 1 < j < N —1 then we have to consider
two cases. Either ¢; +¢; —ey = —1 in which case the determinant is zero because
the j-the row consists entirely of zeros. Or g; +¢; — ey = kj(N +1) +m — 1 for
some integer k; > 0 in which case the reduction is defined to be equal to zero. &

There is a compact formulation for the operation of ¢ in terms of the vector
notation for Young diagrams.

Lemma 6.6.3 For integers m —2>q; > @2 > +++ > qn_1 > 0 we have

q1 m—2—qn-1
q2 ¢ —1—qgn
o . = .
dN-1 / 4 N2 —Ll—qn-1 /4

Proof We denote elements in ),

q1 m—2—qn-1

—1—qn_

o= q.z and B = q1 . gN—1
dn-1 / 4 iNo2—1l—anv /g
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Ifm—22>q >q >-->qn_1 > 0 then « is equal to a Young diagram in the
(N —1) x I-rectangle by the Giambelli formula. The claimed equality of o(«) and
(3 is the translation of the definition of o(\) into determinantal form.

From now on we consider the remaining case ¢; = ¢; ;1 for some 1 <7 < N —2.
Then the determinant « is equal to zero because it has identical rows ¢ and ¢ + 1.
Hence o(\) = 0 as well. We shall show that 5 = 0, too.

If gn_o = qn_1, then gy_o — 1 — gy _1 is negative, hence the determinant [ is
equal to zero.

If ¢; = ¢;41 for some 1 < i < N — 3 then the columns (i + 1) and (i 4 2) of the
determinant [ are equal, hence 5 = 0. Therefore the statement of the lemma is
also true in the case ¢; = ¢;11 for some 1 <1 < N — 2. [

The next lemma describes that for a Young diagram \ in the (N —1) x [-rectangle
the operation ¢ commutes with the operation of multiplication with ¢; followed
by reduction. Note that c;o/(\) means ¢;(a7/()\)).

Lemma 6.6.4 Let A be a Young diagram in the (N — 1) X l-rectangle, let f be a
non-negative integer, and let 1 < i < N. Then

ciof(N) = ol (e).

Proof By induction on f. Let A be a Young diagram in the (N — 1) x [-rectangle.
The case f = 0 is trivial. The essential part of the proof is to show the statement
of the lemma for f = 1 since induction immediately shows for f > 2 that

ol (c:A) = oo/ ()
= o(aol"1(V)
= ¢ol(N).

Weset ¢ =Aj+N—-1—jforj=1,...,N —1, and we have

qi

A= :
dN-1 ) o

and m—22>q¢ >q>:-+>qy_1 > 0. By lemma 6.6.3 we have
m—2—qn-1

¢ —1—gn-

o(N) = 1 . N—1

qgn—2— 1 —qn1 a
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Therefore, using corollary 6.6.2,

m—2—qn-1+&1 — &N
g1 —1—gn_1+e2—¢en

cio(N) = Z

g1+ tenN=i 11— 7 ben o —e

2 gN 1 er ey <m2 gN-—2 gN-1 N-1 N/
where the sum is restricted to those summands with m—2—qgy_1+e1—ey < m—2
because only the first entry of the vector could be greater than m — 2. (It could
be at most m — 1 in which case it reduces to zero.) The condition is equivalent
to qn_1+eny —e1 > 0. The only situation in which the second entry of the vector
is not less than the first entry occurs if the first and the second entry are equal.
Hence those summands are equal to zero. We can thus reduce the summands in
the above sum to those with ¢ — 1 —gn_1 +e2—en <m —2 —qn_1 +1 — N
which is equivalent to ¢; + 9 — 1 < m — 2. Hence

m—2—qn_1+¢e —€Epn
G —1—gy_1+e2—en

Go() = 3 s . (6.6.7)

e1+ten=1

22— 1= 1+ en_1—¢€
qN-—1+en—€12>0 qN 2 QN 1 N—1 N G
qitez—e1<m—2

On the other hand, we have by corollary 6.6.2

@+ 51— By

Ci)\ = Z .
Bit+Bn=i -1+ Bnv-1 =By )
@+B1—Bn<m—2

For the summands in the above sum we have

m—=2>q+—Bn>@+P—Bn>>qn-1+ By — Bn.

By eclipsing the summands with gy_1 + Byv_1 — By < 0, which are equal to zero
anyway, we get by lemma 6.6.3

m—2—qn-1+ By — Bn-a

g —1— QN—I‘ + 51— Brn-a (6.6.8)

Br+-+BN=i
gN—1+BN_1—BN>0
q1+B81—Bn<m—2

qn—2—1—gn1+Pno—Pna /g
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There is a bijection of the summands in equations (6.6.7) and (6.6.8) that
respects the additional conditions imposed on the summands. The summand

(e1,€2,...,6n_1,6n) of the sum in equation (6.6.7) agrees with the summand
(B1y...,Bn) = (€2y...,6N_1,EN,€1) Of the sum in equation (6.6.8). We therefore
have o(¢;\) = o (). L

Now we are able to prove under minor conditions that for a Young diagram A
with less then N rows the reductions of ¢;\ and of ¢; A agree for 1 <7 < N.

Lemma 6.6.5 Let A\ = (\,...,A\y_1) be a Young diagram with
AMi+N—-1—-j3#m—-1modm forallj=1,...,N —1.
Then c;\ = CZ—X for any integer i, 1 <i < N.

Proof For j =1,..., N—1 we write \;+ N —1—j = k;m+r; with integers k; > 0
and 0 <r; <m—1. Our assumption is that 0 <r; <m—-1forj=1,..., N —1.
We denote

r1
(=
'N-1 /a4
Then the Young diagram A reduces to
A= (—1)N+DEGE () (6.6.9)
where K = k; +---+ ky_1. We have

kkm+1ri+e —en rr+ér— &N
. _ (_1)(N+1)KUK .

kn-im+ry_1+env-1—en /) 'N-1+tEN-1—EN /4

provided that 0 <r;+¢; —ey <m—2forj=1,...,N - 1.
Hence, by corollary 6.6.2,

r+€& —En

A=Y (yeen .
1t ten=i 'N-1t+tEN-1—EN /4
0<rj+ej—en<m—2
™ +E&1 — &N
— (_1)(N+1)K0_K Z :
£1+-teN=i 'TN-1tEN-1—EN /&

0<r;+ej—en<m—2
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The last sum in the above equation is equal to ¢;( by corollary 6.6.2, and we thus
get

G\ = (_1)(N+1)K0_K(a).
We apply lemma 6.6.4 and get
Ci)\ = (—1)(N+1)KCZ'O'K(C)
— a(-)FRR()

= Ci)\.

The remaining special case will be proved now.
Lemma 6.6.6 Let A\ = (\,...,\y_1) be a Young diagram with
Aj+N—-1—-j=m—-1modm forsomel <j<N—1.

Then c;\ = 0 for any integer i, 1 <i < N.

Proof Let A be a Young diagram with less than N rows and let 1 <i < N. We
write A\; + N — 1 — j = k;m + r; with integers k; > 0 and 0 < r; < m — 1 for
j=1,...,N —1. We have by corollary 6.6.2

k1m+’l“1+81—6]v

£14eten=i Ex_itm+ry_1+en_1 —en
0<rj+e;—en<m—2

G

We consider first the case that r; = r;, = m — 1 for different indices j; and
j2. Because |gj, —¢j,| and ey are either equal to 0 or 1, we see that the terms
(kjym+rj, +ej, —en) and (kj,m+r;, +¢j, —ey) are either equal or at least one
of them is congruent to (m — 1) modulo m. Hence any summand on the right
hand side in the above equation reduces to zero.

We assume from now on that exactly one of r{,...,ry_1 is equal to m — 1,
say rj. For a summand (gq,...,ey) in the above sum with ¢;, = ey we have
rj, +¢&;, —en = m — 1. Hence this summand is equal to zero. Hence we can
restrict the sum to the summands with ¢;, # ey.

If e;, =0 and ey = 1 then

7“1+81—1
k1m+T1+€1—€N .

kalm +ry.1+EN_1 —EN
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with (m —2) as the ji-th entry. If r; =m —2forsome 1 <j< N-—lande; =1
then the above term is equal to zero because the rows j and j; of the determinant
on the right hand side would be identical.

If e;, =1 and ey = 0 then

L+ &

k1m+’l“1—|—61—6N :
. _ (_1)(N+1)(K+1)O,K+1 0

kN,1m+TN,1+€N,1—6N a

TN—1+téN-1 /¢

with 0 as the j;-th entry. If r; = 0 for some 1 < j < N —1 and ¢; = 0 then the
above term is equal to zero because the rows j and j; of the determinant on the
right hand side would be identical. Hence

r +éer — 1
A\ = Z (_1)(N+1)KO.K m— 92
e1t-+en=i :
&1 =0, en=1 'N-1t+ena1 =1/,
0<r;+ej—en<m—2
r +e€1
N+1)(K+1) _K+1
+ > (—1)(NFDEFD) s K+ 0
e1t-teN=i :
€1 =1, en=0 TN—1+ten-1 /4
0<r;+ej—en<m—2
We shall prove that the summand (eq,...,&;,-1,0,&j,41,...,En-1,1) from the
first sum and the summand (e1,...,65,-1,1,85,41,...,6n-1,0) from the second

sum of the above equation add up to zero, hence the whole sum adds up to zero.
To prove this claim, it is sufficient to show that

7'1—|—€1—1 7'1+€1
m — 2 = (-1)Vo 0

rN-1t+eva1—1/, 'N-1+EN-1 /g

since the summands in question are iterated images of the same power of o of these
terms. By shifting the j;-th row of the first determinant by (j; — 1) rows upwards
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and the j;-th row of the second determinant by (N — 1 — j;) rows downwards,
the above equation is equivalent to

m— 2 ry+ &1
T1+81—1

Il
Q

rnN—1+ ENn—1

TN_1+8N_1—1 a 0 a

This is true by lemma 6.6.3 which can be applied after a suitable permutation of

rows. Hence ¢;A = 0. &

Lemma 6.6.7 We have c;\ = q_X for any Young diagram X\ with less than N
rows and any 1 <1 < N.

ProofIf)\j+N—1—jEm—1modmforsome1§j§N_—1thenX:0by
definition, hence ¢;A = 0. Hence, by lemma 6.6.6, ;A = 0 = ¢;\. o
IfA\;+N—-1—j5#m—1modmforall j=1,...,N —1 then ¢;A = ¢;A by

lemma 6.6.5. [

6.7 Useful results
Recall that m was defined as [ + N.

Lemma 6.7.1 A Young diagram A = (Ay, ..., An_1, An) with Ay = 0 reduces to
zero if and only if

Ai—Aj=t1—jmodm for somel <i<j<N.

Proof We set \j+ N —1—j=km+r;jforj=1,...,N —1 with k; > 0 and
0 <r7; < m — 1. The reduction is equal to zero if either r; = m — 1 for some
index j, or if r; = r; for different indices ¢ and j.

The case r; = r; occurs if and only if \; + N —1—¢=X;+ N —1—j mod m.
This is equivalent to \; — A\; =4 — 7 mod m.

The case r; = m — 1 occurs if and only if A\; + N —1 —j =m —1 mod m, i.e.
Aj = j — N mod m. This can be written as \; — Ay = 7 — N mod m. [ )

Lemma 6.7.2 Let A = (A, ..., A\y) be a Young diagram with Ay = 0 that satis-
fies

Ai—Aj=1i—jmodm for somel <i<j<N.

If (M, ooy Ai+0, .. AN) and (A, ..., \j+0b, ..., Ay) are Young diagrams for an
integer b > 0 then the reductions of these two Young diagrams add up to zero.
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Proof Let A = (A,...,Ax) be a Young diagram with Ay = 0 that satisfies
Ai—Aj=i—jmod (N+I) forsomel <i<j<N
and furthermore
p= oAb Ax) and C= (Ao, A+ by Ay)

are Young diagrams for some integer b > 0.

First we consider the case 1 < i < 7 < N — 1. The case 7 = N will be
considered later. We set ¢f = Ay + N —1 — f and write ¢ = kym + r; with
kg >0and 0 <7y <m-—1for f=1,..., N —1. Our assumption is that r; = r;.

We have ¢; + b = (k; + a)m + s and ¢; + b = (k; + a)m + s for integers a > 0
and 0 < s<m—1. With K =k; +---+ ky_1 we have by definition

(]
= (_1)(N+1)(K+a)O_(K+a) S
-1/ 4
with s as the i-th entry, and
1
= ()W g0t |
r'v-1/ 4

with s as the j-th entry. Since the corresponding determinants differ by a trans-
position of rows, 7 and ( differ by the scalar (—1) as claimed.
Now we prove the case j = N by induction on b. Let 1 < ¢ < N — 1. The

induction hypothesis for b is that for any Young diagram 7 = (7, ...,7y_1) with
7; = i— N mod m we have that the reduction of v = (7y,...,7;+e,...,7y_1) and
the reduction of § = (1 —e,...,7y_1—¢) add up to zero forany e = 0,1,...,b—1

provided that + and 0 are Young diagrams.

The induction hypothesis for b = 0 is true by lemma 6.7.1.

We assume that the induction hypothesis is true for an integer b > 0. We
shall deduce from this the induction hypothesis for (b + 1).

Let 7 = (71,...,7nv_1) be a Young diagram that satisfies 7; =i — N mod m,
and that (7y,...,5+b+1,...,7v_1) and (1 — (b+1),...,7v_1 — (b+ 1)) are
Young diagrams. We denote the Young diagrams

= (r,...,7i+0b,...,7v_1)and n= (1 — b,..., 7y 1 — b).
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We have 3 +7 = 0 by induction hypothesis for b.

For 1 < r < N the addition of a cell to the r-th row of § gives a Young
diagram if and only if the addition of a cell to the r-th row of 7 gives a Young
diagram, except in one case. If 7; = 7,1 and b > 1 then the addition of a cell to
the (i 4+ 1)-st row of 7 does not give a Young diagram, but the addition of a cell
to the (i 4+ 1)-st row of 3 gives a Young diagram. (In this case i # N — 1 because
Tn_1 > b+ 1> 1and 7y = 0.) But this Young diagram, say v, reduces to zero
by lemma 6.7.1 because v;;1 =1+ 1 — N mod m.

Let r #1¢ and r # N. If both of

(T1y .oy + 1,000, + b, T 1)

and

(m—=">by...,7»=b+1,...;1—b,...,7Tv_1 — b)
are Young diagrams then their reductions add up to zero. This follows from the
induction hypothesis for (b — 1) applied to

(7'1,...,7'7«—f—]_,...,Ti,...,TN_l).

Hence, only the terms for » = ¢ and » = N appear in the following equation.
Remark that for » = N we have to remove a column of length N.

af+ag = (r,...,i+b+1,...,7n_1)
+(rn—1,...,+b—1,....,78_1 — 1)
+(rp—=b,...,m—b+1,....,7v 1 — )
+(nn—=b—-1,...,—=b—1,...,7y_1 —b—1).

Recall that 3+ 7 = 0. By lemma 6.6.7 we get

cf+em=cf+ean=cf+an=c(B+7) =0.

We thus get

0 = (r,...,%+b+1,....,78v_1)
+(mn—1,...,5+b—-1,...,7y 1 — 1) (6.7.10)
+(m—=b,...,m—b+1,...,7v 1 — )
+(m—=b—=-1,...,—=b—1,...,7y_1 —b—1).

For b = 0, this equation becomes

0:2(T1,...,TZ'+]_,...,TN_1)—|—2(T1—]_,...,TN_l—]_)
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which is (up to the negligible scalar 2) the induction hypothesis for 7 with b = 1.

For b > 1, the induction hypothesis for (b — 1) applied to the Young dia-
gram (1 —1,...,7,...,7y_1 — 1) shows that the second and the third summand
in equation (6.7.10) add up to zero. The remaining equation is the induction
hypothesis for (b+ 1) applied to the Young diagram 7. &

Sometimes, the ideal Iy, appears with a different set of generators.

Lemma 6.7.3 Let N > 2 and | > 1. Denote by P the ideal of Y generated by
all Young diagrams with [ + 1 columns and less than N rows. Denote by Q) the
ideal of Y generated by all row diagrams djiq,dyyo, ..., dp_1. Then P = Q.

Proof By the Giambelli formula for a Young diagram A we have

A= det(d)\i+j—i)1§i,j§l()\)'

If Ay = [+ 1 then the first row reads diy1,dj42,...,dipn. If A has less than N
rows then all these elements lie in (), hence by developing the determinant by the
first row we see that A lies in ). Hence P C Q.

Denote by p; ; the hook diagram with j cells in the first row and ¢ cells in the
first column. The number of cells of y; ; is 147 — 1. For ¢ > 1 and j > 1 we have
by the Littlewood-Richardson rule

Wi = Cidj_1 — [it1,-1- (6.7.11)
In particular, for any r > 1,

dipr = c1dpyr—1 — Popr—1-
Applying successively equation (6.7.11) to the above equation we get

dir = c1dpyro1 — Cadpyr_o + -+ (=1 coordipr + (=1)" g1

From this we deduce inductively that d;,q,...,d;s, lie in the ideal generated
by 141, oty frgr1. 1If 7 < N — 1 then p, 4 lies in P. Hence all of
dii1y...,dp 1 liein P, hence Q C P. Hence P = Q. )

98



Chapter 7

A lattice model for Young
diagrams

7.1 The lattice

For an integer N > 2 we consider a vector space V(N) over R with a basis
£1,...,en and an inner product on V() given by (g;, £;) = d;; for 1 <i,5 < N.
We define elements «; in V(N),

O = & = i1

fori =1,..., N—1. They are linearly independent. We denote by V'(V) the vec-
tor subspace spanned by aq,...,ay_1. There are unique elements Aq,..., Ay_1
of V'(N) so that

(Aiy o) = 6y

for any 1 <i,5 < N — 1. Explicitly, these elements are given by

i
Af:q+~~+ef—ﬁﬂq+-~+em

fors =1,...,N — 1. For notational purposes we set Ag = 0 and Ay = 0. We
denote by P(N) the integral lattice spanned by Ay, ..., Ay_1,

P(N):{alAl—i—---—l—aN,lAN,l|ai€Zfori:1,...,N—1}.
We denote by P, (N) the cone in P(N),
P.(N)={aiAMi+---+axv 1Ay 1|a; €Z, a;>0fori=1,...,N—1}.

Since (A;, @j) = 0;;, we have that an element v of V'(N) lies in P(N) (resp.
in Py(N)) if and only if (v, a;) is integral (resp. integral and non-negative) for
j=1,...,N—1.
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Figure 7.1: The vector space V (3).

The integral lattice spanned by a1, ...,ay 1 is a sublattice of P(NN) because
a; = —N;_1 + 2A; — Aiyq, and thus any «; lies in P(IN). The restriction of the
inner product to P(NN) is not necessarily integral, in fact

(Aiy Ay) = min(i, j) = = for 1 <i,j < N.
We can write

1 1

Ai:z’<—_(51+---+6i)—N(61+---+6N)> for1 <i<N-—-1.
i

This means that A; lies in the direction of the line that joins the centres of the

simplices with vertices ¢y, .. ., &; respectively 1, ...,ey. Figure 7.1 shows in V' (3)

the affine plane parallel to V’(3) containing ¢y, €5 and 3.

7.2 Relation between V(N) and si(N)

The set of diagonal matrices in s/(N) is a Cartan subalgebra h of s/(N). The
Cartan-Killing form induces an inner product B on the dual hA* of h. One
can choose primitive positive roots i, ..., Sy_1 and corresponding fundamental
weights wy,...,wx_1 in A* so that there is an isomorphism between the R-vector
space spanned by the primitive positive roots and V'(N) mapping f; to a; and
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w; to A;. Furthermore, this isomorphism respects (up to the scalar 2N) the in-
ner products on h* and V'(N). The relation between non-negative integral linear
combinations of fundamental weights and the irreducible representations of si(N)
shows us how to relate Young diagrams and elements of P, (N). We explain this
now.

7.3 The lattice and Young diagrams

We describe a bijection between Young diagrams with less than N rows and the
cone P, (N) C P(N).

To a;A1+- - +anx_1Ay_1 in Py (N) we associate the Young diagram that has a,
columns of length 1, ay columns of length 2, ..., and ay_; columns of length N —1.
For example, a;A; corresponds to a single row of length a;, and 2A; + 3A3 + Ay
corresponds to the Young diagram (6,4,4,1). In general, a;A; +---+ay 1Ay 1
corresponds to the Young diagram A = (A,..., Ay_1) with

)\i = a; + a;1+1 + 4 anN-—-1 (731)
fori=1,...,N —1.
Lemma 7.3.1 Let A\ = (\y,...,An_1,An) be a Young diagram with Ay = 0.
Denote its corresponding element in P, (N) by p. Then

Ai —Aj = (gi — €5, p)

forany 1 <1< j<N.
Proof We have p = a1A; + -+ + ay_1Ay_; for some non-negative integers
ai,...,ay—_1. From the above equation (7.3.1) we have

)\i—)\j:ai+---+aj,1
for any 1 <i < 7 < N. On the other hand,

<6i—6j,p> = <O[Z'+"'—|—Olj_1, a1A1+---+aN_1AN_1>
= ai+---+aj,1.
because (o, Ap) = Ogy for any 1 < k,m < N — 1. &

From lemmas 6.7.1 and 7.3.1 we immediately deduce

Lemma 7.3.2 A Young diagram (M1, ..., A\y) with Ay = 0 reduces to zero if and
only if it corresponds to an element of Py (N) that lies in a hyperplane

Hije={zeV(N)| (x,ei—¢;)=i—Jj+c(N+1)}
for some 1 <1 < j < N and integer c.

We shall denote the family of all the hyperplanes H; ;. with 1 <i¢ < j < N and
integer ¢ by H.
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pu(y)

.

Figure 7.2: A point y and its mirror image p,(y).

7.4 Hyperplanes and reflections

A non-zero element v of V(N) determines an (N — 1)-dimensional hyperplane
{z € V(N) | (z, v) =0}.

The reflection p, in this hyperplane maps y € V(N) to p,(y) so that p,(y) — vy is
a scalar multiple of v, and (p,(y) + y)/2 lies in this hyperplane (see figure 7.2).

We deduce

_ o)
po(y) =y 2<U, 0"

More general, for any r € R, the reflection p,, in the hyperplane
{reV(N)| (z,v) =1}
is given by

poaly) =y + 20— zvfyv’>v>v. (7.4.2)

This says that the reflections p, and p,, differ by a translation in the direction
of v.

Lemma 7.4.1 Letv and w be non-zero elements of V(N) and let r and t be real
numbers. The reflection in the hyperplane {x € V(N) | (x, v) = r} maps the
hyperplane {y € V(N) | (y, w) =t} to the hyperplane

freven (su-alith) - fetl

Proof The mirror image of the hyperplane is given by

{z € VIN) [ (pos(2), w) = t}.

A simple application of the above formula for p,, gives the explicit form of this
hyperplane. [ )
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Lemma 7.4.2 The set V'(N) and the set P(N) are invariant under reflection
in any hyperplane of H.

Proof Let us consider a hyperplane H; ;. of /. From equation (7.4.2) we deduce
that the reflection Pe;—e;,c i the hyperplane H; ;. is given by

Poe(w) =w~+ (r— (w, v))v

where r =i — j+¢(N +1) and v = ¢; — ¢; and thus (v, v) = 2.

We have ¢, —¢; = a; + - - -+ j_1, and thus v € P(N) C V'(N). Hence, we
have p, .(w) € V'(N) for any w of V'(N). This describes the invariance of V'(N)
under reflection in H; ;..

Let w be an element of P(N), i.e. w lies in V'(N) and (w, ay) is integral for
any k=1,..., N — 1. Then (w, v) is integral because

(w,v) = (w, g —¢j)
= <’UJ, O[i+"'+a/]‘_1>
= (w, )+ +(w, ajq).

Hence, p, .(w) lies in P(N). [ )

Lemma 7.4.3 The family ‘H of hyperplanes is invariant under reflection in any
hyperplane of H.

Proof The essential tool is lemma 7.4.1 by which we know that the reflection in
the hyperplane H; ;. maps the hyperplane Hy ,, s to the hyperplane

{zeV(N)| (z,w—(v,w)v) =d—c(v, w)} (7.4.3)

withv=¢;—¢cj,w=¢p—ep,c=i—j+e(N+Il)andd=k—m+ f(N +1).
We have that (v, v) = (¢, — ¢j, &, — ¢j) = 2. Hence, all we have to know are the
values of (v, w) which are equal to (g; —¢j, ep —&y,) for 1 < i < j < N and
1<k<m<N.

If 4,7,k and m are pairwise different then (v, w) = 0 and thus formula 7.4.3
tells us that Hj ,, ¢ is invariant under reflection in H; ;.

In the remaining five cases we have

2 ifi=Fk and j = m,

1 ifi=kand j # m,
(€i —¢€j, €k — Em) = 1 ifi#kandj=m,

-1 ifj=k,

-1 ifm=1.
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We thus have
ei—e; fi=kandj=m
gj—em ifi=Fkandj#m,
w—(v,w,v) =% ¢er—¢ ifi#kandj=m
g —em ifj=k,
ep—¢g; ifm=i.

In these five cases we get by equation (7.4.3) the hyperplanes consisting of all
z € V(N) that satisfy

(z,ej—¢e)) = j—i+(f—2)(N+1) ifi=k j=m
(z,ej—em) = j—m+(f—e)(N+I) ifi=k j#m
(zyer—e)) = k—i+(f—e)(N+1) ifi#£k j=m
(z,6i—€em) = i—m+(f+e)(N+1) ifj=k
(z,ex—¢€j) = k—j+(f+e)(N+1) ifm=i.

These hyperplanes are again of the form H, ;. with integers a, b, and ¢ such that
1<a< N, 1<b< N anda#b Toensure a < b, we have to multiply both
sides of the above equations by (—1) if necessary. L

7.5 The decomposition of V() by H
We can write the family of hyperplanes H as the union of (];7 ) locally finite sets

of hyperplanes,
H= U U Hje
1<i<j<N c€eZ
Hence, H is a locally finite set of hyperplanes. Thus, H induces a polyhedral
decomposition of the N-dimensional Euclidean space V(N) which is invariant
under reflection in any hyperplane of H. We denote the decomposition by D.
The polyhedra of D are not necessarily compact.
Every hyperplane H; ;. determines two half-spaces of V(). We denote

HY . ={zeV(N)| (z,e,—g5) >i—j+c(l+N)}

and H, ;. is the other half-space. For a subset B C V(NV) we denote by B the
set of interior points of B with respect to the topology induced by the Euclidean
metric.

We denote
N-1

— +
Hﬂ - ﬂ Hi,i+1,0

i=1
which is a closed unbounded convex subset of V(N). It is the union of (infinitely
many) polyhedra of the decomposition D.
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Lemma 7.5.1
P(N)N Hy = Py(N).
Proof Let p be an element of P(N). Then p € H, if and only if

(p, gi —eip1) > —1

fori=1,...,N—1. Since g;—¢;41 = o; and p € P(N) we have that (p, £; — £;41)
is an integer. The above condition on p is therefore equivalent to (p, ;) > 0 for
i=1,...,N —1. The element p satisfies this if and only if p € P, (N). [ )

Lemma 7.5.2 The set
S — HiN,l ﬂ Hﬁ

15 an N-dimensional polyhedron of the decomposition D.

Proof We have to show that the interior of S is disjoint to any hyperplane of ‘H
and that it is not empty. The interior S of S is given by
S = {geV(N)| (z, e, —en) <l+1}N
{r e V(N)| (x,ei—€iz1)>—1 fori=1,...,N—1}. (7.54)

Assume that an element z of S lies in a hyperplane Hj;, . forsome 1 < j <k < N
and integer c. We have by equation (7.5.4)

(x, e —er) = (v,e5—€jp1)+--+(x, ehb_1 — €k)
> (1) 4+ (=1)
"

Hence ¢ has to be greater than zero, i.e. ¢ > 1. Thus
(ej—¢€pyp) >j—k+N+IL
Hence

(r,e1—en) = (x,e1—e)+ -+ (zr,g501 —¢g5) + (z, &j — €x)
+(x, ek — k1) + -+ (T, Enc1 — EN)
> (- +--+ () +j—k+N+I+(-1)+---+(-1)
= (-)-D+j—k+N+I1+(-1)(N—k)
= [+1.
The inequality (z, e —ey) > [+ 1 is in contradiction to equation (7.5.4). Hence
the interior of S is disjoint to any hyperplane of .

The interior of S is not empty because it contains e.g. (g1 +---+&x) because
(e14+--+en,eq—cpy=0forany 1 <a,b < N. [ )
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Lemma 7.5.3 For any two N-dimensional polyhedra R and T of the decompo-
sition D of V(N) there exists a sequence of N-dimensional polyhedra of D, say
S1,S52,...,8, so that Sy = R, S, =T, and the polyhedra S; and S;i.1 differ by a
reflection in a hyperplane of H for j =1,...,k — 1.

If R and T lie in Hn then we can choose Sy, ..., Sp_1 to lie in Hn, too.

Proof We choose a point r in the interior of R, and a point ¢ in the interior of
T. Since V(N) is a connected N-dimensional manifold, we can find a path in
V(N) connecting r and ¢ which intersects the (N — 1)-dimensional polyhedra of
D transversally and which is disjoint to the (N — 2)-skeleton of D. The sequence
of N-dimensional polyhedra through which the path from r to ¢ is going satisfies
the condition of the statement of the lemma. This is because the invariance of
the decomposition of D under reflection in hyperplanes of H implies that any
two polyhedra of the decomposition D with a common (N — 1)-dimensional side
differ by a reflection in the hyperplane spanned by this side.

If R and T lie in H~ then we can choose the above path to lie in the interior
of Hn because the interior of Hp is connected, even after removing the (N — 2)-

skeleton of D. &

Lemma 7.5.4 For any element p of P, (N) which does not lie on any hyperplane
of H there erists a sequence of elements of P.(N), p = p1,pa,...,pr S0 that
pr lies in S, and p; and pjii differ by a reflection in a hyperplane of H for
j=1,...,r—1.

Proof Let p be an element of P, (N) that does not lie in a hyperplane of H. Then
p lies in the interior of an N-dimensional polyhedron R of the decomposition D
of V(N). By lemma 7.5.3 there exists a sequence R = Si,S5,,...,S, = S of
N-dimensional polyhedra which all lie in Hn so that S; and S;,; differ by a
reflection in a hyperplane of H. The successive mirror images of p are disjoint
from H, hence they lie in H,. They lie in P(N) by lemma 7.4.2. Therefore, they
lie in Py (N) by lemma 7.5.1. The final element of this sequence of points lies in

S as required. &

Lemma 7.5.5 Let p and q be two elements of P.(N) so that there exists a hy-
perplane of H with respect to which q is the mirror image of p. Then the Young
diagrams \ and p corresponding to p resp. q satisfy A +pm = 0.

Proof Let us consider two elements p and ¢ of P(N) that are mirror images of
each other with respect to a hyperplane H, ;. of . By equation (7.4.2) we have

q—p=">be; —¢ej) whereb=1i—j+c(N+1)—(ci—¢c;, p)
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because (¢; —¢j, ¢, —¢;) = 2. By interchanging p and ¢ we may assume that
b>0. We have ¢;, —¢; = a; + -+ + a;_1. Since p € P;(N) we deduce that
(p, €i — €;) is an integer. Hence b is a non-negative integer.

We denote the element p + b(A;_1 — A;) by y. This element y lies in the
hyperplane H; ;. because

(y, & — &) P+ b(Aj1 = Aj), i — €5)
= (pei—e) +b(Nj1— Ay, ei —gy)
= (pei—¢g)+ <] 1—Ajaaz'+"'+%‘—1>
= (p,ei—¢j)+b
= (pei—€j)+i—j+c(N+1)—(ei—¢j,p)
i—j+c(N+I)

Frome; —¢; =a; + -+ ;1 and oy = —A;_1 + 2A; — Ay we deduce that
g —&j = _Ai—l + Al + A]‘_l — Aj. Hence Yy =q-+ b(Ai_l — Az) We claim that
y lies in P, (N). Since y lies in P(N), we have to show that (y, ay) > 0 for
k =1,...,N — 1. Since p and ¢ lie in P, (N) we have that (p, ax) > 0 and
(¢, ay) >0 for k=1,...,N — 1. From

(Y, ar) = (p, ar) + (b(Aj 1 — Aj), a)

we deduce that (y, ax) >0 for k=1,..., N — 1 except k = j. From

(Y, ar) = (q, aw) + (b(Ai1 — Ni), ag)

we deduce the missing case (y, a;) > 0. Hence y lies in Py(/N) and we denote
the corresponding Young diagram by .

We have p =y +b(A; —Aj_y) and ¢ = y + b(A; — A;—1). The Young diagram
corresponding to ¢ is (A, ..., \j+b,..., Ax_1). The Young diagram corresponding
topis (Ar,...,Aj+0b,...,Av_1) if 1 <j < N—1 anditis (A —b,...,Any_1—0)
if j=N.

The reductions of (A — b,...,Ay_1 — b) and (A,...,An_1,b) agree by the
definition of the reduction. Hence, for any 1 < 7 < N the reduction of p is equal
to the reduction of (Ay,..., \; +b,..., An_1, Ay) with Ay = 0.

By lemma 6.7.2 we deduce that the reductions of the Young diagrams corre-
sponding to p and ¢ add up to zero. [ 3

Lemma 7.5.6 The intersection of Py (N) with the interior of the polyhedron S
from Lemma 7.5.2 corresponds to the set of Young diagrams inside the (N —1) X [-
rectangle.

107



Proof From equation (7.5.4) we deduce that an element p of Py(N) lies in §
if and only if (p,e1 —eny) < I+ 1 and (p,e; — ;1) > -1 fori=1,...,N — 1.
By lemma 7.3.1 this is equivalent to Ay — Ay < I+ 1 and \; — A\;;; > —1 for
t=1,...,N —1. Since X is a Young diagram, the only non-trivial condition is
A1 < [+ 1. This means that A lies in the (N — 1) x [-rectangle. L )

Remark The normal vector (¢; —¢;) of any hyperplane H, ;. of # lies in V'(N).
This implies that the decomposition D" of V'(N) induced by # is the orthogonal
projection along (£1 + - - - +¢y) of the decomposition D of V(N). Therefore, the
polyhedra of the decomposition D are non-compact prisms. The intersection of
S with V'(N) is a compact (N — 1)-simplex. Therefore any polyhedron of the
decomposition D’ is a compact simplex.

7.6 Resumé

We have identified the Young diagrams with less than N rows that reduce to
zero to be the intersection of P,(N) with a family # of hyperplanes of the N-
dimensional Euclidean vector space V(NN). This family of hyperplanes splits the
(N —1)-dimensional Euclidean space V'(N) C V(N) up into (N—1)-simplices that
can be transformed into each other by successive reflection in these hyperplanes.
If two elements p; and p, of P, (N) differ by a reflection in a hyperplane H; ;.
then the reductions of their corresponding Young diagrams A; and Ay respectively
differ by the scalar (—1). Furthermore, if j # N then A; and ), differ by a shift
of cells between the rows 7 and j hence A\; and Ay have the same number of cells.

As a fundamental simplex we choose the simplex next to the origin whose
elements correspond to the Young diagrams that lie in the (V — 1) x [-rectangle.
Hence we have found another way to show that any Young diagram with at most
N — 1 rows is up to a sign congruent modulo In,; to a Young diagram in the
(N —1) x [-rectangle. We can now interpret the sign as the parity of the number
of reflections that we need in order to bring an element of P (V) into the simplex
next to the origin.

Figure 7.3 shows the situation for N = 3 and [ = 3. There are three classes
of parallel hyperplanes in H. Their intersection with P(NN) are the lattice points
p = a1 A1 + a2\, that satisfy (p, &, —¢;) = ¢(I+ N) for some 1 <i < j < 3 and
integer c. Since (p, €; — ;) = (A1 +aglo, i +-- -+ j_1) = a; + -+ aj_q,
the three classes are

ap, = —1+4+6¢c fori=1andj=2,
a; = —1+4+6¢ fori=2andj=3,
a1 +ay, = —2+6¢ fori=1andj=3.
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Figure 7.3: The lattice P(3) C V'(3) of elements a;A; + azAs.

Each shaded triangles is the convex hull of the intersection of P, (N) with the
interior of a 3-dimensional polyhedron of the decomposition D of V(3). The angle

between A; and A, is arccos ((Al, As) /\/ (A1, A1) (Ao, A2>) which is equal to /3.
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Chapter 8

Invertibility of the Hopf matrix
at roots of unity

We start with algebraic results in Vy,;. We recall that the dual A\* of a Young
diagram A has been introduced in subsection 1.3.2.

8.1 Multiplication in Yy

Since the Young diagrams in the (N — 1) x [-rectangle are a basis for Yy, we can
write the product of any two Young diagrams as a linear combination of these
basis elements. Since taking the dual is a bijection of these basis elements, we

can write
AL = Z bauw V™
124

in Yy, for integers b,,,, and the summation is over all Young diagrams in the
(N — 1) x l-rectangle. Tt is easy to compute these integers. The product Ap
is a linear combination of Young diagrams in ) by the Littlewood-Richardson
rule. Then one replaces each of these summands by its reduction as described in
section 6.4.

Obviously, by, = by, for any Young diagrams A, p and v because the mul-
tiplication of Young diagrams is commutative. Interestingly, we will prove in
lemma 8.1.5 that by,, = by, which implies that any permutation of the indices
leaves by, invariant. This result explains our motivation to define by,, as the
coefficient of v* in the product Ay instead of referring to the coefficient of v in
the product Ap.

For non-negative integers a and b we denote the rectangular Young diagram
with a rows and b columns by (b%).
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=N [
=N [

[\
[\
=N [

Figure 8.1: A strict extension ( of A = (6,3,1,1) by u = (6,5,5,3) to (6°) =
(6,6, 6,6,6).

Lemma 8.1.1 Let A be a Young diagram with at most N — 1 rows. The only
Young diagram p for which the summand (A\Y) appears as a summand in the
product A\ in Y is the dual of \. The Young diagram (\N) appears as a summand
with multiplicity 1 in AN* in ).

Proof We assume that p is a Young diagram such that (A)) appears as a sum-
mand in the product Apu. Then there exists a strict extension ¢ of A by u to

(AD)-
In a first step, we prove by induction on the length of the first row of A that
for every column of ( the labelled cells read 1,2,3,... downwards as shown in

figure 8.1. This is clear in the case A\; = 0 for the empty Young diagram.

Let A\; > 1. The top label of the last column is 1 because the word w(() starts
with 1. Assume that the last column of ¢ does not read 1,2,3,... downwards,
ie. it reads 1,2,...,9 —1,4,7,... with j #2474 1. Then j has to be greater than
t + 1 because the last row has to be strictly increasing downwards. This implies
that the label 7 4+ 1 appears later than the label j in the word w(() (because the
rows are weakly increasing from left to right). But this is a contradiction to the
conditions on strict extensions. We have thus proved that the last column reads
1,2,...,1l(p) downwards.

We denote by A the Young diagram that derives from A by removing its last
column. We remove the last column of (, and we get an extension CA of A by a
Young diagram g’ (which derives from g by removing the first column). This
extension is easily seen to be strict because the word w(¢) derives from w(¢) by
deleting the first appearance of each label 1,...,(x). By the induction hypothesis
we know that every column of CA reads 1,2, 3, ... downwards. Hence, every column
of ( reads 1,2, 3,... downwards.

In a second step, we count the number of occurrences of each label in (. Let
¢ be a label. The label 7 occurs in the j-th column of { if and only if )\;-/ +1 < N.
The number of columns of ¢ in which the label ¢ appears is therefore quickly
identified as )\1 — )\N—i-i—l-
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This implies that p; = Ay — Ay_;11 because the number of labels ¢ in ( is equal
to the length of the i-th row of p. Hence, u = \*.

We have thus proved that if there exists a strict extension ¢ of A by u to (AY)
then ¢ reads 1,2,3,... in every column downwards, and p = A*. In fact, this
extension of A by A\* is easily seen to be strict. Its uniqueness implies that the
rectangular Young diagram (\Y) appears exactly once as a summand of A\*. &

Lemma 8.1.2 The empty Young diagram () is the only Young diagram that lies
in the (N — 1) x 2l-rectangle which reduces to either O or to —0 in Yy .

Proof Let A be a Young diagram that fits in the (N — 1) x 2[-rectangle and that
reduces to either () or —(). We write \; + N — 1 —i = k;(I + N) + r; with integers
ki>0and 0<r; <I+N—1fori=1,...,N — 1. Since X\ is non-zero, we have
that none of the r; is equal to [ + N — 1. Since A\; < 2] we have that k; is equal
to either O or 1. Hence 0 < K = ky + -+ ky_1 < N — 1.

The case K = 0 appears if and only if either \; = [+ 1 (which is not possible
since r; # [+ N —1), or A\; <[ in which case X = ), and therefore A = 4() implies
that A = 0.

From now on we consider the case 1 < K < N —1, i.e. k; = 1 for at least one
index j. In order that A\ = 40, we need that

1
ok : = +0.

This is equivalent to

'n—-1 /4

where (I(N=K)) denotes the Young diagram that consists of (N —K) rows of length
[. This rectangular Young diagram can be written as

[+N -2
[+N -3

l+k—-1
K -2
K -3
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with the notation from section 6.4. Hence, if A reduces to () then
{7“1,...,7“1\[_1}:{Z+N—2,Z+N—3,...,Z+K—1,K-2,K—3,...,0}.

k; = 1 for some index i implies that r; < [—2 because \;+ N —1—i < 2[4+ N —2.
Hence, the above equality of the two sets implies that k; = 1 for at most K — 1
indices i. Since K = k; +...+ ky_1 we get K < K — 1 which is a contradiction.
Hence, there exists no Young diagram in the (N — 1) x 2l-rectangle that reduces
to +0 in the case 1 < K < N — 1. &

The quotient map from the ring of Young diagrams Y to Yy, factors through
Yn. The quotient map from ) to Vy maps every Young diagram either to zero
or to a Young diagram with less than /N rows. The quotient map from ) to Vn
maps every Young diagram either to zero or (up to a sign) to a Young diagram
in the (N — 1) x [-rectangle.

Lemma 8.1.3 Let A and pu be Young diagrams with at most (N —1) rows. If the
empty Young diagram appears as a summand of A\ in Yy then = \*.

Proof If the empty Young diagram appears as a summand of Ay in Yy then this
summand comes from a summand 7 of Ay in Y which becomes the empty Young
diagram in Yy, i.e. nis an (N X k)-rectangle for some k. Since ) is a subdiagram
of any summand of Ay in Y, we have that £ > ;. In fact, k£ cannot be greater
than A; since any column of any (strict) extension of A by p has at most [(1u)
labelled cells, and (1) < N —1 by assumption. Hence, 7 is the (N x \;)-rectangle,
and by lemma 8.1.1 we deduce that p = A\*. )

Lemma 8.1.4 Let A and p be Young diagrams in the (N — 1) X l-rectangle. If
the empty Young diagram appears as a summand of Ay in Y, then p = \* in
which case the multiplicity of the empty Young diagram is equal to 1.

Proof We know that in Yy we can write the product Ay uniquely as a linear
combination of Young diagrams with at most (N — 1) rows. Since A and p have
at most [ columns, the summands appearing in Ay in Y have at most 2/ columns
and the same is true in Vy.

By lemma 8.1.2 we know that the empty Young diagram is the only Young
diagram in the (N — 1) x 2[ rectangle that reduces to +0 in Yy,. Hence, the
empty Young diagram appears in Vy,; as a summand of Ay if and only if the
empty diagram appears as a summand of Ay in YVy. This happens by lemma
8.1.3 if and only if 4 = A* in which case the multiplicity of the empty Young
diagram is equal to 1. &
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Lemma 8.1.5 The coefficients by,, do not change under any permutation of
their indices.

Proof Let A, x and n be any Young diagrams in the (N — 1) x [-rectangle. We
have (by definition of the integers by, )

)\M = Z b)\;wl/*

in Vn,;, and therefore
Aun = Z baw V1.

When we write the right hand side of the above equation as a linear combination
of Young diagrams in the (IV — 1) x [-rectangle then the coefficient of the empty
Young diagram is equal to by,,. This is because v*n does not involve the empty
Young diagram unless ¥ = 7, and then the coefficient of the empty diagram is
equal to 1 as seen in lemma 8.1.4.

The left hand side of the above equation is symmetric under permutation of A,
p and n because Yy, is Abelian. Hence by, is symmetric under any permutation
of its indices. &

Let o : Yn,; — Yn, be a ring endomorphism. We define an element

Qp =D o(A\)X € Yy

A

where the sum is over all Young diagrams A that lie in the (N — 1) x [-rectangle.
Obviously, €2, depends on N and [, but this shall not lead to confusion because
we fix N and [ throughout.

In section 8.2 we shall consider Vy; as an algebra over C and construct €2,
for an algebra homomorphism ¢ : Yy; — C.

Theorem 8.1.6 Let o : Vn; — YVn,; be a ring endomorphism and let p be any
Young diagram. Then uQ, = o(1)$2, in Yy .

Proof It is sufficient to prove the statement for elements p of a basis of Vy,.
Hence, let 1 be any Young diagram in the (N — 1) x [-rectangle. We have

P = Y o(A)pA
= ; o(A%) Z by v”
= Zl/* ;b#,\yg()\*)
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e
- gl
= ZV:V*Q(/W)

= ;V*Q(M)Q(V)

= Q(M);Q(V)V*

= Q(M)Qg
where we used that b,, = b,,» and that taking the dual induces a permutation
of the Young diagrams in the (N — 1) X l-rectangle. &

8.2 The Hopf matrix

We recall the results and the notation from chapter 5. We consider the skein of the
annulus C with coefficients Clz*!, v*!, s*1 (s¢ — s71)~1 4 > 1] and its submodule
C, . We fix a complex number & such that £V is a root of unity of order 2( + N).
We denote the substitution z = &, v = £€¥* and s = £~ in a rational function
from C(x,v,s) by ay;. We recall that we denote (@Q») by () occasionally.

We proved in corollary 5.2.1 that Q. = 0fori > N+1, Q., =0, and Q4 =0
for any j with [+ 1 < j <[+ N — 1. Since a = b implies that aQ, = bQ), for any
Young diagram A, we looked in chapter 6 at the ideal In; of the ring of Young
diagrams Y generated by cy —co, ¢; fori > N+1, and d; for [+1 < j <[+ N —1.

In particular, the map A — ay;((A)) from Y to C factors through Yy, where
(\) denotes the Homfly polynomial of @, as a subset of R?. We consider ) as
an algebra over C, and the map A — ay;({\)) as the algebra endomorphism of
Y given by A — an((\))co. We define

Q=) anm (M)A e Cy
)
where the sum is over all Young diagrams A in the (IV — 1) x [-rectangle. We can
apply theorem 8.1.6 and get

Lemma 8.2.1 Q,Q = (Q\)Q for any Young diagram X\ in the (N — 1) x I-
rectangle.

We defined )\ for any Young diagram \ in section 6.4. This is either equal
to zero or up to a sign equal to a Young diagram pu, A = eu where €2 = 1. We
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define Q)5 = €@, in this case. Lemma 6.4.1 shows that A = X modulo the ideal
of the algebra of Young diagrams generated by cy — co, ¢; for : > N + 1, and d;
forl +1 <7 <1+ N —1. We therefore get

Lemma 8.2.2 Q) = ()5 for any Young diagram .
We can extend lemma 8.2.1 now to all Young diagrams A.

Lemma 8.2.3 Q) = (Q\) 2 for any Young diagram \.

Proof From lemma 8.2.2 we deduce that (Q\) = (Qy) by looking at the evalua-
tion on the unknot. We use lemma 5.2.2 and lemma 8.2.1 to get

Qx2 = Q502 = (Qy) 2 = (Qx) 2.
[ 3

The set of @) for all Young diagrams X is a linear basis for C'; over the scalars
Clz®, v* st (s° — s79) 71 i > 1]. We therefore have yQ = (y) Q) for any ele-
ment y of C' over the scalars Clz*!, v*!, s, (s* — s79) 71,4 > 1] whenever the
substitution ay; is defined for (y).

We consider an oriented link diagram Ly U Lo in the annulus as depicted in
figure 8.2. In fact, this lies in the subalgebra C'; of the skein of the annulus.
When we decorate L; by @\ and Lo by €2 then the resulting element of the skein
of the annulus lies again in C',. This element is a scalar multiple p) o of Q) by
equation (2.4.2). This is similar to lemma 2.4.7. We remark that the orientation
of the decoration is now different. The following lemma appeared in [3] with a
different proof.

Lemma 8.2.4 We have pyq = 0 for any Young diagram X in the (N — 1) x [-
rectangle different from the empty diagram provided we choose & to be a primitive
root of unity of order 2N(l + N).

Proof Let A be a Young diagram in the (N — 1) x [-rectangle.

We decorate the Hopf link depicted in figure 8.2. We decorate the component
L, with @) and the component Ly with the product of ., and 2 as depicted in
figure 8.3. We denote the resulting element of C'; by 7. Each of the two loops
can be removed at the expense of a scalar, hence T is equal to py ., px oQ@» in C4.

On the other hand, we have Q. Q = (Q.,) 2 by lemma 8.2.1. Hence the loop
decorated by Q., can be swallowed at the expense of the scalar (Q.,), while the
loop decorated with 2 is swallowed at the expense of the scalar p\q as before. We
thus get T = (Q.,) Pr a@x. When we decorate the unknot by these two elements
of C';, we get by definition of = that

((Qeci) Pra@xr) = (Pr eiPr @)
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Figure 8.2: The Hopf link L, U Ly Figure 8.3: Decorated Hopf link
in the annulus. in the annulus.

which is equivalent to

(Qc;) Pra (@) = crepra (@) -

If A lies in the (N — 1) x [-rectangle then ay;((@,)) is different from zero by
lemma 3.6.1. Hence,

(Qc;) PA o = Dx e;Pa 0

From now on let A be such a Young diagram in the (N — 1) X [-rectangle
for which ay(py o) is different from zero. The above equation then implies that
Prq., = (Q) for any i > 0. This implies that (Qx,Q.,) = (Qx) (Qc;) where
(@, Q) is the Homfly polynomial of the Hopf link with decorations @, and Q..

When we look at the definition of F)(X) from section 4.1 we see that the
equality (@Qx, Q) = (Qx) (Q.,) implies that E\(X) agrees with Ey(X) after the
substitution ay ;. Lemma 4.3.3 gives explicit formulas for E)(X) and for Ey(X)
after the substitution v = s™%. We thus deduce from Ey(X) = Ey(X) that

N N
H(l + SN+2Ak—2k+11,2|)\\X) - H(1 + SN—2j+1X)
k=1 7=1
which is equivalent to
N N )
H(l + 82/\kf2kx2|/\\X) - H(l + Sisz)
k=1 j=1

since ay;(sV*1) is non-zero. By the definition of = this is equivalent to
{6 VO IIEN | f 1 N} = (€N j =1, N},

In particular, the value for £ = N on the left hand side has to appear in the set
on the right hand side. This means that £2V°¢2M = €2NJ for some 1 < j < N.
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Equivalently, £2A+N*-Ni) — 1 Since A lies in the (N — 1) x [-rectangle we have
0<|A < (N —1)l. We have 0 < N? — Nj < N% for 1 < j < N. Hence,

0 <2(J]\|+ N? = Nj) < 2(N — 1)l +2N* =2N(l + N) — 2l < 2N(I + N).

We chose € to be a root of unity of order 2N (I + N), hence £2M+N*-Ni) —
implies that 2(|[A\| + N? — Nj) = 0 which implies that |\] = 0, hence \ is the
empty diagram.

Our assumption that ayx(py o) is different from zero for some Young diagram
Ain the (N —1) x [-rectangle has led us to the result that A is the empty diagram.
This implies that py o = 0 for any Young diagram X in the (N — 1) x [-rectangle
different from the empty diagram. )

We immediately deduce from lemma 8.2.4 that

Corollary 8.2.5 (Q,Q,) = 0 for every Young diagram X\ in the (N — 1) x [-
rectangle different from the empty Young diagram.

The following lemma settles the case A = () which is not covered by lemma
8.2.4. We obviously have pyq = ().

N

Lemma 8.2.6 () becomes a positive real number after substituting v = s~ and

then substituting s by any complexr number of norm equal to 1.

Proof We denote by P the complex number derived from (Q,) by first substi-
tuting v = s~V and then substituting s by a complex number 7 of norm equal
to 1. By lemma 4.1.5 and equation (4.3.9) we have that (Q),) becomes after the
substitution v = s~ the Schur function in the variables s~ V+1 s=N+3 sN-1,
Hence, P is the Schur function sy in the variables 7= N*+1 7=N+3 +N=1 The
conjugate of 7 is equal to 77! because the norm of 7 is equal to 1. Hence, con-
jugation induces a permutation of the variables of the Schur function s,. Since
the Schur function is symmetric in its variables, the conjugate of P is equal to
P. Hence, P is a real number and P? is a non-negative real number.

We have Q = 3=, (@») Q», hence
(Q) =3 Q)

A

where the summation is over all Young diagram in the (N — 1) x [-rectangle.
Hence, (Q2) becomes a non-negative real number after first substituting v = s™V
and then s = 7. In fact, this sum is positive because the summand for the empty
Young diagram is equal to 1. [
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Remark One can prove that ay;((@,)) is a real number directly from lemma
3.6.1 because each fraction appearing as a factor in the formula is self-conjugate
and therefore real. The denominators do not become zero because the hook length
of any cell of any Young diagram in the (N —1) x [-rectangle is smaller than [+ N.
Even though this alternate proof is more straightforward, the above proof gives
a more detailed view on (Q)).

Lemma 8.2.7 (\) = (\*) for any Young diagram X\ with at most (N — 1) rows
after the substitution v = s~V

Proof This is checked quickly by lemma 3.6.1 by substituting v = s=. In fact,
it is sufficient to show this for A equal to all column diagrams, i.e. (¢;) = (cn_i)-
Lemma 1.3.4 then ensures that (A\) = (\*) for any Young diagram A\ with at most

N — 1 rows. &
Lemma 8.2.8 Let A and p be Young diagrams with at most N — 1 rows. Then
(X*, ) is the complex conjugate of (\, 1) after the substitutions s?+N)=1 o = =N

and xN = s~

Proof We have A\ =\ — Ay fori=1,...,N—1, and |\*| = N\, — |\|. By
lemma 4.3.3 we get

N
E/\N*(X) — H(1_|_SN+2)\;‘—21'+1$2\/\*\X)

Mi
I\

(1 _|_ SN+2()\17/\N_i+1)72i+1x2()\1N*|/\DX)

Il
==

Mi
I\

(1 _|_ SN*Q/\N_H_1722+1:L_72‘)\|X)

I
e

@
Il
—

(1 + S—N—Z/\j+2j—ll,—2\/\|X)

I
=

J

Il
—

where we used that 2%V = s~!. Hence, EY.(X) is the complex conjugate of EY (X).
Lemma 4.1.5 implies that

1 1
— ) = (7).
AT <A>( 1)
Lemma 8.2.7 finally implies that (\*,n) = (), n). &
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We fix from now on an arbitrary total ordering of all the Young diagrams that
lie in the (N —1) x [-rectangle. The indices of any of the following square matrices
are ordered in this way. We denote by H the matrix whose entry indexed by Young
diagrams A and p is the Homfly polynomial (A, 1) of the Hopf link (with framing
zero and linking number 1) decorated by @, and @,. Clearly, H is symmetric.
We denote the identity matrix by E.

Theorem 8.2.9 We have B
HH = ay,((Q)E

after the substitutions s = v, v = sV, and x by a root of unity of order

2N(l+ N).
Proof The entry k) , of HH indexed by A and p is equal to

> (), 1)

n

where the summation is over all Young diagrams 7 that lie in the (N — 1) x [-
rectangle. By lemma 4.1.3 we have that (\,n)(n, u) = (n) (n, Au), hence

kxe = Y () (n,Au)

= (@, ")
(€2, Apx)

where we used lemma 8.2.3 in the last equality. We can write A\u* as a linear
combination of Young diagrams in the (IV — 1) x [-rectangle. By corollary 8.2.5
we see that only the multiplicity of the empty Young diagram makes a non-zero
contribution.

We know by lemma 8.1.4 that the empty Young diagram appears as a sum-
mand in A\p* if and only if 1 = X in which case it appears with multiplicity equal
to 1. Hence, kxx = an;((R2)) and ky, = 0 if p # A &
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Chapter 9

Homfly polynomials at roots of
unity and Yy

We fix integers N > 2 and [ > 1. We consider the substitutions of s by a primitive
root of unity of order 2(I+ N), z by an N-th root of s, and v by s~ . We shall
abbreviate this by s2 V) = 1, 2V = 571 and v = s V. We denote the Homfly
polynomial after these substitutions by x .

9.1 Homfly polynomials at roots of unity

Lemma 9.1.1 (Qg) = 1 after the substitutions v = s~ and s2+N) = 1.

Proof We have

N+i _ —N—i _ SN—i—l(Si—l_ —2N—i—l)

Va)
Va)
|

s
_ N (gt 2N) _ iy

for any integer 7. If s is a primitive root of unity of order 2(I + N) then s*V
is equal to —1 and therefore sN*ti — s7N=% = 5l=i _ 5=l Lemma 3.6.1 gives a

formula for (Q4,) with substitutions v = s~ and s2(+M) =1,

vt —wuits—wst vtd gt
(Qa) = s—s1 2_g2 st — st

N _ g N N4l _ N1 N1 _ N4l

g — g1 s2_s2 st — gt
o g lgll _ gt g g1

g —sTl g2 g2 st — s~

= 1

where we used that sNt? — g=N—i = gl=t _ gi—l [}



Qq, Qaq, Quq Qa,

Figure 9.1: Switching crossings at the expense of the scalar (s2z 2)*!

Qq, Qq, Qq, Qq, Qu, Qg Qq, Qq,

Figure 9.2: Switching crossings at the expense of the scalar (s2zx=2)*.

Whenever we have locally a component decorated with ()4, overpassing a
simple arc in a crossing of sign € then we can switch the crossing at the expense
of the scalar (s72z%)¢ as shown in figure 9.1 provided we make the substitutions
N =57 v =5 and s2*N) = 1. The argument is virtually the same as in
lemma 5.1.4 and the formula can be derived as well from figures 5.2 and 5.3 by

applying the map + from subsection 2.4.1 that replaces s by —s 1.

We get the skein relations in figure 9.2 by applying the corresponding skein
relations in figure 9.1 [-times to each summand of ()4,. This is possible because
(Qq, can be written as a sum of diagrams each looking like [ parallel arcs near the
crossing.

We know by theorem 17 in [2] that in the Hecke algebra H; we can remove a
curl decorated by the idempotent corresponding to d; at the expense of a scalar
f that is given by

f= L2 plgl=1)
We define p by

p= —s gt

We have p! = f when we substitute v = s~V and s2(*N) = 1 because

— 2 —
P = (s s 1gl)l = o 5N l0-1)

where we used that stV = —1.
The scalars appearing in figure 9.1 are p~2 and p?.

Remark By connecting in figure 9.2 the arcs with a straight line at the right,
we see that changing from a positive curl to a negative curl means multiplication
with the scalar (s 22?%)!, i.e. f2 = (s 22%)!. But this determines the value of f
only up to a sign. To get the exact value of f we need the computation from [2]
as mentioned above.
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Lemma 9.1.2 We have xn,(K;Qq,) = p™™ ) for any framed knot K.

Proof We consider a diagram of K with blackboard framing. It is possible by
switching some, say r, of the crossings of K to get a diagram K’ of the unknot.
Among these r switches there are a switches that transform a positive crossing
into a negative crossing, and b switches that transform a negative crossing into a
positive crossing, r = a + b. We have wr(K’) = wr(K) + 2b — 2a. We have

Xva (K5 Qq) = (™) (07) x v (K5 Qq,)

by the skein relation in figure 9.2.

Using regular isotopy we can transform K’ into a circle O plus a number of
positive and negative curls, say ¢ resp. d. We have wr(K') = ¢ — d. A positive
(resp. mnegative) curl may be removed by introducing the scalar f (resp. f~').
Therefore,

w55 Qu) = foF Xna (05 Qu) = [0 = prriosan 2

where we used the result xn,;(O; Qq,) = 1 from lemma 9.1.1.
We merge the above two lines of equations and get

Xna(K3Qa) = P xni(K'5 Qq)
2l(a—b) fwr(K)+2bf2a

= D
— pwr(K)l
because f = p' after the substitutions v = sV and 2V = s7!. &

9.2 Linking matrix and o-operations

The linking number v;; between different components L; and L; of a link diagram
L is defined as the sum of the signs of all overpasses of L; over L;. It is easily
seen to be invariant under all Reidemeister moves and is therefore an invariant
of links under ambient isotopy. One verifies the symmetry v;; = v;; by looking at
the diagram L first from above and then from below.

We define the self linking number of a knot diagram K to be the linking
number between the two components of the blackboard 2-parallel of K. In the
context of framed knots, this is the linking number between the knot and a parallel
that represents the framing. It is clear that this agrees with the writhe of K. For
a link diagram L we denote by v;; the self linking number of the component L;.
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Lemma 9.2.1 Given a framed link L = Ly U Ly U ... U L; and Young diagrams
A2 .. )\ Then

XN,l(Ll U L2 U...u Lt; le,Q/\2, . ,Q/\t) =
Xva(L2 U U L Qo o, Quo)pt™n 72 Ko Wi,
Proof We consider a diagram of L with blackboard framing. We look at a
crossing of L where the component L; crosses over another component L;, i # 1.

We denote the sign of this crossing by . We switch this crossing to an underpass
for L;. We denote the resulting link by L'. We have

XN,l(L; leaQ/\27 e '7Q/\t) = p28|)\i‘XN,l(LI; leaQ/\27 e '7Q/\t)'

because Q5 can be written as a sum of diagrams each of which looks like |\’
parallel arcs near the crossing. Applying the (left for e = —1 resp. right fore = 1)
skein relation in figure 9.1 |\!|-times gives the result. Doing this for all overpasses
of L, with all the other components we separate the decorated component L; and
get

X (L3 Qa, @2y, Qxr) =
t ilgy. -
p2zi:2\/\ |U11XN,I(L1; le)XN,l(LQ U...uU Lt; Q)\2, RN Q)\t).

We use lemma 9.1.2 and get

t iy
XN,Z(L; lea Q)\27 . 'JQ)\t) = plvll+2zi=2 A IIXN,Z(LZ u...u Lt; Q/\27 . 'JQ)\t)'
[ )

Lemma 9.2.2 Given a framed link L = L, U...UL;, Young diagrams \', ..., \t,
and non-negative integers nq,...,n;. Then

n SR T b S R D R
XN,I(L; Q)\Ilela . '7@/\th;) = XN,Z(L; Q)\la . .,Q,\t)pd)( e T )

where

d)(al,...,at,bl,...,bt,{vij}): Z aivij(ij+laj).

1<4,j<t

Proof By induction on n = ny + -+ + n;. We proved the case n = 1 in lemma
9.2.1.

We consider the case n > 2. We renumber the components so that n; > 1. In-
stead of decorating the component L; with Qi Qg', foralli = 1,...,¢, we can con-
sider the (n; +1)-parallel of L; and decorate the components by Qxi, Qq,, - - -, Qq,-
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We can use lemma 9.2.1 to remove one of the components of L7'*" decorated by
Qq,- We get

XN,l(L; Q)\Ilela CIE Q/\tQ(Tith)

= XN,l(LTI—L1+1U"'UL?t+1;Q/\17lea"'anla """ 7Q/\t7lea"'7le)
—_— —_—
ni nt
1
- XN,Z(L?IU"'UL?H_ ;Q)\I;lea"'anla """ 7QAt7lea"'7le)pH
N— N—
ni nt

= xwnu(L; QuQy' 1,---,QAth,t)pn

where

t
| A— l?)u + 2 (|)\1|U11 + (n1 — 1)[7)11 + Z(|)\]|U1j —+ njlvlj))

i=2

t
= 1}11(2|)\1| + l(2n1 — ].)) + 2 Zvlj(|)\j| + n]l)
7j=2

The remaining part of the proof is algebraic. Our induction hypothesis is that
(L QuQ ™ Que Q) = XLy Q- ., Que)p? = hromeM bg),
To accomplish the induction step we have to prove that
(- ooymgy [N oA {o ) = d(ng — 1, mg, (MY, N {oy)) + &

We have

t t
¢(a1, N ) bl, ceey bt, {Uij}) = Z a; Vi1 (2b1 —+ lal) —+ Z alvlj(ij + laj)

=2 j=2
+al1}11(2b1 + lal) + Z Q;Vij (2()] + la]‘)
2<i,5<t

and the last summand is not affected by the value of a;. Therefore
¢(a17 ag, . . ., G, bla R bta {UZ]}) - ¢(a1 - 1; Ay« - -y O, b17 ) bt; {Uz]})

t
a; Vi1 (2b1 + lal) + Z alvlj(ij + laj) + Cll?)n(le + lal)
j=2

-

<
U
N

t

t
(Z a;v;1 (20 + l(ag — 1)) 201—1013 (2b; + laj)
7j=2

=2

+(a1 — 1)?)11(2[)1 +l a1 — 1 )
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t t
= Zaivﬂl + Z v1(20; + la;) +v11 (201 + 1(2a1 — 1))

i=2 j=2

t
= 1}11(2b1 + l(2a1 — 1)) + 2 Z ’Ulj(bj + la]‘)-

i=2

Substituting a; = n; and b; = [M| fori = 1,...,t and j = 1,...,¢ we get from
the above equation that

d(ny.oymg [N N {v ) — d(ng — 1,00 g, Ao [N {oi)) = &
as claimed. This completes the induction step. [ 3

Lemma 9.2.3 We have

od(a1,a2,...,0¢,b1,...,b¢,{vi; }) (a1+N,az2,...,a¢,b1,...,bt,{v;; })

D =p?

for any integers ay, ..., a;, by, ..., b and {v;;}.
Proof We have
¢(al + N; az, ..., G, bla sy bta {UZ]}) - ¢(a17 A, ..., Qt, b17 SR bt? {vl]})

t t
= lvu((al + N)2 — a?) + 2l Z vljaj(al + N — al) + 2 Zvljbj(al + N — al)
7j=2 7=1

t t
= v (N? +2a,N) +2N1S w0, + 2N S vy,

J=2 J=1

which is an integer linear combination of 2N and N?2. In order to complete the
proof we mention that

_QN.I'QlN — 82lx2lN — (SZ'N)2l =1

PPN = (s = 5
and
pN2 _ (_S—lxl)Nz _ (_1)N2(8leN2l)S—Nl—N2
_ (_1)N287N(N+l) _ (_1)N27N _ (_1)N(N71) —1
are both equal to 1. &
Lemma 9.2.3 follows in the case of non-negative integers ay, ..., a, immediately

from the fact that dY = () in the ring V.
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Theorem 9.2.4 Given a framed link L = LU. . .UL;, Young diagrams \', ..., \!,
and integers ny,...,ng. Then

XN,l(L; Qo’nl (}\1), RN Qo’”t (At)) — XN,l(L; QAla cee QAt)p(ﬁ(nl""’nt")\l‘7"'7‘At|’{vi‘j})

where

Plar, ... a, b, ... b, {vi}) = D0 awi(20; + laj).

1<4,j<t

Proof We know that d;A = o(A) in Yy, for any Young diagram A by lemma 6.2.1.
We know by the remarks at the end of section 5.2 that the Homfly polynomial
does not distinguish between decorations ), and @, if n = p in Yy, provided
one substitutes v = sV, 2V = 5! and s**N) = 1. Hence, lemma 9.2.2 can
be restated with Qgn; (i) in place of Q):@Qy'. Since o¥(\) = X for any Young
diagram A and by the result of lemma 9.2.3 we can admit negative n;, too. &

With the substitution

T T
§ = oxp <l+N> and & = exp (‘m)

we get

11 Nt m)
= —s gl = 2N = —_exp(—=).
p p< N

We denote ¢ = ¢(ay,...,as,bi,... b, {vi;}). We have ¢ = lv;af mod 2 because
Vij = Vjj. We thus get

(—1)? = exp(mi¢)

t
= exp (m'l Zviia?>

i=1
: t
= exp (%Nl;viia?>.
We thus get
P\ ?
o _ (_ _ﬂ>
p ( exp(—+)

= exp (%Z (let:viia? - d)))

i=1

: t
= exp (% (NZZUZZGJ? — Z aivij(ij —i—la]))) . (921)
i=1

1<i,j<t
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If b; (which is the number of cells of \?) is congruent to zero modulo N for all
i=1,...,t then 237, ; ., vija;b; = 0 mod 2N, and thus

i=1 1<ij<t

. t
p® = exp (%Z (NlZviia?—l Z aivijaj))

1<4,j<t

= eXxp (%Z(N - ].)l Z aivijaj> (922)
because p?Y =1 and
¢
Y vzai = . avija; mod 2.
i—1 1<i <t

Equations (9.2.1) and (9.2.2) are given in proposition 3.2.1 in [16]. We remark
that Kohno and Takata are using the letter k£ rather than [.

9.3 Transposing and conjugation, one way

We denote by L the mirror image of a link diagram with blackboard framing. We
denote the complex conjugate of a complex number by an overline as well.

Lemma 9.3.1 Let L =Ly U---U Ly, be a link diagram with blackboard framing,
and let A\, ..., be Young diagrams. Then

XN (L Qxs -, Q) = Xva(Ls Qs -, Q).

Proof We apply the map p from subsection 2.4.1 to the link diagram L decorated
by Qx, ..., Q- Thisleaves every (), invariant, because (0 is a polynomial in ()4,’s
which are invariant under p by lemma 2.4.4. The map p maps L to its mirror
image L.

This tells us in the skein of the plane that p maps L decorated with Qy,...,Q,
to L decorated by Qy,...,Q,. Therefore, the Homfly polynomial (which is a
rational function in z, v and s) of L decorated with @, ..., Q, is mapped to the
Homfly polynomial of L decorated by Q,...,Q,. We have by definition that
p(s) = st p(zr) =z~ and p(v) = v~!. Since s, z and v are roots of unity, and
the conjugate of any complex number with absolute value 1 is equal to its inverse,
we have

XN Qxs -, Q) = Xnva(Ls Qs -, Q).
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Lemma 9.3.1 relates the Homfly polynomial of a link L decorated with @y, ..., Q,
to the Homfly polynomial of its mirror image with the same decorations.

We now relate the Homfly polynomial of a link L decorated with Qy,...,Q,
to the Homfly polynomial of L decorated with Q5,...,Q; where A lies in the
same o-orbit as the transposed Young diagram A" of \. The Homfly polynomials
will turn out to be the complex conjugate of each other.

Given a Young diagram A in the (N —1)xI-rectangle we see that the transposed
Young diagram A" lies in the [ x (N — 1)-rectangle, and in ) y it is therefore
equal to a Young diagram in the (I — 1) x N-rectangle by removing all initial
columns of length /.

Given a link L and decorations Qy,...,Q, on its components, the Homfly
polynomial of this decorated link is a rational function p(z,v,s) in z, v and s.
The Homfly polynomial of L with decorations @Qyv,...,Q,v is a rational function
q(x,v,s) in z, v and 5. We have ¢(z,v,s) = p(—x,—v,s7") and q(z,v,s) =
p(z,v,—s7") by lemma 3.6.2.

We want ¢(x,v,s) to be the conjugate complex number of p(z,v,s) after
substitutions or something similar. We have to be careful about the substitution.
We want the 2(I + N)-th root of unity w to be substituted for s to be the same
in the context of Yy, and YV .

The value to be substituted for v in the context of Yy is s~V In the context
of YV, y we substitute v by s~t. We denote v; = s~ and vy = s~
The value for x involves a choice. In the context of Vy,; the condition is
L and our choice z; is therefore determined up to an N-th root of unity.

In the context of ), y the condition is ! L and our choice x5 is therefore
determined up to an [-th root of unity.

The problem with the approach ¢(z,v,s) = p(z,v, —s~') is that the complex
conjugate of s is rather s~! than —s 1.

The approach q(z,v,s) = p(—z,—v,s!) seems to be appropriate, since s~
is the conjugate of s, and —v in the context )y is the conjugate of v in the
context Yy, because —v; = —s7' = sV = ;! =77 since sVt = —1. A problem
occurs for z, since —xs is hardly ever the conjugate of z;. (Well, sometimes it is,
as described in section 9.4). We take account of this problem with z by choosing
a suitable element in the o-orbit of the transposed Young diagram. First, we
consider the approach via ¢(z,v,s) = p(z,v, —s1).

We denote the Homfly polynomial after the substitutions v = vy, x = x; and
s = w by xn;. We denote the Homfly polynomial after the substitutions v = vy,
r = a9 and s = w by x;n.

l‘N:.S’i

=S

1
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9.3.1 Transposing from )Vy; to )V n

The definition of the o-operation in section 6.2 was given in the context of Yy, i.e.
for Young diagrams in the (N — 1) x [-rectangle. Here, we denote this operation
by ;. In the context of Y, y, i.e. for Young diagrams in the (I —1) x N-rectangle,
we denote the addition of an initial row of length N to a Young diagram A
and then removing all columns of length [ by ox()\). We have of¥(u) = p and
oY (A) = X for any Young diagrams g and X in the (N — 1) x [-rectangle resp.
(I = 1) x N-rectangle.
First, we make the meaning of transposing precise. Consider maps,

F:  {Young diagrams in (N — 1) x [-rectangle} —
{Young diagrams in ([ — 1) x N-rectangle}

given by transposing the Young diagram and then removing all initial columns
of length /. Similarly:

G :  {Young diagrams in ([ — 1) x N-rectangle} —
{Young diagrams in (N — 1) x [-rectangle}

given by transposing the Young diagram and then removing all initial columns
of length N. It is clear that

GoN ™ (F(oi(N)) = A

and
ol (GF(\) = A

where j is the number of initial rows of length [ in A. We have o{¥(\) = \ for any
Young diagram A in the (N — 1) x [-rectangle. The above equations imply that
G and F' induce a bijection of the o;-orbits and the op-orbits. This bijection will
be revisited in lemma 10.1.3.

The equality |o(A)| = |A] +1— NAy_; implies that |o(A\)| = |A|+ ] mod N. If
N and [ are coprime then there exists exactly one element in each o-orbit whose
number of cells is divisible by N. If N and [ are not coprime then the exililtence

N

of such Young diagrams is not guaranteed. If |A| is divisible by N then oy~ (AY)
is a Young diagram in the (I — 1) x N-rectangle whose number of cells is divisible
by [. The following theorem was motivated by Proposition 3.3.2 in [16]

Theorem 9.3.2 Let N > 2 and | > 1. Let \',... \' be Young diagrams in the

(N — 1) x I-rectangle such that N divides the number of cells of each \'. Denote
Y]

pr=oy "~ (()\Z)v) Then, for any framed link L,

(L @ary o Qx) = X (L5 Qs -, Q)
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Proof We have

X(L’ Q)\la R Q)\t) = l'yX(L, Q/\la sy Q/\t)mZI (933)
where y is the writhe of the diagram where every component L; is replaced by its
|\é|-parallel, 7 = 1,...,¢. This is a straightforward extension of corollary 4.1.2.
Here,

. . t .
y= > 2vu5 N[N+ Zvii|)\z|2 (9.3.4)
1<i<j<t i=1

because for 7 # j, we have that v;; is half the sum of the signed crossings between

the components L; and L; of L. Furthermore, v;; is the writhe of the compo-

nent L;. Considering the parallels, any crossing between components L; and L;

becomes |\||\]| crossings of the same sign. This establishes equation (9.3.4).
We have by theorem 9.2.4 that

xi.n(L; Qo1 (ul)s - - -5 Qoo (uty) = Py XiN (L3 Qs -, Qut)
where

w= > awi(2lul + Nay).

1<i,j<t

Since the number of cells of each p is divisible by [ and p2' = 1, we can use

U)I: Z aiajvijN

1<ij<t
instead of w in the above equation. In particular, for a; = |\!|/N we have
xi,n (L Q(/\l)va S Q(/\t)v) =py Xi,n (L5 Qury - Que)

where w' = y/N in this case.
We have

X(L’ Q()\l)va SR Q()\t)v) = X(L’ Q)\la ceey Q)\t)xﬁ—x, v —v, srs— 1

by lemma 3.6.2. Hence, by equation (9.3.3),

X(L’ Q()\l)va SRR Q(/\f)v) = (_x)yX(L; Q/\la sy Q/\t)le,vﬁ—v,m—)sfl-

Making the substitutions in the context of )V, y we get

Xl,N(L; Q(,\l)va SRR Q()\t)v) = (_xQ)yX(L; Q)\l, ceey Q)\t)le,vﬁ—w*l,m—)wfl-
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From equation (9.3.3) and the above equations we get
Xvi(Ly@xy o Qx) = w{xwva(L Qxy, - - @a)o=1
= XL Qs Q0) sy T e
= L Qs Qn Yo, s, st
= 27/ (=22) "xi,n (L Quryv, - -+, Qanyv)
= (—z122) Py (L Qui -, Que)-

We thus have to prove that
(—z122)Y =y .
Since p, = —w™'2) = —2)*!, the above equation is equivalent to
(—2122)Y = (—a) )V

Since N divides any |\|, i = 1,...,t, we have that y = ¢N? for some integer c.
We thus have to prove that

(_xle)CNQ _ (_xéV+l)cN

for any integer ¢. We have that (—1)N* = (=1)°N, and it is therefore sufficient
to prove that

(z129)N = 2V,
This is equivalent to
o = b
which is true since x; is an N-th root of w, and x5 is an [-th root of w. [ )

9.4 Transposing and conjugation, the other way

We set "
— omi——
S exp( mQ(l+N)>
where £ is an integer coprime to 2(I + N), and 1 < k < 2(l+ N). We set

B 2mik n 2mir
NEEP AT 0NN TN

for some 0 <r < N — 1. We set

. 2mik n 2miq
To — exp | —
e S T TR

for some 0 < ¢ <[ —1.

132



The other way to achieve that ¢(z,v,s) (= p(—z,—v,s!)) is the conjugate
of p(x, v, s) is by choosing the substitutions for z, v and s in such a way that the
conjugate of s is equal 51, that the conjugate of v, is equal to —v,, and that the
conjugate of z; is equal to —xs.

Since s, v and x are roots of unity after the substitutions we have that their
conjugates are equal to their inverses. Hence, the conjugate of s is equal to s .

The conjugate of v is equal to v;', and

-1
vfl _ (SfN) — gV — N+l ol Uy

satisfies the above condition. The only remaining condition is that z; ' = —,.

This is equivalent to z;29 = —1. The rest of this section solves the question when

T1To is equal to —1. It turns out that there are unique solutions for xz; and s
provided that [ and N are coprime odd integers.

Remark We have that ¢(z, v, s) = p(x,v, —s™1), too, but there are no choices for
k, r and ¢ such that the conjugate of x; is equal to x,. This is because xixy = 1
leads to the equation 2(rl + ¢N) — k = 2NI mod Z which implies that k is even.
This contradicts the condition that k& and 2(I + N) are coprime.

9.4.1 When is ziz9 = —17

The equation x,x5 = —1 is equivalent to

2mik 2mwir 2mik 2miq .
exp | — + exp | — + = exp(7i)
20+N)N N 2(l+ N)l l

by our above notation. This equation is equivalent to

k(K e
20+ N)N N 20+ N)L 1 2

where congruence means here and in the following congruence modulo Z. This
congruence is equivalent to

2(rl+gN)—Fk 1

2Nl 2

(9.4.5)

In particular, NI is a divisor of 2(rl 4+ ¢N) — k, and there exists an integer a such
that
2(rl +¢N) —k = aNI.

This implies that the greatest common divisor g.c.d.(l, N) of [ and N is a divisor
of k. Since k is supposed to be coprime to 2(l + N), and g.c.d.(l, N) is a divisor
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of (I + N), we deduce that g.c.d.(l, N) has to be equal to 1, i.e. [ and N are
coprime.

If N or [ is even then the equation 2(rl + ¢N) — k = aNI implies that k is
even. This is in contradiction to the condition that &k and 2(l + N) are coprime.
We have proved so far

Lemma 9.4.1 Letl, N and k be positive integers so that k is coprime to 2(I+N),
and 1 < k <2(l+ N). There ezists a solution to r and q to the condition (9.4.5)
only if [ and N are coprime odd integers.

We described in subsection 9.3.1 a relation between the Young diagrams in
the (N — 1) x l-rectangle and the Young diagrams in the (I — 1) x N-rectangle.
The relation is induced by transposing a Young diagram and then reducing it to
its representative in the (I — 1) X N-rectangle. But in order to be a bijection, we
have to consider the o-orbits of the Young diagrams.

The effect of the o-operation can be controlled by theorem 9.2.4. In order to
be able to neglect the influence of the o-operation we want p to be equal to 1 in
the context of Vy,; and Y n. We recall that p; = —s‘lxll in the context of Yy,
and p, = —s 'z in the context of Y y.

The condition —s 'z} =1 is equivalent to s~
the above equations to

1zl = —1 which is equivalent by

—L—f—l _L_FL :1
2(l+ N) 20+ N)N N) 2

This equation can be written as

2rl —k 1
= —. 4.
2N 2 (9-4.6)
We want p, = —s 'x) =1 as well. This is equivalent to
2qN — k1
_1 4,
21 2 (9-4.7)

which differs from condition (9.4.6) by interchanging [ and N and interchanging
r and q.

Given coprime odd integers N and [, and an integer k coprime to 2(I+N), and
1 <k <2(l+ N), we are looking for solutions for r and ¢ that satisfy conditions
(9.4.5), (9.4.6) and (9.4.7).

If r and 7" are solutions to condition (9.4.6) then 2V divides 2(r —r')l and thus
r = r’ mod N. Similarly, any solution ¢ to (9.4.6) is unique up to congruence
modulo /.
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Since [ and N are coprime and odd we have that 2/ and N are coprime. Hence,
there exist integers ¢ and d such that

2cl +dN =1,

and in particular d is odd. We deduce that

2ckl — k
——— = —kd
N
and therefore
r=ck

is a solution for condition (9.4.6) because —kd is odd since k and d are odd.

Since 2¢l + dN = 1, we have (d+ )N — 1 = [(N — 2¢) where N — 2¢ is odd,
and d + [ is even. Therefore

k(d+ )N — k N =2

and therefore

is a solution to condition (9.4.7).
We have to check condition (9.4.5) for these solutions. We have

2rl +qN) —k  2(ckl + FLDN) —
NI B NI
B k201+(d+l)N—1
B NI
B k(2cl+dN)—1+lN
B NI
= k

which is an odd integer and thus condition (9.4.5) is satisfied. We can summarize
our considerations.

Lemma 9.4.2 Given positive integers [ and N, there exists an integer k coprime
to 2(L+ N) and integers r and q satisfying conditions (9.4.5) only if | and N are
coprime odd integers.

Given positive coprime odd integers | and N and an integer k coprime to
2(l+ N). Let ¢ and d be integers that satisfy 2cl +dN = 1. The there exist an
integer r = ck (unique up to congruence modulo N ) and an integer ¢ = k(d+1)/2
(unique up to congruence modulo 1) that satisfy conditions (9.4.5), (9.4.6) and
(9.4.7).
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Remark For the solution r = ¢k we get by our construction
k(2¢ —d)

xlzexp<m TN ) and 7o =2 L.

We finally show that the solutions r and ¢ are symmetric, i.e. if we interchange
N and [ then the corresponding solutions are ' = ¢ up to congruence modulo N,
and ¢’ = r up to congruence modulo /.

Lemma 9.4.3 The interchange of N and [ interchanges the solutions r and q.
Proof Given coprime odd integers [ and N we have
2cl+dN = 1 and
20N +d'l = 1

for some integers ¢, ¢, d and d'. The solutions we found are

d-+1

r = ke, q=k ; and, symmetrically
d+ N

ro= kd, ¢ =k ; .

We have to show that

!
kc’zk% mod [ and kczkd +N

mod N

for any integer k coprime to 2(I + N). In fact, we show that

Cd+l d+ N

CETmOdl, and ¢ = mod N.

We have by the above equation that

2cl +dN = 2¢'N + d'l,
hence

(2¢ —d')l = (2 — d)N.
Since [ and N are coprime, we deduce that N divides 2¢c — d’, and [ divides
(2¢" — d), hence

2c=d mod N and 2c¢ = d mod I.

This implies that 2¢ = d’+N mod N. The integer d’ is odd because 2¢ N+d'l = 1.
Hence, the sum of two odd integers d' + N is even. Since N is odd, we have

d+ N
+ mod N.

Cc=

Similarly, we have that ¢ = (d + [)/2 mod [, and this completes our proof that
r"=¢g mod N and ¢’ = r mod . [
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Chapter 10

Young-solutions

We fix integers N > 2 and [ > 1. We fix (, a primitive root of unity of order
[+ N. We denote Ejyny = {1,¢,...,""N-1} the set of all (I + N)-th roots of
1. We denote £ = exp(2mi/N). But in section 10.4 we shall denote by & another
primitive N-th root of unity.

10.1 Encoding Young diagrams in the unit cir-
cle

To every Young diagram A in the (N — 1) x [-rectangle we assign a set T\ of N
points on the unit circle in the complex plane,

Ty = {1, CAN‘IH, C)\N—2+2’ o C/\1+N71}‘

This describes a bijection between the Young diagrams in the (N —1) x [-rectangle
and the set

T:{{I,C“I,...,C“N*I}|1§a1<---<aN_1§l+N—1}.

In particular, we see that the number of Young diagrams in the (N — 1) X [-
rectangle is equal to (1}1\1—11) We denote (AV-+TF as the k-th element of Ty,
0<k<N-1.

The group of symmetries (i.e. Euclidean isometries) of the set Ejy is the
dihedral group Z;, y o Zo which is generated by the reflection in the z-axis (i.e.
conjugation) and the rotation by the angle 27/(l + N) (i.e. multiplication by
exp(2mi/(l + N))).

The successive rotations by the angle 27 /(I + N) do not act on T because
every T has to contain the element 1.
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But there is an operation of the cyclic group Zy = (a|a™ = 1) on T. The
element a* of Zy, 1 < k < N — 1, acts on T} as the rotation of the unit circle
that brings the k-th element of Ty to 1. The element b of Zy, = (b|b? = 1) acts
as the reflection in the z-axis, i.e. complex conjugation.

We have that bab = a~! because ¥ = v~ 'z for any complex number z where
v = ¢~ O~¥=1+1) This means that the conjugation by b € Z, acts as the inversion
on Zy, and therefore the dihedral group Zy o Zs acts on T'. We remark that
the action of Zx o Zy on T is not free in general.

We describe now the action of Zy o« Zs more accurately. We refer for the
o-operation to section 6.2 and for the concept of the dual Young diagram A* to
subsection 1.3.2.

Lemma 10.1.1 The generators a and b of Zy x Zs act as

a(T/\) = Ta(/\)a
b(TA) — TO'_I(A*)

for any Young diagram X\ in the (N — 1) X [-rectangle.

Proof The action of a transforms Ty = {1, (*V-1+1 . ¢MTN=1Y via the rotation
¢~Ov-111 into the set

a(TA) — C_()‘Nfl-i'l)T/\

_ Ot ] et O ) AN 1 Ot )Y
— {1, C/\N,2+2—(>\N,1+1), e <>\1+N—1—(>\N,1+1), C—(/\N,I-H)}
(1, W2 At AN 2 AN
= Ty
because o(A) = (I = Ay_1, M1 = An_1,. .., Av—2— Ay_1) and ¢ = 1. The action
of b transforms Ty = {1, -1 ¢M*TN-11 via conjugation into the set

bTy) = {1, ¢ON-1tl) ~On—2t2) Cf(/\1+N71)}
= {1, C_(/\H‘N_l), . C—(AN72+2), C—(/\N,I-H)}

ey

— {1, CZ+N7()\1+N*1), el CZ+N7()\N_2+2), CH‘N*(/\N_l‘Fl)}
— {1 le/\1+1 o Cl*)\N—Q‘FN*Z Cl*/\N_lJerl}
= T,
where 1 = (p1, ..., pn—1) is the Young diagram with p; =1 — Ay ;. Hence,
o(p) = (I = pnN=1, o1 — N1, iN—2 — [IN—1)
- ()\laAl_)\Nfla"'a)\l_)\Z)
A

We have thus proved that b(Ty) = T, with o(x) = A*, hence b(T)) = T,-1(5+).
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We remark that lemma 10.1.1 gives a second proof that bab = a™*.

Furthermore, we see that two elements A and p from the (N — 1) x [-rectangle
lie in the same o-orbit if and only if Ty and 7, differ by a rotation. We recall
that £ = exp(27i/N).

Lemma 10.1.2 The cardinality of the o-orbit of X is equal to the cardinality of
the set .
{ng)\ |j:077N_1}

for any Young diagram X\ in the (N — 1) X [-rectangle.

Proof The rotations that keep T invariant form a finite subgroup of S'. Any
finite subgroup of S* is cyclic and therefore there is a unique rotation by a positive
angle o, 0 < v < 27, that generates all the rotations that keep T} invariant. The
cardinality of the o-orbit of A is then equal to ]g—f by lemma 10.1.1.

The rotation by « induces a permutation of the N points of T). This permu-
tation is a power of an N-cycle. Hence, the rotation by Na induces the identity
permutation and thus N« is an integer multiple of 2. Therefore, there exists a
unique integer jg, 1 < jo < N, such that a = 2—’;\,& No other rotation &' with
1 < j" < jo keeps T) invariant. The cardinality of

is therefore equal to jj.
On the other hand, the cardinality of the o-orbit of A is equal to g—: (as stated
above) which is equal to j. [ )

10.1.1 The unit circle and the outline of Young diagrams

We describe now a relation between the outline of a Young diagram and the set
Ty on the unit circle. We position a Young diagram A that lies in the (N —1) x [-
rectangle in an actual N x [-rectangle and remove the lower and the right edge
of this rectangle. An example is shown in figure 10.1. We refer to the solid line
in this figure as the outline of the Young diagram.

We define a word w(\) with the letters ‘full’ and ‘empty’ by reading the
sequence 1,¢, (2, ..., C"*V=1 and we write ‘full’ if the element lies in T, and we
write ‘empty’ if it does not lie in 7). This word w(A) can be read directly off the
Young diagram A in the following way.

We start at the bottom left and follow the outline of A to the top right.
Whenever we go vertically we write ‘full’, and whenever we go horizontally we
write ‘empty’. We start with ‘full’ because Ay = 0. On the other hand, 1 lies
in T\. Whenever \;;; = )\;, i.e. we go one step vertically, then the elements
At tN=(41) and ¢M+N— are consecutive in the sequence 1,¢, ¢, ..., (HN-1
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Figure 10.1: Young diagram A = (6,5,5,4,4,2) with extended lines in the case
N =8and [ =09.

Figure 10.2: The dual Young diagram upside down.

Whenever \; = A1 + k for some £ > 0, then on the one hand we go k
steps vertically, and on the other hand the complement E;;x\7) contains the
k consecutive elements (Ai+tHN=(+D+1 At N=i=1 = \Walking along A we thus
read w(A).

This visualization of the word w(\) leads to a nice interpretation of the result
from lemma 10.1.1 that b(T) = T,-1(r+).

Figure 10.2 derives from figure 10.1 by taking the complement of A in the
N x Aj-rectangle. The upper right spoke in figure 10.1 becomes the lower left
spoke in figure 10.2 because \* derives from this diagram after the rotation by 7
and thus we also have to rotate the two bounding edges of the N x [-rectangle.

Walking along the solid outline of A* and the solid spokes from the top right to
the bottom left, we read the reverse word of w(\) up to the cyclic shift of length
[ — A1 due to the horizontal spoke. Hence, up to rotation (i.e. o-operations),
b(Ty) is equal to T-.

This technique of reading the word w(\) allows us to present a relation be-
tween T and T)v as explained in the following.

Given any subset S of E;,y with N elements, we can rotate this set by some
angle so that 1 lies in this set. This is well defined up to some rotation by Zy,
and thus S determines a Young diagram up to o-operation. Furthermore, the
complement of S consists of [ points. These determine a Young diagram in the
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(I — 1) x N-rectangle up to o-operation. We remark that this o-operation refers
to the (I — 1) x N-rectangle which means adding a row of length N and removing
all columns of length [. We avoid the notations o; and oy for the o-operations
in the (N — 1) x [-rectangle resp. (I — 1) x N-rectangle.

It is obvious that every o-orbit of Young diagrams in the (N —1) X l-rectangle
contains a representative that lies in the (N — 1) x (I — 1)-rectangle. Therefore,
it is not a strong restriction to consider Young diagrams in the (N —1) x (I — 1)-
rectangle.

Lemma 10.1.3 The sets En\Ty and Ti\vy- differ by a rotation for any Young
diagram X in the (N — 1) x (I — 1)-rectangle.

Proof We remark that A lies in the (I — 1) x N-rectangle because A lies in the
(N —1) x (I — 1)-rectangle.

When we transpose A in figure 10.1 we see that the word w(\Y) derives from
the word w(\) by first reversing the order of its letters and then switching the
letters ‘empty’ and ‘full’.

This means that (! lies in Ty if and only if (!*V~% does not lie in Tyv for
i=1,...,1+ N. The complex conjugate of ("*V~% is equal to ¢*, and therefore
¢! lies in T} if and only if ¢* does not lie in Ty for i = 1,...,l + N. This means
that

(T W Thw = Eiyn.

Complex conjugation transforms the set Tyv into T{yv)- up to rotation by lemma
10.1.1. Hence, Ej4n\T and T(yvy- are equal up to rotation. )

The example in figure 10.1 for N = 8 and [ = 9 leads to the set
Ty ={1,¢,¢% ¢ ¢% ¢, ¢ ¢
The complement is
El-I—N\T)\ = {C27 Cga C57 <67 Cga C127 CM) C157 <~16}‘
Replacing ¢ by (!, i.e. conjugation, transforms this sequence into
{C <~2 C3 <~5 CS <~11 CIZ <~14 <~15}
since ("N = (17 = 1. Rotation by ¢! leads to the set
{1 C <~2 C4 C7 <~10 Cll C13 <~14}

which is equal to T, with ;= (6,6,5,5,3,1) = A".
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10.2 Young-solutions

We defined in section 6.1 the quotient ring Yy, = Y/In;. We recall that the
ring of Young diagrams Y is freely generated as an Abelian ring by the column
diagrams c, ¢z, . ... Hence, a ring homomorphism ¢ : ) — C factors through Vu
if and only if

¢(co) = olen),
é(c;) = 0 fori>N+1, and
#(d;)) = 0 forl+1<j<I+N-1.

Since the empty Young diagram ¢, is the unit for the multiplication, we have
#(co) = 1. Hence, ¢ factors through Yy, if and only if

¢(CN) = 1
é(c;) = 0 fori>N+1, and (10.2.1)
o(d;) = 0 forl+1<j<I+N-1.

In particular, if ¢ factors through Yy then ¢ is determined by ¢(c1), ..., ¢(en—1).
An (N—1)-tuple (71, ...,vn_1) of complex numbers is called a Young-solution
if the map ¢ : Y — C given by

¢(CZ) :’ylforlgzg]\f—l
¢(CN) = 1,
¢(c;) = Ofori>N+1

factors through Y.

Lemma 10.2.1 There is bijection between Young-solutions and the family of sets

of pairwise different complex numbers {y1,...,yn} that satisfy
yit =yt for any 1 < j <N,
I+N)N
N =1,
Y1y2---yn = 1.

The bijection is given by assigning to ~y; the i-th elementary symmetric function
MY, .-, YN-

Proof We define 79 = vy = 1. We define a polynomial C'(Z) in the variable Z,
N . .
C(Z) = _(-1)n72'

1=0
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for any (IV — 1)-tuple (71,...,7n-1) of complex numbers. We define D(Z) to be
the inverse power series of C'(Z),

D(Z)=C"(2) = fj 6,77

where the complex numbers 6; depend on 74, ...,yy_1. By equations (1.1.1) and
(10.2.1) we see that (y1,...,vn-_1) is a Young-solution if and only if §; = 0 for all
j=Il+1,....,1+N—1.

Let (y1,...,v~—1) be a Young-solution. Then

[ 00
D(Z)=>.67"+ Y 6,77,
=0 J=I+N
and we denote the first summand (which is a polynomial) by D'(Z), and the
second summand (which is a power series) by D"(Z). We have

C(Z)D'(Z) + C(Z)D"(Z) = 1.

The maximal degree in Z of C(Z)D'(Z) is equal to [+ N, and the minimal degree
in Z of C(Z)D"(Z) is equal to [+ N, too. The term of degree {4+ N in C'(Z)D"(Z)
is equal to 0,4 yZ"N. Hence,

C(Z)D'(Z) + 61 .y 2N = 1.

Equivalently,

C(Z)D'(Z) =1 pz"*N
where 3 = 04 5. The complex number £ is non-zero because C'(Z) is a polynomial
of degree N, and D'(Z) has constant term 1.

Any root a of C(Z) satisfies a/*¥ = =1 by the above equation. The N roots
ay,...,ay of C(Z) are pairwise different because the roots of 1 — 3Z*N are
pairwise different. We have a; ---ay = 1 because the constant term of C'(Z) is
equal to 1, and the coefficient of the highest term ZV of C'(Z) is equal to (—1)".

We have

N

c@ = 01z -
= (—1)Nilj‘v[1az-(a;12—1)
- (0 ez 1)
= ﬁ(l—ailZ).



This means that the coefficient ~; of (—1)*Z% in C(Z) is the i-th elementary
symmetric function in a7, ..., ay' which are the inverses of the roots of C(Z).
We have that (ai_l)”N = fforalli =1,..., N as mentioned above. The equation
aq ---ay = 1 implies that

hence 8V = 1. (Another way to see this is the following. We have by lemma 6.3.1
that di .y = (=1)V*1d; in Y. Hence, dY y = (=1)VFINGN = oN(¢) = ¢y =1
by lemma 6.2.1.)

This means that for any Young-solution there exists a unique set of pairwise
different complex numbers yy,...,yx (= a',...,ay') such that y, ---yy = 1,
y NN — 1 and yHN = yitN for any 1 <4, j < N. The uniqueness derives from
the fact that yq,...,yy are the inverses of the roots of C(7).

Conversely, let v; be the i-th elementary symmetric function of pairwise dif-
ferent complex numbers yq,...,yy with the properties as stated in the lemma.
Denote 7 = yl_(HN). Aside from yy,...,yy there are [ other (I + N)-th roots of
71, say x1,...,7;. We have

N

C(Z)=1Ia - w2).

i=1
Then its inverse power series

D(z) = C7Y(2)

1 l
e —
1 —7ZHN ]1_[1( %)
l
= (1+72"N 4+ 7222200 49T (1 - 2,2)

j=1

has zero as coefficient of Z* for k =1+ 1,...,1+ N — 1. Hence, (y1,...,yn_1) is
a Young-solution. &

10.3 Young-solutions and the unit-circle

Our notation does not distinguish between a Young-solution and the set of N
complex numbers assigned to it by lemma 10.2.1. We recall that ( is a fixed
primitive root of unity of order [ + N.

Let {y1,...,yn} be a Young-solution. The y; are pairwise different, and their
(N + [)-th powers are all equal. Hence, there exist integers ai,...,ay 1 with
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1<a; < <any_1 <N+1—1so that

{Lym e,y = {1, ¢k
Therefore,
vy o, yn ) =Ty
for some Young diagram A in the (N — 1) x [-rectangle. If we had chosen y,
instead of y; then

y2_1{y17"'7yN} = TM
for some Young diagram g in the (N — 1) x [-rectangle. Since the sets

yfl{yla e '7yN} and ygl{yla s 7yN}

differ by a rotation a rotation of the unit circle, we know by lemma 10.1.1 that
i and A lie in the same o-orbit. The assignment of the o-orbit of A to the
Young-solution {yi,...,yx} is therefore well defined.

Lemma 10.3.1 The number of Young-solutions that are assigned the same o-
orbit is equal to the number of Young diagrams in this orbit.

Proof Let A be a Young diagram in the (N — 1) x l-rectangle. We denote
a; = Ay_;+ifori=1,...,N —1. By lemma 10.2.1 we see that the Young-
solutions that are assigned the o-orbit of A\ are

{y[)a yOCala cee 7y0CaN71}

(which is equal to yyT)) where y, has to satisfy the conditions
I+N)N
vo ™ = (oC™) TN = = (g )Y, g ey ) — N
These conditions are equivalent to

which is equivalent to

y(])VC(al-l-...-i-aNfl) =1. (10‘3'2)
There are N solutions for 7, in the last equation. We choose one solution j,
and then the other solutions for this equation are )&, yo&2, ..., yo&N =" where

& = exp(27i/N).
Our claim is that the cardinality of the following set of Young-solutions

{ye&Ty|j=0,...,N —1}

is equal to the cardinality of the o-orbit of A. Since the rotation by y; does not
influence the cardinality of this set, we have to show that the cardinality of

is equal to the cardinality of the o-orbit of A. This is true by lemma 10.1.2. &
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10.4 Hopf link and Young-solutions

In chapter 4 we were considering the Homfly polynomial (), i) of the Hopf link
with decorations () and @), on its components. This is a rational function in
x, v and s. We considered in previous parts the substitution of s by a primitive
root, of unity of order 2(I + N), the substitution of z by an N-th root of s~!, and
the substitution of v by s~V.

Here, it will be necessary to restrict the substitutions. We will choose x to be
a primitive root of unity of order 2N (I + N) and we shall fix this choice unless
stated otherwise. We will substitute s by 2=V, and we will substitute v by z’.
This is necessary because we shall want 2= to be a primitive root of unity of
order 2(I + N) as usual, but additionally, we shall want ¢ = z2(*N) to be a
primitive root of unity of order N.

To any Young diagram A in the (N — 1) x [-rectangle we assign the set of
complex numbers

cA) = {a, a1 acMTNTY = Ty,

N(N-1)

where o = z +2M and ¢ = 22V, This is a Young-solution because

2N N(N-1)
LN 1)+2N|/\\C\)\|+

aNC()\N—1+1)+"'+()\1+N71) >

_ N(N-D2N 2N (SR
=1
and thus the condition from equation (10.3.2) is satisfied.

Lemma 10.4.1 We have c(a(\)) = 2?N+¢(X) for any Young diagram X\ in the
(N — 1) x l-rectangle.

Proof The Young-solution assigned to () is by the above definition

c(0(N) = BToe

where 8 = pV(N-D+2lo()]
We have |o(\)| = |A| +1 — NAy_1 because o(\) derives from A by adding a
row of length [ and then removing all (i.e. Ay_;) columns of length N. Hence,
/B — IN(N—1)+2(|)\H-l—N)\N,1)
— 22N

— aleCAN_l
By lemma 10.1.1 we know that
T, = a(Ty) = C*(AN_1+1)T)\_
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Hence,

c(o(N) = BT
— aleC/\N—IC_()‘N—1+1)T)\
— 22T,
— {E2(Z+N)Q()\).

L )

The complex conjugate of the set ¢()) is again a Young-solution because the
condition from equation (10.3.2) is satisfied. We know by lemma 10.1.1 that
complex conjugation of T\ leads to the o-orbit of the dual A* of A\. Hence, @
corresponds to the o-orbit of X\*, i.e. ¢(\*) = ¥¢()) for some k, 0 < k < N — 1,
and & = 22N Tt turns out that k = 0.

Lemma 10.4.2 We have c(\*) = ¢(\) for any Young diagram X in the (N —1) xI-
rectangle.

Proof Let A be a Young diagram in the (N — 1) x [-rectangle. We recall that the
dual \* is up to rotation the complement of A in the N x A;-rectangle. Hence,
AM=M—Ay g fori=1,...,N—1,and |\*| = NA; — |A\|. We thus get

c(N) = B, vt iV

— /8{1, C/\lf/\2+1, - C/\lf/\N+N71}
BC/\l—l—N—I{C—(/\l—I—N—l) C—()\2+N—2), — C—(/\N,l—i-l), 1}
— /BC)\1+N71{1, C*(/\N_1+1 - ,C )\2+N 2 C ()\1+N71)}

where g = zVV=D+2X1 We have that

BEMAN-T Slfo2(N/\17|/\\)CA1+N71

SI_NC_)\I.Z'_2|MC)\1+N_1

l—NI—Z\/\|CN—1

S

_ GN-1,-20

—2N

where we used that ( = x and s = 27V. We thus get

c(AF) = N1 2Ny ¢ Onaatl) e OetN=2) e (N -1y

On the other hand, we have by definition

Q()\) = SlfoZW{l, C/\N—1+1, el C/\1+N71}.
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The conjugate of z is equal to 2! because the norm of z is equal to 1. Therefore,
the conjugate of s = 7V is equal to s~ '. We thus derive from the above equations
that

() = N7l Ot Qe N=2) a1y

(A)-

|
1

L )

The terms A\; + N — i for i = 1,..., N — 1 appear in the sets T and c¢(\)
because of the relation between the ring of Young diagrams and Schur functions.
We can exploit this by relating Schur functions, Young-solutions and the Hopf
link by lemmas 4.1.5 and 4.3.3. Their combination implies that (X, u)/ ()\) is
the Schur function s, in infinitely many variables which are to be substituted by
gNF2Ai=2i+1 220 for y = 1,. .., N, and all the other variables are to be substituted
by zero. This result is true under the condition that A has at most N rows, and
that v is to be substituted by s=.

If 1 has more than N rows then the Schur function s, becomes zero after
the above substitution of N variables by sV 2424122 for j =1, ..., N and all
other variables are substituted by zero. Therefore, we restrict to the interesting
case that ;1 has at most [V rows, and we thus can regard s, as the Schur function
in N variables.

We can write
GN+2X=2i+1 2N (1N 2]A] 2(\+N i)

fori=1,..., N. We restrict A to Young diagrams in the (N — 1) x [-rectangle
and we thus have Ay = 0. Hence,

<)<\’)\l>ll> = Su (’Ya 782(>\N71+1)7 - S

2(/\1+N—1))

where v = s'"Vz?. We see that + is equal to the value of  that we have chosen

in order to define ¢(\). In fact, this was our motivation for the definition of ¢(2).
We thus have proved that

Lemma 10.4.3 We have

for any Young diagram X in the (N — 1) x l-rectangle and any Young diagram p
with at most N rows, after the substitutions of x by a primitive root of unity of
order 2N(I1+ N), s=a N, and v = s = 2.
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We finish our study of Young-solutions by describing the effect of the o-
operation to the statement of lemma 10.4.3.

We know by lemma 10.4.1 that c(c*(\)) = &*¢()\) for any k = 1,..., N — 1,
where & = 2z2(4+N) | Since s, is a homogeneous polynomial of degree |u| in N
variables, we have that

su(c(0"(N)) = €5, (c(N).-
Lemma 10.4.3 implies that

F(X A
(a*(A) (A)
for any Young diagrams A and p in the (IV — 1) X [-rectangle.
We can deduce this result as well from lemma 9.2.2. The lemma implies that
after the substitutions for s, x and v we have

<0k()‘)7 M> = p2k|#| <)‘a :U’>

and

(a* () =)
for any non-negative integer k because the linking number of the two components
of the Hopf link is equal to 1, and the self linking number of any component is
equal to zero. Here, p = —s '2!. Since we make the substitution s = 27", we
get p? = 22*N) This is our preferred primitive N-th root of unity &, and we
thus deduce equation 10.4.3.
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Chapter 11

Quantum invariants and Homfly
polynomial

In this chapter we consider algebras over a commutative ring k. The cases for k
we are interested in are either C, the field C(q) of rational functions in a variable
q, or the algebra C[[h]] of power series in a variable h. The case k = C[[h]] is
rather tricky since so-called ‘completions’ of modules over C[[h]] are necessary to
deal with the scalars. Furthermore, C[[h]] is given the h-adic topology. This is
described in chapter XVT of [12].

For a complex semi-simple Lie algebra g we define in section 11.3 the Quantum
enveloping algebra Uy (g) over C[[h]]. There exists a simpler version U,(g) over
Clg] whose theory is somehow parallel to Uy,(g) as mentioned at the end of section
XVIL2 of [12]. The translation between these two algebras is ¢ = e". The
disadvantage of U,(g) is the lack of a universal R-matrix. The exposition given
here deals with Uj,(g) but without mentioning explicitly the technical difficulties
arising for tensor products of Uy, (g)-modules.

We remark that the variable h in Uy (sl(N)) is not the same in [12] and [4], one
differs from the other by the factor 2. Furthermore, they are considering different
Hopf algebra structures on this algebra, but lemma 11.3.3 will show that they are
equivalent.

11.1 Ribbon Hopf algebras

Whenever we are considering the tensor product of two algebras A and B over
a commutative ring k, we understand the tensor product to be over k£ and we
abbreviate A ®;, B by A® B.

Definition A ribbon Hopf algebra A is both an algebra and a coalgebra over a
commutative ring k, i.e. there are maps ¢ : A ® A — A (called multiplication),
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vk — A (called the unit), A : A - A® A (called comultiplication), and
e: A — k (called the counit) which satisfy

(Ada®t) = CL@idy) =ida,

((C@idy) = ((ida® ()

(i.e. A is an algebra), and

(id_A X 6)A = (e’:‘ X ld_A)A =idy,

(A®idy)A = (idg® A)A,
(i.e. Ais a coalgebra). Furthermore, multiplication and unit are homomorphisms
of coalgebras, and, equivalently, comultiplication and counit are homomorphisms

of algebras. Furthermore, we require the existence of an anti-homomorphism
S : A — A (called the antipode) that satisfies

C(S®@idy)A = e = ((idy ® S)A.

Furthermore, we require the existence of an invertible element R € A® A (called
a universal R-matrix) and an invertible and central element v € A such that

A®(z) = RA(z)R™' forall x € A,
(A®idy)(R) = Ri3(1®R),
(id4s®A)(R) = Ri(R®1),

v? = uS(u),
A(w) = (RuR) '(vew)
e(v) = 1
S(w) = v

where R = Zz S; (024 ti, u = Zz S(tl)sl, R13 = Zz S; X 1 X ti, Rgl = Zz tz X Si, and
AP = 74 4A where 74 4 is the flip of the components of A® 4. We shall denote
uv~! by p which is sometimes called the ribbon element.

We remark that a ribbon Hopf algebra may contain several universal R-matrices.
We also remark that u satisfies the equation A(p) = p ® p.

The tensor product of any A-modules V' and W is an A ® A-module by
defining (a1 ® az) - (v @ w) = (a1v ® asw). The Hopf structure allows us to turn
V' ® W into an A-module by defining a - (v @ w) = A(a) - (v @ w).

The dual V* = Homy(V, k) of an A-module V' becomes an A-module by
defining (a - &, v) = (£,S(a) - v) where a € A, £ € V*, v € V, and (, ) is the
natural pairing between V* and V.
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XN Y U

Figure 11.1: The homomorphisms p, p, F1, F», F3, Fy (from left to right).

11.2 An invariant of ribbon tangles

We consider a special case of ribbon tangles. An (m,n)-ribbon tangle is a diagram
of oriented arcs and oriented simple closed curves in the square [0, 1] x [0, 1] of
the Euclidean plane such that all the boundary points of the arcs belong either
to the m points at the top [0,1] x 1 of the square, or to the n points at the
bottom [0, 1] x 0. (This implies that m +n has to be even). The Euclidean plane
is assigned the standard orientation. We consider only diagrams for which the
blackboard framing agrees with the actual framing of the tangle as explained in
section 2.1. (The blackboard framing is the diagram together with its regular
neighbourhood (respecting crossings) in the plane).

We consider a diagram of an (m, n)-ribbon tangle T with A-modules V3, ..., Vj
assigned to its components. We shall also refer to this assignment as a colouring.
The boundary points at the top of T" belong to arcs that are coloured by, say,
Vii, ..., Vi, from left to right. At the bottom we read, say, V;,,...,V}, from left
to right. At each of these endpoints, the corresponding arc is locally oriented
either top-down or bottom-up. If the module we read off at an endpoint is, say,
V' then we denote a module V' by saying that V' is equal to V' if the correspond-
ing local orientation is top-down, and V' is equal to the dual module V* if the
corresponding local orientation is bottom-up.

A coloured ribbon tangle then determines a module homomorphism J(T'),

JT): Vi@V, =V/,® -V .

J(T) is defined by dissecting T into stripes in which we have either a single
crossing, a single cap, or a single cup as shown in figure 11.1. For these basic
pieces we define the corresponding module homomorphisms now. The map J(7T)
is then the composition of these maps read from the bottom to the top of the
diagram.

Consider the crossing at the very left of figure 11.1. For this diagram, J(7T')
isamap VW — W ®YV for modules V' and W depending on the colouring
and the local orientations of the two arcs. We denote J(T') by pv.w (or p) in this
case. We define this map py - as first multiplying with the universal R-matrix
R and then switching the factors of V" ® W. This map is A-linear.

For the second crossing in figure 11.1, the map J(T) : V@ W — WV is
denoted by pyyy (or p). It is defined by pyy = py'y-
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Figure 11.2: Decomposition of an oriented link diagram into simple pieces.

When the cap resp. cup arcs in figure 11.1 are coloured by a module V' then
the corresponding module homomorphisms are (from left to right)

F:V'QV =k Flgov)=gW),
F VeV =k FRuveg) =g(uw),
Fy:k—>VeV, F(1)=>) v,Q0",

Fi:k—=V'®V, Fi(1l)=> v"® (un)

where {v,,} is a basis for V', and {v™} is the corresponding dual basis for V*.

Finally, a straight vertical line determines the identity map, and the juxtapo-
sition of diagrams is handled by the tensor product of the involved modules.

Reshetikhin and Turaev show in [22] that this map J(7') is an isotopy-invariant
of ribbon tangles. Any coloured (0, 0)-ribbon tangle T' (i.e. framed link) deter-
mines an A-linear map J(T') : k — k which is the multiplication by an element
of k. This scalar is invariant under isotopy of ribbon tangles, and it is called the
A-invariant of the coloured framed link.

An example is shown in figure 11.2. The components of the Hopf link are
coloured by A-modules V' resp. W. The linear map from £ to k is given by

EBy vevr
By VeVieW oW
T VewreVieW

l=]

N Y RVEWrR W

Ly koW W =W'eoW
Ly WwreweWw oW
Ly hoWreW=WeW
Ik
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Remark The action of A on the trivial module k is given by a -t = e(a)t.
Furthermore, the tensor product of any number of copies of £ is again k. For any
tangle 7', the homomorphism J(7T') for the trivial module £ is the identity of k
because cuv™" =1 and (¢®e)(R) = (e®¢)(R™") = 1. (In fact (e®id)(R) = 1®1).
In particular, the A-invariant of any framed link coloured on all of its components
by the trivial module £ is equal to 1.

11.3 ¢-deformed universal enveloping algebras

Let A = (aij)ij=1,..n be a generalized Cartan matrix, i.e. a; = 2 and a;; < 0
for all ©+ # j, and a;; = 0 if and only if aj; = 0. Furthermore, A has to be
symmetrizable, i.e. there exists a diagonal (n x n)-matrix D with coprime integer
diagonal entries dy,...,d, such that DA is symmetric and positive definite. (It
turns out that D is unique.)

We define for an indeterminate ¢ and an integer j > 0

i, = % (> 1),
[O]q = 1,
! = [Uld — e[l (G 2=1),
[O]Q! = 1,
m m),! .
5, - g o220

We denote by C[[h]] the ring of formal power series in the variable h. The in-
vertible elements of C[[h]] are those power series that have a non-zero constant
term.

We remark that [k]. is well defined and invertible in C[[A]] for any complex
number ¢ and integer k. This is because e — e = 2hr + §h3 + -+ and

e —e " =2h+5h*+- - -, and after cancellation of the factor h, the denominator

el — e~ becomes invertible.

A generalized Cartan matrix determines a Lie algebra that we denote by g.
Our single application will be with the Lie algebra si(NNV) of traceless (N x N)-
matrices with complex entries. (The Lie bracket is given by the commutator
[A, B] = AB — BA which is traceless since tr(AB) = tr(BA).)

The set of diagonal matrices of s/(N) forms a Cartan subalgebra. The Cartan
matrix A for sl/(N) is of size (N —1) x (N — 1), with entries a;; = 2, a;; = —1 for
li—j| =1, and a;; =0 for [i — j| > 1, where ¢,j =1,..., N — 1. It is symmetric
and positive definite, and therefore D is the identity matrix.
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Definition Given a generalized (n x n)-Cartan matrix A, we define U,(g) as
the algebra over C[[h]] topologically generated by elements H;, X;" and X; for
it =1,...,n with the following relations:

pdihHi _ o—d;hH;

[HZ,H]] = 0, [HZ,X]i] = :*:a,Z]in, [XZTF,X;] = 51] odih _ o—dih and
1—a;; o

> (=1 l e ] (XPFXF(XH) ™ =0 fori#

k=0 edih

where [z,y] = 2y — yz, and §;; is the Kronecker-delta, i.e. §; =1 and 6;; = 0 if
¢ # j. The last equation is called the Quantum-Serre-relation. We remark that
(edihti _ g=dihMi) /(edih _ ¢=dih) jg defined over C[[h]] because the factor h in the
denominator cancels with a factor A in the numerator.

Lemma 11.3.1 We have

ethHiX]TF — ethai]' X;ethHi and

ethHinf — efthaij X;ethHi
in Un(g) for any complex number t and any integers 1 <i,j < n.

Proof We have [H;, X;7| = a;; X}, hence H;X;" = X7 (H; + a;;). Inductively we
deduce that

HEXF = XH(H; + a;;)"
for any integer k£ > 0. Hence,

1
thH; _ k
NG = S ()X

k>0

1
= X;r Z E(th)k(Hl + aij)k
£>0
_ + th(H;+a;;
= X]- et )

ethai]‘ X+ ethHi
j .

The result for X ;s proved similarly. &

There are two ways to turn Uy(g) into a topological Hopf algebra over C[[A]].
One way is to define the comultiplication A, as
Ay(H;) = H;®1+1® H,,
A(XH) = XfeetMi 1@ X,
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and the antipode S}, defined by
Sp(H) = —H;, Sp(X[) = —XFe @Mt G, (X7) = —eMfix = (11.3.1)
and the counit ¢; defined by
en(Hy) = ep(XE) = 0.
The other way is to define the comultiplication A} as

ALH) = H;®1+1® H,
dihH; dihH;

AYXT) = XF@e s ez ®X]

and the antipode S} by
S}IL(Hz) = —HZ-, S;L(X:r) = _€dihXZ-+, Sllz(Xzi) — _edihX_—

and the counit &} by
en(Hi) = e, (X7) = 0.

The first definition corresponds to definition 6.5.1 of [4], the second corre-
sponds to definition XVII.2.3 of [12]. In fact, this is not exactly the definition of
Kassel, because he uses a variable h which corresponds to 2A in our setting. This
means, one has to replace the h in our definition by h/2 in order to get Kassel’s
definition.

The Hopf algebras are in fact isomorphic. To prove this, we first look at the
level of the algebra.

dihH; dihH;

Lemma 11.3.2 The map f given by X;* — X e7= | X; = e 2 X,
H; — H; extends to an algebra isomorphism of Up(g).

and

Proof We have to check that the relations are preserved. We have
+ g L
[ (Hy), f[(X))] = [H, Xje =]

d]- hH
2

; d;hH;
J R
= HlX;—B — X;—B 2 Hz

n dth]-

d;hH;

2 _J

= ain;“e 2

flai; X5)

where we used that [H;, H;] = 0. The case for X is checked similarly.
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d;hH; dz-hHZ- d hH;

We have
d;hH; d;hH;

[F(X), f(X7)] = Xie
i iy dihaij dih

:X;“Xj’e2e’2e’2ef

_ d;hH; _dth d]haﬂ
-X; Xfe 2 e7 7z e edih

d;hH; tithj dih‘aij dih

= [X;',Xj_]e 5 e T3 e ®

where we used lemma 11.3.1 and the fact that d;a;; = d;a;; since DA is a sym-
metric matrix and that a;; = 2.
If i # j then [X;", X;] = 0 in Uy(g), hence the above equation implies that

[F(X50), F(X5)] = FIXT, XS D).
If 1 = j then a;; = 2 and trivially d; = d;, hence
[FGD), ] = X7, X7

Since [X;7, X; ] = (editli — e=dihHi) /(edih _ ¢=dih) jg 5 relation for Uy(g), and
f(H;) = H;, it follows from the above equation that

£, £(0)] = FIXF X D).
We have therefore

[FG0), ] = FIG5 XT])

forany¢,7=1,...,n.
Finally, the map f respects the Quantum-Serre-relation because

PO

turns out to be a multiple of (X;")¥X;"(X;")!*=* and the factor depends only
on i and j (and not on k). In fact, let ¢ and r by any non-negative integers. Then

F (X)X (X))

_ (X;re 12Hi>t (X;Fed hH; ) <X+ th)

d;hH;(t+r) djhH; dihagit  dj ha]l

e o e e I

2

d;h
where we shifted (using lemma 11.3.1) ¢-times a factor e o past X;, r-times a
d;hH;

factor e= 2~ past X;", and (1 +2+---+ (t +7 — 1))-times a factor e L past

1
+ .
X;". Since d;a;; = djaj;, we get

d;hH; (t+r) d; hH] d; h(t+r)(t+7‘ 1) dihagj(t+r)

f (X)) = (X)X (X )e SN g, ey
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Hence,
£ ((GEXG (XG)=7F) = (X)EXT (X B,

where
(1—a;;)(A—a;;—1) diha;;(1—a;;)
3 e P

dihH;(1—az;) djhH;
5”-:6 3 e 2 edlh

which is independent of k. We denote

1—a;; o
Ty= Y (-1)* l ! ka” ] (Xii)kai(Xii)lfaijfk‘

k=0 edih

We have f(T;;) = T;;5;; for any ¢ and j. Hence, f(7;;) = 0 for any ¢ # j since
T;; = 0 for any ¢ # j. Hence, f respects the Quantum-Serre-relation. The case

for X;” and X is proved similarly.
. .. . . dihH; , . . . _dihH;
The map f is bijective since e~ 2 is invertible with inverse e” 72 . [

Lemma 11.3.3 The algebra isomorphism f : U,(g) — Ui(g) is an isomorphism
of Hopf algebras (Ux(g), An, en, Sp) and (Un(g), A}, €, Sh)-

Proof First, we show that f respects the antipode. We have

fSu(X) = f(=Xfe M)
= —X;redi’;Hie_dihHi

and

SHECD) = 8 (et

dihH;

= —elihemdih X o™

= —X:ei 2

where we used that the antipode is an anti-homomorphism and we used lemma
11.3.1. Hence, fS,(X;") = S, (f(X;")). Similarly, fSy(X; ) = S},(f(X;)) Finally,

fSu(H;) = f(—=H;) = —H; = S, (H;) = S;,(f(H;))

which completes the proof that f respects the antipode, i.e. fS, = 5] f.
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In order to show that f respects the comultiplication, we make the observation
that A} (i) = et @ ethHi for any complex number ¢ and any 1 <4 < n. This
follows immediately from A} (H;) = H; ® 1 +1® H; by mimicking the proof that
e*tY = e%e¥ for any complex numbers z and y. We therefore get

(f@ HAXS) = (foNX e +10 X))
= f(XD) e f(e) + f(1) e f(X])

d;hH; dihH;

= Xi+e 2 ®edihHi+1®Xi+e 2

and hence
M) = A (xFeE)
= A hay (%)
d;hH; d;hH; d;hH; d;hH;
= (X;r®e > +e 2 ®XZ~+><6 2 Qe 2 )

dihH;

dihH; B
= Xje 2 et 1@ X e 2

Hence, (f @ f)AR(X;") = AL (f(X[)), and the case for X; is proved similarly.
Finally, we have

(fOHAMH)=(fR ) H®1+10H)=Ho1+10 H, = A, (f(H,))

hence (f ® f)A, = A} f.
Finally, it is trivial to see that f respects the counit. [ )

11.3.1 The ribbon element

It is interesting to note that the algebra homomorphisms (S;,)% and (S)? are
equal (it is sufficient to verify this for the generators H;, X;*). One can show
that the square of the antipode is always equal to the conjugation by the element
u = Y;S(t;)s; (where the universal R-matrix R = Y, s; ® t;) which appears in
the definition of a ribbon Hopf algebra (see e.g. Proposition VIIL.4.1 in [12]).
But we can find another element p of U, (g) such that SZ(a) = pap™" for any
a € Uy(g) by following the approach indicated in section XVII.2 of [12]. We try
to find a p of the form

= eh(M1H1+~~~+Man)

for integers py, ..., p,. We then have (S})%(H;) = H; = pH;p .

We have by lemma 11.3.1

eh(#lHl+---+lthn)Xfre*h(#1H1+---+lthn) — eh(#1a1j+"'+#nan]‘)X‘_|‘
J J
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We have (S})*(X;") = e*%" X} by definition. Hence, the only condition on 4 is
that

pnany + e fnang = 2d (11.3.2)

for j =1,...,n. If equation (11.3.2) is satisfied then

/I’Xj_/'l/_l — eh(ﬂlHl+"'+Man)Xj_€_h(IJlH1+"'+Man)
e~ hpiarj+etpnan;) x—
j
= (Sh)*(X;)),
and hence S?(a) = pap~" for any a in Uy(g).
We solve equation (11.3.2) now. This equation is equivalent to
1 2d,
At N e N
P, 2d,,

Hence,

We are thus led to compute the inverse of the Cartan matrix for s/(N). We
denote n = N — 1. The (n x n)-Cartan matrix A for s/(/V) is given by

2 —1 0 0 0
-1 2 -1 0 :
0 —1 2
A=1 0 o0 0 0
2 -1 0
: 0 -1 2 -1
O -+ «+~ 0 0 =1 2

This matrix is symmetric and positive definite which implies that the diagonal
entries di,...,d, of D are all equal to 1. The determinant of A is equal to n + 1
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which is proved by induction on the size of the matrix, n. (Develop A by the first
column, and develop one of the appearing summands by the first row).
We define the (n x n)-matrix B = (By;); j=1,..n,

B;j = min(i, j)(n + 1 — max(¢, 7)).
Lemma 11.3.4 %HB s the tnverse matrix of A.

Proof We have

(AB)i; = > AuBy
k=1
= > AyBy
k=i—1iyit1
= —Bi_1;+2B;; — Biy1 .

For i +1 < j we have that B;_y ; = (i —1)(n+1—j), B;; = i(n+1—j), and
Bit1j = (i+1)(n+1—j). Hence, (AB);; = 0. This means that all entries
of AB above the main diagonal are equal to zero. Since AB is symmetric, all
off-diagonal entries are equal to zero.

For i = j we have that B;_, j = (i —1)(n+1—1), B;; = i(n+1 — i), and
Bii1 j=1i(n+1— (i +1)). Hence, the diagonal entries of AB are

(AB)iy = —(i—-1)(n+1—-d)+2in+1—14)—i(n+1—(i+1))
= n+1
Hence, AB is equal to (n + 1)-times the identity matrix. &
We have

> Bji = Zn:min(i,j)(n + 1 —max(i, 7))

j=1 j=1

= Z] (n+1—1)+ Z iln+1—j)
]H—l

= (n+1—i)2j+i¥k

— (n+1—1) (l‘;l)ﬂ(n—i)(z—wl)

= Liln 41— i)n+ 1),
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Hence, we can compute the value of p; from equation 11.3.3 in the case of
Un(sl(N)).

n

= > Bji

J=1

pi = 2 (A7)
7=1
2

2 :
= mz(n+1—z)(n+1)

= i(n+1—1).
We have thus proved

Lemma 11.3.5 The square of the antipode Sy, in Uy (sl(N)) from equation 11.5.1
is the conjugation by u = e’ where

n n

p= wH; =Y i(N —i)H;.

i=1 i=1

Kassel proves in chapter XVIL3 that y = " is a ribbon element.

There is another way to get the ribbon element u following Chari and Pressley
(chapter 8.3.F of [4]). We express the sum of the positive roots as a linear
combination of simple positive roots, Z,]ﬁvz’ll trag. Then we get a ribbon element
oh S ey, .

For si(N) we have the positive roots ¢; —¢; for all 1 <7 < j < N. The simple

positive roots are a; = ¢&; —e; 41 fori =1,..., N — 1. We have
Y smg= ¥ ekt
1<i<j<N 1<i<j<N

The term «y appears as a summand in the sum on the right side of the above
equation for some i, j if and only if : < k < 57 — 1. There are k possibilities for 7,
namely 1 < i < k, and N — k possibilities for j, namely k£ +1 < j < N. Hence,
oy appears k(N — k) times. We thus get

N-1
Z si—sj:Zk(N—k)ak
1<i<j<N k=1

which gives the same ribbon element as by Kassel’s approach.
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11.3.2 The fundamental module of U,(sl(N))

The fundamental module V; of U, (sl(N)) has a basis vy,...,vy on which the
elements H; and in act naturally as matrices. The matrix E;; denotes the
(N x N)-matrix whose entries are zero except the entry 1 at the place (i, 7).
The matrix corresponding to X;" is E;;11, to X; corresponds E;,; and to H;
corresponds F; — Eji ;4 fore=1,..., N —1.

Lemma 11.3.6 The action of u = e’ on the fundamental module V3 is given by

€ph (v]-) — 6h(N+1—2j)vj

forallj=1,...,n.

Proof The action of H; on the fundamental module is given by H;(v;) = v,
Hi(vi—l—l) = —Uj+1, and Hi(vj) =0 fOI'j §£ 7 and ] §£ 1+ 1.
We have

N-1
ehp — HehMiHi
=1
N-1 k
- (Z“—ih’“Hf)-
i=1 \k>0 k!

For the action of e”” on a basis element v; we only have to look at powers of H;
and H;_;. We get

() = (Z %h’“Hf) (Z “f;fhrH;-"l) (vy)

k>0 r>0
k r
5 Hi1,, r
(z k—;hk) (z Kotpr(-1) ) ()
k>0 r>0
= e“jhe_“]_lhvj

eh(kj *M—l)vj

where we have to interpret g and puy as being equal to zero which just extends
our result that y; = i(N — i) fori =1,..., N — 1. The above equation implies
that any v; is an eigenvector of "’ with eigenvalue

v = ehlmj —pj—1)
hG(N=7)=(-1)(N=(-1)))

—  h(N+1-2j)
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The construction of a universal R-matrix is described in chapter 8.3.G of [4].
Chari and Pressley describe the action of this universal R-matrix on V; ® V[, as

R=zx]|s Z E,,.QFE,, + Z Eaa®Ebb+(S—871) Z Eup ® By

1<a<N 1<a#b<N 1<a<b<N

In this formula, s = e*, xz = e’%, and E,,(v;) = 0piv,, 1.e. Eg corresponds to the

(N x N)-matrix which is everywhere zero except the single entry 1 in the a-th
row and b-th column. We remark that we changed the notation ¢ = e” given
there to s = . The above formula was given by Drinfeld in [5].

Remark Let V be an A-module for a ribbon Hopf algebra A. The multiplication
with a universal R-matrix followed by switching the factors is an automorphism
of V® V which satisfies the Yang-Baxter equation. Any scalar multiple of a
solution of the Yang-Baxter equation is again a solution, but a non-trivial scalar
multiple of a universal R-matrix is no longer a universal R-matrix because R has
to satisfy (A ® id4)(R) = Ri3(1 ® R). This explains why Turaev could neglect
the factor e~ in section 4.2 of [24] because he only needed a solution of the
Yang-Baxter equation.

We define the k-linear endomorphism R of V,® V[, as the composition of R
and the flip P of the components. This coincides with the map py, from section

11.2 for V = W = V},. We remark that R is in fact U, (sI(N))-linear. We have

Po(Ew® Ek)(vi ®vj) = P(0pve ® 01vk)
= 01Uk ® OpiVq
OpiVk ® 0150
(Ekb ® Ear) (v ® v;).

We thus have
Po(E.® Ey) = Ey ® Ey

for any 1 < a,b, k, I < N. We thus get from the above equation for R that

R = x{siEaa@)Eaaqt Y EBu®Ep+(s—s Y E,,,,®Eaa}.

a=1 1<a#b<N 1<a<b<N
(11.3.3)
The action of z7'R on the basis elements is therefore given by
} s(v; @ v;) i=j
2 'R(v; @) =< v @ i< j (11.3.4)

Uj®Ui+(S—S_1)Ui®Uj 1> .
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Applying z R twice gets

SQ(UZ' ® Ui) 1= j
TR (v ®v;) = v; @v;j + (s — s v ® v i<j
V; QUi+ (s—s v Qui+(s—s Hy®u;) i>]

s (v; @ v;) i=7

= v; @v;j + (s — s v ® v i <]

1+ (=sH);Qv;+ (s—s v, @v; i>7].
We immediately verify by the above equations that
e R0 @ ;) = (s — s D R(v; @ v;) + v ® v;
in every case 1 = 7, ¢ < j, or ¢ > j. Hence,
t 2R =(s—s Y2 'R+id.
Equivalently,
T 'R—aR ' = (s— s Y)id. (11.3.5)

The identity map of V5 ® V[ can be written as id = Y1<ap<N Faa ® Epp. This
leads to an explicit formula for R,

N
Ril=x1t|s! > Ew®FEw+ >, Eu®Ey+ (st —s) > Ew®E,
a=1 1<a#b<N 1<b<a<N

which is well known.
We now compute the curl-factor for the fundamental module V.

Lemma 11.3.7 The Uy(sl(N))-linear endomorphism of the fundamental module

(N=%)h

VG given by the curl in figure 11.3 is the multiplication with the scalar e

Proof The endomorphism ¢ of V5 determined by the (1, 1)-tangle in figure 11.3
is the composition of three maps,

d) = (idVD X FQ) 9] (R X ldVD*) ¢] (idVD X F3)

The maps F, and Fj3 are given in section 11.1, and the map Ris given in equation
11.3.4. We consider an element v; of the canonical basis of V[ for some 1 <i < V.
The effect of the cup-map idyy, ® F5 on v; ® 1 is

N N
vi®1l—>vi®20k®vk:Zvi@)vk@vk.
k=1 k=1
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Vo
Figure 11.3: A positive curl.

R® idy: maps this element to
. N i—1
siRYRV)+ Y UV + > (vk®vi®vk+(s—s’l)vi®vk®vk)
k=1

k=i+1 =

apart from the scalar z. The cap-map idy;, ® F» applied to this element then gives

N i1
s(v; @V (pv)) + D v @ v () + > (vk @ v (pv;) + (s — s D ® vk(/wk))
k=i+1 k=1

apart from the scalar x. We have by lemma 11.3.6 that v; is an eigenvector of the
multiplication by p with eigenvalue v; = sV*1=2¢ hence v*(uv;) = 0 for k # 1.
The above expression for ¢(v;) is therefore equal to

o(v;)) = x|s(v; @0 () + ;i(s —s Yy ® vk(/wk)]

r i—1
= x|sy+ Y (s— 8_1)%] vi
L k=1

r -1
= SN+272i + (S o 871) ZZ SN+12kl
L k=1

= zsMy;

2=
~—
=

for any 1 < i < N. Hence, ¢ is the multiplication by the scalar zs" = e(N-
)
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Lemma 11.3.8 The U, (sl(N))-invariant of the zero-framed unknot coloured by
the fundamental module is equal to [N]gn.

Proof One can position the unknot with framing zero so that its diagram is
a simple circle with anti-clockwise orientation. This diagram determines the
composition of the cup- and cap-maps F; and F, which map

N

N N
1 Zvi R v Zvi(/wi) = Z%.
i=1 i=1

=1

The invariant of the unknot with framing zero coloured by the fundamental mod-
ule is therefore equal to

N N
_ N+1-2i
> E
=1 ' =1
sV =N
o s— st
= [N]s
where s = e, &

11.4 Uy(sl(N)) and the Homfly polynomial

We recall that Hy is the Hecke algebra of (k, k)-ribbon tangles with top-down
orientations at its boundary points. The set of scalars is the ring Zl[s, v, z, d]

modulo the relation §(s — s7!) = v™! —v.

Definition The wvariant Hecke-algebra lfl,ﬁv is defined in the same way as Hj
with the only difference that the ring of scalars is C[[h]] and that in the defining

relations we replace s by e, x by e’%, and v by e "V,

This definition immediately provides a ring homomorphism v : H, — H N which

is the substitution of s by e”, = by e_%, and v by e "V,

Lemma 11.4.1 Let T be any (k, k)-ribbon tangle with top-down orientations at
its boundary points. We colour all its components by the fundamental module V.
Then the map ¢y, given by T — J(T) induces an algebra homomorphism

¢k : f{é\f — EndUh(sl(N))(‘/D@)k)'
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Figure 11.4: The A-invariant of T’ can be computed as the trace of pJ(T).

Proof Let T be a diagram of a (k, k)-ribbon tangle. Since the assigned module
endomorphism J(7T) is an invariant of ribbon tangles, it is in particular invariant
under regular isotopy of 7'.

The skein relation in figure 2.1 is satisfied because R satisfies the quadratic
relation in equation (11.3.5). Furthermore, the skein relation for the curl in figure
2.2 is mapped to zero by ¢, because of the result for the positive curl in lemma
11.3.7. Finally, we have to check that T" together with a split unknot with framing
zero induces the endomorphism [N],n¢x(T"). This is true by lemma 11.3.8. &

By looking at the case £ = 0 we immediately deduce from lemma 11.4.1

Corollary 11.4.2 Let L be a framed link. We colour all of its components by
the fundamental module Vi,. The Uy (sl(N))-invariant of L is equal to the Homfly

polynomial of L after the substitutions of s by e®, x by e —hN,

%, and v by e

Lemma 11.4.3 Let A be a ribbon Hopf algebra over a commutative ring k. Let
T be an (r,r)-ribbon tangle with top-down orientations at its boundary points.
We consider a colouring of the closure of T and denote the modules assigned to
the components ofT by Vi,...,V, as we read them at the boundary points of T
from left to right (see figure 11.4). T induces a module endomorphism J(T) of
Vi®---®V,. Then the A-invariant of the closure of T with this colouring is
equal to the trace of the linear endomorphism pJ(T) of V1 @ --- @ V.
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Proof We choose a basis {v;,,} for every module V,,, 1 < m < r, where i, is
running through some finite index set depending on m. The r cup-maps at the
bottom of figure 11.4 map the trivial module k£ to the module V; ® --- ® V, ®
(V)" ®---® (V1)", and they map

1— Z Ui1®"'®vir®vir®"'®’l)i1_

The map J(T') on the first r factors is a k-linear map in particular. Hence,
J(T)(vll ® e ® Uzr Z ggll Z]:UJI ' ® Ujr
J1yeeerdr

]1 ]7‘

for scalars g/ 7" € k. Hence, the composition of the cup-maps and J(T') maps

L= Z Z gzjll z]:vjl '®Ujr®vir®"'®vil.
U1 yeenslp Jlyeensdr
Finally, the r cap-maps map this to the scalar

S ST gt () -0 ()

Ul yeeeslp JlyeensJr

which is by definition the A-invariant of the framed link T for the specific colour-
ing with Vi,...,V,.

On the other hand, since Ay (p) = 1 ® p, the map pJ(T) can be written as
the composition u®*.J(T) and thus

pJ(T)(vi, @ @v,) = Y. gl (pv) @ @ (wj,).

Jlyeensdr

Hence the normal trace of this linear map is equal to

tr = > 3 gt () ot ()

7/17 7ZT ]17 7]7‘
which agrees with the above A-invariant of T. &

Lemma 11.4.3 motivates a definition. Given an A-module V' and an A-module
endomorphism V' — V, we define the quantum trace tr,(f) as the trace of the
k-linear endomorphism pf : V — V,

try(f) = tr(pnf),

where y is the ribbon element.
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Lemma 11.4.4 Let V be a finite-dimensional Uy (sl(N))-module. Let f and g be
Cl[h]]-linear endomorphisms of V' and « be a scalar in C[[h]]. Then

trg(f + g) = try(f) + trg(g), try(af) = atry(f)

Proof The proof is the same as for the normal trace. )

We recall that v is the specialization H — ﬁ,ﬁv, and phiy is the natural map
HY — Endy, s(ny) (V2*) as described in lemma 11.4.1.

Let A be a Young diagram and denote the number of its cells by k. The element
¢r(v(ey)) is a quasi-idempotent of Endy, (si(vy) (V°F). This is because exey = ayey
in Hj for some scalar a). Furthermore, the specialization v : H, — Fl,év is
a ring homomorphism and ¢; is an algebra homomorphism. Hence, we have
Pk (v(ex))dr(v(er)) = v(on)dr(v(en)).

The interesting question is whether v(«,) is invertible in C[[A]], i.e. whether
the constant term of v(c,) is non-zero.

Lemma 11.4.5 v(ay) is invertible in C[[h]].

Proof The constant term of v(c,) is equal to the limit h — 1 (i.e. x — 1) of the
rational function which derives from « by substituting § = (v —v)/(s — s7!)
and then s = 2~ and v = 2.

The limit for x — 1 of the Homfly polynomial of é, after the substitutions
6= (" —v)/(s—s") and then s = 27V and v = 2" is well defined. This is
because the only possible problem is the denominator of §. But a careful look
reveals that this problem does not occur because lim,_,; 0 is well defined since
vl — o . x—N2 - xN2 _N2x—N2—1 - N2xN2—1

lim é = lim =lim——— = lim =N
z—1 z—1 § — gL z—1 p—N _ N z—1 —Ngp—N-1 _ NpN-1

by I’'Hopital’s rule. On the other hand, the limit for x — 1 of the Homfly
polynomial of g, after the substitutions § = (v™'—v)/(s—s7") and then s = =V
and v = 2" is well defined by lemma 3.6.1 (we have g, = @, by definition). Since
yr = (1/ay)ey, we have that the limit for x — 1 of «, after the substitutions
§=(v1—v)/(s—s1) and then s =z~ and v = 2V’ cannot be zero. &

It will not lead to confusion if we denote v(yy) € HY by yx, too. We have
that ¢y /() is an idempotent of the U, (sl()V))-endomorphism ring of o,

Lemma 11.4.6 The endomorphism ¢z (y») of VD®‘)‘| 1S a projection to a submod-
ule for any Young diagram \.
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Proof The essential observation is that ¢y (yx) is an idempotent. Let g be an
endomorphism of a module W over any commutative ring such that g satisfies
g> = g. We can write any element w of W as w = (w — g(w)) + g(w). Since
g*(w) = g(w) we have that w — g(w) lies in the kernel ker(g) of g. Clearly, g(w)
lies in the image im(g) of g. Hence, any element w € W lies in ker(g) & im(g).
Since the only element of W that lies in the kernel and in the image of g is the
element 0, we have that W = ker(g) @ im(g). Hence, g is a projection of W to

the submodule im(g). &
We define W), to be the image of ¢|5(y)) in VER,

Lemma 11.4.7 Let A be any Young diagram, and let C be any framed knot.
The Uy (sl(N))-invariant of C' coloured by the module W), is equal to the Homfly

polynomial of C' decorated by Qy after the substitutions of s = e, z = e’%, and
—Nh
v=e",

Proof Let the framed knot C be represented as an oriented knot with blackboard
framing. C' can be positioned by regular isotopy as the closure of a braid g’
such that all of its strings are oriented downwards. We denote the number of
strings by d’. We now have to ensure that the blackboard framing of 3’ agrees
with the framing of C. To do this, we multiply 5’ by ogogi1---044+; or by
oploph -a[ﬁrj. For a unique j, the blackboard framing of the closure of this
(d'+ j + 1)-braid is a diagram of the framed knot C'. We denote this braid by 3,
and denote the number of strings by d.

We denote by & the number of cells of \. We denote by %) the k-fold
blackboard parallel of 3. The decoration of C by @, is then the closure of the
element yY¢3*) of Hyy, where k is the number of cells of A\. This is because
yx = (ya)? in Hy, and each factor y, can be slid along the closure of 3 to the
top of the braid . This is depicted in figure 11.5. To be precise in the following
arguments, the y,’s have to be at slightly different levels.

By lemmas 11.4.1 and 11.4.3 and the linearity of the quantum-trace we have
that the Homfly-polynomial of C' decorated by @), after the substitutions for s, =
and v is equal to the quantum trace of the endomorphism ¢q(y¢3®)) of (V,&k)24,

On the other hand, the Uy(sl(N))-invariant of C coloured by W, is the
quantum-trace of the endomorphism J(3) of W by lemma 11.4.3. We thus
have to prove that

try(J(8)) = try(raly*B™)),
or, equivalently,

tr(p - J(B8)) = tr(p - dra(y$h)J(BP)) (11.4.6)

where the trace on the left hand side refers to W%, and the trace on the right
hand side refers to (V/2%)®d,
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A

Figure 11.5: The element y$?3*) of Hyq in the case 3 = 0,05 ‘o105 " correspond-
ing to the figure-eight knot W1th zero-framing, with |A\| =k = 3 and d = 3.

W®d ( (‘/D®k)®d

L®d
Wit (e

Figure 11.6: A commutative diagram.
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Wy W, Yok Yok Vo Vo Vo Vg

W\

Wy W,y Yok ek Vo Vo VL Vg

Figure 11.7: Homomorphisms arising at a crossing o; in the braid # and the
corresponding multiple crossings a%k) in the braid A% shown in the case k = 2.

X (Vew) XV w

AN

\ \

Vew) X VW X

Figure 11.8: The braids o7 and 0,05 give the same map VWX — XQVQW.

We claim that we have commutative diagram as shown in figure 11.6 where ¢
is the inclusion of Wy to V®. Tt is then clear that equation (11.4.6) is true.

We recall that the maps J(3), J(B%®), ¢x(y\) and ¢ are module homomor-
phisms, whereas the multiplication by p is only a C[[h]]-linear map. The top
square in figure 11.6 commutes because ¢ is the inclusion. The middle square
commutes because @ (yy) the restriction of ¢ (yy) to W)y is the identity of W).

It remains to prove the commutativity of the bottom square.

We consider a crossing of the braid 5. Figure 11.7 depicts two commuting
diagrams that relate three braids and the module homomorphism which they
induce. The map J(oy) (or J(o;) for some 1 < j < d — 1, depending on the
position of the crossing in ) is the multiplication by R followed by the flip of the
factors of Wy ® W) resp. V.%F @ V/®F,

The maps in the left diagram commute because ¢ is the inclusion.

The maps in the right diagram commute because of the general behaviour
depicted in figure 11.8. There, both braids induce the same map from VW @ X
to VW ®X up to the obvious isomorphism between (V@W)®X and VW ®X.
A short proof of this observation is given e.g. in the proof of Lemma 3.10 in [15].
Repeated application of this result shows that the maps in the right diagram of
figure 11.7 commute. A corresponding results holds for a negative crossing of 3.

Hence, we have commuting diagrams as we move from the bottom to the top
of B, and they form the commuting diagram at the bottom of figure 11.6. )
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Lemma 11.4.8 Let L = Ly U ---U L, be a framed link whose components are
coloured with modules Wy, ..., Wxr. Then the Uy (sl(N))-invariant of this link is
equal to the Homfly polynomial of the framed link L with decorations Qxi, ..., Qxr
on its components Lq, ..., L, after the substitutions r = e’%, v =e N and

s=eh.

Proof We are able to represent L as the closure of a braid  with top-down
orientations. To get the framing right, we introduce an additional straight string
between points ¢ and 7+ 1 that lies above any strings of 5. We add at the bottom
a (positive or negative) crossing between this string and the string i + 1. By
doing this successively at suitable places, we adjust the blackboard framing to
become the framing of L. We then proceed in exactly the same way as in the
proof of lemma 11.4.7. The only difference is that the notation gets awkward
because the modules that we read at the top and bottom of the braid £ are some
permutation of Wii,..., Wy, with multiplicities that depend on the choice of f.

Furthermore, the number of cells of the Young diagrams \!, ..., \” may vary, and
this makes the notation worse. But apart from the notation, the proof of lemma
11.4.7 extends in a straightforward way to the case of links. [

11.4.1 Wy~ T,

Let A be an algebra over a commutative ring &k such that the dimension (over k)
of any A-module is well defined. An A-module V' is called simple if it has no other
submodules than {0} and V. It is called semi-simple if it is isomorphic to a direct
sum of simple A-modules. We note that all finite-dimensional U}, (sl(/V))-modules
are semi-simple.

We fix the rank N > 2 of the quantum group U, (sl(N)). For a Young diagram
A with at most N rows we shall denote by V) the simple module indexed by A.
Modules V) and V), are isomorphic if and only if A and p differ by initial columns
of length N. For a Young diagram with more then N rows we set V) equal to
the zero-module. The map A — V) induces a ring isomorphism from Yy to the
representation ring of Uy (sl(N)) (see e.g. chapter XVII of [12] or chapter 7 of
[13]). This is due to the similarity of the representation theory of U, (sl(IN)) and
sl(N). The latter is described in [7].

Recall that the quantum trace tr,(f) of a module endomorphism f:V — V
is the trace of the C[[h]]-linear map p - f : V — V. The quantum dimension
dim, (V') of the module V' is defined as tr,(idy),

dim, (V) = tr,(idy).

The fact that isomorphic modules have the same quantum dimension will be of
importance. The zero-module has quantum trace equal to zero. We are not yet
in the position to state that it is the only module of quantum dimension zero.

174



Lemma 11.4.9 Let V and W be finite-dimensional modules over a ring R, and
let f and g be module endomorphisms of V' resp. W. Furthermore, we require
that f?> = f and ¢°> = g. Then

im(f) ®im(g) = im(f ® g).

Proof The module homomorphism ¢ : im(f) @ im(g) — im(f®g) C VW
given by f(z)®g(y) = (f®g)(z®y) = f(x)®g(y) is well defined and surjective.

We have V' = im(f)®T and W = im(g)®U where T' = ker(f) and U = ker(g)
because f?2 = f and g?> = g. We thus have

VoW = (im(f)eT)® (im(g)®U)
(im(f) ®@im(g)) ® (im(f) @ U) & (T @ im(g)) ® (T ® U).

Since ¢ is the restriction of this isomorphism to im(f) ® im(g) we have that ¢ is
injective, too. Hence, ¢ is a bijective module homomorphism. [

Lemma 11.4.10 Let V and W be a finite-dimensional Up(sl(N))-modules. Let
[ and g be C[[h]]-linear endomorphism of V' resp. W. Then

trq(f ®g) = trq(f)trq(g).

Proof The same proof as for the normal trace applies. The only point to be
careful about is that p operates on V@ W as (1 ® ) because Ay (1) = (1 @ p).
)

Lemma 11.4.11 Let A = (\y,...,\;) be a Young diagram with r rows and de-

note its transposed diagram by XY = (XY,...,\.), m = A\i. Any submodule of

Vi, ®- - ®Va, which is isomorphic to a submodule of Vo, @---Q V., s either
1 m

the zero-module or it is isomorphic to V).

Proof We first look at the level of Young diagrams. We consider the lexicographic
order on the set of Young diagrams, i.e. for Young diagrams p and n we define
pw>nif p;,=mn; fore=1,2,... k, and pgyr; > ngy1 for some k. We define p > n
if either u =n or pu > n.

By the multiplication rule for Young diagrams it is easy to confirm that any
summand 71 of dy,d,, - - - d,, satisfies n > XA = (\q,..., ;). Similarly, any sum-
mand g of cyveny - eny satisfies p¥ > AY. It is easy to check that the only
Young diagram g with |A| cells that satisfies 4 > X and p¥ > AY is A. Hence, the
only Young diagram that could appear in both of these products is A. It appears

indeed with multiplicity one.
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Going from Young diagrams to Uy (sl(N))-modules we have to be sure that
there are no summands 7 of dy,d,, - -dy, and p of CAVEAY ** " Cay, that differ by
initial columns of length N. This is clear because every summand has the same
number of cells |A|. Hence, if [(A\) < N then V) is the only irreducible module
that is isomorphic to a submodule of both th @ --@Vy, and V,, ®--® Vckrvn'
If I(\) > N +1 then V) is the zero-module and there is no irreducible submodule
that occurs as a summand in both of the tensor products. &

Lemma 11.4.12 Let g be a module endomorphism of a Up(sl(N))-module V
such that g*> = g. Let W be a submodule of V. Then g(W) is isomorphic to a
submodule of W.

Proof g*> = g implies that W = im(g|w) ® ker(glw)- L
We recall that Wy = im(¢)5(yx)) C Vg®‘/\|-

Lemma 11.4.13 For any Young diagram A\ we have

SN—l—cn(c) _ S—N—cn(c)

dimq(im(¢\,\|(yx))) = H ghl(e) — g—hi(e)

CEX

where s = €. This quantum dimension is equal to zero if and only if [(\) > N+1.

Proof We denote the unknot with framing zero by O. It is the closure of the
trivial 1-braid. By lemma 11.4.3 we thus know that the Uy (sl(/V))-invariant of O
coloured by W), is equal to tr,(idw, ) = dim, (7). By lemma 11.4.7 we know that
the Uy (sl(N))-invariant of O coloured by W) is equal to the Homfly polynomial
of O decorated with @y after the substitutions s = e, x = e ¥ and v = e~ M.
Hence,

dimg (Wy) = (Qx)

with substitutions s = ", 2 = e~% and v = eV, The formula for (Q,) from
lemma 3.6.1 with these substitutions thus gives the claimed formula for dim, (17y).

This term becomes zero if and only if there exists a cell in A with content 0.
This happens if and only if [(A\) > N + 1. [

We denote the row diagram with two cells by m, and we denote the column
diagram with two cells by B. We recall that y € HY is the idempotent derived
from ay, and yg € Hy' is the idempotent derived from bs.

Lemma 11.4.14 FEither
im(éo(ym)) ~ Vo and im(qﬁg(ya)) ~ g,

or

im(pz(ym)) =~ Vg and im(ga(yn)) = Vo
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Proof By lemma 11.4.13 we deduce

N _ N N-1 _ ~N+1
dimy (im(d2(yp))) = trq(¢2(ya))2832_z_2 > 3_38—1 (11.4.7)
and
N _ =N N+1 _ _—N-1
dimy(im(6>(y))) = tr(@a(um)) =~ g (1148)

Since N > 2, both of these values are different from zero. Hence neither ¢ (yp)
nor ¢s(ym) is the zero map. We have in the Hecke algebra H, the equation
yayen = 0, hence ¢y (yg)d2(ym) is the zero map. Hence neither ¢o(yg) nor ¢z (ymw)
is the identity map of V%2,

From equations (11.4.7) and (11.4.8) we also deduce that ¢,(yg) and ¢2(yw)
have different quantum traces, hence im(¢2(yp)) and im(d2(yw)) are not isomor-
phic.

We have proved so far that the submodules im(¢p2(ys)) and im(¢a(yr)) are
non-trivial submodules of V.¥?, and they are non-isomorphic. Since V*? decom-
poses by the Littlewood-Richardson rule as V%2 ~ Vi @ Vi we have that either
im(d2(ym)) ~ Vim and im(d2(yy)) ~ Vi, or we have that im(¢s(y—)) ~ Vj and
im(62(y)) ~ Vi *

It would be natural to compute the quantum dimensions of V5 and V- to
settle the ambiguity in lemma 11.4.15. This would involve the computation of
the action of the ribbon element p on Vj or V. But these computations can be
avoided because lemma 11.4.16 shows that im(¢p2(yg)) ~ Vg by using the same
approach as in the proof of lemma 11.4.15.

Lemma 11.4.15 If im(¢2(ym)) ~ Vin then im(dn(yr)) = Vi for any Young
diagram \.

Proof By induction on ||, the number of cells of .

If A\ is the empty Young diagram then yp is the empty diagram in Hy, hence
¢o(yo) = id : C[[h]] — C[[R]], hence im(¢o(ys)) = C[[A]] = V5.

There is only one Young diagram with a single cell, and g, is the single string
in H;. Hence ¢;(y-) is the identity map of V and thus im(¢; (yn)) = V4.

The hypothesis of the lemma is that im(¢2(ye)) = Vin. Then im(d2(yn)) ~ Vg
by lemma 11.4.14. Hence the statement of lemma 11.4.15 is true for all Young
diagrams A with at most 2 cells.

Let & > 3. The induction hypothesis is that im(¢y,) ~ V, for any Young
diagram p with less than k cells provided that im(¢s(y)) &~ V. From this we
shall deduce that im(¢py) =~ V) for any Young diagram A with £ cells.
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We remark that im (¢ (ya)) = im(¢)x(ex)) for any Young diagram A because
yx and ey differ in I:I,iv by an invertible non-zero scalar.

We consider first a Young diagram A = (Ay,...,\,) with & cells and r rows
and A different from d; and c;. We denote the transposed Young diagram by
AV =AY, . AL, m = .

By definition, we have ey = aw,Bw_ ' with

a=ay ®- - Qay, andﬁzb,\lv@)---@)bvn

where the tensor product denotes the juxtaposition H; ® H; C H,,;. By the
definition of ¢ and using e;, = a; and ec; = bj, we get

Or(@) = o (€ay, ) ® - @ Pa.(ea,, ) and 9x(8) = day(ec,y) ® -+ ® Pay (ec,y )-

Since A is neither a single row nor a single column diagram, the rows and columns
of A and AV have lengths less than k, hence we know by induction hypothesis and
lemma 11.4.9 that

=
<
>
£
l

im(gb/\l (ydA )) ®---® im(¢)\r (ydxr)) ~ th ®--® der and

1

(B33 (e ) © -+ @ iy (e ) A Vi ® -8 Vo,

@
3

s

=
.

Because ey = aw,fw,' and thus ¢p(ey) = ép(a)dr(w,fw, '), we have that
im(¢g(ey)) is a submodule of im (g ().

On the other hand, by lemma 11.4.12, im(¢x(ey)) is isomorphic to a submod-
ule of im(¢(w.Bw;")). The positive permutation braid w, has an inverse in Hj,
(and in H}) and therefore ¢y (w;) is a module automorphism of V¢, Hence,
im(or(en)) = im(gr(5)), and hence im(¢i(ey)) is isomorphic to a submodule of
im(r(B))-

Hence, by lemma 11.4.11, im(¢g(ey)) is either isomorphic to V) or it is the
zero-module. Hence im(¢x(yy)) is either isomorphic to V), or it is the zero-module.

We have dim,(im(¢x(y»))) = try(ér(yr)), and by Lemma 11.4.13 this value
is zero if and only if I(\) > N + 1. Hence im(¢x(y»)) is not the zero module if
r =1(\) < N. Hence im(¢(yy)) = V) if r < N. On the other hand, if r > N +1,
then V), is equal to the zero module anyway, hence im(¢x(y,)) is the zero module.
We have thus proved the induction step for any Young diagram A\ with & cells
which is different from a single row and a single column diagram.

We now consider the row diagram A = di. We have e4, = ay, and (ax_1 ®a)ay
is in Hj a non-zero scalar multiple of a; by lemma 2.4.2. For the normalized
idempotents in H}Y we have (yq,_, ® yo)ya, = ¥a,. Hence,

¢k(ydk—1 ® yﬂ)¢k (ydk) = ¢k(ydk)
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We thus see that im(¢g(yq,)) is a submodule of im(dx(ya,_, ® yn)). We have by
lemmas 11.4.10 and 11.4.13 that

dimg (im (¢ (Ya,_, @) = trg(de(Ya,_, ® yo))
= try(Pr—1(Ya,_,) @ é1(yn))
(

= tTg(Ph—1(Ya,_,))tre(d1(y0))
N _ N GN+k=2 _ ¢~N—k+2 N _ N
B s — g1 §— 871
GN _ g=N gN+1 _ g=N—1  (N+k—1 _ ~N—k+l
7 ok _ gk gk 1 _ gktl s g1
= trg(Pk(Ya,))
= dimg(im(ox(ya,)))-

(The above inequality is equivalent to (s¥ 1 — s VF1)(skF~1 — s7*+1) -£ (0 which
is true due to N > 2 and k£ > 2). Hence im(¢x(yq,)) is not the whole of
im(ék (Ya,_, @ yo)). Furthermore, we see that im(¢dx(yq,)) is not the zero-module
since dim, (im(¢x(yq,))) is different from zero. Hence im(¢g(yq,)) is a non-trivial
submodule of im(¢i(ya,_, @ yo)). By lemma 11.4.9 and the induction hypothesis
for Young diagrams with less than k£ cells, we deduce that

im(Pk(Ya_, ® yo)) & 1m(Pr-1(Ya,_, ) ® im(¢1(yo)) ~ Va,_, ® Vo

Hence im/(¢x(ya,_, ®yn)) & Vi, ®Vik—1,1). Hence, im(¢y(yq,)) is either isomorphic
to Vg, or isomorphic to Viz_1 1.

We have already proved the induction step in the case A = (k — 1,1), hence
the quantum dimension of V{;_; 1) is equal to the quantum trace of @y (yk—1,1))-
We have

dimy (im(de (Ye—-1,1)))) = tro(dr(Yge—1,1)))

N _ N GN+1 _ —N-1

ok _ gk gh—2 _ g—k+2

gN+k—2 _ ~N—k+2 (N—1 _ —N+1
s—s-1 s —s-1
N _ =N GN+1 _ —N-1 gN+k=1 _ o—N—k+1
7 ok _ gk gk 1 _ g ktl s _ g1
= try(Pr(Yay))
= dimg(im(dx(ya,)))-

Hence im(¢y(yaq,)) is not isomorphic to Vi_1,1) and therefore isomorphic to Vy, .
The last remaining case in the proof of the induction step is for A = ¢;. This is
very similar to the case A = d;. But some hazards occur if £ > N + 1 because by
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lemma 11.4.13 it can happen that try(¢j,((y,)) is non-zero whereas try(dj, (yyv))
is equal to zero.

By the same argument as for A\ = dj, we have that im(¢x(y.,)) is a submodule
of im(¢r(ye,_, ® yn)). Hence, im(¢x(y.,)) is by induction hypothesis isomorphic
to a submodule of

M (1 (Yer_,)) @ im(B1(yo)) m Ve, @ Vo Vi @ Vig -2y (11.4.9)

Here and in the following, (2,1%*=2) denotes the Young diagram that has a first
row of length 2 and (k — 2) rows of length 1, i.e. it is the transposed Young
diagram of (k — 1,1).

If £ < N then we prove that im(dx(yc,)) ~ Ve, by verifying via lemma 11.4.13
that

trg(Pe(ye,)) # 0,
try(00(1e)) 7 o (G(yp ), and
trlI(d)k(yck)) 7A trlI(d)— (yck_l))trq(¢1(ym))-

If k. = N 41 then V,, ~ 0 because a module V, indexed by a Young dia-
gram 7 with more than N rows is the zero-module. Equation 11.4.9 implies that
im(¢r(ye,)) is either the zero module or it is isomorphic to Vi, 1x-2). We already
know from the induction step in the case of the Young diagram \ = (2,1*72) with
k cells that Vig k-2 = 1m(¢r(y2,15-2))), hence dimg(Vig1r-2)) = try(dr(y(2,16-2)))
and this term is non-zero by lemma 11.4.13. On the other hand, tr,(¢x(y.,)) =0
for k = N +1 by lemma 11.4.13. Hence, im(dx(yc,)) is not isomorphic to Vig k-2,
hence im(¢k(ye,)) =~ Ve, = 0 for k =N + 1.

Ifk > N+2 then both of V., and V(y x> are the zero-module, hence

m(ox(ck)) is the zero-module as Well hence zm(gbk (Ye,,)) = Ve, . L

Lemma 11.4.16 The image of ¢2(ym) : V% — V2 is isomorphic to V.

Proof We assume from now on that im(¢s(y)) is not isomorphic to V1, and we
shall derive a contradiction from this assumption.

Under the assumption that im(¢ps(y—)) % Vi we shall prove by induction
(similar to the proof of lemma 11.4.15) that

m(k(Ya,)) = Ve, and im(de(ye—1,1))) = Vige-2)

for any k£ > 2.

In the case k = 2, the isomorphisms im(¢(ym)) ~ Vg and im(¢2(yg)) = Vin
follow from lemma 11.4.14.

The isomorphisms im(¢;(yq,)) = Ve, and im(¢i(yi-1,1))) = Viz,1i-2 for any i
with 2 <1 < k are our induction hypothesw We shall prove them for ¢ = k.
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First, we prove the induction step for the Young diagram (k —1,1). With the
notation of the proof of lemma 11.4.15 we have e,y 1) = aw,Bw_ ' with

a=a,_1®a; and f=b, ® b?(k_Q).
We get
im(r()) = im(Pr-1(Ya,_,)) @ im (o1 (yo)) = Ve,_, @ Vi
and
im(éx(8)) ~ im(2(y)) @ im(¢1 () ** 7 = Vip ® VP2,
We have that im(¢r(yp—1,1))) is isomorphic to a submodule of im(¢x(«)) and
to a submodule of im(¢x(f)). By lemma 11.4.11 (or by a direct calculation
via the Littlewood-Richardson rule) we see that V(y;x-2) is the only non-zero
module which is isomorphic to a submodule of V,, | ® V; and to a submodule of
Vo ® V22 Hence, im(dr(Yk-1,1))) = Vig,16-2), oF 1m(dg(Yk—1,1))) is the zero
module. Since the quantum trace of ¢y (y(x—1,1)) is non-zero for any & by lemma
11413, we have Zm(¢k(y(k,1’1))) ~ ‘/v(271k72).

Now consider di. By the same argument as given in the proof of lemma
11.4.15 we see that im(¢éx(yq,)) is a non-trivial submodule of im (¢ (ya, , @ yn))-
Now

i (Or (Yay_, @ Yn)) = Ve, @ Vo m Ve, @ Vo152

by the induction hypothesis. We proved above that Vi, k-2 = im(dr(y-1,1)))-
Since trq(¢r(Va,)) # trq(r(Yk-1,1))), we deduce im(dg(ya,)) # Vig,k-2). Hence
im(¢k(ya,)) has to be isomorphic to V,. This completes the induction step.

A consequence of this result is that im(¢ni1(yay,,)) is isomorphic to Ve, ..,
hence try(@ni1(Yay,,)) is equal to the quantum dimension of V. . But the
quantum trace of ¢n41(Yay,,) is seen by lemma 11.4.13 to be different from zero,
whereas V., is the zero module and therefore has a quantum dimension equal
to zero. This contradiction implies that our assumption im(¢9(y—)) % Vip was

wrong. &

By the combination of lemmas 11.4.15, 11.4.16 and 11.4.6 we have thus proved
that W/\ ~ V)\.

Theorem 11.4.17 The map ¢p\((y») is a projection of VD®|M to a submodule iso-
morphic to Vy for any Young diagram A,

Lemma 11.4.8 can now be restated.

Theorem 11.4.18 Given a framed link L = Ly U---U L, whose components are
coloured with irreducible Uy (sl(N))-modules Vi, ..., Vir. Then the Uy(sl(N))-
wnwvariant of this link is equal to the Homfly polynomial of the link L with decora-
tions Qyi, ..., Qx on its components Ly, ..., L, after the substitutions v = e_%,

Nh h

v=e """ ands=e".
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