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Abstra
tHom
y skeins and the Hopf linkSas
ha Luka
This thesis exhibits skeins based on the Hom
y polynomial and their relationsto S
hur fun
tions. The 
losures of skein-theoreti
 idempotents of the He
kealgebra are shown to be spe
ializations of S
hur fun
tions. This result is appliedto the 
al
ulation of the Hom
y polynomial of the de
orated Hopf link. A 
losedformula for these Hom
y polynomials is given. Furthermore, the spe
ializationof the variables to roots of unity is 
onsidered.The te
hniques are skein theory on the one side, and the theory of symmetri
fun
tions in the formulation of S
hur fun
tions on the other side. Many previouslyknown results have been proved here by only using skein theory and without usingknowledge about quantum groups.
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W�ahrend meiner S
hulzeit versu
htei
h den Grund zu �nden, weshalb �1multipliziert mit �1 wirkli
h +1ergibt. Da 0 das neutrale Ni
hts ist,mu� �1 etwas Fehlendes sein, daseiner Erg�anzung bedarf. Die Summevon zwei negativen Zahlen ist immernegativ. Die Multiplikation jedo
hs
heint die Ordnung von negativ,neutral und positiv zu transzendieren:Das Negative multipliziert mit demNegativen wird positiv.Na
h meiner Promotion erkannte i
h,wie wi
htig der �Ubergang vomUnverst�andnis zum Wuns
h na
hVerst�andnis ist. Die Analogie zwis
hender uns umgebenden Welt und derMathematik ist begrenzt. Viellei
htverl�auft diese Grenze bereits dur
h dieGlei
hheit von �1 � �1 und +1.

Whilst at s
hool I tried to understandwhy �1 multiplied by �1 be
omes +1.If 0 is the neutral nothing then �1 issomething missing whi
h requires a
ompletion. The sum of two negativenumbers is always negative. But themultipli
ation seems to trans
end theorder of negative, neutral and positive:The negative multiplied by the negativebe
omes positive.On 
ompletion of my thesis I realizedhow important the transition is fromnot understanding to the wish tounderstand. The analogy between oursurrounding world and Mathemati
s islimited. Perhaps this limit alreadypasses through the equality of �1 � �1and +1.
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Introdu
tionThis work exhibits skeins based on the Hom
y polynomial and their relationsto S
hur fun
tions. The results are applied to the 
al
ulation of the Hom
ypolynomial of the de
orated Hopf link. Furthermore, the spe
ialization of thevariables to roots of unity is 
onsidered.The te
hniques are skein theory on the one side, and the theory of symmetri
fun
tions in the formulation of S
hur fun
tions on the other side.Part of the results are new. For the other results, the approa
h is new by usingskein theory rather than information about quantum groups. This approa
h hasthe bene�t of generalizing previously known results in many 
ases.The �rst two 
hapters des
ribe the ne
essary ba
kground of symmetri
 fun
-tions and Hom
y skeins. The skeins are based on framed tangles whi
h 
an beinterpreted either as ribbons and annuli with oriented 
ores or as tangle diagramswith the bla
kboard framing.The Hom
y skein of the dis
 with 2n boundary points (with suitable `ori-entations') be
omes an algebra by de�ning the multipli
ation as sta
king twodiagrams one above the other. This algebra Hn is isomorphi
 to the He
ke al-gebra whi
h is a deformation of the group algebra of the symmetri
 group on nletters. Idempotents of Hn indexed by Young diagrams with n 
ells o

ur in anatural way as des
ribed e.g. in [9℄, [11℄, [2℄, [3℄ and [25℄. I give an a

ount ofBlan
het's expli
it semi-simple de
omposition of Hn and remark in lemma 2.5.6that the basis elements behave in a ni
e way under the in
lusion Hn
 1 � Hn+1.The 
losure of the idempotent of Hn indexed by a Young diagram � be
omesan element Q� of the skein of the annulus. It is natural to expe
t that the map� 7! Q� from the algebra of Young diagrams to the skein of the annulus is aninje
tive algebra homomorphism. This has been proved e.g. in [1℄, but Aiston'sproof used results about quantum groups. The skein-theoreti
 proof given in
hapter 3 was motivated by Kawagoe's ideas in [14℄. I interpret the Qdi 's as thei-th 
omplete symmetri
 fun
tion, and I show that the �-S
hur fun
tion in thefQdig has the same eigenvalue as Q� under some linear map. This eventuallyleads to the identi�
ation of s�(fQdig) with Q�.1



In 
hapter 4 I des
ribe the Hom
y polynomial h�; �i of the Hopf link withde
orations Q� and Q� on its 
omponents. The results are new. The determi-nantal formula in theorem 4.4.2 for h�; �i in the 
ase of the substitution v = s�Nfor some integer N � 2 was motivated by the results for spe
ial 
ases. It wassuggested by a formula in the 
ase N = 2 by [19℄, and in the 
ase N � 2 and sand x substituted by 
ertain roots of unity it was motivated by the formula forthe modular transformation matrix S at the end of se
tion 2.3 in [16℄. If � and� have at most N rows then the formula expresses h�; �i after the substitutionv = s�N as the quotient of two (N � N)-minors of the in�nite Vandermondematrix V = (s2(i�1)(j�1))i;j�1. The denominator is the prin
ipal minor, and thenumerator is given by 
hoosing rows �N�i+1 + i and 
olumns �N�j+1 + j fori; j = 1; : : : ; N .In theorems 4.3.4 and 4.3.6 I give a 
ompa
t formula for the power series1h�i Pi�0h�; 
iiX i, where 
i denotes the 
olumn diagram of length i, and h�i =h�; ;i is the Hom
y polynomial of Q�. From this, h�; �i 
an be 
al
ulated dire
tlyas a S
hur fun
tion.In 
hapter 5 we substitute the variables x; v and s of the Hom
y polynomialby roots of unity, s2(l+N) = 1, xN = s�1, and v = s�N . In this setting, it turnsout that the Hom
y polynomial of any de
orated link does not 
hange when werepla
e the de
oration Q� by Q�0 whenever ���0 lies in the ideal IN;l of the ring ofYoung diagrams that is generated by 
0�
N ; 
N+1; 
N+2; : : : and dl+1; : : : ; dl+N�1.This ideal IN;l and the quotient ring Y=IN;l are 
onsidered in 
hapter 6 whi
his an algebrai
 a

ount independent of any skein 
al
ulations. It is known thatthe quotient Y=IN;l has a basis 
onsisting of the Young diagrams that lie in the(N � 1) � l-re
tangle. This has been proved by Aiston [1℄ by using algebrai
geometry. I prove the result using only the Littlewood-Ri
hardson rule. Thenew ingredient here is the algorithm in se
tion 6.4 that produ
es for any Youngdiagram � an element � of Y su
h that �� � lies in IN;l, and either � is equal tozero, or it is up to a sign a Young diagram in the (N � 1)� l-re
tangle.Chapter 7 interprets the results of the previous 
hapter in a dis
rete latti
emodel of YN = Y=IN , where IN � IN;l is an ideal of Y. The elements of YNthat lie in IN;l form a lo
ally �nite family of hyperplanes. Quotienting YN byIN;l is the same as quotienting the latti
e model by a dis
rete group of Eu
lideanisometries generated by the re
e
tions in this family of hyperplanes. The Youngdiagrams in the (N � 1)� l-re
tangle 
orrespond to a fundamental simplex nextto the origin. The sign appearing in � is seen to be the parity of the numberof re
e
tions that are needed to bring the latti
e point � to this fundamentalsimplex.In 
hapter 8 I des
ribe the multipli
ation in YN;l. In parti
ular, I show thatthe empty Young diagram appears as a summand of the produ
t of two Young2



diagrams in the (N � 1)� l-diagrams if and only if the two Young diagrams aredual to ea
h other, i.e. they are up to a rotation the 
omplement of ea
h otherin a N � k-re
tangle for some k � 1. This result enables us to show in theorem8.2.9 that the matrix H indexed by Young diagram in the (N � 1)� l-re
tangleand having the value of the Hom
y polynomial of the Hopf link de
orated by Q�and Q� at the position (�; �) is quasi-Hermitian, i.e. HH is a s
alar multiple ofthe identity matrix after the substitutions s = x�N , v = s�N , and x by a rootof unity of order 2N(l+N). Previously known proofs used the knowledge aboutmodular 
ategories, e.g. as in [1℄ and, more skein-theoreti
ally, in [3℄.The Young diagram �(�) derives from � by adding an initial row of length land removing then all initial 
olumns of length N . One 
an show that �N (�) =�. Hen
e, the 
y
li
 group ZN operates on the set of Young diagrams in the(N � 1) � l-re
tangle. In 
hapter 9 I give a skein theoreti
 proof of a resultby Kohno and Takata [16℄ about the Hom
y polynomial after the substitutionof its variables by roots of unity. The result is that knowledge of the Hom
ypolynomial of a link L with de
orations Q�; : : : ; Q� on its 
omponents and thelinking matrix of L is suÆ
ient to 
al
ulate the Hom
y polynomial of L de
oratedwith Q�a1 (�); : : : ; Q�at(�) on its 
omponents for any integers ai.The se
ond part of 
hapter 9 explains two approa
hes that relate the Hom
ypolynomial of a link L de
orated withQ�; : : : ; Q� on its 
omponents to the Hom
ypolynomial of L de
orated with Q�_; : : : ; Q�_ on its 
omponents. Here, �_ derivesfrom � by inter
hanging rows and 
olumns. Provided one substitutes the variablesof the Hom
y polynomial by suitable roots of unity, these two Hom
y polynomialsturn out to be the 
omplex 
onjugate of ea
h other. One of the two approa
hesis new, the other approa
h appeared in [16℄ in a non-skein-theoreti
 formulation.In 
hapter 10 I 
lassify the ring homomorphisms from YN;l to C . In lemma10.2.1 I 
hara
terize these ring homomorphisms by (N � 1)-tuples of 
omplexnumbers 
alled Young-solutions. In se
tion 10.3 I assign to every Young-solutiona �-orbit of Young diagrams in the (N � 1)� l-re
tangle in a 
anoni
al way. Itturns out that the number of ring homomorphisms that are assigned the same �-orbit is equal to the number of Young diagrams in this orbit. The number of ringhomomorphisms from YN;l to C is thus equal to the number of Young diagramsin the (N � 1)� l-re
tangle. At the end of this 
hapter, I relate Young-solutionsand the Hom
y polynomials of the de
orated Hopf link.Chapter 11 explains the relation between Hom
y polynomials of links de
o-rated by Q�'s and the Uh(sl(N))-invariants. This has been done in [1℄, but theproof given there had some gaps whi
h are �lled here. The results in this 
hapterare an appli
ation of the general theory of quantum-link-invariants as explainede.g. in [22℄, [15℄, [12℄, [13℄, and [4℄. Earlier 
hapters are independent of thisa

ount on quantum groups, thus keeping skein theory and quantum groups ontheir own grounds. 3



Chapter 1Symmetri
 fun
tions and Youngdiagrams
1.1 Symmetri
 fun
tionsThis exposition of symmetri
 fun
tions is based on the �rst 
hapter of [17℄.We denote by Z[x1; : : : ; xn℄ the ring of integer polynomials in n variables.It 
ontains the subring �n of symmetri
 polynomials, i.e. polynomials that areinvariant under any permutation of the variables x1; : : : ; xn. We have�n =Mk�0�knwhere �kn is the Z-submodule of �n that 
onsists of the homogeneous polynomialsof degree k, together with the zero polynomial.For any m � n � 0 we have a ring homomorphismZ[x1; : : : ; xm℄! Z[x1; : : : ; xn℄whi
h maps xn+1; : : : ; xm to zero and keeps any other xj invariant. This restri
tsto a module homomorphism �km ! �kn for any m � n � 0 and k � 0. Thesemaps are always surje
tive, and are bije
tive for m � n � k. We thus de�ne theZ-module �k to be the inverse limit of the Z-modules �kn,�k = lim �n �kn:An element of �k is a sequen
e f = (fn)n�0, where ea
h fn = fn(x1; : : : ; xn) isa homogeneous symmetri
 polynomial of degree k, and fm(x1; : : : ; xn; 0; : : : ; 0) =fn(x1; : : : ; xn) for any m � n � 0. We de�ne the ring � of symmetri
 fun
tions4



in 
ountably many variables x1; x2; : : : by� =Mk�0�kwhere the multipli
ation is 
omponentwise, i.e.(f0; f1; : : :)(g0; g1; : : :) = (f0g0; f1g1; : : :):The ring � is 
ommutative sin
e Z[x1; : : : ; xn℄ is 
ommutative for any n. Theword `fun
tion' is used in the 
ontext of the inverse limit, instead of `polynomial'.The r-th elementary symmetri
 fun
tion er is de�ned by its generating fun
-tion E(t) =Xr�0 ertr = Yi�1(1 + xit):The r-th 
omplete symmetri
 fun
tion hr is de�ned by its generating fun
tionH(t) =Xr�0 hrtr = Yi�1(1� xit)�1:We thus have H(t)E(�t) = 1;or, equivalently, nXr=0(�1)rerhn�r = 0 (1.1.1)for any n � 1. We de�ne er = hr = 0 for r < 0.Lemma 1.1.1 � is freely generated by e1; e2; : : : as a 
ommutative algebra. It isalso freely generated by h1; h2; : : :.A pre-partition is a non-empty (�nite or in�nite) sequen
e of non-negativeintegers � = (�1; �2; : : :)in weakly de
reasing order �1 � �2 � � � �su
h that only �nitely many terms are non-zero. We de�ne an equivalen
e relationon the set of pre-partitions by saying that two pre-partitions are equivalent if theydi�er by a (possibly in�nite) number of zeros. An equivalen
e 
lass is 
alled apartition. We shall 
onsider partitions but we will mainly use pre-partitions inour arguments. The easy exer
ise that the statements are 
orre
t for partitionsis left to the reader in ea
h 
ase. 5



A Young diagram denotes both a partition and a graphi
al des
ription of thispartition. We represent a Young diagram � = (�1; : : :) by an array of square
ells (of the same size) with �i 
ells in the i-th row, for i = 1; 2; : : : where weenumerate the rows from top to bottom and the 
olumns from left to right. Thej-th 
ell in the i-th row has the 
oordinates (i; j). The 
ontent 
n(
) of the 
ell
 = (i; j) is de�ned to be j � i. The hook length hl(
) of the 
ell 
 is de�ned tobe 1 plus the number of 
ells to the right of 
 plus the number of 
ells below 
.The number of 
ells of a Young diagram is denoted by j�j. The length l(�) is thenumber of rows of �, i.e. �l(�) 6= 0 and �i = 0 for i > l(�). The empty Youngdiagram ; is the partition (0).A standard tableau of a Young diagram � is a labelling of the 
ells of � bythe integers 1; 2; : : : ; j�j whi
h is in
reasing along ea
h row from left to right,and in
reasing along ea
h 
olumn from top to bottom. The number of standardtableaux for a Young diagram � is denoted by d�. We have d� � 1 for any Youngdiagram �.We write � � � for Young diagrams � and � if the graphi
al des
ription of� is a subset of the graphi
al des
ription of �, i.e. if �i � �i for all i. For su
hYoung diagrams, �n� denotes the set of 
ells of � that do not lie in �.Given a Young diagram �, we de�ne the transposed Young diagram �_ to bethe Young diagram that derives from � by the re
e
tion in the main diagonal, i.e.the 
ell (i; j) lies in �_ if and only if the 
ell (j; i) lies in �. We have (�_)_ = �for any Young diagram �. We have hl(i; j) = �i � i+ �_j � j + 1.The single row Young diagram with i 
ells is denoted by di, and the single
olumn Young diagram with i 
ells is denoted by 
i. We have di_ = 
i and
0 = d0 = ;.We 
onsider a Young diagram � and an integer n � l(�). We de�ne a sym-metri
 polynomial sn� in n variables x1; : : : ; xn bysn�(x1; : : : ; xn) = det(x�j+n�ji )1�i;j�ndet(xn�ji )1�i;j�n :The numerator and denominator are anti-symmetri
, hen
e the quotient sn� issymmetri
 in the variables x1; : : : ; xn. It is a polynomial, indeed. We de�nesk� = 0 for 0 � k � l(�). The �-S
hur fun
tion s� = (sn�)n�0 lies in � be
ausesm� (x1; : : : ; xn; 0; : : : ; 0) = sn�(x1; : : : ; xn) for any m � n (whi
h is easily 
he
ked).Lemma 1.1.2 The set of S
hur fun
tions s� for all Young diagrams � is a Z-basis of �. The set of S
hur fun
tions s� su
h that j�j = k is a Z-basis of �k forany k � 0.The next lemma is sometimes 
alled the Giambelli (or Ja
obi-Trudi) formula.6



Lemma 1.1.3 For any n � l(�) and m � l(�_)s� = det(h�i�i+j)1�i;j�n= det(e�_i �i+j)1�i;j�m:This implies that s
i = ei and sdi = hi for any integer i � 0.The following multipli
ation rule for S
hur fun
tions is 
alled Littlewood-Ri
hardson rule. A proof is given in 
hapter I.9 of [17℄. The 
on
ept of a stri
textension as given here is equivalent to Ma
donald's des
ription.Theorem 1.1.4 For any Young diagrams � and � we haves�s� =X� a���s�where a��� = 0 unless � � � and j�j + j�j = j�j, in whi
h 
ase a��� denotes thenumber of stri
t extensions of � by � to �.We have to know what a stri
t extension is.Let �, � and � be Young diagrams su
h that � � � and j�j = j�j + j�j. Anextension � of � by � to � is a labelling of the 
ells of �n� with the integers1; : : : ; l(�) su
h that the label i appears �i times, i = 1; : : : ; l(�). Furthermore,an extension has to satisfy the following two 
onditions. First, the labels arestri
tly in
reasing downwards along every 
olumn of �. Se
ond, the set of 
ells�(j) whi
h derives from � by removing all 
ells with labels greater than or equalto j has to be a Young diagram for any j = 1; : : : ; l(�).An extension � determines a word w(�) whi
h is the sequen
e of labels of �read from right to left and top-down.An extension is 
alled stri
t if for any label i and any pre�x (i.e. initialsubword) of w(�) the number of o

urren
es of the label i is not less than thenumber of o

urren
es of i+ 1.For example, the two extensions of (3; 1) by (3; 2) to (4; 4; 1) in �gure 1.1determine the words 1; 2; 2; 1; 1 resp. 1; 2; 1; 1; 2. The se
ond extension is thereforestri
t whereas the �rst extension is not stri
t.Remark The rows of any extension are weakly in
reasing when read from left toright. This is be
ause of the 
ondition that �(i) is a Young diagram for any labeli.Remark Let k � 1 be any integer. The number of extensions of (k; k�1; : : : ; 2; 1)by (k; 1) to (k+ 1; k; : : : ; 2; 1) is equal to k. Hen
e, any non-negative integer 
ano

ur as a value for a��� for suitable �, � and �.Remark Instead of 
he
king all pre�xes of w(�), one 
an, equivalently, 
he
k allsubwords of w(�) that arise as the set of 
ells that lie above and to the right ofsome labelled 
ell of �. This alternative de�nition has been used in [1℄.7



1 1 12 2 1 1 2 21 , 2 1 1 21
Figure 1.1: The two extensions of (3; 1) by (3; 2) to (4; 4; 1).1.2 The ring of Young diagramsDe�nition The ring of Young diagrams Y is the Z-module whose basis is theset of all Young diagrams. The multipli
ation is de�ned by�� = Xj�j=j�j+j�ja����where the 
oeÆ
ients a��� are given by the Littlewood-Ri
hardson rule as statedin theorem 1.1.4.Sin
e the S
hur fun
tions s� are a linear basis for � by lemma 1.1.2, we get aring isomorphism from � to Y by mapping s� to �. This implies in parti
ular thatY is a 
ommutative ring. Furthermore, the ring Y is the free 
ommutative ringgenerated by all 
olumn diagrams 
1; 
2; : : : whi
h follows from lemma 1.1.1 andthe observation the s
i = ei. Similarly, Y is the free 
ommutative ring generatedby the row diagrams d1; d2; : : :. We remark that the empty Young diagram ; isthe neutral element for the multipli
ation. In Y, we de�ne 
i = di = 0 for integeri < 0.The Giambelli formula from Lemma 1.1.3 be
omesLemma 1.2.1 For any n � l(�) and m � l(�_)� = det(d�i�i+j)1�i;j�n= det(
�_i �i+j)1�i;j�m:Equation (1.1.1) now takes the formnXr=0(�1)r
rdn�r = 0 (1.2.2)for any n � 1. Equivalently, 1Xr=0(�1)r
rXr! 1Xi=0 diX i! = 1 (1.2.3)where X is a variable. 8



Transposing indu
es a linear map from Y to Y. This map (
alled transposingas well) is bije
tive be
ause (�_)_ = �.Lemma 1.2.2 Transposing is a ring automorphism of Y.Proof Sin
e Y is spanned by Young diagrams and generated by 
olumn diagrams,it is suÆ
ient to prove that (�
i)_ = �_(
i)_ for any Young diagram � and any
olumn diagram 
i, i � 1. We remark that (
i)_ = di.The stri
t extensions of � by a 
olumn 
i of length i are in bije
tion with theset of Young diagrams that derive from � by adding i (unnumbered) 
ells so thatat most one 
ell is added to ea
h row of �. To turn su
h a Young diagram intoa stri
t extension, one has to number the added 
ells with su

essive numbers1; 2; : : : ; i going the rows downwards.Similarly, the stri
t extensions of � by a row di of length i are in bije
tionwith the set of Young diagrams that derive from � by adding i (unnumbered)
ells so that at most one 
ell is added to ea
h 
olumn of �.This des
ription of stri
t extensions is symmetri
 with respe
t to 
olumns androws. Sin
e transposing inter
hanges 
olumns and rows, it indu
es a bije
tion ofthe stri
t extensions of � by 
i and the stri
t extensions of �_ by di. |1.3 The ring YNWe �x an integer N � 1.1.3.1 De�nitionWe denote by IN the ideal of Y generated by the element 
0� 
N and all 
olumndiagrams of length at least N + 1,IN = hh
0 � 
N ; 
N+1; 
N+2; : : :ii:We denote YN = Y=IN ;and we shall denote the image of a Young diagram � under the quotient mapY ! Y=IN by �, too.De�nition For a Young diagram � = (�1; : : : ; �N) with N rows we de�ne �0 tobe the Young diagram derived from � by removing all 
olumns of length N ,�0 = (�1 � �N ; : : : ; �N�1 � �N ):9



Lemma 1.3.1 For a Young diagram � with N rows we have � � �0 2 IN . If �has more than N rows then � 2 IN .Proof For a Young diagram � we have by the Giambelli formula that� = det(
�_i �i+j)1�i;j�b= ���������� 
�_1 
�_1+1 � � � 
�_1+b�1
�_2�1 
�_2 � � � 
�_2+b�2... ... . . . ...
�_b �b+1 
�_b �b+2 � � � 
�_b
���������� (1.3.4)where b denotes the length of �_ (whi
h is equal to �1). If � has N rows then the�rst row of the above determinant reads 
N ; 
N+1; : : : ; 
N+b�1. Sin
e 
N = 1 and
i = 0 for i > N in YN , we 
an remove the �rst row and the �rst 
olumn of thedeterminant without 
hanging its value in YN . Hen
e� = �������� 
�_2 � � � 
�_2+b�2... . . . ...
�_b �b+2 � � � 
�_b ��������in YN . The determinant on the right hand side is the Giambelli formula for theYoung diagram that derives from � by removing the �rst 
olumn (of length N).By applying this argument �N -times we get � = �0 in YN .If � has more than N rows, i.e. its length is greater than N , then ea
h entryof the �rst row of the determinant in equation (1.3.4) is equal to zero in YN .Hen
e � = 0 in YN . |We de�ne the Z-submodule LN of Y to be linearly spanned by all Youngdiagrams with more than N rows and by the elements (�� �0) 2 Y for all Youngdiagrams � with N rows,LN = h�� �0; � j Young diagrams � and � with l(�) = N and l(�) � N + 1i:We 
learly haveY = LN � h� j Young diagrams � with l(�) < Ni: (1.3.5)Lemma 1.3.2 LN is an ideal in Y.Proof Sin
e Y is generated by all the 
olumn diagrams 
1; 
2; : : : it is suÆ
ientto verify that
i(�� �0) 2 LN for any i � 1 and any Young diagram � with l(�) = N10



and 
i� 2 LN for any i � 1 and any Young diagram � with l(�) > N:Let i > N and let � be any Young diagram. Sin
e 
i is a subdiagram of anysummand of 
i�, we have that 
i� is a linear 
ombination of Young diagrams withmore than N rows. Hen
e 
i� lies in LN .Let i � 1 and let � be a Young diagram with more than N rows. Then 
i�is a linear 
ombination of Young diagrams with more than N rows sin
e � is asubdiagram of ea
h summand. Hen
e 
i� lies in LN .Let 1 � i � N and � be a Young diagram with N rows. We denote by k thenumber of initial 
olumns of length N of �. By the multipli
ation rule for Youngdiagrams we observe a bije
tion between the summands of 
i� with N rows andthe summands of 
i�0 with at most N rows. The bije
tion being the removal ofk initial 
olumns of length N . Hen
e 
i(�� �0) is a linear 
ombination of Youngdiagrams with more thanN rows and terms (���) where � and � di�er by k initial
olumns of length N . The Young diagrams with more than N rows lie in LN .The terms (���) lie in LN be
ause �0 = � 0, hen
e ��� = (���0)�(��� 0) 2 LN .Hen
e, 
i(�� �0) 2 LN . |Corollary 1.3.3 We have LN = IN . The (images of the) Young diagrams withless than N rows are a basis of YN .Proof The submodule LN of Y is a subset of IN by lemma 1.3.1. Sin
e LN is anideal, we have LN = IN . The Young diagrams with less than N rows are a basisof YN be
ause of the de
omposition of Y in equation (1.3.5). |1.3.2 DualityWe introdu
e the 
on
ept of duality for Young diagrams with respe
t to a �xedinteger N � 1. We 
onsider a Young diagram � = (�1; : : : ; �N�1). The 
omple-ment of � in the N��1-re
tangle is not a Young diagram. But after rotating this
omplement through 180Æ it be
omes a Young diagram denoted by �� as depi
tedin �gure 1.2. We denote the dual of the 
olumn diagram 
i by 
�i rather than(
i)�. We have 
�i = 
N�i for i = 1; : : : ; N � 1. We have 
�0 = 
0.We have ��i = �1 � �N�i+1 for i = 1; 2; : : : ; N . It is 
lear that (��)� = � forany Young diagram � with less than N rows. Therefore, taking the dual is apermutation of the Young diagrams with less than N rows.We de�ne �� = 8><>: �� if l(�) � N � 1;(�0)� if l(�) = N;0 if l(�) � N + 1:Hen
e, the map � 7! �� indu
es a linear map YN ! YN .11



Figure 1.2: The dual of the Young diagram � = (6; 4; 3; 3; 1) with respe
t toN = 8 is equal to �� = (6; 6; 6; 5; 3; 3; 2).Lemma 1.3.4 The map � 7! �� indu
es a ring automorphism of YN .Proof Sin
e YN is spanned by all Young diagrams with less than N rows andgenerated by the 
olumn diagrams 
1; : : : ; 
N�1, it is suÆ
ient to prove that(�
k)� = ��
�k for any Young diagram with less than N rows and any 
olumndiagram 
k, 1 � k � N � 1.We have 
�k = 
N�k in YN for any integer k, (with the 
onvention that 
k = 0for k < 0), and we thus have to prove that(�
k)� = ��
N�kfor any Young diagram � with at most (N � 1) rows, and any integer k =1; : : : ; N � 1.By " and � we denote variables whi
h are to have values zero or one. Thestri
t extensions of � by 
k that have at mostN rows are all those Young diagrams(�1 + "1; : : : ; �N�1 + "N�1; "N) for whi
h "1 + : : :+ "N = k.The stri
t extensions of �� by 
N�k that have at most N rows are all thoseYoung diagrams (��1+�1; : : : ; ��N�1+�N�1; �N) for whi
h �1+ � � �+�N = N � k.Let us 
onsider the sequen
e of integers(�1 + "1; : : : ; �N�1 + "N�1; "N) (1.3.6)for some integers "1; : : : ; "N whi
h are either equal to zero or one, and su
h that"1+� � �+"N = k. This is not ne
essarily a Young diagram. To ea
h su
h sequen
ewe asso
iate the sequen
e of integers given by(��1 + (1� "N); ��2 + (1� "N�1); : : : ; ��N�1 + (1� "2); (1� "1)): (1.3.7)We 
laim that the sequen
e in equation (1.3.6) is a Young diagram (i.e. weaklyde
reasing) if and only if the sequen
e in equation (1.3.7) is a Young diagram.12



To see this, we note that the sum of the i-th entry of the �rst sequen
e and the(N � i+1)-st entry of the se
ond sequen
e is independent of i for all i = 1; : : : ; Nbe
ause (�i + "i) + (��N�i+1 + (1� "i)) = �i + �N�i+1 + 1= �1 + 1:Hen
e, the �rst sequen
e is weakly de
reasing if and only if the se
ond sequen
eis weakly de
reasing.Remark that (1� "N )+ : : :+(1� "1) = N � k. We thus get a bije
tion of thestri
t extensions of � by 
k and stri
t extensions of �� by 
N�k, and asso
iatedstri
t extensions 
orrespond to dual Young diagrams. Therefore, (�
k)� = ��
�k,and thus (��)� = ���� for any Young diagrams � and �. |

13



Chapter 2Skein theory
2.1 Framed Hom
y skeinsOur view is pie
ewise linear. We denote the interior of a manifold M by int(M)and the boundary of M by �M . We always 
onsider proper submanifolds N ofa manifold M , i.e. int(N) � int(M). By an isotopy of a submanifold N of amanifold M we always understand that it is indu
ed by a homeomorphism of Mwhi
h is isotopi
 to the identity relative to the boundary �M .Let F by a surfa
e (with or without boundary) with a �xed orientation. Let� = �1 ℄ �2 = f�1; : : : ; �kg ℄ f�k+1; : : : ; �2kg be a 
olle
tion of disjoint orientedar
s in the boundary �(F) su
h that the orientation of ea
h ar
 �i of �1 (resp.�2) agrees (resp. does not agree) with the indu
ed orientation of �i by F .A ribbon tangle T in (F�(0; 1);�) is a (possibly empty) 
olle
tion of pairwisedisjoint disks fD1; : : : ; Dkg (also 
alled ribbons) and �nitely many oriented annulifAjg in F � (0; 1) with oriented 
ores su
h that�F � (0; 1) \Di = �i1 � �12� [ �i2 � �12� ; for some �i1 2 �1; �i2 2 �2;�F � (0; 1) \ k[i=1Di = �� �12�Aj 2 int(F)� (0; 1) for all j:We 
all any ar
 � in Di that joins points of �i1 and �i2 a 
ore. We orient ea
h 
ore� `from � \ �i1 to � \ �i2 '. The set �Din(�Di \ F) 
onsists of two 
ores �1 [ �2.The orientations of �1 and �2 are indu
ed by di�erent orientations of Di.We write (F � (0; 1)) for (F � (0; 1); ;).Let A be a 
ommutative ring. We denote by A0 the polynomial ring over A inthe variables x, x�1, v, v�1, s, s�1 and Æ, quotiented by the relation Æ(s� s�1) =v�1 � v. 14



The framed Hom
y skein S(F ;�) is the free A0-module over the set of allribbon tangles in (F ;�) quotiented by the following relationsT = T 0 if T and T 0 are isotopi
 ribbon tangles,and the lo
al relations in �gures 2.1 and 2.2.x�1 � x = (s� s�1)Figure 2.1: De�ning relation for S(F � (0; 1);�).
= xv�1 = ÆFigure 2.2: More de�ning relations for S(F � (0; 1);�).We 
an isotope any ribbon tangle T su
h that it lies 
at in F � [12 � "; 12 + "℄for some " > 0 whi
h means that the proje
tion of T to F � 12 is an embeddingaway from �nitely many sets T \ (Ni � (0; 1)) � int(F)� (0; 1) ea
h 
onsistingof two lo
al dis
s of T parallel to a dis
 Ni in F .It is straightforward to translate framed Hom
y skeins into the language oforiented diagrams by relating `
at' ribbon tangles with diagrams of ar
s and 
losed
urves. To a 
at ribbon tangle T in (F � (0; 1);�) we asso
iate the diagram thatis given by the 
ontra
tion of the ribbons and the annuli to their 
ores. Thisis well de�ned up to isotopy. The 
ores inherit an orientation from the ribbontangle.Ea
h ar
 of � be
omes a point under this 
ontra
tion, and � = �1 ℄ �2 =f
1; : : : ; 
kg ℄ f
k+1; : : : ; 
2kg derives from � = �1 ℄ �2 by making some 
hoi
e
i 2 �i.Let F be a surfa
e and � = �1℄�2 = f
1; : : : ; 
kg℄f
k+1; : : : ; 
2kg be a set of�nitely many points of �F . A diagram in (F ;�) is a (possibly empty) 
olle
tionof pairwise disjoint (but we allow 
rossings) k oriented ar
s ea
h joining a point of�1 and �2, and �nitely many oriented 
losed 
urves in F . The ar
s without theirendpoints and the 
losed 
urves have to lie in int(F). The ar
s are oriented fromtheir interse
tion with �1 to their interse
tion with �2. We denote the emptydiagram by ;. 15



We 
all diagrams D1 and D2 regularly isotopi
 if they di�er by a sequen
eof moves inside a dis
 where the moves are the identity on the boundary of thisdis
. The allowed moves are Reidemeister moves II and III and an orientationpreserving homeomorphism of the dis
 as shown in �gure 2.3. We 
all a sequen
eof these moves a regular isotopy. Note that this has no relation with the usualmeaning of isotopy, it is a 
on
ept only for diagrams.= = =Figure 2.3: Regular isotopy 
onsists of Reidemeister moves II and III, and `wig-gling 
urves'.Re
all that we denote by A0 the polynomial ring in x; x�1; v; v�1; s; s�1 and Æ,quotiented by the relation Æ(s� s�1) = v�1 � v.The framed Hom
y skein S(F ;�) is the free A0-module over the set of alldiagrams in (F ;�) quotiented by the following relationsT = T 0 if T and T 0 are regularly isotopi
,and the lo
al relations in �gures 2.4 and 2.5.x�1 � x = (s� s�1)Figure 2.4: De�ning relation for S(F ;�).
= xv�1 = ÆFigure 2.5: More de�ning relations for S(F ;�).Whenever (here and in the following) the orientation of the 
ores is not shownthen the diagrams represent all possible orientations.The Whitney-tri
k is a regular isotopy that relates a straight ar
 with an ar
having two 
urls. It is depi
ted in �gure 2.6. We 
an remove one of the 
urls16



= = =Figure 2.6: The Whitney-tri
k realizes a 
an
ellation of 
urls via a regular isotopy.
= x�1vFigure 2.7: A derived relation in S(F ;�).at the expense of the additional fa
tor xv�1, and we thus get the lo
al relationdepi
ted in �gure 2.7 whi
h is valid in S(F ;�).Let G1 and G2 be diagrams in (F ;�) and denote the asso
iated ribbon tanglesin F � (0; 1) by T1 and T2 (determined up to isotopy). We 
laim that G1 and G2are equal in S(F ;�) if and only if T1 and T2 are equal in S(F � (0; 1);�). Theonly non-trivial part of this 
laim is that if H1 and H2 are isotopi
 ribbon tanglesin F � (0; 1) then G1 and G2 are equal in S(F ;�). If H1 and H2 are isotopi
then G1 derives from G2 by regular isotopy and the lo
al moves shown in �gure2.8 with any orientations on the 
omponents. The moves 
annot be realized by aregular isotopy in general. (But, e.g. in the sphere S2 they are regularly isotopi
).But the diagrams be
ome equal in S(F ;�) sin
e the 
urls 
an be removed at theexpense of the s
alars whi
h 
an
el. One has to rotate in some instan
es thediagrams (or oneself) in order to apply the above lo
al skein relations.

= = =Figure 2.8: Moves in order to handle 
urls in diagrams.17



In what follows we shall be mainly 
on
erned with skeins over the s
alarsZ[x�1; v�1; s�1; Æ℄=hhÆ(s� s�1) = v�1 � vii. But 
learly, a skein makes sense forany extension of this ring. We shall 
onsider as well the subring of the rationalfun
tions Q(x; v; s) generated by x�1; v�1; s�1; f(si � s�i)�1 j i 2 Ig for somesubset I � Z. Note that the term (si � s�i)�1 may 
ause problems when s issubstituted by some root of unity.2.1.1 Useful mapsThere are some interesting maps of a Hom
y skein to itself without being modulehomomorphisms. 
 : x 7! x; v 7! v; s 7! �s�1; Æ 7! Æ� : x 7! �x; v 7! �v; s 7! s�1; Æ 7! Æ� : x 7! x�1; v 7! v�1; s 7! s�1; Æ 7! Æ:
, � and � extend to isomorphisms of the rational fun
tions in x, v, s and Æ. Theyindu
e isomorphisms of the s
alars we are 
onsidering sin
e (s� s�1)Æ� (v�1�v)is invariant under these maps.We get maps from the Hom
y skein to itself when we leave the diagramsinvariant and alter the s
alars by 
 (resp. �) be
ause this preserves the skeinrelations. In the 
ase of �, one has to 
hange all 
rossings of the diagram in orderthat the skein relations are preserved.2.2 The Hom
y polynomialAny diagram D in the skein S(R2) of the plane 
an be transformed via the skeinrelations to a s
alar multiple t of the empty diagram ;. An important resultstates that the S(R2) is isomorphi
 to its s
alars, i.e. the s
alar t is well de�ned.This s
alar is denoted as the Hom
y polynomial �(D) of D. The word Hom
yis derived from the initial letters of some of the mathemati
ians who dis
overedthis invariant ([6℄, [21℄).A framed link in F � (0; 1) is an oriented link together with a parallel 
urveto ea
h 
omponent, i.e. a longitude in the boundary of a regular neighbourhoodof ea
h 
omponent. Every oriented link diagram determines a framed link by
hoosing the bla
kboard parallel for ea
h 
omponent. We shall 
onsider onlydiagrams of framed links whose bla
kboard framing gives the framing of the link.Ribbon tangles in S(F � (0; 1)) that 
onsist only of embedded annuli withoriented 
ores are an equivalent view of framed links, where, for ea
h annulusA, the 
ore of A determines a link 
omponent, and a boundary 
urve of A (it18



" = 1 " = �1Figure 2.9: The sign assigned to a 
rossing.is irrelevant whi
h one) determines a longitude in a regular neighbourhood N ofthis link 
omponent.A 
rossing of an oriented diagram in an oriented surfa
e is given a sign " = �1as shown in �gure 2.9 where we use the 
ounter
lo
kwise orientation of the lo
aldis
. The sum of the signs is denoted as the writhe wr(D) of the diagram D. Itis a invariant under regular isotopy.Let D be a diagram. One gets an invariant �u that does not involve thevariable x by setting �u(D) = (xv�1)�wr(D)D.2.3 The He
ke algebra HnWe denote by Hn the skein of the dis
 [0; 1℄� [0; 1℄ with the set � = �1 ℄ �2 =f( jn+1 ; 1)g1�j�n ℄ f( jn+1 ; 0)g1�j�n and the standard (anti-
lo
kwise) orientation.We 
all the point ( jn+1 ; 1) the j-th point at the top and ( jn+1 ; 0) the j-th point atthe bottom.The multipli
ation for diagrams D1 and D2 is given by sta
king D1 aboveD2. This extends linearly to Hn. The multipli
ation is asso
iative but not 
om-mutative. Every diagram D in Hn determines an element �D of the symmetri
group Sn on n letters, by saying that the j-th point at the top of the square[0; 1℄ � [0; 1℄ is joined by an ar
 of D to the �D(j)-th point at the bottom. Wehave �D1D2 = �D1�D2 in Sn sin
e we read the produ
t of permutations from leftto right.Hn is known to be isomorphi
 to the He
ke algebra.For every permutation � 2 Sn there exists a unique braid w� (
alled a positivepermutation braid) su
h that w� determines � 2 Sn, and strings starting at thepoints i and j at the top with 1 � i < j � n do not 
ross if �(i) < �(j), and they
ross only on
e (with the string starting at j over
rossing the string starting ati) if �(i) > �(j).It turns out that the set fw� j � 2 Sng is a basis for Hn (see [20℄ for a shortproof).The juxtaposition of putting a diagram D1 2 Hn to the left of D2 2 Hmindu
es an in
lusion Hn 
Hm ! Hn+m.19



2.4 Idempotents in the He
ke algebraThis se
tion des
ribes the interpretation of Gyoja's results [9℄ by Aiston andMorton [2℄.2.4.1 The building blo
ks an and bnWe denote by l(�) the writhe of w�, whi
h 
an also be expressed as the minimalnumber of transpositions to form the permutation �. We de�nean = X�2Sn(x�1s)l(�)w�in Hn for any integer n � 0.We denote by �i the elementary positive braid in whi
h only strings i andi + 1 
ross on
e positively. The next lemma 
an be found as Lemma 8 in [2℄.Lemma 2.4.1 We have �ian = xsan and an�i = xsan for any 1 � i � n� 1.Sin
e Hn is generated as an algebra by the elementary braids �1; : : : ; �n�1, wededu
e that an lies in the 
entre of Hn. Even more, for any element h of Hn wehave han = anh = �an for some s
alar �.In parti
ular, anan is a s
alar multiple �n of an. Lemma 2.4.2 shows that �n isnon-zero. We de�ne [n℄ = (sn�s�n)=(s�s�1) = sn�1+sn�3+ � � �+s�n+3+s�n+1for any integer n � 0. We de�ne [n℄! = [n℄[n� 1℄ � � � [1℄.Lemma 2.4.2 We have �n = s (n�1)n2 [n℄! for any integer n � 1.Proof Using lemma 2.4.1 we get thatanan = an X�2Sn(x�1s)l(�)w�= an X�2Sn(x�1s)l(�)(xs)l(�)= an X�2Sn s2l(�):We 
an write any permutation � from Sn uniquely as the produ
t of a permutation� from Sn�1 and the 
y
le (�(n) (�(n)+1) : : : n) of length n��(n)+1. Therefore,X�2Sn s2l(�) = X�2Sn�1 n�1Xi=0 s2(l(�)+i)= X�2Sn�1  s2l(�) n�1Xi=0 s2i!20



=  n�1Xi=0 s2i! X�2Sn�1 s2l(�)= sn�1 sn � s�ns� s�1 X�2Sn�1 s2l(�)= sn�1[n℄ X�2Sn�1 s2l(�):We get by indu
tion that X�2Sn s2l(�) = s (n�1)n2 [n℄!: |The proof of lemma 2.4.2 suggests a de
omposition of an+1 given byan+1 = (an 
 11)(1n+1 + (x�1s)�n + (x�1s)2�n�n�1 + � � �+ (x�1s)n�n�n�1 � � ��1)(2.4.1)This is be
ause we 
an draw any positive permutation braid w� on n+ 1 stringsin a unique way as the produ
t of a positive permutation braid having a verti
al(n + 1)-st string and the braid �n�n�1 � � ���(n+1).We re
all from subse
tion 2.1.1 the isomorphism 
 of the rational fun
tionsin x, v and s given by x 7! x, v 7! v and s 7! �s�1. We get a map fromHn to Hn that is the identity on any diagram and behaves on the s
alars as
. We denote this map by 
 as well. It satis�es 
(w + y) = 
(w) + 
(y) and
(wy) = 
(w)
(y) for any elements w and y of Hn but we remark that it is notan algebra homomorphism sin
e it 
hanges the s
alars. We have that 
2 is equalto the identity. We denote bn = 
(an)and �n = 
(�n). We remark that 
(an) = �(an), and 
(�n) = �(�n) where � wasde�ned in subse
tion 2.1.1.Lemma 2.4.3 We have bnbn = �nbn for any integer n � 0.Proof We have anan = �nan. Applying the map 
 we get 
(an)
(an) =
(�n)
(an), hen
e bnbn = �nbn. |We re
all the isomorphism � of the rational fun
tions in x, v and s given byx 7! x�1, v 7! v�1 and s 7! s�1. We immediately dedu
e from the skein relationsof Hn that the map whi
h re
e
ts any diagram in the plane and that behaves on21



the s
alars as � indu
es a map from Hn to Hn. We denote this map by � as well.It satis�es �(w+ y) = �(w)+ �(y) and �(wy) = �(w)�(y) for any elements w andy of Hn but we remark that it is not an algebra homomorphism. We have that�2 is equal to the identity.When we 
onsider Hn as an algebra over a subring of the rational fun
tionsin x, v and s in whi
h �n is invertible then (1=�n)an is an idempotent.Lemma 2.4.4 We have �( 1�nan) = 1�nan for any integer n � 0.Proof We have�i�(an) = �(��1i )�(an) = �(��1i an) = �((xs)�1an) = xs�(an)for any 1 � i � n� 1. Hen
e, an�(an) = �n�(an):Applying the map � to this equation we get�(an)an = �(�n)an:The element an is 
entral in Hn, and therefore an�(an) = �(an)an. Therefore,the terms on the right hand sides of the above two equations are equal, i.e.�n�(an) = �(�n)an. We thus get�� 1�nan� = 1�nan: |Sin
e � and 
 
ommute, we getCorollary 2.4.5 We have � � 1�n bn� = 1�n bn for any integer n � 0.2.4.2 The quasi-idempotent e�Here, we �x an integer n � 0 and 
onsider only Young diagrams with n 
ells. Forany Young diagram � (with n 
ells) we 
onstru
t a quasi-idempotent e� in Hn inthe following way.We number the 
ells of any Young diagram � with the integers 1; 2; : : : ; nfrom left to right and from top to bottom (as reading in a book). The map(i; j) 2 � ! (j; i) 2 �_ determines therefore a permutation �� on n letters. We
learly have ��_ = ��1� . We de�neE�(a) = a�1 
 a�2 
 � � � 
 a�l(�) 2 Hn22



and E�(b) = b�1 
 a�2 
 � � � 
 
b�l(�) 2 Hnfor any Young diagrams � and �. We de�nee� = E�(a)w��E�_(b)w�1�� 2 Hnwhere w�1�� is the inverse braid of w��. We note that edn = an and e
n = bn.It follows from Lemma 11 in [2℄ that for any element T 2 Hn there exists as
alar t su
h that E�(a)TE�_(b) = tE�(a)w��E�_(b): (2.4.2)Hen
e, e2� = ��e�for some s
alar ��. The s
alar �i from lemma 2.4.2 is by de�nition equal to �di(this is a slight abuse of notation). One 
an also prove thate�e� = 0 if � 6= � (2.4.3)(of 
ourse under the 
ondition that j�j = j�j).Remark It might seem more natural to de�ne e� = E�(a)w��E�_(b). The abovestatements would remain true, but of 
ourse with some di�erent s
alars ��. Thisis the point. If we de�ne e� = E�(a)w��E�_(b) then e2� = 0 unless � is a singlerow or 
olumn diagram. This is be
ause e2� 
ontains the fa
tor E�_(b)E�(a) fromwhi
h on 
an extra
t a fa
tor a2 
 1n�2 from E�(a) and a fa
tor b2 
 1n�2 fromE�_(b) if �1 � 2 and l(�) � 2. One 
an verify by a dire
t skein 
al
ulation thatb2a2 = 0 in H2, and therefore we dedu
e that E�_(b)E�(a) = 0 in Hn.Another reason is that the elements e� = E�(a)w��E�_(b)w�1�� spe
ialize toquasi-idempotents of the group algebra C [Sn ℄ after the substitutions x = v = s =Æ = 1. (One has to 
onsider C instead of Z.) This is explained in detail in [1℄.The elements e� 2 Hn and the s
alars �� are non-zero. This follows e.g. fromtheir spe
ialization to C [Sn ℄. The expli
it formula for �� is�� = Y
2� s
n(
)[hl(
)℄: (2.4.4)A proof is given in [26℄ (see [3℄ for an exposition).We de�ne y� = 1�� e� 2 Hnwhi
h is an idempotent.The standard 
losure of a braid (or a tangle) indu
es a linear map from Hn tothe skein of the plane. We give a short skein-theoreti
 proof that e� is non-zero.In fa
t, we even prove more. 23



Lemma 2.4.6 The Hom
y polynomial of the 
losure of e� is non-zero for anyYoung diagram �.Proof We denote the number of 
ells of � by n. We spe
ialize x = v = s = 1. Thes
alars are now Z[Æ℄ where Æ is an indeterminate. We shall 
onsider the Hom
ypolynomial of the 
losure of e�. The skein relations for x = v = s = 1 imply thatwe 
an swit
h any 
rossings and remove any 
urls without altering the Hom
ypolynomial. Therefore, the Hom
y polynomial of a diagram in the plane is equalto Æ
 where 
 is the number of 
omponents of the diagram. We 
laim that the
losure of e� is a linear 
ombination of diagrams with at most n 
omponents, andthat exa
tly one diagram o

urs with n 
omponents (and non-zero 
oeÆ
ient).This implies that the Hom
y polynomial of the 
losure of e� is a polynomial in Æof degree n and is thus non-zero. Hen
e, e� is non-zero.Clearly, the number of 
omponents of the 
losure of an (n; n)-braid is givenby the number of 
y
les in the 
y
le de
omposition of the permutation of Sndetermined by this braid. Sin
e e� is a linear 
ombination of (n; n)-braids, all theappearing diagrams in the 
losure of e� have at most n 
omponents. It remainsto prove that exa
tly one summand of e� determines the identity permutation ofSn.By simply using distributivity, we 
an write e� as a linear 
ombination ofbraids, e� = E�(a)w��E�_w�1�� =X� t��where � = 
w��
0w�1��for some braids 
 and 
0 whi
h appear as a summand in E�(a) resp. E�_(b).First, we 
onsider strings of � that belong to the same 
omponent a�i ofE�(a). They do not 
ross in w�� sin
e the r-th string of the 
omponent a�i isjoined to some string of the 
omponent b�_r whi
h appear in order from left toright in E�_(b) and the 
ondition on positive permutation braids ensures thatthese strings of w�� do not 
ross. Furthermore they do not 
ross in 
0 sin
e theybelong to di�erent 
omponents b�_j and b�_k of E�_(b). Finally, they do not 
rossin w�1�� sin
e they do not 
ross in w��.Similarly, strings of � that belong to the same 
omponent b�_j of E�_(b) donot 
ross in either 
, w��, or w�1�� .Hen
e, if two strings of � 
ross in either 
 or 
0 then � = 
w��
0w�1�� 
annotdetermine the identity permutation. Sin
e every a�i and b�_j 
ontains the identitybraid as a summand (with 
oeÆ
ient 1), we see that the identity braid � = idnis the only summand of the 
losure of e� that has n 
omponents. Furthermore,its 
oeÆ
ient is 1 as 
laimed. |24



Figure 2.10: The n-string braid T (j) for n = 7 and j = 4.By equation 2.4.2 there exists for every 
entral element B of Hn a s
alar bsu
h that Be� = be�. We shall be interested in the tangle T (n) depi
ted on theleft of �gure 2.12 whi
h is the identity braid (on n strings) with a simple 
losed
urve en
ir
ling it. It is 
learly 
entral in Hn.Lemma 2.4.7 We have T (n)e� = 
�e�in Hn for any Young diagram � with n 
ells. The s
alar 
� is given by
� = x2n0�v�1 � vs� s�1 + v�1s l(�)Xk=1(s2(�k�k) � s�2k)1A :Proof We denote by T (j) the n-string braid �j � � ��2�1�1�2 � � ��j as depi
ted in�gure 2.10. By equation (5.1) of the proof of theorem 17 in [2℄ we haveE�(a)w��T (j)E�_(b)w�1�� = x2(j�1)s2
n(p(j))e�in Hn where p(j) is the 
ell of � numbered j in the standard tableau that reads1; 2; 3; : : : ; n from left to right and top to bottom.We remark that the formula given in [2℄ di�ers from this one by a fram-ing fa
tor xv�1 be
ause they have used a framing di�erent from the bla
kboardframing.The equation in �gure 2.11 follows from the skein relation x�1�i�x��1i = z id(where z = (s� s�1)) whi
h is applied to the upper right 
rossing. An equivalentrelation is depi
ted in �gure 2.12. Indu
tively, we 
an therefore write T (n) as thelinear 
ombinationT (n) = x2n v�1 � vs� s�1 idn + zx2v�1 nXj=1x2(j�1)T (n� j + 1):
25



x�1 �x = z
Figure 2.11: A relation in the He
ke algebra Hn.

= x2 +zx2v�1
Figure 2.12: An equivalent depi
tion of the equation in �gure 2.11.Hen
e, T (n)e� = 
�e� with
� = x2n v�1 � vs� s�1 + v�1z nXj=1x2jx2(n�j)s2
n(p(j))= x2n 0�v�1 � vs� s�1 + v�1z nXj=1 s2
n(p(j))1A :Now nXj=1 s2
n(p(j)) = l(�)Xk=1 �kXi=1 s2
n(k;i)= l(�)Xk=1 �kXi=1 s2(i�k)= l(�)Xk=1 �k�1Xi=0 s2(i�k+1)= l(�)Xk=1 s2(�k+1) �k�1Xi=0 s2i26



= l(�)Xk=1 s2(1�k) s2�k � 1s2 � 1= ss� s�1 l(�)Xk=1(s2(�k�k) � s�2k):Hen
e, 
� = x2n0�v�1 � vs� s�1 + v�1s l(�)Xk=1(s2(�k�k) � s�2k)1A : |Lemma 2.4.8 The s
alars 
� are pairwise di�erent and non-zero for all Youngdiagrams �.Proof The statement is even true for x = 1. We have
� = v�1 � vs� s�1 + v�1s l(�)Xk=1(s2(�k�k) � s�2k):We 
an 
onsider 
� as a Laurent polynomial in v. The 
oeÆ
ient of v in 
� is(s� s�1)�1, and therefore 
� is non-zero. Hen
e, 
� is non-zero.Let � and � be Young diagrams with 
� = 
�. Sin
e s2(�k�k) � s�2k = 0 fork � l(�), we dedu
e from 
� = 
� thatmXk=1(s2(�k�k) � s�2k) = mXk=1(s2(�k�k) � s�2k);where m = max(l(�); l(�)). Hen
emXk=1 s2(�k�k) = mXk=1 s2(�k�k):The sequen
es (�k � k) and (�k � k), 1 � k � m, are stri
tly de
reasing. Theabove equality implies therefore that �k = �k for k = 1; : : : ; m, hen
e � = �. |2.5 Semi-simple de
omposition of HnThis exposition follows the a

ount of Blan
het in [3℄. He des
ribes an expli
itisomorphism fromHn to a disjoint sum of matrix algebras by generalizing Wenzl'sresults of [25℄. We use the three-dimensional version H� of the He
ke algebra asintrodu
ed in [2℄ where the ar
s end at the 
entres of the 
ells of a Young diagram27



rather than along a straight line. This model supports the understanding of the
onstru
tion.It is helpful but not ne
essary to know the value of the s
alar �� from equation(2.4.4). The knowledge of �� allows to have a better 
ontrol of the s
alars inlemma 2.5.4.We �x the index n of Hn throughout this se
tion. Given standard tableaux tand � of the same Young diagram � with n 
ells we 
onstru
t an element �t� ofHn. In this 
ontext we say that standard tableaux s and � are suitable for �s� ifs and � belong to the same Young diagram.We denote by Mi�i the algebra of (i � i)-matri
es over the same ring as thering of s
alars for Hn. We re
all that d� denotes the number of standard tableauxfor the Young diagram �.To simplify our notation, we denote the Young diagram that underlies a stan-dard tableau t by �(t). We use the notation of the Krone
ker-delta Æ�s whi
h isde�ned by Æss = 1 and Æ�s = 0 if � 6= s. We shall prove that �t��s� = Æ�s�t� forany (suitable) standard tableaux t, � , s and �. This implies that the linear mapMj�j=nMd��d� ! Hnmapping the basis element Et� (that has all entries equal to zero ex
ept the entry1 at the position (t; �)) to �t� is an algebra homomorphism.Being 
areful, we have to 
onsider the s
alars of Hn. First of all, we 
an
onsider the �eld Q(x; v; s) of rational fun
tions in x, v and s. But we 
anrestri
t the s
alars to the subring of the �eld of rational fun
tions in x, v ands generated by x�1, v�1, s�1, and (si � s�i)�1 for i = 1; : : : ; n. This is be
ausethe idempotent y� = (1=��)e� 
an be de�ned in this ring sin
e the denominatorof �� is by equation (2.4.4) a produ
t of terms (sj � s�j) for j being the hooklength of some 
ell of �. Sin
e � has n 
ells in total, it is suÆ
ient to 
onsiderj = 1; : : : ; n.We denote by y� the three-dimensional version of the idempotent 
orrespond-ing to �. Given a Young diagram � we 
an remove one of its extreme 
ells to geta Young diagram � with one 
ell less. Given a standard tableau t of � there isa 
anoni
al way to 
hoose an extreme 
ell by 
hoosing the 
ell with the highestnumber in t. We denote the resulting standard tableau by t0. We denote by tkthe k-fold appli
ation of this removal of 
ells.There is an obvious in
lusion of the three-dimensional He
ke algebra H� inthe He
ke algebra H� by adding a straight ar
 that 
onne
ts the boundary pointsbased at the removed 
ell. We denote this in
lusion by g 7! g 
 1.Given a standard tableaux t of a Young diagram � we de�ne �t in H� by�t = (y�(tn�1) 
 1n�1)(y�(tn�2) 
 1n�2) � � � (y�(t0) 
 11)y�(t)28



where 1k is the identity braid on k strings. We remark that ytn�1 
 1n�1 is theidentity braid. We de�ne 
t in H� similarly as
t = y�(t)(y�(t0) 
 11) � � � (y�(tn�2) 
 1n�2)(y�(tn�1) 
 1n�1):Given standard tableaux t and � of a Young diagram � we de�ne an element �t�in Hn by �t� = Ft�t
�F��where Ft resp. F�� is a tangle that 
onne
ts upwards resp. downwards the npoints arranged along the 
ells of � to the n points arranged along a line. Wenumber the points along the line by 1; 2; : : : ; n from left to right. The standardtableau t des
ribes a numbering of the upper boundary points of H�. We des
ribein a re
ursive way the proje
tion of this braid to the plane that 
ontains the uppern points of H�. For i = 1; : : : ; N we 
onne
t the points numbered N � i + 1 bya line that goes only towards right and upwards, that is disjoint to all i � 1previously drawn lines, and that is disjoint to the standard tableaux ti.F�� is de�ned as the mirror image of F� .Lemma 2.5.1 We have �t��s� = Æ�s�t� for any (suitable) standard tableaux t,� , s and �.Proof We denote by � and � the Young diagrams given by the standard tableaux� resp. s. We �rst 
onsider the 
ase that � and � are di�erent. We have in thethree-dimensional pi
ture of �t��s� a produ
t in whi
h the fa
tor y� appears in
� and the fa
tor y� appears in �s. Any produ
t 
ontaining these fa
tors is equalto zero be
ause of the three-dimensional equivalent of equation (2.4.3).If the Young diagrams � and � are equal but � and s are di�erent then thereexists a maximal integer k so that �(�k) = �(sk) but �(�k+1) 6= �(sk+1). By thesame argument as above we dedu
e that 
�F�� Fs�� is equal to zero be
ause wehave a produ
t 
ontaining y�(�k+1) and y�(sk+1). The other strings do not interferebe
ause of our de�nition of the 
onne
ting braids F�� and Fs.Finally, if � and s are equal, we have that�t���� = Ft�t
�F�� F���
�F��= Ft�t
���
�F��= Ft�t
�F��= �t�where we used that 
��� = y�(�). This is true be
ause y�(y� 
 1)y� = y� in H�for any Young diagram � and subdiagram �, j�j = j�j + 1. We �nally show thisequality. 29



First, we note that we 
an extra
t a fa
tor E�_(b) 
 1 from E�_(b) at theexpense of a s
alar �. This is be
ause the quasi-idempotent bi of Hi satis�esbibi = �ibi for a non-zero s
alar �i. We thus getE�_(b)(E�_ 
 1) = �E�_(b)where � = l(�_)Yj=1 ��_j :Similarly, (E�(a)
 1)E�(a) = �E�(a)where � = l(�)Yi=1��i :Se
ond, we have that E�_(b)E�(a) is a quasi-idempotent of H� with the sames
alar �� as for E�(a)E�_(b). This follows frome2� = (E�(a)E�_(b))2 = ��E�(a)E�(b) = ��e�by reading the involved diagrams from bottom to top whi
h is an anti homomor-phism that leaves the ai and bj invariant.Hen
e,y�(y� 
 1)y� = 1�2���E�(a)E�_(b)((E�(a)E�_(b))
 1)E�(a)E�_(b)= 1�2�����E�(a)E�_(b)(E�_(b)
 1)((E�(a)E�_(b))
 1)�(E�(a)
 1)E�(a)E�_(b)= 1�2�����E�(a)E�_(b)((E�_(b)E�(a))
 1)2E�(a)E�_(b)= 1�2���E�(a)E�_(b)((E�_(b)E�(a))
 1)E�(a)E�_(b)= 1�2�E�(a)E�_(b)E�(a)E�_(b)= 1��E�(a)E�_(b)= y�: |30



Lemma 2.5.2 The 
losure of �t� in the skein of the annulus is equal to zero ift and � are di�erent tableaux of the same Young diagram. The 
losure of �tt isequal to the 
losure of y�(t).Proof The 
losure of �t� = Ft�t
tF�t is equal to the 
losure of 
�F�� Ft�t be-
ause we 
an move the fa
tors around in the annulus, i.e. permute them 
y
li
ally.By the same argument as in the proof of lemma 2.5.1 we have therefore that the
losure of �t� is equal to zero if t and � are di�erent, and the 
losure of �tt isequal to the 
losure of y�(t). |Lemma 2.5.3 The elements f�t�g of Hn are linearly independent where t and �range over all suitable standard tableaux of Young diagrams with n 
ells.Proof Assume that Xt;� �t��t� = 0for some s
alars �t� . Let s and � be any suitable Young tableaux. Then multi-pli
ation of the above equation by �ss on the left and multipli
ation by ��s onthe right leads to �s��ss = 0by lemma 2.5.1. In order to dedu
e that �s� is equal to zero for all suitable Youngtableaux s and �, we have to show that �ss is non-zero in Hn for any standardtableaux s.As shown in lemma 2.5.2, the 
losure of �ss in the skein of the annulus isequal to the 
losure of y�(s) in the skein of the annulus. Even the in
lusion of the
losure y�(s) in the skein of the plane is non-zero by lemma 2.4.6. Hen
e, �ss isnon-zero in Hn. |Lemma 2.5.4 The elements �t� for any suitable standard tableaux t and � area basis for Hn when the s
alars are the �eld of rational fun
tions in x; v and s.Proof We re
all that d� is the number of standard tableaux for the Young dia-gram �. The number of elements �t� in Hn is therefore given by Pj�j=n d2� whi
his known to be equal to n! by an argument about the standard de
omposition ofthe group algebra C [Sn ℄ into a dire
t sum of matrix algebras.Sin
e the elements �t� are linearly independent, and the dimension of Hn isn!, they form a basis. |In order to de�ne the �t� we only need the terms (si � s�i) to be invertiblefor all i � 1. The question is: If r is a subring of the �eld of rational fun
tionsin whi
h all the (si � s�i) are invertible, are the �t� a basis for Hn? They arelinearly independent over r, but do they span Hn over r? Blan
het 
laims in hispaper that this already follows from lemma 2.5.1. But it seems that the followingadditional argument is ne
essary. 31



Lemma 2.5.5 Let k be a �eld, and r be a subring of k. Let 
 be an algebraautomorphism ofMn�n over the �eld k. If 
 restri
ts to an algebra endomorphism
 of Mn�n over the ring r then 
 is an automorphism of the algebra Mn�n overthe ring r.Proof We have to show that 
�1 is an algebra endomorphism over the ring r.By the Noether-Skolem-Theorem (see e.g. [10℄), we have that the automorphism
 of Mn�n over the �eld k is the 
onjugation by some invertible element G ofMn�n whose entries lie in k.That 
 restri
ts to an endomorphism over the ring r means that GDG�1 hasentries in r for any (n�n)-matrix D whose entries lie in r. We have to show thatthe entries of G�1DG lie in r as well sin
e 
�1 is the 
onjugation with G�1.We denote by Eij the (n � n)-matrix that di�ers from the zero-matrix onlyby the entry (i; j) whi
h is equal to 1. For any (n�n)-matri
es A and B we haveAEijB = 0BBBB� (A1iBj1) (A1iBj2) � � � (A1iBjn)(A2iBj1) (A2iBj2) � � � (A2iBjn)... ... ...(AniBj1) (AniBj2) � � � (AniBjn) 1CCCCA = (AkiBjl)1�k;l�nfor any i; j = 1; : : : ; N . Similarly,BEijA = (BpiAjq)1�p;q�n:This means that all the entries of AEijB for all 1 � i; j � n are a permutation ofall the entries of BEijA for all 1 � i; j � n. Hen
e, if all the entries of GEijG�1for 1 � i; j � n lie in the ring r then all the entries of G�1EijG for 1 � i; j � nlie in r. Sin
e the matri
es Eij are a linear basis over r, we have that G�1DGhas entries in r for any matrix D whose entries lie in r. |We re
all that for a standard tableau t we de�ned t0 to be the standard tableauderived from t by deleting the 
ell with the highest label. Blan
het observes intheorem 1.13 in [3℄ thaty� 
 1 = X���j�j=j�j+1 (y� 
 1)y�(y� 
 1):By applying this result to the term (y�
 1) in the middle of �t� 
 1 2 Hn+1, onegets in Hn+1Lemma 2.5.6 We have �t� 
 1 = Xs0=t;�0=� �s�:for any (suitable) tableaux t and � . 32



Chapter 3Closures of idempotents areS
hur fun
tions
3.1 Introdu
tionThe He
ke algebra Hn interpreted as the Hom
y skein of the disk with 2n bound-ary points with top-down orientation 
ontains idempotents (1=��)e� that are in-dexed by Young diagrams with n 
ells. Their 
losures Q� are known to be a basisfor the image of Hn under the 
losure map in the skein of the annulus.Previous works have shown that the map from the algebra of Young diagramsto the skein of the annulus mapping � to Q� is an algebra isomorphism. Buteither the proofs used results beyond the s
ope of skein theory like [1℄ or theywere sket
hy and had gaps like [14℄.In theorem 3.5.6 we shall give a self 
ontained proof solely based on skeintheory. The idea is to 
onsider an element S� = det(Qd�i+j�i)1�i;j�l(�) and toshow that it behaves in the same way as Q� under the addition of a meridianloop of the annulus. This is suÆ
ient to dedu
e that S� = Q�.The skein of the annulus C 0 with two boundary points has been 
onsiderede.g. in [14℄, [8℄ and [18℄. The version used here and in [18℄ enables us to de�nea 
ommutative multipli
ation for C 0 be
ause the boundary points lie on di�erentboundary 
omponents of the annulus.3.2 The skein C of the annulusThe Hom
y skein of the annulus shall be denoted by C. We furthermore 
hoose anorientation for the 
ore of the annulus. In all our depi
tions, the annulus is giventhe standard anti-
lo
kwise orientation, and the 
ore is oriented anti-
lo
kwise aswell. 33



Figure 3.1: The multipli
ation in the skein of the annulus C.

Figure 3.2: The 
losure map from Hn to C.Let D1 and D2 be two diagrams in the annulus S1 � [0; 1℄. We 
an bring D1into S1�[0; 1=2), and D2 into S1�(1=2; 1℄ by a regular isotopy. Then the produ
tofD1 andD2 is de�ned as the diagramD1[D2. The produ
t is 
ommutative sin
eD1D2 and D2D1 di�er by regular isotopy. The empty diagram is the identity.The produ
t of D1 and D2 is depi
ted as putting the inward 
ir
le of theannulus 
ontaining D1 next to the outward 
ir
le of the annulus 
ontaining D2as shown in �gure 3.1.Figure 3.2 depi
ts an annulus with a set of n oriented ar
s. A dis
 is removedfrom the annulus in su
h a way that we 
an insert a diagram from Hn su
h thatthe orientations of the ar
s mat
h. This fa
tors to a map from Hn to C, denotedby � : D 7! D̂. This is a spe
ial 
ase of a wiring. We de�ne Q� to be the 
losureof the idempotent y� of Hn where n is the number of 
ells of �,Q� = ŷ� 2 C:We denote the image of Hn in C of the 
losing map by Cn. By C+ we denotethe submodule of C spanned by all C0; C1; : : :,C+ = *[n�0Cn+ :34



Figure 3.3: En
ir
ling a diagram in the annulus.We de�ne a linear map � from C+ to C+ that is the en
ir
ling of any diagramin C+ by a single loop as shown in �gure 3.3. Similarly, ~� is the same map butwith the opposite orientation of the additional loop.X+i 2 Ci is de�ned as the 
losure of the braid �i�1�i�2 : : : �1. X�i derives fromthe diagram X+i by reversing the orientation. Any diagram D in the annulus
an be written in the skein of the annulus C as a linear 
ombination of totallydes
ending 
urves. It thus follows thatX+i andX�j for all integers i and j generateC. In fa
t, Turaev proved in [23℄ that they generate C freely as a 
ommutativealgebra. We shall prove the weaker result that X+1 ; X+2 ; : : : generate C+ freely asa 
ommutative algebra. The weighted degree of a monomial (X+i1 )j1 � � � (X+ik)jk isde�ned as i1j1 + � � � ikjk.Lemma 3.2.1 The dimension of Ck is equal to the number of partitions of k.The elements X+1 ; X+2 ; : : : are algebrai
ally independent in C+.Proof Indu
tively one proves that Ck is spanned by the monomials in fX+i g ofweighted degree k for any integer k � 0. Hen
e, the dimension of Ck is at mostp(k) by whi
h we denote the number of partitions of k. We denote by C�n thesubmodule of C+ whi
h is spanned by all elements of Ck, 0 � k � n. Therefore,the dimension of C�n is at most pn = p(0) + p(1) + � � �+ p(n).On the other hand, all the 
losures of e� lie in C�n provided that the Youngdiagrams � have at most n 
ells. The 
losures of the e� are non-zero by lemma2.4.6, and they are linearly independent sin
e they have di�erent eigenvalues un-der the map �. Hen
e, the dimension of C�n is at least pn. Hen
e, the dimensionof C�n is equal to pn. Sin
e every element of C�n is a linear 
ombination of mono-mials in fX+i g of weighted degree lower than or equal to n, these monomials haveto be linearly independent. Sin
e this is true for all n � 0, we have that all themonomials in fX+i g are linearly independent. |
35



Figure 3.4: The multipli
ation in C 0.3.3 The variant skein C 0 of the annulusWe require an orientation of the 
ore of the annulus. The orientation of theannulus indu
es an orientation on ea
h of its boundary 
urves. We 
all 
1 theboundary 
urve for whi
h this orientation agrees with the orientation of the par-allel 
ore. We 
all 
2 the other boundary 
omponent. We pi
k points 
1 2 
1 and
2 2 
2. We denote by C 0 the skein S(S1 � [0; 1℄;� = f
1g ℄ f
2g).When we embed the annulus in the plane with the standard 
ounter-
lo
kwiseorientation and the 
ore oriented 
ounter-
lo
kwise as well, then 
1 is the outerboundary 
omponent, and 
2 the inner.Similarly to C, we turn C 0 into an algebra. In the standard pi
ture, the innerboundary point of a diagram � 
omes together with the outer boundary point ofa diagram � as shown in Figure 3.4.The single straight ar
 e 
onne
ting the two marked points is the identityelement, as shown in �gure 3.5. The 
ommutativity is not immediate but nev-ertheless turns out to be true as we shall see in lemma 3.3.3 and in the remarkfollowing it.The skein used in [14℄ has both of its two boundary points on the outerboundary 
ir
le of the annulus. Furthermore, they lie at the right. There is amap from C 0 to this variant skein. First, one turns the annulus over to itselfkeeping a verti
al line �xed. Then one adds the ar
 from �gure 3.6 from below.We have two operations of C on C 0. If � is an element of C and x is an elementof C 0 we de�ne �x as sta
king � above x as shown in Figure 3.7. Similarly x� isde�ned as putting � below x.We de�ne a 
losing operation r 7! r̂ from C 0 to C whi
h means adding thear
 in �gure 3.8 from above to a diagram r. In order that this is possible, theannulus for C has to be slightly larger than C 0. The framing of the diagram r̂ isde�ned to be its bla
kboard framing. We remark that this 
losing operation isnot an algebra homomorphism. The linear map from Hn to C given by 
losing atangle t is denoted by t 7! t̂ as well. This should not lead to 
onfusion.36



Figure 3.5: The identity e in C 0. Figure 3.6: A map between dif-ferent skeins of the annulus afterturning the annulus over.
�x

Figure 3.7: Operation of C on C 0 from the left.
Figure 3.8: The additional ar
 for the 
losure.

x x
Figure 3.9: Map �0 from Hn to C 0.37



Figure 3.10: The ar
 a (at the left) and its inverse a�1 (at the right).For any integer n � 1 we have a linear map �0 : Hn ! C 0 as shown in �gure3.9. We denote the image of Hn under this map by C 0n. We de�ne C 0+ to be thesubmodule of C 0 spanned by all C 00; C 01; : : :,C 0+ = *[n�0C 0n+ :We shall use the notation �0n : Hn ! C 0 if it is ne
essary to emphasize n.We shall denote by a the element of C 0 that is the image of the identity braid12 of H2 under the map �0. It is the ar
 that joins the two boundary points ofC 0 as shown on the left in �gure 3.10.Lemma 3.3.1 For any integer n � 1 we haveC 0n = *n�1[k=0Cn�k�1ak+ :Proof We have h[n�1k=0Cn�k�1aki � C 0n be
ause
̂ak = �0n[(
 
 idk+1)�k�k�1 � � ��1℄for any 
 2 Hn�k�1.Sin
e Hn is spanned by braids, C 0n is spanned by the images under �0n ofbraid diagrams. We prove for any n-string braid diagram � that �0n(�) 2h[n�1k=0Cn�k�1aki by indu
tion on the number of 
rossings of �.If � has no 
rossings then it is the identity braid on n strings, hen
e �0n(�) isequal to an�1.Let � have r � 1 
rossings. Let ~� be another braid diagram on n strings thatdi�ers from � by swit
hing some 
rossings from under- to over
rossings or vi
e-versa. Then � � ~� is in the He
ke algebra a linear 
ombination of diagrams withless than r 
rossings be
ause of the skein relation. We may assume indu
tivelythat the image under �0n of ea
h of those summands lies in h[n�1k=0Cn�k�1aki.Hen
e �0n(�) 2 h[n�1k=0Cn�k�1aki if and only if �0n( ~�) 2 h[n�1k=0Cn�k�1aki:38



We 
hange the 
rossings of � in su
h a way to a new braid ~� so that the ar

 of �0n( ~�) whi
h 
onne
ts the boundary points is totally des
ending along itsorientation, and 
 lies below any other 
omponent of �0n( ~�). Then 
 is regularlyisotopi
 to a power of a, say al; l � 0.The other 
omponents of �0n( ~�) are the 
losure of the braid that derives from~� by deleting the (l+1) strings that belong to 
. Hen
e �0n( ~�) 2 Cn�l�1al, hen
e�0n(�) 2 h[n�1k=0Cn�k�1aki. |We immediately dedu
eCorollary 3.3.2 C 0+ is a graded 
ommutative subalgebra of C 0.We have thus proved that C 0+ is linearly spanned as a left-module over C+ by thepowers of a. We 
an prove even more.Lemma 3.3.3 C 0+ is the polynomial algebra in a with the a
tion of C+ on theleft.Proof We have to show that the powers of a are linearly independent for 
oeÆ-
ients in C+. So let us assume that
0e+ 
1a+ 
2a2 + � � �+ 
mam = 0 (3.3.1)for m � 0 and 
oeÆ
ients 
0; 
1; : : : ; 
m in C+. The 
losure of e is equal to Æ timesthe empty diagram ;. The 
losure gi of ai is very similar to X+i , and the gi arealgebrai
ally independent in C+ by essentially the same argument as in the proofof lemma 3.2.1.Taking the 
losure transforms the equation (3.3.1) in C 0+ into the followingequation in C+ 
0Æ;+ 
1g1 + 
2g2 + � � �+ 
mgm = 0:If we �rst multiply equation (3.3.1) by ak for some 1 � k � m then we get aftertaking the 
losure that
0gk + 
1gk+1 + 
2gk+2 + � � �+ 
mgk+m = 0:We 
an summarize these (m + 1) equations in matrix form as0BBBBBBB� Æ; g1 g2 � � � gmg1 g2 g3 � � � gm+1g2 g3 g4 � � � gm+2... ... ... . . . ...gm gm+1 gm+2 � � � g2m
1CCCCCCCA0BBBBBBB� 
0
1
2...
m

1CCCCCCCA = 0BBBBBBB� 000...0
1CCCCCCCA :

39



[i+1℄�i+1 ai+1 = x�i�i ai + s�1[i℄�i ai
Figure 3.11: Depi
tion of lemma 3.4.1.When we express the determinant of the (m + 1) � (m + 1)-matrix as a sumvia the Leibniz rule we see that the monomial g2g4 � � � g2m appears only on
e andits 
oeÆ
ient is equal to Æ. Sin
e C+ is freely generated by the empty diagramand g1; g2; : : :, the determinant is non-zero. Sin
e C+ is an integral ring, we 
anembed it into a �eld k. Therefore the linear module endomorphism of C�n+ givenby the matrix 
an be extended to a endomorphism of a ve
tor spa
e over the�eld k. Sin
e the determinant of this ve
tor spa
e endomorphism is equal to thedeterminant of the module endomorphism, the module endomorphism is �nallyseen to be inje
tive. Hen
e (
0; 
1; : : : ; 
m) = (0; 0; : : : ; 0).Hen
e e; a; a2; : : : are linearly independent over C+. |Remark By essentially the same argument, C 0+ as a right-module over C+ is thepolynomial algebra over C+ in a. Similarly, for either operation of C on C 0, C 0 isthe Laurent polynomial algebra over C in a.3.4 Basi
 skein relationsLet D be an element of the skein of the annulus C. The in
lusion of the annulusin the plane indu
es a (non-inje
tive) linear map from the skein of the annulus Cto the skein of the plane S(R2). We denote the Hom
y polynomial of the imageof D in S(R2) by hDi. The map D 7! hDi is an algebra homomorphism.We de�ne A0i to be the element �0(ai) of C 0+, and Ai to be the element �(ai)of C+ for any integer i � 0. We re
all that aiai = �iai for some non-zero s
alar�i. We de�ne hi = 1�iAi for any integer i � 0, and we de�ne hi = 0 for i < 0.The following lemma is depi
ted in �gure 3.11.Lemma 3.4.1 We have[i+ 1℄�i+1 A0i+1 = x�i�i (eAi) + s�1[i℄�i A0iain C 0+ for any integer i � 0. 40



ai = ai = (xs)i�j+1 ai
Figure 3.12: Moving 
rossings around in the annulus.Proof We haveai+1 = (ai 
 11)(1i+1 + (x�1s)�i + (x�1s)2�i�i�1 + � � �+ (x�1s)i�i�i�1 � � ��1)by equation (2.4.1). We 
onsider the term �0((ai 
 1)�i�i�1 � � ��j) as depi
tedin �gure 3.12. If 2 � j � i then we 
an move the braid �i�i�1 � � ��j around theannulus to the top of ai where the braid is read as �i�1�i�2 � � ��j�1 and these(i � j + 1) 
rossings are swallowed by ai at the expense of the s
alar (xs)i�j+1.We thus get �0((ai 
 11)�i�i�1 � � ��j) = (xs)i�j+1�0(ai)afor 2 � j � i. For j = 1 we have the summand �0((ai
 11)�i�i�1 � � ��1) whi
h isequal to eAi. We thus getA0i+1 = �0(ai+1)= �0(ai 
 11) + iXj=1(x�1s)i�j+1�0((ai 
 11)�i�i�1 � � ��j)= A0ia+ (x�1s)i(eAi) + iXj=2 s2(i�j+1)A0ia= (x�1s)i(eAi) + A0ia i+1Xj=2 s2(i�j+1)= (x�1s)i(eAi) + si�1[i℄A0ia:Sin
e �i+1 = �isi[i + 1℄ by lemma 2.4.2, we get[i + 1℄�i+1 A0i+1 = x�i�i (eAi) + s�1[i℄�i A0ia: |41



ai = x�1v � ai = x�1v(xs)1�i� ai
Figure 3.13: The 
losure of A0ia.

ai+1 = (xs)�i � ai+1
Figure 3.14: The 
losure of A0i.Lemma 3.4.2 We have hhi+1i = hhii v�1si � vs�isi � s�ifor any integer i � 0.Proof Using the skein relations in �gures 3.13 and 3.14 we dedu
e from lemma3.4.1 by taking the 
losure and Hom
y polynomial in R2 that[i + 1℄(xs)�i hhi+1i = x�iv�1 � vs� s�1 hhii+ s�1[i℄x�1v(xs)1�i hhii :Hen
e, [i + 1℄ hhi+1i = hhii siv�1 � vs� s�1 + [i℄v!= hhii siv�1 � siv + siv � s�ivs� s�1= hhii siv�1 � s�ivs� s�1 : |42



We de�ne Bi to be the 
losure of the quasi-idempotent bi 2 Hi in the skein ofthe annulus.Corollary 3.4.3 We have* 1�i+1Bi+1+ = * 1�iBi+ vsi � v�1s�isi � s�ifor any integer i � 0.Proof This follows dire
tly from lemma 3.4.2 by applying the map 
 from sub-se
tion 2.4.1 whi
h inter
hanges the quasi-idempotents ai and bi. |We de�ne an element ti = xi(hie)� x�i(ehi)in C 0+ for any integer i. We remark that ti = 0 for i � 0.Lemma 3.4.4 We have ti = (s�1 � s) [i℄�iA0iafor any integer i � 0.Proof We have [i+ 1℄�i+1 A0i+1 = x�i�i (eAi) + s�1[i℄�i A0iaby lemma 3.4.1. By applying the map � from subse
tion 2.4.1 we get[i+ 1℄�i+1 A0i+1 = xi�i (Aie) + s[i℄�i A0ia:The right hand sides of the above two equations show thatxi�i (Aie)� x�i�i (eAi) = (s�1 � s) [i℄�iA0iafor any integer i � 0. |Corollary 3.4.5 We have t̂i = (s1�2i � s)x�ivhifor any integer i. 43



Proof From lemma 3.4.4 and the skein relation in �gure 3.13 we dedu
e thatt̂i = (s�1 � s)[i℄x�1v(xs)1�ihi= (s1�2i � s)x�ivhifor any integer i � 0. This equation holds for negative integers i as well be
ausehi and ti are equal to zero for negative i. |Corollary 3.4.6 We have(hie)^ = x�2i  v�1 � vs� s�1 + v(s1�2i � s)! hifor any integer i.Proof We have ti = xi(hie)� x�i(ehi). Taking the 
losure we dedu
et̂i = xi(hie)^ � x�i v�1 � vs�1 � shibe
ause the 
losure of ehi is equal to hi with a disjoint loop. By 
orollary 3.4.5we immediately get(hie)^ = x�2i  v�1 � vs� s�1 + v(s1�2i � s)!hi: |Lemma 3.4.7 We havetitj+1 � tjti+1 = (s2 � 1)(x�i(ehi)tj+1 � x�j(ehj)ti+1)for any integers i and j.Proof If either i or j is negative then the lemma is obviously true. Let i � 0and j � 0 from now on. We have[i+ 1℄�i+1 A0i+1 = x�i�i (eAi) + s�1[i℄�i A0iaby lemma 3.4.1. We multiply both sides by [j+1℄�j+1A0j+1a (on the right) and get[i + 1℄[j + 1℄�i+1�j+1 A0i+1A0j+1a = x�i[j + 1℄�i�j+1 (eAi)A0j+1a+ s�1 [i℄[j + 1℄�i�j+1 A0iaA0j+1a:44



We multiply both sides by the s
alar (s�1 � s)2 and use lemma 3.4.4 to get[i+ 1℄[j + 1℄(s�1 � s)2�i+1�j+1 A0i+1A0j+1a = (s�1 � s)x�i�i (eAi)tj+1 + s�1titj+1:The left hand side of the above equation is invariant under the inter
hange of iand j be
ause C 0+ is 
ommutative, and thus the right hand side is invariant underthis inter
hange. Hen
e,(s�1 � s)x�i�i (eAi)tj+1 + s�1titj+1 = (s�1 � s)x�j�j (eAj)ti+1 + s�1tjti+1:Equivalently,titj+1 � tjti+1 = (s2 � 1) x�i�i (eAi)tj+1 � x�j�j (eAj)ti+1)! : |3.5 Determinantal 
al
ulationsLemma 3.5.1 For any integer r � 2 and integers i1; i2; : : : ; ir we have an equal-ity of (r � r)-determinants in C 0�������� hi1e � � � hi1+r�2e ti1+r�1... ... ...hire � � � hir+r�2e tir+r�1 �������� = s2(r�1) �������� ehi1 � � � ehi1+r�2 ti1+r�1... ... ...ehir � � � ehir+r�2 tir+r�1 ��������when we set x = 1.Proof The reason for the substitution x = 1 is the fa
t that we 
an then writeLemma 3.4.7 in determinantal form as����� ti ti+1tj tj+1 ����� = (s2 � 1) ����� ehi ti+1ehj tj+1 ����� (3.5.2)for any integers i and j. Using the multilinearity of the determinant togetherwith ti = hie� ehi we dedu
e from the above equation that����� hie ti+1hje tj+1 ����� = s2 ����� ehi ti+1ehj tj+1 ����� ; (3.5.3)whi
h is our 
laim in the 
ase r = 2. 45



From equations (3.5.2) and (3.5.3) we dedu
e that����� ti ti+1tj tj+1 ����� = (1� s�2) ����� hie ti+1hje tj+1 ����� : (3.5.4)From now on let r � 3. We see that�������� ti1 ti1+1 ti1+2 � � � ti1+r�1... ... ... ...tir tir+1 tir+2 � � � tir+r�1 �������� = (1� s�2) �������� hi1e ti1+1 ti1+2 � � � ti1+r�1... ... ... ...hire tir+1 tir+2 � � � tir+r�1 ��������by developing the determinant on the left hand side by the �rst two 
olumns,applying equation (3.5.4) to ea
h summand, and redeveloping the determinant.By doing this su

essively for the 
olumns 1 and 2, 2 and 3, ..., (r� 1) and r, wededu
e that�������� ti1 � � � ti1+r�2 ti1+r�1... ... ...tir � � � tir+r�2 tir+r�1 �������� = (1� s�2)r�1 �������� hi1e � � � hi1+r�2e ti1+r�1... ... ...hire � � � hir+r�2e tir+r�1 �������� :On the other hand, if we use equation (3.5.2) instead of (3.5.4) in the aboveargument, we get�������� ti1 � � � ti1+r�2 ti1+r�1... ... ...tir � � � tir+r�2 tir+r�1 �������� = (s2 � 1)r�1 �������� ehi1 � � � ehi1+r�2 ti1+r�1... ... ...ehir � � � ehir+r�2 tir+r�1 �������� :Hen
e�������� hi1e � � � hi1+r�2e ti1+r�1... ... ...hire � � � hir+r�2e tir+r�1 �������� = s2(r�1) �������� ehi1 � � � ehi1+r�2 ti1+r�1... ... ...ehir � � � ehir+r�2 tir+r�1 �������� : |We de�ne S� = det(h�i+j�i)1�i;j�l(�) 2 Cnwhere n = j�j. We remark that we have proved the following theorem for the
ase � equal to a row diagram already in Corollary 3.4.6.Theorem 3.5.2 We have (S�e)^ = q�S� in C+ with the s
alarq� = v�1 � vs� s�1 + vs�1 l(�)Xk=1(s2(k��k) � s2k)when we set x = 1. 46



Proof We shall set x = 1 throughout our 
al
ulations. For any elements � and� of the skein of the annulus C we have (�e) � (�e) = (��)e in C 0. Hen
eS�e = det(h�i+j�ie)1�i;j�l(�):Similarly eS� = det(eh�i+j�i)1�i;j�l(�):We denote l(�) by n from now on. We remark that the 
losure (eS�)^ is equalto S� and a disjoint 
ir
le whi
h 
an be removed at the expense of the s
alar(v�1 � v)=(s� s�1).By the multilinearity of the determinant we 
an write the di�eren
e of anytwo (n� n)-determinants as a teles
ope sum of n (n� n)-determinants.�������� y11 � � � y1n... ...yn1 � � � ynn ��������� �������� z11 � � � z1n... ...zn1 � � � znn �������� =nXk=1 �������� y1 1 � � � y1k�1 (y1k � z1 k) z1 k+1 � � � z1n... ... ... ... ...yn 1 � � � ynk�1 (ynk � znk) znk+1 � � � znn �������� :Applying this formula to the determinants for S�e and eS� we getS�e� eS� =nXk=1 �������� h�1e � � � h�1+k�2e t�1+k�1 eh�1+k � � � eh�1+n�1... ... ... ... ...h�n+1�ne � � � h�n+k�1�ne t�n+k�n eh�n+k+1�n � � � eh�n �������� :By lemma 3.5.1 we dedu
eS�e� eS� =nXk=1 s2(k�1) �������� eh�1 � � � eh�1+k�2 t�1+k�1 eh�1+k � � � eh�1+n�1... ... ... ... ...eh�n+1�n � � � eh�n+k�1�n t�n+k�n eh�n+k+1�n � � � eh�n �������� :The appearing n determinants are very spe
ial be
ause ea
h of them is a sum ofterms of the form of a ti above a produ
t of hj's. Therefore the 
losure of ea
hdeterminant is t̂i above a produ
t of hj's. Expli
itly,(S�e)^ � (eS�)^ =nXk=1 s2(k�1) �������� h�1 � � � h�1+k�2 t̂�1+k�1 h�1+k � � � h�1+n�1... ... ... ... ...h�n+1�n � � � h�n+k�1�n t̂�n+k�n h�n+k+1�n � � � h�n �������� :47



We know by 
orollary 3.4.5 that t̂i is a s
alar multiple of hi. Hen
e(S�e)^ � (eS�)^ =nXk=1 �������� h�1 � � � h�1+k�2 �1 kh�1+k�1 h�1+k � � � h�1+n�1... ... ... ... ...h�n+1�n � � � h�n+k�1�n �nkh�n+k�n h�n+k+1�n � � � h�n ��������where �i k = s2(k�1)(s1�2(�i+k�i) � s)v. We use the notation �i = s2i�2�i�1v and
k = �s2k�1v, hen
e �i k = �i + 
k. By the multilinearity of the determinant weget(S�e)^ � (eS�)^ = (
1 + : : :+ 
n)S� +nXk=1 �������� h�1 � � � h�1+k�2 �1h�1+k�1 h�1+k � � � h�1+n�1... ... ... ... ...h�n+1�n � � � h�n+k�1�n �nh�n+k�n h�n+k+1�n � � � h�n �������� :We bring the sum over the determinants in a more appropriate form via thegeneral formula for variables wij and �k,nXk=1 �������� w1 1 � � � w1k�1 �1w1 k w1 k+1 � � � w1n... ... ... ... ...wn 1 � � � wnk�1 �nwnk wnk+1 � � � wnn �������� =(�1 + � � �+ �n) �������� w1 1 � � � w1n... ...wn 1 � � � wnn �������� :Applying this formula we get(S�e)^ � (eS�)^ = (
1 + � � �+ 
n)S� + (�1 + � � �+ �n)S�= (�1 1 + � � �+ �nn)S�:Sin
e (eS�)^ = (v�1 � v)=(s� s�1)S�, we have (S�e)^ = q�S� withq� = v�1 � vs� s�1 + �1 1 + � � �+ �nn= v�1 � vs� s�1 + vs�1 nXk=1(s2(k��k) � s2k): |We now formulate theorem 3.5.2 for general x.48



Theorem 3.5.3 We have (S�e)^ = q�S� in C+ with the s
alarq� = x�2j�jv�1 � vs� s�1 + x�2j�jvs�1 l(�)Xk=1(s2(k��k) � s2k):Proof We de�ne two maps from C+ to C+. The map � is the spe
ialization of xto 1. The map � maps every diagram D to x�wr(D)D. The maps � and � are notinverse to ea
h other in general. But, from the de�nition of the quasi-idempotentai 2 Hi we see that ��(Ai) = Ai for every integer i � 0. Sin
e the s
alar �i doesnot involve x, we dedu
e that ��(P ) = P for every polynomial in hi = 1�iAi. Inparti
ular, ��(S�) = S�. Hen
e q� = x�2j�j(q�jx=1). |We re
all the linear maps � and ~� from C+ to C+ as de�ned in se
tion 3.2.They en
ir
le a diagram by a single loop with a spe
i�ed orientation.Corollary 3.5.4 We have �(S�) = q�S� and ~�(S�) = ~q�S� whereq� = x�2j�jv�1 � vs� s�1 + x�2j�jvs�1 l(�)Xk=1(s2(k��k) � s2k);~q� = x2j�jv�1 � vs� s�1 + x2j�jv�1s l(�)Xk=1(s2(�k�k) � s�2k)for any Young diagram �.Proof The equality �(S�) = q�S� is the statement of theorem 3.5.3. We re
allthe map � from subse
tion 2.4.1. We have �(hi) = hi by lemma 2.4.4. Hen
e,�(S�) = S� be
ause S� is a polynomial in the hi. Hen
e, �(�(S�)) = ~�(S�), andthus ~�(S�) = �(q�)S�. |We re
all that Q� is the element of C+ whi
h is the 
losure of the idempotent(1=��)e� of Hn. We thus have to 
onsider some suitable subring of the rationalfun
tions in x; v and s as the ring of s
alars for the skein modules. We shalldes
ribe the stru
ture of the denominators appearing for Q� in lemma 3.6.3.Theorem 3.5.5 S� is equal to Q� for any Young diagram �.Proof Q� is non-zero by lemma 2.4.6. Sin
e the s
alars 
� and ~q� from lemma2.4.7 and 
orollary 3.5.4 are equal, we have that S� and Q� are eigenve
torswith the same eigenvalue under the map ~�. Possibly, S� = 0. The set of Q�for all Young diagrams � with n 
ells is a linear basis for Cn by lemma 3.2.1.Furthermore, the eigenvalues 
� are pairwise di�erent by lemma 2.4.8.49



Hen
e, we dedu
e that S� is a s
alar multiple of Q� for any Young diagram� with n 
ells. This s
alar is a rational fun
tion in x, v and s, and it is possiblyequal to zero.We denote the Young diagram 
onsisting of a single 
ell by . We have thatS = Q = â1 is the single 
ore 
ir
le in the annulus. Hen
e, Sn is equal to the
losure of the identity braid of Hn. On the other hand, by the multipli
ation rulefor Young diagrams, we have n = Xj�j=nd��where d� is the number of standard tableaux of �. Therefore,Sn = Xj�j=n d�S�:We have the following equality in the skein of the annulusQn = Xj�j=n d�Q�:This follows from the results in se
tion 2.5 as we explain now. We have provedthat Ps �ss = idn 2 Hn where the sum is over all standard tableaux of Youngdiagrams with n 
ells. The 
losure of any �ss in the annulus is equal to Q� whens is a standard tableaux of Q�. Finally, the 
losure of the identity braid of Hn isthe n-th power of the 
ore of the annulus whi
h is equal to Q .Sin
e S = Q , we dedu
e from the above two equations thatXj�j=n d�Q� = Xj�j=nd�S�:Sin
e fQ� j � has n 
ellsg is a basis of Cn, and any S� lies in Cn, and any S�di�ers from Q� by a s
alar, we get that Q� = S�. |Theorem 3.5.6 The map � 7! Q� is an isomorphism from the algebra of Youngdiagrams to C+ provided that any �� is invertible in the ring of s
alars.Proof The ring of Young diagrams Y is a free Abelian ring generated by the
olumn diagrams 
1; 
2; : : :. This is also true when we 
onsider Y as an algebraover any subring of the rational fun
tions in x; v and s.C+ is 
ommutative, hen
e there is a unique algebra homomorphism that ex-tends the map 
i 7! Q
i . This be
omes an algebra homomorphism for any ringof s
alars. In order that Q
i is de�ned, we need the invertibility of the s
alar(si � s�i).The Q� for all Young diagrams � are linearly independent. Hen
e the mapY ! C+ is inje
tive. It is also surje
tive be
ause the set of the Q� for Youngdiagrams � with n 
ells is a basis for Cn. |50



3.6 Appli
ationsWe shall abbreviate hQ�i by h�i.Lemma 3.6.1 For any Young diagram � we haveh�i = Yx2� v�1s
n(x) � vs�
n(x)shl(x) � s�hl(x) :Proof We have by 
orollary 3.4.3 thath
ki = kYi=1 v�1s1�i � vsi�1si � s�i : (3.6.5)By exer
ises I.2.5 and I.3.3 of [17℄ with q = s2; a = vs; b = v�1s we dedu
e fromthe above equation thatXi�0 h
iiX i = Yi�0 1 + aqiX1 + bqiX= Yi�0 1 + vs2i+1X1 + v�1s2i+1X ; (3.6.6)and s� = qn(�) Yx2� a� bq
n(x)1� qhl(x)= s2n(�) Yx2� s1+
n(x)�hl(x) v�1s
n(x) � vs�
n(x)shl(x) � s�hl(x) ;where n(�) = Pl(�)i=1(i�1)�i. The S
hur fun
tion s� is understood to be expressedas a polynomial in the elementary symmetri
 fun
tions e1; e2; : : : and then anyei is repla
ed by h
ii. The isomorphism of S
hur fun
tions and Young diagramsimplies that s� = h�i be
ause D 7! hDi indu
es an algebra homomorphism fromC to the s
alars. By examples 2 and 3 in se
tion I.1 of [17℄ we have2n(�) +Xx2�(1 + 
n(x)� hl(x)) = 0:Hen
e h�i = s� = Qx2�(v�1s
n(x) � vs�
n(x))=(shl(x) � s�hl(x)). |
51



Let F be an oriented surfa
e. We re
all that a framed link in F � (0; 1)is an embedded annulus with an oriented 
ore. Let L be a framed link withk 
omponents with a �xed numbering. Let S1 � [0; 1℄ be an annulus with anoriented 
ore. For diagrams D1; : : : ; Dk in S1 � [0; 1℄ we de�ne the de
oration ofL with D1; : : : ; Dk as the link (L;D1; : : : ; Dk)whi
h derives from L by repla
ing ea
h annulus Li by the annulus with thediagram Di su
h that the orientations of the 
ores mat
h. Ea
h 
omponent ofea
h Di has a small bla
kboard neighbourhood in the annulus, and this turns thede
orated link (L;D1; : : : ; Dk) into a framed link.The linear extension of de
orating satis�es the skein relations, and thus thede
oration of a framed link with elements of the skein of the annulus C gives awell de�ned element of the skein S(F � (0; 1)).Lemma 3.6.2 We have�(L;Q�_; : : : ; Q�_) = �(L;Q�; : : : ; Q�)s7!�s�1= �(L;Q�; : : : ; Q�)x7!�x; v 7!�v; s7!s�1for any framed link L and any Young diagrams �; : : : ; �.Proof We re
all from subse
tion 2.4.1 the map 
 from Hn to Hn that simplyrepla
es s by �s�1. We similarly de�ne 
 in other skeins, e.g. in the skein of theannulus or the skein of the plane. 
 permutes the idempotents derived from thequasi-idempotents an and bn. Hen
e 
(Qdn) = Q
n . We have (��)_ = �_�_ bylemma 1.2.2. Using the ring homomorphism Y ! C+ from theorem 3.5.6, thefa
t that Y is generated by 
olumn diagrams, and 
(Qdn) = Q
n, we dedu
e that
(Q�) = Q�_for any Young diagram �. Hen
e
(L;Q�; : : : ; Q�) = (L;Q�_; : : : ; Q�_)in the skein of the plane R2 .The se
ond 
laim follows by repeating the same argument with the map �from subse
tions 2.1.1 and 2.4.1 instead of 
. |The hook length hl(�) of a Young diagram � is de�ned as the maximum amongthe hook lengths of its 
ells. We have hl(�) = �1 + l(�)� 1.52



Lemma 3.6.3 The element Q� of the skein of the annulus 
an be written as alinear 
ombination of diagrams PD tDD where the s
alars tD are fra
tions whosedenominators are produ
ts of terms (si � s�i) for 1 � i � hl(�).Proof We have Q� = det(h�i+j�i)1�i;j�l(�)by theorem 3.5.5. We have by de�nition that hk = Qdk = (1=�k)âk, and weknow by lemma 2.4.2 that the denominator of �k is a produ
t of terms (si� s�i),1 � i � k. The maximum of the integers �i + j � i with 1 � i; j � l(�) is equalto �1 + l(�)� 1 whi
h is the hook length of �. |
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Chapter 4The de
orated Hopf link
4.1 The Hopf linkWe 
onsider the Hopf link with linking number 1 as depi
ted in �gure 4.1. Let aand b be any elements of the skein of the annulus. We denote by ha; bi the Hom
ypolynomial of the Hopf link with de
orations a and b on its 
omponents. We haveha; bi = hb; ai, and we abbreviate hQ�; Q�i by h�; �i for any Young diagrams �and �.The s
alars we are looking at are rational fun
tions in x, v and s to ensurethat the idempotents (1=��)e� of the He
ke algebra exist.In order to simplify the 
al
ulations of the Hom
y polynomial of the de
oratedHopf link, we often spe
ialize x to 1. The initial value of the Hom
y polynomialmay be re
overed from this spe
ialized value as des
ribed in the next lemma.This is similar to the proof of theorem 3.5.3.

Figure 4.1: The Hopf link.54



Lemma 4.1.1 Let � be an m-braid and 
 be an n-braid. Thenhx�wr(�)�̂; x�wr(
)
̂i = x2nmh�̂; 
̂ix=1:Proof We get a variant of the Hom
y polynomial by setting�u(D) = (xv�1)�wr(D)�(D)for any link diagram D. This Hom
y polynomial �u satis�es the skein relationv�1�1� v��11 = (s� s�1) id and a disjoint unknot 
an be removed at the expenseof the s
alar (v�1 � v)=(s� s�1). We see that �u(D) does not involve x for anydiagram D. Hen
e, �(D) = xwr(D)�(D)x=1for any link diagram D. The writhe of the Hopf link with de
orations �̂ and
̂ is equal to wr(�) + wr(
) + 2nm be
ause the 
on
ept of de
orations requiresthe orientation of the braids to be parallel to the orientation of the 
ore of theannulus. Hen
ehx�wr(�)�̂; x�wr(
)
̂i = x�(wr(�)+wr(
))h�̂; 
̂i= x�(wr(�)+wr(
))xwr(�)+wr(
)+2nmh�̂; 
̂ix=1= x2nmh�̂; 
̂ix=1: |Corollary 4.1.2 Let � and � be Young diagrams. Thenh�; �i = x2j�j j�jh�; �ix=1:Proof The 
losures of the quasi-idempotents an and bn of Hn are sums of termsfx�wr(�)�̂ where f is a power of �s and � is an n-braid. Sin
e the normalizedidempotents di�er from the quasi-idempotents by a rational fun
tion in s, their
losures Qdn and Q
n are sums of terms fx�wr(�)�̂ where f is a rational fun
tionin s and � is an n-braid. By the relation of Q� with S
hur fun
tions we 
an writeQ� as a homogeneous polynomial in Qdi (or Q
j ) of degree j�j. Hen
e, Q� is asum of terms fx�wr(�)�̂ where f is a rational fun
tion in s and � is a braid on j�jstrings. We 
an now apply lemma 4.1.1 to Q� and Q� for any Young diagrams �and �. We get h�; �i = x2j�j j�jh�; �ix=1. |Lemma 4.1.3 We have hQ�; bihQ�; 
i = hQ�i hQ�; b
i:for any elements b and 
 of C+ and any Young diagram �.55



Proof Let � be any Young diagram and b and 
 be any elements of C+. Wedenote the number of 
ells of � by n. The element Q� of C+ is the 
losure ofthe idempotent derived from the quasi-idempotent e� of the He
ke algebra Hn.The produ
t of e� with any 
entral element of Hn is a s
alar multiple of e� byequation (2.4.2). The identity braid on n strings en
ir
led by a loop de
oratedwith b (resp. 
) is obviously a 
entral element of Hn, and we denote it by b0(resp. 
0). The 
losure of b0
0y� is equal to the Hopf link de
orated with Q� onone 
omponent and b
 on the other. The 
losure of b0y� (resp. 
0y�) is equal tothe Hopf link with de
orations b (resp. 
) and Q�.There exists a s
alar t su
h that b0e� = te�. By 
losing the elements on bothsides of this equation, we see that t = hQ�; bi= hQ�i. We know by lemma 2.4.6that hQ�i is non-zero. Similarly, 
0e� = hQ�; 
i= hQ�i e�. Hen
e,1�� b0
0e� = hQ�; bihQ�; 
ihQ�i2 �� e�:Taking the 
losure and Hom
y polynomial in the above equation, we gethQ�; b
i = hQ�; bihQ�; 
ihQ�i2 hQ�iand therefore hQ�; bihQ�; 
i = hQ�i hQ�; b
i. |We immediately dedu
e from lemma 4.1.3 thatCorollary 4.1.4 The linear map � 7! h�; �i= h�i from the ring of Young dia-grams to the ring of rational fun
tions in x, v and s is a ring homomorphism forany Young diagram �.Sin
e any Young diagram � 
an be written as a polynomial in 
olumn diagrams,we only need to know the values of h�; 
ii for suÆ
iently many integer i � 0 inorder to 
ompute h�; �i. Hen
e, it is useful to de�ne a formal power seriesE�(X) = 1h�iXr�0h�; 
riXrfor any Young diagram �.For any formal power series P (X) whose 
oeÆ
ients are rational fun
tionsin x, v and s we de�ne s�(P (X)) as �rst expressing the S
hur fun
tion s� as apolynomial in the elementary symmetri
 fun
tions e0; e1; : : : and then repla
ingany ej by the 
oeÆ
ient of Xj in P (X). We re
all that s
r = er for any r � 0.Note that this is well de�ned be
ause the elementary symmetri
 fun
tions arealgebrai
ally independent in the ring of symmetri
 fun
tions.We state our above 
onsiderations in the following lemma.56



Lemma 4.1.5 We have s�(E�(X)) = 1h�ih�; �ifor any Young diagrams � and �.From 
orollary 4.1.2 we see how to re
over E�(X) from the power seriesE�(X)x=1 where we substituted x by 1 in every 
oeÆ
ient of the power series.We simply repla
e X by x2j�jX in E�(X)x=1. Equivalently, we haveE�(x�2j�jX) = E�(X)x=1:We de�ne H�(X) = 1h�iXr�0h�; driXrfor any Young diagram �. The next lemma shows how E�(X) and H�(X) arerelated.Lemma 4.1.6 We have E�(X)H�(�X) = 1for any Young diagram �.Proof We have by equation (1.2.3) that0�Xr�0 
rXr1A0�Xk�0 dk(�X)k1A = 1in the algebra of Young diagrams. By 
orollary 4.1.4 we have that the mapa 7! h�; ai= h�i is an algebra homomorphism from the algebra of Young diagramsto the s
alars for any Young diagram �. Hen
e0�Xr�0 1h�ih�; 
riXr1A0�Xk�0 1h�ih�; dki(�X)k1A = 1: |The following lemma explains the relation between the power series E�(X)and the power series E�_(X) for the transposed Young diagram �_.Lemma 4.1.7 We have E�_(�X)E�(X)s7!�s�1 = 1for any Young diagram �. 57



Figure 4.2: The unknot with framing 1 and its 2-parallel.Proof We have by lemma 3.6.2 that h�is7!�s�1 = h�_i and in parti
ular we havethat h�; 
kis7!�s�1 = h�_; dki. Hen
eE�(X)s7!�s�1 = 1h�_iXk�0h�_; dkiXk= H�_(X)= E�1�_ (�X): |4.2 Hopf link de
orated with 
olumns and rowsWe now 
ompute E
k(X) for any integer k � 0. To do this, we start with asurprisingly simple formula for h
k; dji.Lemma 4.2.1 We haveh
k; dji = h
ki hdjix2jk v�1(s2j � s2(j�k) + s�2k)� vv�1 � vfor any integers k � 0 and j � 0.Proof We 
laim thath
k; dji = h
ki hdji v�1(s2j � s2(j�k) + s�2k)� vv�1 � vwhen we set x = 1. The lemma then follows from the above 
laim be
auseh
k; dji = x2jkh
k; djix=1 by 
orollary 4.1.2. We shall prove our 
laim by expressingthe Hom
y polynomial of a 
ertain de
orated link in two di�erent ways and
omparing the results. The link in question is the 2-parallel of the unknot withframing 1 as depi
ted in �gure 4.2 de
orated with Q
j on one 
omponent and Qdkon the other 
omponent. We denote its Hom
y polynomial by R.Already in the He
ke algebra Hi, the produ
t of the positive 
url on i stringsand any quasi-idempotent e�, j�j = i, is a s
alar multiple of e�. The s
alar was58




al
ulated using skein theory in theorem 17 in [2℄ as f(�) = xj�j2v�j�jsn� wheren� is twi
e the sum of the 
ontents of all 
ells of �. Sin
e we spe
ialize x to 1, wehave f(�) = v�j�jsn�:By removing the two 
urls in �gure 4.2 after the de
oration we getR = f(
k)f(dj)h
k; dji: (4.2.1)The other way to 
al
ulate R is to 
onsider �rst the produ
t of Q
k and Qdj inthe skein of the annulus. R is the Hom
y polynomial of the unknot with framing1 de
orated by the produ
t of Q
k and Qdj . Sin
e the Q� multiply like S
hurfun
tions by theorem 3.5.6, we get Q
kQdj = Q�k;j+1 + Q�k+1;j where �a;b is thehook Young diagram with (a+ b� 1) 
ells of whi
h a are in the �rst 
olumn andb are in the �rst row. Hen
eR = f(�k;j+1) h�k;j+1i+ f(�k+1;j) h�k+1;ji : (4.2.2)From the above formula for f(�) we dedu
ef(
k+1) = v�1s�2kf(
k); f(dj+1) = v�1s2jf(dj); f(�k;j) = vf(
k)f(dj):We have by lemma 3.6.1h
k+1i = v�1s�k � vsksk+1 � s�k�1 h
ki ;hdj+1i = v�1sj � vs�jsj+1 � s�j�1 hdji ;h�k;ji = (sj � s�j)(sk � s�k)(v�1 � v)(sk+j�1 � s�k�j+1) h
ki hdji :By these relations we get from equation 4.2.2 thatR = f(�k;j+1) h�k;j+1i+ f(�k+1;j) h�k+1;ji= vf(
k)v�1s2jf(dj)(sk � s�k)(v�1sj � vs�j)(v�1 � v)(sk+j � s�k�j) h
ki hdji+s�2kf(
k)f(dj)(sj � s�j)(v�1s�k � vsk)(v�1 � v)(sk+j � s�k�j) h
ki hdji= v�1(s2j � s2(j�k) + s�2k)� vv�1 � v f(
k)f(dj) h
ki hdji : (4.2.3)Sin
e f(
k) and f(dj) are non-zero, we dedu
e from equations (4.2.1) and (4.2.3)that h
k; dji = h
ki hdji v�1(s2j � s2(j�k) + s�2k)� vv�1 � vwhen we set x = 1. |59



Corollary 4.2.2 We haveH
k(X) = 1� v�1s�2k+1x2kX1� v�1sx2kX H;(x2kX)for any integer k � 0.Proof As usual, it is suÆ
ient to work with the substitution x = 1. We have toshow that(1� v�1sX) 1h
kiXj�0h
k; djix=1Xj = (1� v�1s�2k+1X)Xj�0 hdjiXj:The 
onstant terms of the power series in the above equation are equal to 1. Inorder that the 
oeÆ
ient of Xj on the left hand side agrees with the 
oeÆ
ientof Xj on the right hand side, we have to show that1h
kih
k; dji � v�1s 1h
kih
k; dj�1i = hdji � v�1s�2k+1 hdj�1i (4.2.4)after the substitution x = 1. By lemma 4.2.1 we 
an write the left hand side ofequation (4.2.4) ashdji v�1(s2j � s2(j�k) + s�2k)� vv�1 � v �v�1s hdj�1i v�1(s2(j�1) � s2(j�1�k) + s�2k)� vv�1 � v :Be
ause hdji = hdj�1i v�1sj�1 � vs�j+1sj � s�j ;the left hand side of equation (4.2.4) 
an be transformed further into (v�1sj�1 � vs�j+1)(v�1(s2j � s2(j�k) + s�2k)� v)(sj � s�j)(v�1 � v)�v�1sv�1(s2(j�1) � s2(j�1�k) + s�2k)� vv�1 � v ! hdj�1i : (4.2.5)The right hand side of equation (4.2.4) is equal to v�1sj�1 � vs�j+1sj � s�j � v�1s�2k+1! hdj�1i : (4.2.6)It is straightforward to 
on�rm the equality of the terms in equations (4.2.5) and(4.2.6), and thus equation (4.2.4) is proven. |As an immediate 
onsequen
e of 
orollary 4.2.2 and lemma 4.1.6 we getCorollary 4.2.3 We haveE
k(X) = 1 + v�1sx2kX1 + v�1s�2k+1x2kXE;(x2kX)for any integer k � 0. 60



4.3 Hopf link de
orated with any Young dia-gramsWe shall from now on use symmetri
 fun
tions as well. On the �rst sight thisseems to be super
uous be
ause the ring of symmetri
 fun
tions is isomorphi
to the ring of Young diagrams via the S
hur fun
tions. The 
ru
ial bonus of thesymmetri
 fun
tions is that under 
ertain 
ir
umstan
es a ring homomorphism �from the symmetri
 fun
tions to a ring R fa
tors through the symmetri
 fun
tionsin some �nitely many variables. A ne
essary 
ondition for this fa
torization isthat � maps the i-th elementary symmetri
 fun
tion ei to zero for all i largeenough. This 
ondition is also suÆ
ient in an appropriate extension of R (if itexists). All one has to do in the 
ase that �(ei) = 0 for all i > i0 is to solve theequation Pi0i=0 �(ei)ti = Qi0i=1(1 + xit) for x1; : : : ; xi0 in R where t is a variable.If we make the substitution v = s�N for some integer N � 0 then E�(X)be
omes a polynomial in X of degree N . In fa
t, we shall be able in lemma 4.3.3to solve the above equation without extending the ring of rational fun
tions in xand s.In order to 
al
ulate the Hom
y polynomial of the Hopf link de
orated withQ� and Q� we �rst have to improve our understanding of S
hur fun
tions byproving lemma 4.3.1.De�nition Given a Young diagram � and elements r1; : : : ; rN in a 
ommutativering R, N � l(�), we denote by s�(r1; : : : ; rN) the element of R that derivesfrom the S
hur fun
tion s� in N variables x1; : : : ; xN by substituting xi by ri fori = 1; : : : ; N . Equivalently we shall use the notation `s�(ri) where i = 1; : : : ; N '.Lemma 4.3.1 Let N be a positive integer, and let � and � be Young diagramswith at most N rows. Thens�(q�i+N�i)s�(qN�i) = s�(q�i+N�i)s�(qN�i)where q is a variable and i = 1; : : : ; N .Proof The S
hur polynomial s� is by de�nition the quotient of two (N � N)-determinants in variables x1; : : : ; xN ,s�(x1; : : : ; xN) = a�+Æ(x1; : : : ; xN)aÆ(x1; : : : ; xN) = det(x�j+N�ji )det(xN�ji )where i = 1; : : : ; N and j = 1; : : : ; N . We thus gets�(q�i+N�i) = a�+Æ(q�i+N�i)aÆ(q�i+N�i)= det(q(�i+N�i)(�j+N�j))det(q(�i+N�i)(N�j))61



where i = 1; : : : ; N and j = 1; : : : ; N . Note that the denominator is di�erent fromzero. Sin
e the determinant of a matrix is invariant under transposition we 
aninter
hange i and j in the determinant of the N �N -matrix in the denominatorand get s�(q�i+N�i) = det(q(�i+N�i)(�j+N�j))det(q(N�i)(�j+N�j))= det(q(�i+N�i)(�j+N�j))a�+Æ(qN�i) :We thus get s�(q�i+N�i)a�+Æ(qN�i) = det(q(�i+N�i)(�j+N�j)):Dividing both sides by aÆ(qN�i) we gets�(q�i+N�i)s�(qN�i) = det(q(�i+N�i)(�j+N�j))det(q(N�i)(N�j)) :By inter
hanging � and � we derives�(q�i+N�i)s�(qN�i) = det(q(�i+N�i)(�j+N�j))det(q(N�i)(N�j)) :Using the invarian
e of the determinant under transposition we dedu
e from thetwo above equations thats�(q�i+N�i)s�(qN�i) = s�(q�i+N�i)s�(qN�i): |Corollary 4.3.2 Let N be a positive integer, and let � and � be Young diagramswith at most N rows. Thens�(�q�i+N�i)s�(�qN�i) = s�(�q�i+N�i)s�(�qN�i)where � and q are variables, and i = 1; : : : ; N .Proof The S
hur polynomial s� is a homogeneous polynomial of degree j�j.Hen
e s�(�x1; : : : ; �xN) = �j�js�(x1; : : : ; xN ):Hen
e s�(�q�i+N�i)s�(�qN�i) = �j�j+j�js�(q�i+N�i)s�(qN�i); (4.3.7)62



and s�(�q�i+N�i)s�(�qN�i) = �j�j+j�js�(q�i+N�i)s�(qN�i): (4.3.8)Lemma 4.3.1 implies that the right hand side of equation (4.3.7) agrees with theright hand side of (4.3.8). Hen
e the left hand side of equation (4.3.7) agrees withthe left hand side of equation (4.3.8) whi
h is our 
laim. |For h�i and h�; �i we shall denote by an additional subs
ript N the substitu-tion v = s�N where N is a positive integer, i.e. we write h�iN and h�; �iN . Wedenote by EN� (X) the substitution v = s�N in E�(X). Note that EN� (X) is onlyde�ned if N � l(�) in order that h�iN is di�erent from zero.Lemma 4.3.3 Let � be a Young diagram and let N � l(�) be an integer. ThenEN� (X) = NYi=1(1 + sN+2�i�2i+1x2j�jX):Proof We 
onsider a Young diagram � and an integer N � l(�). An equivalentformulation of our 
laim is thatEN� (X)x=1 = NYi=1(1 + s�N+1q�i+N�iX)where q = s2. For the rest of the proof we always set x = 1 without indi
atingthis substitution by the usual subs
ript.By equation (3.6.6) we haveE;(X) =Xr�0 h
riXr = 1Yk=0 1 + vs2k+1X1 + v�1s2k+1X :The substitution v = s�N redu
es this to the �nite produ
tEN; (X) = N�1Yk=0 (1 + s�N+2k+1X)= NYi=1(1 + sN�2i+1X): (4.3.9)Note that this is our 
laim in the 
ase � = ;.Let k be an integer, k � N . By 
orollary 4.2.3 we haveE
k(X) = 1 + v�1sX1 + v�1s�2k+1XE;(X):63



Substituting v = s�N in the above equation and using equation (4.3.9) we getEN
k(X) = 1 + sN+1X1 + sN�2k+1X NYi=1(1 + sN�2i+1X)= kYi=1(1 + sN�2i+3X) NYi=k+1(1 + sN�2i+1X)whi
h is our 
laim in the 
ase � = 
k.By lemma 4.1.5 we have s�(E
r(X)) = h�; 
ri= h
ri for any r � 0. Hen
e1h�ih�; 
ri = s
r(E;(X))s�(E;(X)) s�(E
r(X)):Restri
ting to 0 � r � N and substituting v = s�N we get1h�iN h�; 
riN = s
r(EN; (X))s�(EN; (X)) s�(EN
r (X))= s
r(s�N+1qN�i)s�(s�N+1qN�i) s�(s�N+1q(
r)i+N�i)where q = s2, and i = 1; : : : ; N . By Corollary 4.3.2 with � = 
r and � spe
ializedto s�N+1 we dedu
e from the above equation that1h�iN h�; 
riN = s
r(s�N+1q�i+N�i):In parti
ular, we dedu
e from the above equation that h�; 
ri = 0 for all r � N+1be
ause the r-th elementary symmetri
 fun
tion s
r be
omes zero when only Nof the in�nitely many variables are substituted by non-zero terms. We thus getEN� (X) = NXr=0 1h�iN h�; 
riNXr= NXr=0 s
r(s�N+1q�i+N�i)Xr= NYi=1(1 + s�N+1q�i+N�iX)be
ause s
r is the r-th elementary symmetri
 fun
tion. |We now dedu
e a formula for E�(X) from the formula for EN� (X), N � l(�).64



Theorem 4.3.4 We haveE�(X) = E;(x2j�jX) l(�)Yj=1 1 + v�1s2�j�2j+1x2j�jX1 + v�1s�2j+1x2j�jXfor any Young diagram �.Proof For any integer N � l(�) we have that by lemma 4.3.3EN� (X) = NYi=1(1 + sN+2�i�2i+1x2j�jX)= l(�)Yi=1(1 + sN+2�i�2i+1x2j�jX) NYi=l(�)+1(1 + sN�2i+1x2j�jX):In parti
ular, for � equal to the empty Young diagram,EN; (X) = NYi=1(1 + sN�2i+1X);whi
h we had obtained earlier, too. Combining the above expressions for EN� (X)and EN; (X) we getEN� (X) = EN; (x2j�jX) l(�)Yi=1 1 + sN+2�i�2i+1x2j�jX1 + sN�2i+1x2j�jX :This means that the power series E�(X) andE;(x2j�jX) l(�)Yj=1 1 + v�1s2�j�2j+1x2j�jX1 + v�1s�2j+1x2j�jX : (4.3.10)are equal for any substitution v = s�N provided that N � l(�).The equality of E�(X) and the power series in (4.3.10) follows now from theobservation that if there exists an integer n0 � 1 su
h that two rational fun
tionsr1(v; s) and r2(v; s) in v and s are equal for any substitution v = s�n, n � n0,then r1(v; s) = r2(v; s).Equivalently, let r(v; s) be a rational fun
tion in v and s that be
omes zerofor any substitution v = s�n, n � n0 � 1. In order to show that r(v; s) = 0 wewrite the rational fun
tion r(v; s) as the quotient of two polynomials in v ands, say r(v; s) = p(v; s)=q(v; s). Now p(1; s) is a polynomial in s. For any n-throot of unity � we have p(1; �) = 0 provided that n � n0. The only polynomialthat has in�nitely many roots is the zero polynomial. Hen
e p(1; s) = 0. Hen
e65



(v � 1) is a fa
tor of p(v; s), i.e. there exists a polynomial p2(v; s) su
h thatp(v; s) = (v � 1)p2(v; s). Sin
e (v � 1) is di�erent from zero for any substitutionv = s�n, n � 1, we have that p2(s�n; s) = 0 for any n � n0. Applying the wholeargument again we �nd a polynomial p3(v; s) su
h that p2(v; s) = (v � 1)p3(v; s)and p3(s�n; s) = 0 for any n � n0. Applying this argument again and again, wededu
e that (v � 1)k is a fa
tor of p1(v; s) for any k � 1. Hen
e p1(v; s) = 0,hen
e r(v; s) = 0.We have thus proved thatE�(X) = E;(x2j�jX) l(�)Yj=1 1 + v�1s2�j�2j+1x2j�jX1 + v�1s�2j+1x2j�jX : |By the de�nition of E�(X) we have that the 
oeÆ
ient of X in E�(X) is equalto the s
alar ~q� from 
orollary 3.5.4. In fa
t, we 
an verify this qui
kly as follows.We have E�(X) = E;(x2j�jX) l(�)Yj=1 1 + v�1s2�j�2j+1x2j�jX1 + v�1s�2j+1x2j�jXfor any Young diagram �. We have that(1 + aX + � � �)1 + bX + � � �1 + 
X + � � � = 1 + (a+ b� 
)X + � � �for any formal power series. We haveE;(x2j�jX) = 1 + x2j�jv�1 � vs� s�1X + � � � ;l(�)Yj=1(1 + v�1s2�j�2j+1x2j�jX) = 1 + 0�v�1x2j�j l(�)Xj=1 s2�j�2j+11AX + � � � ;l(�)Yj=1(1 + v�1s�2j+1x2j�jX) = 1 + 0�v�1x2j�j l(�)Xj=1 s�2j+11AX + � � � :Hen
e, the 
oeÆ
ient of X in E�(X) is equal tox2j�jv�1 � vs� s�1 + v�1x2j�j l(�)Xj=1 s2�j�2j+1 � v�1x2j�j l(�)Xj=1 s�2j+1whi
h is equal to x2j�j0�v�1 � vs� s�1 + v�1s l(�)Xj=1 �s2(�j�j) � s�2j�1A66



whi
h is equal to ~q� given in 
orollary 3.5.4.When we apply theorem 4.3.4 to the 
ase � = 
k and 
ompare the result with
orollary 4.2.3 we note a number of 
an
ellations inl(�)Yj=1 1 + v�1s2�j�2j+1x2j�jX1 + v�1s�2j+1x2j�jX :We prove in the next lemma that the number of fra
tions after 
an
ellations isgiven by the number of 
ells in the main diagonal of � whi
h we denote by d(�).Lemma 4.3.5 For any Young diagram � we havel(�)Yj=1 1 + v�1s2�j�2j+1x2j�jX1 + v�1s�2j+1x2j�jX = d(�)Yi=1 1 + v�1s2�i�2i+1x2j�jX1 + v�1s�2�_i +2i�1x2j�jX ;and the fra
tions at the right hand side admit no further 
an
ellations.Proof With p = s�2 and Y = v�1sx2j�jX we have to show thatl(�)Yj=1 1 + pj��jY1 + pjY = d(�)Yi=1 1 + pi��iY1 + p�_i �i+1Y : (4.3.11)Equivalently, we show thatfj � �j j d(�) + 1 � j � l(�)g [ f�_i � i+ 1 j 1 � i � d(�)gis a de
omposition of the set of integers f1; 2; : : : ; l(�)g.First, we note that the sequen
e (j � �j)j�1 is stri
tly in
reasing and thesequen
e (�_i � i + 1)i�1 is stri
tly de
reasing. This implies that the elements ofea
h of the two sets on its own are pairwise di�erent.Se
ond, we have 1 � j � �j � l(�) for all j = d(�) + 1; : : : ; l(�), and we have1 � �_i � i + 1 � l(�) for all i = 1; : : : ; d(�). Hen
e, it is suÆ
ient to show thatthe above two sets are disjoint, i.e.�j � j + �_i � i + 1 6= 0 (4.3.12)for all i = 1; : : : ; d(�) and j = d(�) + 1; : : : ; l(�).In fa
t, equation (4.3.12) is true for all i � 1 and j � 1. To see this, we notethat if the 
ell (j; i) lies in the Young diagram � then equation (4.3.12) denotes thehook length of the 
ell (j; i) whi
h is greater than zero. On the other hand, if the
ell (j; i) does not lie in � then �j < i and �_i < j, hen
e �j� j+�_i � i+1 � �1.Hen
e, equation (4.3.12) is also true in the 
ase that the 
ell (j; i) does not lie in�. We have thus proved equation (4.3.11).Finally, there are no 
an
ellations in Qd(�)i=1 (1+pi��iY )=(1+p�_i �i+1Y ) be
ausep o

urs with non-positive exponents in the numerator, whereas p o

urs withpositive exponents in the denominator. |67



The 
ombination of theorem 4.3.4, equation (3.6.6) and lemma 4.3.5 immedi-ately gives the following formula for E�(X). This form has the bene�t that we
an make the substitution v = s�n for any integer n � 0.Theorem 4.3.6 We haveE�(X) = 1Yk=0 1 + vs2k+1x2j�jX1 + v�1s2k+1x2j�jX d(�)Yi=1 1 + v�1s2�i�2i+1x2j�jX1 + v�1s�2�_i +2i�1x2j�jXfor any Young diagram �.By theorem 4.3.6 see that E�(X) derives from E;(X) by repla
ing every fa
tor(1+v�1s2�i�2i+1x2j�jX) of the denominator of E;(X) by (1+v�1s�2�_i +2i�1x2j�jX)for i = 1; : : : ; d(�).From theorem 4.3.6 we immediately dedu
e that E�_(�X)E�(X)s7!�s�1. Thisgives a se
ond, independent proof of lemma 3.6.2.4.4 Hopf link with spe
ialization v = s�NGiven Young diagrams � and � and an integer N � max(l(�); l(�)), we prove asimple formula for the value of h�; �i after the substitution v = s�N .Lemma 4.4.1 We haveh�; �iN = s(1�N)(j�j+j�j)x2j�jj�js�(qN�i)s�(q�k+N�k)where i = 1; : : : ; N and k = 1; : : : ; N , and � and � are any Young diagrams, andN is an integer, N � max(l(�); l(�)) and q = s2.Proof By lemma 4.1.5 we have thath�; �i = h�i s�(E�(X)) = s�(E;(X))s�(E�(X)):By lemma 4.3.3 we have thats�(EN� (X)) = s�(�q�i+N�i) = �j�js�(q�i+N�i)where � = s1�Nx2j�j, q = s2, and i = 1; : : : ; N . Hen
eh�; �iN = (s1�N)j�js�(qN�i)(s1�Nx2j�j)j�js�(q�k+N�k)= s(1�N)(j�j+j�j)x2j�jj�js�(qN�i)s�(q�k+N�k)where i = 1; : : : ; N and k = 1; : : : ; N . |68



By extra
ting the fa
tor qN from ea
h of the variables in lemma 4.4.1 we dedu
ethat h�; �iN = s(1�N)(j�j+j�j)x2j�jj�js�(qN�i)s�(q�k+N�k)= s(N+1)(j�j+j�j)x2j�jj�js�(q�i)s�(q�k�k):It is tempting to 
onje
ture thath�; �i = (v�1s)(j�j+j�j)x2j�jj�js�(q�i)s�(q�k�k):But this is not true in general be
ause in the 
ase � equal to a single 
ell and� equal to the empty Young diagram the left hand side is simply the Hom
ypolynomial of the unknot whi
h is equal to (v�1� v)=(s� s�1) whereas the righthand side is the produ
t of a power of v�1 and a Laurent polynomial in s.We pro
eed to give an appealing formula for h�; �iN .Theorem 4.4.2 We haveh�; �iN = s(1�N)(j�j+j�j)x2j�jj�jdet(q(�N�i+1+i�1)(�N�j+1+j�1))det(q(i�1)(j�1))where i = 1; : : : ; N and j = 1; : : : ; N , and � and � are any Young diagrams, andN is an integer, N � max(l(�); l(�)) and q = s2.Proof In the proof of lemma 4.3.1 we found thats�(q�i+N�i)s�(qN�i) = det(q(�i+N�i)(�j+N�j))det(q(N�i)(N�j)) :Hen
e we dedu
e from lemma 4.4.1 thath�; �iN = s(1�N)(j�j+j�j)x2j�jj�jdet(q(�i+N�i)(�j+N�j))det(q(N�i)(N�j))where i = 1; : : : ; N and j = 1; : : : ; N . Sin
e the determinant of a matrix isun
hanged under the simultaneous reversal of the order of all rows and of all
olumns, we �nally geth�; �iN = s(1�N)(j�j+j�j)x2j�jj�jdet(q(�N�i+1+i�1)(�N�j+1+j�1))det(q(i�1)(j�1)) :where i = 1; : : : ; N and j = 1; : : : ; N . |69



The determinants appearing in theorem 4.4.2 are derived from the following in-�nite Vandermonde matrixV = (q(i�1)(j�1))1�i;j= 0BBBBBBBBB�
1 1 1 1 1 � � �1 q q2 q3 q4 � � �1 q2 q4 q6 q8 � � �1 q3 q6 q9 q12 � � �1 q4 q8 q12 q16 � � �... ... ... ... ... . . .

1CCCCCCCCCA :
The matrix (q(i�1)(j�1))1�i;j�N is the upper left (N�N) submatrix of V . It derivesfrom V by 
hoosing rows i and 
olumns j for i = 1; : : : ; N and j = 1; : : : ; N .The matrix (q(�N�i+1+i�1)(�N�j+1+j�1))1�i;j�N derives from V by 
hoosing the rowsi + �N�i+1 and the 
olumns j + �N�j+1 for i = 1; : : : ; N and j = 1; : : : ; N .For example, with � = (2; 1; 1), � = (2; 2) and N = 3 we geth�; �i3 = s�16x32 det ������� 1 q3 q41 q6 q81 q12 q16 ������� = det ������� 1 1 11 q q21 q2 q4 �������= x32q(q2 + 1)(q2 + q + 1)(q4 + q3 + 1):In the 
ase N = 2, i.e. v = s�2, we have a simple formula for the Hom
ypolynomial of the Hopf link de
orated with Qda and Qdb for row diagrams da anddb of length a respe
tively b. We set [k℄ = (sk � s�k)=(s� s�1) for any integer k.Lemma 4.4.3 For integers a � 0 and b � 0 we havehda; dbi2 = (x2s)ab[(a+ 1)(b + 1)℄:Proof By the above 
al
ulations we havehda; dbi2 = s�(a+b)x2ab ����� 1 11 q(a+1)(b+1) ���������� 1 11 q �����= s�(a+b)x2ab q(a+1)(b+1) � 1q � 1= s�(a+b)x2ab s(a+1)(b+1)s s(a+1)(b+1) � s�(a+1)(b+1)s� s�1= (x2s)ab[(a+ 1)(b+ 1)℄: |70



Remark If we make the substitutions v = s�2 and x = s� 12 then hda; dbi be
omessimply [(a + 1)(b + 1)℄. This 
orresponds to the 
al
ulations of the Uh(sl(2))-quantum invariant in [19℄ and [15℄. We remark that the row diagram da of lengtha indexes the (a+ 1)-dimensional irredu
ible representation of Uh(sl(2)).Lemma 4.4.4 Let � and � by Young diagrams, and let n � 0 be an integer. Ifn < max((l(�); l(�)) then h�; �in = 0. If n � max((l(�); l(�)) then h�; �in 
an bewritten as the produ
t of a power of s, a power of x, and a non-zero polynomialin q = s2 with integer 
oeÆ
ients.Proof By lemma 4.1.5 we haveh�; �i = h�i s�(E�(X)) = h�i s�(E�(X))be
ause h�; �i = h�; �i. Using the expression in theorem 4.3.6 for E�(X) we 
anmake the substitution v = s�n for any integer n � 0. If n < max((l(�); l(�)) theneither h�i or h�i be
omes zero after substituting v = s�n by lemma 3.6.1, hen
eh�; �i be
omes zero after substituting v = s�n.If n � max((l(�); l(�)) then we have by lemma 4.4.1 thath�; �in = s(1�N)(j�j+j�j)x2j�jj�js�(qn�i)s�(q�k+n�k)where i = 1; : : : ; n and k = 1; : : : ; n. Sin
e a S
hur fun
tion in �nitely manyvariables is a (symmetri
) integer polynomial in its variables, we have that theprodu
t s�(qn�i)s�(q�k+n�k) is an integer polynomial in q. It remains to showthat the two appearing S
hur fun
tions are non-zero. In fa
t, they are non-zeroeven after substituting s = 1. Our 
laim is that s�(1; : : : ; 1) and s�(1; : : : ; 1) arenon-zero where the number of variables is n. We re
all that s�(qn�i) = h�in andwe get by lemma 3.6.1 thath�in = Yy2� sns
n(y) � s�ns�
n(y)shl(y) � s�hl(y)= Yy2� [n + 
n(y)℄[hl(y)℄ :Sin
e [k℄ = (sk � s�k)=(s� s�1) = sk�1 + sk�3 + � � �+ s�k+1, we haves�(1; 1; : : : ; 1) = Yy2� n + 
n(y)hl(y) :Sin
e we 
onsider the 
ase n � max(l(�); l(�)) we have that the 
ontent of any 
ellof � and of � is greater than (�n). Hen
e s�(qn�i) be
omes a positive numberafter substituting s = 1 and is thus non-zero. The value of s�(q�k+n�k) aftersubstituting s = 1 is equal to s�(1; 1; : : : ; 1) where the S
hur fun
tion has nvariables. This is non-zero by the same argument as for s�(1; : : : ; 1). |71



On �rst sight, Lemma 4.4.4 is surprising be
ause the denominator of Q� isnon-trivial as des
ribed in lemma 3.6.3. But in fa
t, the Hom
y polynomial ofany link with de
orations of type Q� 
an be written as a Laurent polynomialin s 1N after the substitutions x = s� 1N and v = s�N . This 
an be seen by anargument using the Uh(sl(N))-invariants.
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Chapter 5Roots of unity
5.1 Hom
y polynomial at roots of unityWe �x integers N � 2 and l � 1. We �x a 
omplex number � su
h that �N is aprimitve root of unity of order 2(l +N). We denote ��N by �.We shall work o

asionally with the substitutions x = �, s = ��N and v = �N2.This 
an also be written as x = �, s = � and v = s�N .Lemma 5.1.1 Let L = L1 [ : : : [ Lk be a link diagram with k 
omponents. LetL0 be the element of the skein of the plane derived from L by de
orating one
omponent with Q
j for some j � N + 1, and all the other 
omponents de
oratedby elements of the skein of the annulus involving denominators only of the type(si � s�i) for some i � 1.Then the Hom
y polynomial of L0 be
omes zero after the substitution v = s�N .Proof Let L1 be the 
omponent de
orated by Q
j , j � N + 1. We re
all thatQ
j is the 
losure of the idempotent (1=�j)bj 2 Hj in the skein of the annulus.We arrange L as the 
losure of an (1; 1)-tangle T in the plane so that the
losing ar
 belongs to the 
omponent L1. We now de
orate the 
omponents ofL. This turns T in a (j; j)-tangle T 0 involving denominators only of the type(si � s�i). In the He
ke algebra Hj we have that the produ
t of T 0 and bj isa s
alar multiple � of bj, and the s
alar involves denominators only of the type(si�s�i). Hen
e, the Hom
y polynomial of L0 is the produ
t of � and the Hom
ypolynomial of Q
j .The Hom
y polynomial of Q
j be
omes zero after the substitution v = s�Nbe
ause the fa
tor for t = N + 1 is equal to zero inDQ
jE = jYt=1 v�1s1�t � vst�1st � s�t = jYt=1 sN+1�t � s�N�1+tst � s�t73



whi
h follows from lemma 3.6.1 for � = 
j. The s
alar � is well de�ned after thesubstitution v = s�N and therefore the Hom
y polynomial of L0 be
omes zeroafter the substitution v = s�N . |Corollary 5.1.2 We are allowed to make the substitutions x = �, v = s�N ands = � in the Hom
y polynomial of any link L whose 
omponents are de
orated byany Q�.Proof Any Q� is a polynomial in the Q
i. The monomials in
luding Q
i withi � N + 1 
an be negle
ted be
ause any de
oration with them evaluates to zeroby lemma 5.1.1. The denominators of the remaining Q
i with 1 � i � N onlyinvolve (si � s�i) for 1 � i � N whi
h does not be
ome zero for the substitutions = �. The substitutions for x and v do not pose any problem. |Lemma 5.1.3 Let L = L1 [ : : : [ Lk be a link diagram with k 
omponents.Let L0 be the element of the skein of the plane derived from L by de
orating one
omponent with Qdi for some i, l+1 � i � l+N�1, and all the other 
omponentsde
orated by some Q�; Q�; : : :.Then the Hom
y polynomial of L0 be
omes zero after �rst making the substi-tution v = s�N and then substituting s by �.Proof First, we write all the de
orations Q� as polynomials in Q
1; Q
2 ; : : :. Bylemma 5.1.1, the Hom
y polynomials of all the summands involving some Q
jwith j � N+1 be
ome zero after the substitution v = s�N . Hen
e, it is suÆ
ientto prove that the Hom
y polynomial of any link L with one 
omponent de
oratedby Qdi and all the other 
omponents de
orated with Q
k for some 1 � k � Nbe
omes zero after the substitutions v = s�N and s = �.By the same argument as in the proof of lemma 5.1.1 we write the de
oratedlink L0 as the 
losure of some (i; i)-tangle, and dedu
e that the Hom
y polynomialis the produ
t of a s
alar � and the Hom
y polynomial of Qdi . The denominatorsof � involve only (sj � s�j) with 1 � j � N be
ause only the Young diagrams
1; : : : ; 
N are involved. Hen
e the substitution v = s�N and s = � is allowed forthe s
alar �, sin
e the order of � is greater than 2N .The Hom
y polynomial of Qdi after the substitution v = s�N and s = � isequal to hQdii = iYt=1 v�1st�1 � vst�1st � s�t = iYt=1 �N+t�1 � ��N�t+1� t � ��tby lemma 3.6.1. None of the denominators is equal to zero be
ause 1 � i < l+N .The numerator for t = l + 1 be
omes zero. Hen
e this produ
t is equal to zero.Hen
e the Hom
y polynomial of L0 whi
h is the produ
t of � and the Hom
ypolynomial of Qdi is equal to zero. |74



= s�2x�2i �� i+1Q
iQ
i Figure 5.1: Pulling a string through Q
i.Lemma 5.1.4 For a link with de
orations of type Q� on its 
omponents we 
anremove any 
omponent de
orated by Q
N without 
hanging the value of the Hom
ypolynomial provided we make the substitutions x = s� 1N and v = s�N .Proof We re
all that Ai resp. A0i is the 
losure of the quasi-idempotent ai 2 Hiin Ci resp. C 0i. Similarly, Bi resp. B0i is the 
losure of the quasi-idempotentbi 2 Hi in Ci resp. C 0i. By lemma 5.1.1 we 
an assume that only de
orations Q�are 
hosen where � is a 
olumn diagram of length up to N . We gets�1xi�i (Aie) = sx�i�i (eAi) + (s�1 � s) [i + 1℄�i+1 A0i+1if we eliminate A0ia from the �rst and the se
ond equation in the proof of lemma3.4.4. We get�sxi�i (Bie) = �s�1x�i�i (eBi) + (s�1 � s)(�1)i [i + 1℄�i+1 B0i+1by applying the map 
 from subse
tion 2.4.1. This is equivalent to1�i (Bie) = s�2x�2i�i (eBi)� s�1x�i(s�1 � s)(�1)i [i+ 1℄�i+1 B0i+1:We apply to this equation the map to the variant skein of the annulus where thetwo boundary points are on the same 
omponent. We get the skein relation in�gure 5.1 where � = s�1x�i(s�1 � s)(�1)i[i + 1℄. The box labelled i + 1 standsfor (1=�i+1)bi+1 2 Hi+1.We re
all that (1=�j)Bj = Q
j by de�nition. When we join the boundarypoints of (1=�N+1)bN+1 by any tangle in R2 then the Hom
y polynomial of theresulting skein element is a s
alar multiple of hQ
N+1i. This s
alar involves onlydenominators of type (si� s�i) for 1 � i � N 
oming from the other de
orationsof the kind Q�. Sin
e hQ
N+1i be
omes zero after the substitution v = s�N , we75



Q
N Q
N Q
N Q
N= = s�2x�2N = s�2x�2NFigure 5.2: Pulling an oriented ar
 through a 
omponent de
orated with Q
n.Q
N Q
N Q
N Q
N= = s�2x�2N = s�2x�2NFigure 5.3: Pulling a di�erently oriented ar
 through a 
omponent de
orated withQ
N .see that the diagram at the very right in �gure 5.1 
an be negle
ted. The newrelation is depi
ted in �gure 5.2 where we used regular isotopy. Similarly, therelation in �gure 5.3 follows. We note that these are not relations in the skeinof the plane. The equalities is only valid after evaluating the Hom
y polynomialand then making substitutions.We 
an thus pull the 
omponent 
lear from the remaining link. We 
anfurthermore swit
h all the self 
rossings of the link without a�e
ting the Hom
ypolynomial after substitutions. We thus arrive at the unknot de
orated with Q
N .Sin
e the swit
h of a 
rossing 
hanges the writhe by 2, we arrive at the unknotwith writhe equal to either 0 or 1.A positive 
url de
orated by Q
N may be removed by expense of the s
alarxN2v�Ns�N(N�1) as des
ribed in theorem 17 in [2℄. This be
omes xN2sN after thesubstitution v = s�N . When we substitute xN = s�1 then this s
alar be
omesequal to 1. We remark that the s
alar xN2sN does not be
ome 1 in general whenwe make the substitution x2N = s�2.Finally, it follows from lemma 3.6.1 that the value of hQ
N i be
omes equalto 1 after the substitution v = s�N . We have thus removed the 
omponentde
orated by Q
N without a�e
ting the Hom
y polynomial of the link modulothe substitutions. |5.2 Skein of the annulus at roots of unityWe �x a 
omplex number � su
h that �N is a root of unity of order 2(l + N).Given this 
hoi
e of �, we de�ne a partial map �N l from the rational fun
tions inx, v and s to the 
omplex numbers by making the substitutions x = �, s = ��N ,76



and v = �N2 whenever this is well de�ned. The order of the substitutions mighta�e
t whether it is well de�ned or not. The fra
tion (vs2l+3N � 1)=(s2(l+N) � 1)be
omes 1 after the substitution v = s�N . Instead, the immediate substitutionof s by a 2(l +N)-th primitive root of unity leads to the denominator 0.De�nition Let v and w be rational fun
tions in x, v and s. We write v := w if�N l(v) = �N l(w).De�nition Let a and b be any elements of the skein C of the annulus over thes
alars C [x; v; s; (si � s�i)�1; i � 1℄. Let L be a framed link and L1 one of its
omponents. We de
orate L1 by a (or b) and all the other 
omponents by someQ�; Q�; : : :. We say that a := b if�(L; a;Q�; Q�; : : :) := �(L; b; Q�; Q�; : : :)for all framed links L, for all 
omponents L1 and for all Young diagrams �; �; : : :.Lemmas 5.1.1, 5.1.3, 5.1.4 
an be reformulated asCorollary 5.2.1 We haveQ
j := 0 for all j � N + 1;Qdi := 0 for all l + 1 � i � l +N � 1;Q
N := ;:The relation := satis�es the following property.Lemma 5.2.2 Let a and b be elements of the skein C of the annulus su
h thata := b. Then aQ� := bQ� for any Young diagram �.Proof Let L be a link diagram and denote one of its 
omponents by L1. Denoteby L0 the link diagram that is derived from L by taking the 2-parallel of the
omponent L1, i.e. L1 be
omes L01[L001. Then the de
oration of L with aQ� on the
omponent L1 and Q�'s for various Young diagrams � on the other 
omponentsis equal to the de
oration of L0 with a on L01 and Q� on L001, and the Q�'s on theother 
omponents. The de�nition of a := b implies that aQ� := bQ�. |The map from the algebra Y of Young diagrams to the skein of the annulusthat maps a Young diagram � to Q� is an algebra homomorphism as shown intheorem 3.5.6. From lemmas 5.1.1, 5.1.3, and 5.1.4 we dedu
e that this mapfa
tors through the ideal of Y whi
h is generated byfdl+1; : : : ; dl+N�1; 
N � 
0; 
N+1; 
N+2; : : : ; gwhen we 
onsider equivalen
e 
lasses modulo ` :='. We start in 
hapter 6 a 
arefulanalysis of the algebra Y quotiented by this ideal.77



Chapter 6An ideal in the ring of Youngdiagrams
6.1 The ideal IN;lThroughout this 
hapter we �x integers N � 2 and l � 1, and we denote l + Nby m. The letter l stands for `level'. We are 
onsidering rings, but all the resultsremain true when we 
onsider in later 
hapters the rings to be algebras over anextension of Z in order to handle Hom
y skeins involving the variables x, v ands and the s
alars C .We de�ne an ideal IN;l in the ring Y of Young diagrams. The ideal is generatedby the row diagrams of lengths from (l+ 1) to (l+N � 1), the 
olumn diagramsof length greater than N , and the di�eren
e between the empty diagram and the
olumn diagram of length N ,IN;l = hhdl+1; : : : ; dm�1; 
0 � 
N ; 
N+1; 
N+2; : : :ii:We denote by YN;l the quotient ring Y=IN;l and by � the quotient ring homomor-phism from Y to YN;l, � : Y ! Y=IN;l = YN;l:We de�ned an ideal IN in se
tion 1.3. We 
learly have IN � IN;l, and thus thequotient map Y ! Y=IN;l = YN;l fa
tors through Y=IN = YN .We shall say that a Young diagram � lies (or is) in the (N � 1)� l-re
tangleif � has at most (N � 1) rows and at most l 
olumns. We shall prove in lemma6.4.1 that for any Young diagram � we have either �(�) = 0 or there exists aYoung diagram � in the (N � 1)� l-re
tangle so that �(�) = ��(�). In theorem6.5.2 we shall prove that the set f�(�) j � lies in the (N � 1)� l-re
tangleg is alinear basis for YN;l. 78



For elements a and b of Y we shall say that a and b are equal in YN;l if�(a) = �(b). Sin
e the quotient map � is a ring homomorphism, we have that fora square matrix with entries in Y, the determinant does not 
hange in YN;l if werepla
e any entry a of the matrix by an element that is equal in YN;l to a.Remark If we add the row diagram dl to the generators of IN;l we get a largerideal I 0N;l. In fa
t, I 0N;l = Y as we show now. If we added dl+N instead of dl tothe generators of IN;l we still get Y be
ause dl+N = (�1)N+1dl modulo IN;l bylemma 6.3.1.Lemma 6.1.1 I 0N;l = Y.Proof We dedu
e from equation (1.2.2) for r = N + i thatdi = 
N�1di+1 � 
N�2di+2 + � � �+ (�1)N�1di+Nmodulo IN;l for any integer i � 1 be
ause 
N = 
0 and 
j = 0 for j � N +1. Stepby step we dedu
e from this equation that di 2 I 0N;l for all i = l � 1; l � 2; : : : ; 1.Hen
e, d1; : : : ; dl+N�1 2 I 0N;l. In parti
ular, d1; : : : ; dN 2 I 0N;l be
ause l � 1.From equation (1.2.2) (or from the Giambelli formula) we dedu
e that any 
jis a polynomial in d1; : : : ; dj. Hen
e, 
j 2 I 0N;l for j = 1; : : : ; N . Hen
e, 
j 2 I 0N;lfor any j � 1. Hen
e, I 0N;l = Y. |6.2 Adding a row of length lWe re
all the notation �0 for a Young � with N rows from se
tion 1.3. It denotesthe Young diagram that derives from � by removing all (initial) 
olumns of lengthN . We de�ne a map � on the set of Young diagrams in the (N � 1)� l-re
tangleby adding an initial row of length l at the top of � and then removing all 
olumnsof length N ,�(�1; : : : ; �N�1) = (l � �N�1; �1 � �N�1; : : : ; �N�2 � �N�1):This map is extended linearly to the subspa
e spanned by the Young diagramsin the (N � 1) � l-re
tangle. It is easy to 
he
k that �N(�) = � for any Youngdiagram � in the (N�1)�l-re
tangle. Figure 6.1 shows that �(4; 3; 2; 2) = (5; 2; 1)for N = 5 and l = 7.Lemma 6.2.1 The elements �(�) and dl� are equal in YN;l for any Young dia-gram � in the (N � 1)� l-re
tangle. 79



! !Figure 6.1: Adding an initial row of length l and removing all 
olumns of lengthN .Proof Let � = (�1; : : : ; �N�1) be a Young diagram in the (N � 1)� l-re
tangle.Denote � = (l; �1; : : : ; �N�1). Then �0 = �(�) by de�nition.We have by lemma 1.3.1 that � and �0 are equal YN , hen
e they are equal inYN;l. It remains to show that � and dl� are equal in YN;l.The Giambelli formula applied to the Young diagram � gives� = ���������� dl dl+1 � � � dl+N�1d�1�1 d�1 � � � d�1+N�2... ... . . . ...d�N�1�N+1 d�N�1�N+2 � � � d�N�1
���������� :When we 
onsider this equality in YN;l, we 
an repla
e dl+1; : : : ; dl+N�1 by zero.By developing the determinant by the �rst row we get� = dl �������� d�1 � � � d�1+N�2... . . . ...d�N�1�N+2 � � � d�N�1 ��������= dl�in YN;l. |6.3 Row diagrams modulo IN;lWe start by proving a useful relation for row diagrams in YN;l.Lemma 6.3.1 We have dkm+r = (�1)(N+1)kdkl drin YN;l for any integer k � 0 and integer r, 0 � r � m� 1.Proof By equation (1.2.3) we have1 =  1Xi=0(�1)i
izi!0� 1Xj=0 djzj1A (6.3.1)80



in Y. Using the relations for YN;l we dedu
e that1 =  NXi=0(�1)i
izi!0� lXj=0 djzj + 1Xj=m djzj1Ain YN;l. Looking at the exponents less than or equal to m we dedu
e that1 =  NXi=0(�1)i
izi!0� lXj=0 djzj1A+ dmzm; (6.3.2)hen
e 1� dmzm =  NXi=0(�1)i
izi!0� lXj=0 djzj1A :Multipli
ation of both sides by P1k=0 dkmzmk and the use of the relations for YN;lleads to 1 =  1Xi=0(�1)i
izi!0�m�1Xj=0 djzj1A 1Xk=0 dkmzmk! :We remark that for any 
ommutative algebra the inverse of a formal power seriesa0 + a1z + a2z2 + � � � with an invertible 
onstant term a0 is uniquely determined.Hen
e, by 
omparing the above equation with equation (6.3.1) we dedu
e that1Xj=0 djzj =  m�1Xr=0 drzr! 1Xk=0 dkmzmk! :This implies that for k � 0 and 0 � r � m� 1dkm+r = drdkm:Looking at the 
oeÆ
ient of zm on both sides of equation (6.3.2), we see that0 = (�1)N
Ndl+ dm. Sin
e 
N = 1 in YN;l, we get dm = (�1)N+1dl. Substitutingthis in the above equation yields dkm+r = (�1)(N+1)kdkl dr. If l + 1 � r � m � 1then dr = 0 in YN;l, hen
e dkm+r = 0 in YN;l. |The Young diagrams dl+1; : : : ; dm�1 are equal to zero in YN;l, and we thus getCorollary 6.3.2 We havedkm+r = ( (�1)(N+1)kdkl dr if 0 � r � l;0 if l + 1 � r � m� 1in YN;l for any integer k � 0 and integer r, 0 � r � m� 1.81



The 
ombination of lemma 6.2.1 and Corollary 6.3.2 shows that in YN;l anyrow diagram is either equal to zero or it is equal up to a sign to a Young diagramin the (N � 1)� l-re
tangle.Corollary 6.3.3 We havedkm+r = ( (�1)(N+1)k�k(dr) if 0 � r � l;0 if l + 1 � r � m� 1in YN;l for any integer k � 0 and integer r, 0 � r � m� 1.6.4 Redu
tion of a Young diagramWe shall extend Corollary 6.3.3 by proving that any Young diagram is up to asign equal in YN;l to a Young diagram in the (N � 1)� l-re
tangle.De�nition For integers q1; : : : ; qa we de�ne an element 0BB� q1...qa 1CCAG of Y by0BB� q1...qa 1CCAG = �������� dq1�(a�1) � � � dq1�(a�j) � � � dq1... ... ...dqa�(a�1) � � � dqa�(a�j) � � � dqa ��������(where dr = 0 for r < 0).The letter G stands for `Giambelli'. If q1 > � � � > qa � 0 then this (a � a)-determinant is equal to a Young diagram by the Giambelli formula. If q1; : : : ; qaare pairwise di�erent non-negative integers then a permutation of rows showsthat this determinant is equal to a Young diagram up to a sign. If qi = qj fordi�erent indi
es i and j then this determinant is equal to zero. If some qi < 0then this determinant is equal to zero.The Giambelli formula for a Young diagram � = (�1; : : : ; �N�1) takes the form(�1; �2; : : : ; �a) = 0BBBBBBB� �1 + a� 1...�i + a� i...�a
1CCCCCCCAG :82



By a permutation of rows we have for example0B� 023 1CAG = �0B� 320 1CAG = �
2:De�nition For a Young diagram � with at most (N � 1) rows we write�i +N � 1� i = kim+ rifor (uniquely determined) integers ki � 0 and 0 � ri � m � 1, i = 1; : : : ; N � 1.We set K = k1+ � � �+ kN�1. The redu
tion � of a Young diagram � is de�ned as
� = 8>>>>>>>>>>>><>>>>>>>>>>>>:

(�1)(N+1)K�K 0BB� r1...rN�1 1CCAG if l(�) � N � 1, and 0 � ri � m� 1for all i = 1; : : : ; N � 1,0 if l(�) � N � 1 and ri = m� 1for some 1 � i � N � 1,�0 if l(�) = N ,0 if l(�) � N + 1.We see that the redu
tion of a Young diagram is either equal to zero or it isequal to a Young diagram inside the (N � 1)� l-re
tangle up to a sign.Example We 
onsider the Young diagram � = (8; 6; 3; 2) for N = 5 and l = 3.We have m = l +N = 8.We have �i +N � 1� i = kim+ ri8 + 5� 1� 1 = 1 � 8 + 36 + 5� 1� 2 = 1 � 8 + 03 + 5� 1� 3 = 0 � 8 + 42 + 5� 1� 4 = 0 � 8 + 2:Hen
e,k1 = 1; k2 = 1; k3 = 0; k4 = 0 and r1 = 3; r2 = 0; r3 = 4; r4 = 2:Hen
e, K = k1+ k2+ k3+ k4 = 2. None of the ri is equal to m� 1 whi
h is equalto 7. We thus have� = (�1)(5+1)2�20BBB� 3042 1CCCAG = �20BBB� 3042 1CCCAG = ��2 0BBB� 4320 1CCCAG83



where the minus sign appears be
ause we have permuted the rows of the deter-minant in order that they are de
reasing downwards. In fa
t, they are stri
tlyde
reasing, and by the Giambelli formula this determinant is equal to a Youngdiagram �. The diagonal entries of the determinant are d1; d1; d1; d0. Hen
e,� = (1; 1; 1; 0). We have �(�) = (3; 1; 1; 1). Adding a further row of length l = 3at the top, we get the Young diagram (3; 3; 1; 1; 1) with the �rst 
olumn of lengthN = 5. We thus have �2(�) = �(3; 1; 1; 1) = (2; 2; 0; 0). We therefore �nally have� = �(2; 2).We remark that � = 0 for � = (8; 6; 3; 2) with N = 6 and l = 3 (be
auser1 = r4 in this 
ase).For a Young diagram � in the (N � 1) � l-re
tangle we have � = � be
auseki = 0 for every i = 1; : : : ; N � 1. Hen
e the linear map Y ! Y given by � 7! �is the proje
tion of Y to the submodule spanned by the Young diagrams in the(N � 1)� l-re
tangle.Lemma 6.4.1 We have �(�) = �(�) for any Young diagram �.Proof We �rst 
onsider the 
ase of a Young diagram � with at most N � 1 rows.We have� = 0BB� k1m + r1...kN�1m + rN�1 1CCAG= �������������
d�1 � � � d�1+N�2... ...d�i+1�i � � � d�i+N�1�i... ...d�N�1�N+2 � � � d�N�1

������������� (6.4.3)
= �������������

d�1 � � � � � � d�1+N�2... ...dkim+ri�(N�2) � � � dkim�1 dkim � � � dkim+ri�1 dkim+ri... ...d�N�1�N+2 � � � � � � d�N�1
�������������where the above (N � 1)� (N � 1)-determinant shows the i-th row in detail forsome 1 � i � N � 1. The entry dkim may or may not o

ur, depending whether0 � ri � N � 2 or N � 1 � ri � m� 1.If ri = m� 1 then all entries of the i-th row be
ome zero in YN;l by 
orollary6.3.2. Hen
e the determinant be
omes zero in YN;l, i.e. �(�) = 0. On the otherhand, � = 0 in this 
ase by de�nition. Hen
e �(�) = �(�) in this 
ase.84



We assume from now on that 0 � ri < m � 1 for all i = 1; : : : ; N � 1. Bylemma 6.3.1 we 
an repla
e dkim+j by (�1)(N+1)kidkil dj for all j = 0; : : : ; ri. Re
allthat the determinant is of size (N�1)�(N�1). Hen
e, there are at most (N�1)elements to the left of dkim and so their indi
es lie between l+1 and m�1 modulom. Hen
e all the entries to the left of dkim be
ome zero in YN;l by lemma 6:3:1.Hen
e we have in YN;l� = (�1)(N+1)kidkil �������������
d�1 � � � � � � d�1+N�2... ...0 � � � 0 d0 � � � dri�1 dri... ...d�N�1�N+2 � � � � � � d�N�1

������������� :By applying this argument to every row in equation (6.4.3), we see that in YN;l� = (�1)(N+1)KdKl 0BB� r1...rN�1 1CCAGwhere K = k1+ k2+ � � �+ kN�1. Sin
e r1; : : : ; rN�1 are all di�erent from (m� 1),the above determinant is (up to a sign depending on a permutation of its rows)equal to a Young diagram in the (N � 1) � l-re
tangle, or it is zero. We 
antherefore apply Lemma 6.2.1 and get� = (�1)(N+1)K�K 0BB� r1...rN�1 1CCAGin YN;l. Hen
e, � = � in YN;l in the 
ase that 0 � ri � m�1 for i = 1; : : : ; N �1.Hen
e, � = � in YN;l for every Young diagram � with at most (N � 1) rows.If � has N rows then � = �0 by de�nition, and �(�0) = �(�0) by the above
ase for Young diagrams with at most (N � 1) rows. Hen
e,�(�) = �(�0) = �(�0) = �(�):sin
e �(�0) = �(�) by lemma 1.3.1.If � has at least N +1 rows then � = 0 by de�nition, and �(�) = 0 by lemma1.3.1. Hen
e, �(�) = �(�). |
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6.5 A basis for YN;lWe de�ne the Z-submodule LN;l of Y to be the span of (� � �) for all Youngdiagrams �, LN;l = h�� � j � a Young diagrami:We haveY = LN;l � h� j Young diagram � lies in the (N � 1)� l-re
tanglei (6.5.4)be
ause, �rst, � is either zero or up to a sign equal to a Young diagram in the(N � 1)� l-re
tangle, and se
ond, � = � if � lies in the (N � 1)� l-re
tangle.The proof that LN;l is an ideal in Y depends on lemma 6.6.7 whi
h will beproved later.Lemma 6.5.1 LN;l is an ideal in Y.Proof Sin
e the ring of Young diagrams is generated by all the 
olumn diagrams
1; 
2; : : : it is suÆ
ient to show that
i(�� �) 2 LN;l for any i � 1 and any Young diagram �:We remark that LN;l 
ontains all Young diagrams with more than N rows andall terms (a� a) for a 2 Y.Let i > N . Sin
e 
i is a subdiagram of every summand of 
i(�� �0), they allhave more than N rows. Hen
e, 
i(�� �) 2 LN;l.Let � be a Young diagram with more than N rows, and let i � 1. We have� = 0 by de�nition. Sin
e � is a subdiagram of every summand of 
i�, we have
i(�� �) 2 LN;l.Let 1 � i � N and let � be a Young diagram with less than N rows. We havetrivially 
i(�� �) = (
i�� 
i�) + (
i�� 
i�)� (
i�� 
i�):The �rst and the third summand lie in LN;l by de�nition. The se
ond summandis equal to zero by lemma 6.6.7. Hen
e 
i(�� �) 2 LN;l.Let 1 � i � N and � be a Young diagram with N rows. We have � = �0 byde�nition. We have trivially
i(�� �) = 
i(�� �0) + 
i(�0 � �0):The �rst summand lies in LN;l be
ause it lies in LN by lemma 1.3.2. The se
ondsummand lies in LN;l by the previous 
ase for Young diagrams with less than Nrows. Hen
e 
i(�� �) 2 LN;l. |86



Theorem 6.5.2 The set f�(�) j � lies in the (N � 1)� l� re
tangleg is a linearbasis for YN;l.Proof We have �(�) = �(�) by lemma 6.4.1, hen
e (�� �) 2 IN;l. Hen
e LN;l isa submodule of IN;l. Sin
e LN;l is an ideal in Y, we have LN;l = IN;l. By equation(6.5.4) we see that the images of the Young diagrams in the (N � 1)� l-re
tangleare a basis for YN;l. |6.6 Proof that 
i� = 
i�The 
ombinatorial Littlewood-Ri
hardson rule via 
ounting the number of stri
textensions is not suitable for algebrai
 
omputations. In order to prove lemma6.6.7 we need a 
ompa
t formula for the multipli
ation of a Young diagram bya 
olumn diagram. Su
h a formula is provided in the next lemma using theve
tor notation for Young diagrams. The essential simpli�
ation provided bythis lemma is that we do not have to restri
t the addition of 
ells of 
i to � sothat the resulting diagram is a Young diagram. If the resulting diagram is not aYoung diagram then the 
orresponding summand is equal to zero.Lemma 6.6.1 Let q1; : : : ; qN�1 be non-negative integers and let i be an integer,1 � i � N . Then
i0BB� q1...qN�1 1CCAG = X"1+���+"N=i0BB� q1 + "1 � "N...qN�1 + "N�1 � "N 1CCAG modulo LN;l:The variables "1; : : : ; "N are to have values in f0; 1g.Proof We start by proving the lemma for the 
ase that q1 > q2 > � � � > qN�1 arenon-negative integers. We have0BB� q1...qN�1 1CCAG = (q1 � (N � 2); q2 � (N � 1); : : : ; qN�1)whi
h is a Young diagram, say �. We know by the Littlewood-Ri
hardson rulethat the summands with up to N rows o

urring in 
i� in Y are all the Youngdiagrams (�1 + "1; : : : ; �N�1 + "N�1; "N) (6.6.5)where the variables "1; : : : ; "N are to have values 0 or 1 and their sum is equal toi. This is be
ause every summand in 
i� derives from � by adding at most one87




ell to ea
h row of �. By removing a possible �rst row of length N we transformthe above Young diagram into(�1 + "1 � "N ; : : : ; �N�1 + "N�1 � "N):Writing the summands of 
i� in determinantal form we get
i0BB� q1...qN�1 1CCAG = X"1+���+"N=i0BB� q1 + "1 � "N...qN�1 + "N�1 � "N 1CCAG (6.6.6)up to summands with more than N rows and terms (�� �0) where � has N rows.The variables "1; : : : ; "N are to have values 0 or 1, and they have to satisfy the
ondition that the sequen
e in expression (6.6.5) is a Young diagram.Now assume that for some "1; : : : ; "N the sequen
e in expression (6.6.5) is nota Young diagram, this means it is in
reasing at some point. Then we have forsome j, 1 � j � N � 1, that �j + "j < �j+1 + "j+1 where �N = 0. Sin
e "j and"j+1 
an only have values 0 or 1, and �j � �j+1 be
ause � is a Young diagram,we dedu
e �j = �j+1 and "j = 0, "j+1 = 1. Hen
e qj + "j � "N = qj+1+ "j+1� "N .Then the 
orresponding determinant is equal to zero,0BB� q1 + "1 � "N...qN�1 + "N�1 � "N 1CCAG = 0;be
ause the rows j and (j+1) are identi
al. Hen
e the right hand side of equation(6.6.6) is not altered by extending the sum of determinants to all "1; : : : ; "N sothat "1 + � � �+ "N = i and ea
h variable "j has values in f0; 1g.We have thus proved the lemma for the 
ase q1 > q2 > � � � > qN�1 � 0.The 
ase that q1; : : : ; qN�1 are pairwise di�erent non-negative integers followsimmediately by a permutation of the rows of the determinants.To �nally prove the lemma we 
onsider from now on the 
ase that qj1 = qj2for some 1 � j1 < j2 � N � 1. In this 
ase the left hand side of equation (6.6.6)is equal to zero. We have to prove that the right hand side is equal to zero aswell.First we note that for a summand 
orresponding to ("1; : : : ; "N) with "j1 = "j2the determinant at the right hand side of equation (6.6.6) 
ontains two identi
alrows, hen
e it is equal to zero. We 
an thus restri
t to those summands with"j1 = 0 and "j2 = 1 and those summands with "j1 = 1 and "j2 = 0. We get a �xedpoint free permutation of these summands by inter
hanging the values of "j1 and"j2. The determinants of two 
orresponding summands add up to zero be
ausethey di�er by a transposition of the rows j1 and j2. Hen
e the whole sum addsup to zero. |88



Applying the redu
tion map � 7! � to lemma 6.6.1 leads toCorollary 6.6.2 Let q1; : : : ; qN�1 be non-negative integers and let i be an integer,1 � i � N . Then
i0BB� q1...qN�1 1CCAG = X"1+���+"N=i0BB� q1 + "1 � "N...qN�1 + "N�1 � "N 1CCAG:The variables "1; : : : ; "N are to have values 0 or 1.If for an N-tuple ("1; : : : ; "N) we have qj + "j � "N � m� 1 mod m for some1 � j � N � 1 then this summand is equal to zero.Proof The redu
tion of elements of LN;l is equal to zero be
ause �� � = ��� = 0for any Young diagram �. Hen
e
i0BB� q1...qN�1 1CCAG = X"1+���+"N=i0BB� q1 + "1 � "N...qN�1 + "N�1 � "N 1CCAG:If qj + "j � "N � m� 1 mod m for some 1 � j � N � 1 then we have to 
onsidertwo 
ases. Either qj+"j�"N = �1 in whi
h 
ase the determinant is zero be
ausethe j-the row 
onsists entirely of zeros. Or qj + "j � "N = kj(N + l) +m� 1 forsome integer kj � 0 in whi
h 
ase the redu
tion is de�ned to be equal to zero. |There is a 
ompa
t formulation for the operation of � in terms of the ve
tornotation for Young diagrams.Lemma 6.6.3 For integers m� 2 � q1 � q2 � � � � � qN�1 � 0 we have�0BBBB� q1q2...qN�1 1CCCCAG = 0BBBB� m� 2� qN�1q1 � 1� qN�1...qN�2 � 1� qN�1 1CCCCAG :Proof We denote elements in Y,� = 0BBBB� q1q2...qN�1 1CCCCAG and � = 0BBBB� m� 2� qN�1q1 � 1� qN�1...qN�2 � 1� qN�1 1CCCCAG :89



If m � 2 � q1 > q2 > � � � > qN�1 � 0 then � is equal to a Young diagram in the(N�1)� l-re
tangle by the Giambelli formula. The 
laimed equality of �(�) and� is the translation of the de�nition of �(�) into determinantal form.From now on we 
onsider the remaining 
ase qi = qi+1 for some 1 � i � N�2.Then the determinant � is equal to zero be
ause it has identi
al rows i and i+1.Hen
e �(�) = 0 as well. We shall show that � = 0, too.If qN�2 = qN�1, then qN�2 � 1� qN�1 is negative, hen
e the determinant � isequal to zero.If qi = qi+1 for some 1 � i � N � 3 then the 
olumns (i+1) and (i+2) of thedeterminant � are equal, hen
e � = 0. Therefore the statement of the lemma isalso true in the 
ase qi = qi+1 for some 1 � i � N � 2. |The next lemma des
ribes that for a Young diagram � in the (N�1)� l-re
tanglethe operation � 
ommutes with the operation of multipli
ation with 
i followedby redu
tion. Note that 
i�f(�) means 
i(�f(�)).Lemma 6.6.4 Let � be a Young diagram in the (N � 1)� l-re
tangle, let f be anon-negative integer, and let 1 � i � N . Then
i�f(�) = �f(
i�):Proof By indu
tion on f . Let � be a Young diagram in the (N�1)� l-re
tangle.The 
ase f = 0 is trivial. The essential part of the proof is to show the statementof the lemma for f = 1 sin
e indu
tion immediately shows for f � 2 that�f (
i�) = ��f�1(
i�)= �(
i�f�1(�))= 
i��f�1(�)= 
i�f(�):We set qj = �j +N � 1� j for j = 1; : : : ; N � 1, and we have� = 0BB� q1...qN�1 1CCAGand m� 2 � q1 > q2 > � � � > qN�1 � 0. By lemma 6.6.3 we have�(�) = 0BBBB� m� 2� qN�1q1 � 1� qN�1...qN�2 � 1� qN�1 1CCCCAG :90



Therefore, using 
orollary 6.6.2,
i�(�) = X"1+���+"N=im�2�qN�1+"1�"N�m�2
0BBBB� m� 2� qN�1 + "1 � "Nq1 � 1� qN�1 + "2 � "N...qN�2 � 1� qN�1 + "N�1 � "N 1CCCCAGwhere the sum is restri
ted to those summands withm�2�qN�1+"1�"N � m�2be
ause only the �rst entry of the ve
tor 
ould be greater than m� 2. (It 
ouldbe at most m � 1 in whi
h 
ase it redu
es to zero.) The 
ondition is equivalentto qN�1+ "N � "1 � 0. The only situation in whi
h the se
ond entry of the ve
toris not less than the �rst entry o

urs if the �rst and the se
ond entry are equal.Hen
e those summands are equal to zero. We 
an thus redu
e the summands inthe above sum to those with q1 � 1� qN�1 + "2 � "N < m� 2� qN�1 + "1 � "Nwhi
h is equivalent to q1 + "2 � "1 � m� 2. Hen
e
i�(�) = X"1+���+"N=iqN�1+"N�"1�0q1+"2�"1�m�2

0BBBB� m� 2� qN�1 + "1 � "Nq1 � 1� qN�1 + "2 � "N...qN�2 � 1� qN�1 + "N�1 � "N 1CCCCAG : (6.6.7)
On the other hand, we have by 
orollary 6.6.2
i� = X�1+���+�N=iq1+�1��N�m�2 0BB� q1 + �1 � �N...qN�1 + �N�1 � �N 1CCAG :For the summands in the above sum we havem� 2 � q1 + �1 � �N � q2 + �2 � �N � � � � � qN�1 + �N�1 � �N :By e
lipsing the summands with qN�1 + �N�1 � �N < 0, whi
h are equal to zeroanyway, we get by lemma 6.6.3�(
i�) = X�1+���+�N=iqN�1+�N�1��N�0q1+�1��N�m�2

0BBBB� m� 2� qN�1 + �N � �N�1q1 � 1� qN�1 + �1 � �N�1...qN�2 � 1� qN�1 + �N�2 � �N�1 1CCCCAG : (6.6.8)
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There is a bije
tion of the summands in equations (6.6.7) and (6.6.8) thatrespe
ts the additional 
onditions imposed on the summands. The summand("1; "2; : : : ; "N�1; "N) of the sum in equation (6.6.7) agrees with the summand(�1; : : : ; �N) = ("2; : : : ; "N�1; "N ; "1) of the sum in equation (6.6.8). We thereforehave �(
i�) = �(
i�). |Now we are able to prove under minor 
onditions that for a Young diagram �with less then N rows the redu
tions of 
i� and of 
i� agree for 1 � i � N .Lemma 6.6.5 Let � = (�1; : : : ; �N�1) be a Young diagram with�j +N � 1� j 6� m� 1 mod m for all j = 1; : : : ; N � 1:Then 
i� = 
i� for any integer i, 1 � i � N .Proof For j = 1; : : : ; N�1 we write �j+N�1�j = kjm+rj with integers kj � 0and 0 � rj � m� 1. Our assumption is that 0 � rj < m� 1 for j = 1; : : : ; N � 1.We denote � = 0BB� r1...rN�1 1CCAG :Then the Young diagram � redu
es to� = (�1)(N+1)K�K(�) (6.6.9)where K = k1 + � � �+ kN�1. We have0BB� k1m+ r1 + "1 � "N...kN�1m+ rN�1 + "N�1 � "N 1CCAG = (�1)(N+1)K�K 0BB� r1 + "1 � "N...rN�1 + "N�1 � "N 1CCAGprovided that 0 � rj + "j � "N � m� 2 for j = 1; : : : ; N � 1.Hen
e, by 
orollary 6.6.2,
i� = X"1+���+"N=i0�rj+"j�"N�m�2 (�1)(N+1)K�K 0BB� r1 + "1 � "N...rN�1 + "N�1 � "N 1CCAG
= (�1)(N+1)K�K 0BBBBBBB� X"1+���+"N=i0�rj+"j�"N�m�2 0BB� r1 + "1 � "N...rN�1 + "N�1 � "N 1CCAG

1CCCCCCCA :
92



The last sum in the above equation is equal to 
i� by 
orollary 6.6.2, and we thusget 
i� = (�1)(N+1)K�K(
i�):We apply lemma 6.6.4 and get
i� = (�1)(N+1)K
i�K(�)= 
i(�1)(N+1)K�K(�)= 
i�: |The remaining spe
ial 
ase will be proved now.Lemma 6.6.6 Let � = (�1; : : : ; �N�1) be a Young diagram with�j +N � 1� j � m� 1 mod m for some 1 � j � N � 1:Then 
i� = 0 for any integer i, 1 � i � N .Proof Let � be a Young diagram with less than N rows and let 1 � i � N . Wewrite �j + N � 1 � j = kjm + rj with integers kj � 0 and 0 � rj � m � 1 forj = 1; : : : ; N � 1. We have by 
orollary 6.6.2
i� = X"1+���+"N=i0�rj+"j�"N�m�2 0BB� k1m + r1 + "1 � "N...kN�1m + rN�1 + "N�1 � "N 1CCAG:We 
onsider �rst the 
ase that rj1 = rj2 = m � 1 for di�erent indi
es j1 andj2. Be
ause j"j1 � "j2j and "N are either equal to 0 or 1, we see that the terms(kj1m+ rj1 + "j1 � "N ) and (kj2m+ rj2 + "j2 � "N ) are either equal or at least oneof them is 
ongruent to (m � 1) modulo m. Hen
e any summand on the righthand side in the above equation redu
es to zero.We assume from now on that exa
tly one of r1; : : : ; rN�1 is equal to m � 1,say rj1 . For a summand ("1; : : : ; "N) in the above sum with "j1 = "N we haverj1 + "j1 � "N = m � 1. Hen
e this summand is equal to zero. Hen
e we 
anrestri
t the sum to the summands with "j1 6= "N .If "j1 = 0 and "N = 1 then0BB� k1m+ r1 + "1 � "N...kN�1m+ rN�1 + "N�1 � "N 1CCAG = (�1)(N+1)K�K 0BBBBBBB� r1 + "1 � 1...m� 2...rN�1 + "N�1 � 1
1CCCCCCCAG93



with (m� 2) as the j1-th entry. If rj = m� 2 for some 1 � j � N � 1 and "j = 1then the above term is equal to zero be
ause the rows j and j1 of the determinanton the right hand side would be identi
al.If "j1 = 1 and "N = 0 then0BB� k1m+ r1 + "1 � "N...kN�1m+ rN�1 + "N�1 � "N 1CCAG = (�1)(N+1)(K+1)�K+10BBBBBBB� r1 + "1...0...rN�1 + "N�1
1CCCCCCCAGwith 0 as the j1-th entry. If rj = 0 for some 1 � j � N � 1 and "j = 0 then theabove term is equal to zero be
ause the rows j and j1 of the determinant on theright hand side would be identi
al. Hen
e
i� = X"1+���+"N=i"j1=0; "N=10�rj+"j�"N�m�2 (�1)(N+1)K�K 0BBBBBBB� r1 + "1 � 1...m� 2...rN�1 + "N�1 � 1

1CCCCCCCAG
+ X"1+���+"N=i"j1=1; "N=00�rj+"j�"N�m�2 (�1)(N+1)(K+1)�K+10BBBBBBB� r1 + "1...0...rN�1 + "N�1

1CCCCCCCAG :We shall prove that the summand ("1; : : : ; "j1�1; 0; "j1+1; : : : ; "N�1; 1) from the�rst sum and the summand ("1; : : : ; "j1�1; 1; "j1+1; : : : ; "N�1; 0) from the se
ondsum of the above equation add up to zero, hen
e the whole sum adds up to zero.To prove this 
laim, it is suÆ
ient to show that0BBBBBBB� r1 + "1 � 1...m� 2...rN�1 + "N�1 � 1
1CCCCCCCAG = (�1)N�0BBBBBBB� r1 + "1...0...rN�1 + "N�1

1CCCCCCCAGsin
e the summands in question are iterated images of the same power of � of theseterms. By shifting the j1-th row of the �rst determinant by (j1�1) rows upwards94



and the j1-th row of the se
ond determinant by (N � 1 � j1) rows downwards,the above equation is equivalent to0BBBB� m� 2r1 + "1 � 1...rN�1 + "N�1 � 1 1CCCCAG = �0BBBB� r1 + "1...rN�1 + "N�10 1CCCCAG :This is true by lemma 6.6.3 whi
h 
an be applied after a suitable permutation ofrows. Hen
e 
i� = 0. |Lemma 6.6.7 We have 
i� = 
i� for any Young diagram � with less than Nrows and any 1 � i � N .Proof If �j +N � 1� j � m� 1 mod m for some 1 � j � N � 1 then � = 0 byde�nition, hen
e 
i� = 0. Hen
e, by lemma 6.6.6, 
i� = 0 = 
i�.If �j +N � 1� j 6� m� 1 mod m for all j = 1; : : : ; N � 1 then 
i� = 
i� bylemma 6.6.5. |6.7 Useful resultsRe
all that m was de�ned as l +N .Lemma 6.7.1 A Young diagram � = (�1; : : : ; �N�1; �N) with �N = 0 redu
es tozero if and only if�i � �j � i� j mod m for some 1 � i < j � N:Proof We set �j +N � 1� j = kjm + rj for j = 1; : : : ; N � 1 with kj � 0 and0 � rj � m � 1. The redu
tion is equal to zero if either rj = m � 1 for someindex j, or if ri = rj for di�erent indi
es i and j.The 
ase ri = rj o

urs if and only if �i+N � 1� i � �j +N � 1� j mod m.This is equivalent to �i � �j � i� j mod m.The 
ase rj = m� 1 o

urs if and only if �j +N � 1� j � m� 1 mod m, i.e.�j � j �N mod m. This 
an be written as �j � �N � j �N mod m. |Lemma 6.7.2 Let � = (�1; : : : ; �N) be a Young diagram with �N = 0 that satis-�es �i � �j � i� j mod m for some 1 � i < j � N:If (�1; : : : ; �i+ b; : : : ; �N) and (�1; : : : ; �j + b; : : : ; �N) are Young diagrams for aninteger b � 0 then the redu
tions of these two Young diagrams add up to zero.95



Proof Let � = (�1; : : : ; �N) be a Young diagram with �N = 0 that satis�es�i � �j � i� j mod (N + l) for some 1 � i < j � Nand furthermore� = (�1; : : : ; �i + b; : : : ; �N) and � = (�1; : : : ; �j + b; : : : ; �N)are Young diagrams for some integer b � 0.First we 
onsider the 
ase 1 � i < j � N � 1. The 
ase j = N will be
onsidered later. We set qf = �f + N � 1 � f and write qf = kfm + rf withkf � 0 and 0 � rf � m� 1 for f = 1; : : : ; N � 1. Our assumption is that ri = rj.We have qi + b = (ki + a)m+ s and qj + b = (kj + a)m+ s for integers a � 0and 0 � s � m� 1. With K = k1 + � � �+ kN�1 we have by de�nition� = (�1)(N+1)(K+a)�(K+a)0BBBBBBB� r1...s...rN�1
1CCCCCCCAGwith s as the i-th entry, and� = (�1)(N+1)(K+a)�(K+a)0BBBBBBB� r1...s...rN�1
1CCCCCCCAGwith s as the j-th entry. Sin
e the 
orresponding determinants di�er by a trans-position of rows, � and � di�er by the s
alar (�1) as 
laimed.Now we prove the 
ase j = N by indu
tion on b. Let 1 � i � N � 1. Theindu
tion hypothesis for b is that for any Young diagram � = (�1; : : : ; �N�1) with�i � i�N mod m we have that the redu
tion of 
 = (�1; : : : ; �i+e; : : : ; �N�1) andthe redu
tion of Æ = (�1�e; : : : ; �N�1�e) add up to zero for any e = 0; 1; : : : ; b�1provided that 
 and Æ are Young diagrams.The indu
tion hypothesis for b = 0 is true by lemma 6.7.1.We assume that the indu
tion hypothesis is true for an integer b � 0. Weshall dedu
e from this the indu
tion hypothesis for (b + 1).Let � = (�1; : : : ; �N�1) be a Young diagram that satis�es �i � i � N mod m,and that (�1; : : : ; �i + b + 1; : : : ; �N�1) and (�1 � (b + 1); : : : ; �N�1 � (b + 1)) areYoung diagrams. We denote the Young diagrams� = (�1; : : : ; �i + b; : : : ; �N�1) and � = (�1 � b; : : : ; �N�1 � b):96



We have � + � = 0 by indu
tion hypothesis for b.For 1 � r � N the addition of a 
ell to the r-th row of � gives a Youngdiagram if and only if the addition of a 
ell to the r-th row of � gives a Youngdiagram, ex
ept in one 
ase. If �i = �i+1 and b � 1 then the addition of a 
ell tothe (i+ 1)-st row of � does not give a Young diagram, but the addition of a 
ellto the (i+1)-st row of � gives a Young diagram. (In this 
ase i 6= N � 1 be
ause�N�1 � b + 1 � 1 and �N = 0.) But this Young diagram, say �, redu
es to zeroby lemma 6.7.1 be
ause �i+1 � i + 1�N mod m.Let r 6= i and r 6= N . If both of(�1; : : : ; �r + 1; : : : ; �i + b; : : : ; �N�1)and (�1 � b; : : : ; �r � b+ 1; : : : ; �i � b; : : : ; �N�1 � b)are Young diagrams then their redu
tions add up to zero. This follows from theindu
tion hypothesis for (b� 1) applied to(�1; : : : ; �r + 1; : : : ; �i; : : : ; �N�1):Hen
e, only the terms for r = i and r = N appear in the following equation.Remark that for r = N we have to remove a 
olumn of length N .
1� + 
1� = (�1; : : : ; �i + b+ 1; : : : ; �N�1)+ (�1 � 1; : : : ; �i + b� 1; : : : ; �N�1 � 1)+ (�1 � b; : : : ; �i � b+ 1; : : : ; �N�1 � b)+ (�1 � b� 1; : : : ; �i � b� 1; : : : ; �N�1 � b� 1):Re
all that � + � = 0. By lemma 6.6.7 we get
1� + 
1� = 
1� + 
1� = 
1� + 
1� = 
1(� + �) = 0:We thus get 0 = (�1; : : : ; �i + b + 1; : : : ; �N�1)+ (�1 � 1; : : : ; �i + b� 1; : : : ; �N�1 � 1) (6.7.10)+ (�1 � b; : : : ; �i � b + 1; : : : ; �N�1 � b)+ (�1 � b� 1; : : : ; �i � b� 1; : : : ; �N�1 � b� 1):For b = 0, this equation be
omes0 = 2(�1; : : : ; �i + 1; : : : ; �N�1) + 2(�1 � 1; : : : ; �N�1 � 1)97



whi
h is (up to the negligible s
alar 2) the indu
tion hypothesis for � with b = 1.For b � 1, the indu
tion hypothesis for (b � 1) applied to the Young dia-gram (�1� 1; : : : ; �i; : : : ; �N�1� 1) shows that the se
ond and the third summandin equation (6.7.10) add up to zero. The remaining equation is the indu
tionhypothesis for (b + 1) applied to the Young diagram � . |Sometimes, the ideal IN;l appears with a di�erent set of generators.Lemma 6.7.3 Let N � 2 and l � 1. Denote by P the ideal of Y generated byall Young diagrams with l + 1 
olumns and less than N rows. Denote by Q theideal of Y generated by all row diagrams dl+1; dl+2; : : : ; dm�1. Then P = Q.Proof By the Giambelli formula for a Young diagram � we have� = det(d�i+j�i)1�i;j�l(�):If �1 = l + 1 then the �rst row reads dl+1; dl+2; : : : ; dl+l(�). If � has less than Nrows then all these elements lie in Q, hen
e by developing the determinant by the�rst row we see that � lies in Q. Hen
e P � Q.Denote by �i;j the hook diagram with j 
ells in the �rst row and i 
ells in the�rst 
olumn. The number of 
ells of �i;j is i+ j� 1. For i � 1 and j � 1 we haveby the Littlewood-Ri
hardson rule�i;j = 
idj�1 � �i+1;j�1: (6.7.11)In parti
ular, for any r � 1,dl+r = 
1dl+r�1 � �2;l+r�1:Applying su

essively equation (6.7.11) to the above equation we getdl+r = 
1dl+r�1 � 
2dl+r�2 + � � �+ (�1)r
r�1dl+1 + (�1)r+1�r;l+1:From this we dedu
e indu
tively that dl+1; : : : ; dl+r lie in the ideal generatedby �1;l+1; �2;l+1; : : : ; �r;l+1. If r � N � 1 then �r;l+1 lies in P . Hen
e all ofdl+1; : : : ; dm�1 lie in P , hen
e Q � P . Hen
e P = Q. |
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Chapter 7A latti
e model for Youngdiagrams
7.1 The latti
eFor an integer N � 2 we 
onsider a ve
tor spa
e V (N) over R with a basis"1; : : : ; "N and an inner produ
t on V (N) given by h"i; "ji = Æij for 1 � i; j � N .We de�ne elements �i in V (N), �i = "i � "i+1for i = 1; : : : ; N�1. They are linearly independent. We denote by V 0(N) the ve
-tor subspa
e spanned by �1; : : : ; �N�1. There are unique elements �1; : : : ;�N�1of V 0(N) so that h�i; �ji = Æijfor any 1 � i; j � N � 1. Expli
itly, these elements are given by�i = "1 + � � �+ "i � iN ("1 + � � �+ "N)for i = 1; : : : ; N � 1. For notational purposes we set �0 = 0 and �N = 0. Wedenote by P (N) the integral latti
e spanned by �1; : : : ;�N�1,P (N) = fa1�1 + � � �+ aN�1�N�1 j ai 2 Z for i = 1; : : : ; N � 1g:We denote by P+(N) the 
one in P (N),P+(N) = fa1�1 + � � �+ aN�1�N�1 j ai 2 Z; ai � 0 for i = 1; : : : ; N � 1g:Sin
e h�i; �ji = Æij, we have that an element v of V 0(N) lies in P (N) (resp.in P+(N)) if and only if hv; �ji is integral (resp. integral and non-negative) forj = 1; : : : ; N � 1. 99



"1 "2
"3

�1
�2

�1 �2Figure 7.1: The ve
tor spa
e V (3).The integral latti
e spanned by �1; : : : ; �N�1 is a sublatti
e of P (N) be
ause�i = ��i�1 + 2�i � �i+1, and thus any �i lies in P (N). The restri
tion of theinner produ
t to P (N) is not ne
essarily integral, in fa
th�i; �ji = min(i; j)� ijN for 1 � i; j � N:We 
an write�i = i�1i ("1 + � � �+ "i)� 1N ("1 + � � �+ "N)� for 1 � i � N � 1:This means that �i lies in the dire
tion of the line that joins the 
entres of thesimpli
es with verti
es "1; : : : ; "i respe
tively "1; : : : ; "N . Figure 7.1 shows in V (3)the aÆne plane parallel to V 0(3) 
ontaining "1, "2 and "3.7.2 Relation between V (N) and sl(N)The set of diagonal matri
es in sl(N) is a Cartan subalgebra h of sl(N). TheCartan-Killing form indu
es an inner produ
t B on the dual h? of h. One
an 
hoose primitive positive roots �1; : : : ; �N�1 and 
orresponding fundamentalweights !1; : : : ; !N�1 in h? so that there is an isomorphism between the R-ve
torspa
e spanned by the primitive positive roots and V 0(N) mapping �i to �i and100



!i to �i. Furthermore, this isomorphism respe
ts (up to the s
alar 2N) the in-ner produ
ts on h? and V 0(N). The relation between non-negative integral linear
ombinations of fundamental weights and the irredu
ible representations of sl(N)shows us how to relate Young diagrams and elements of P+(N). We explain thisnow.7.3 The latti
e and Young diagramsWe des
ribe a bije
tion between Young diagrams with less than N rows and the
one P+(N) � P (N).To a1�1+� � �+aN�1�N�1 in P+(N) we asso
iate the Young diagram that has a1
olumns of length 1, a2 
olumns of length 2, : : :, and aN�1 
olumns of lengthN�1.For example, a1�1 
orresponds to a single row of length a1, and 2�1 + 3�3 + �4
orresponds to the Young diagram (6; 4; 4; 1). In general, a1�1 + � � �+ aN�1�N�1
orresponds to the Young diagram � = (�1; : : : ; �N�1) with�i = ai + ai+1 + � � �+ aN�1 (7.3.1)for i = 1; : : : ; N � 1.Lemma 7.3.1 Let � = (�1; : : : ; �N�1; �N) be a Young diagram with �N = 0.Denote its 
orresponding element in P+(N) by p. Then�i � �j = h"i � "j; pifor any 1 � i < j � N .Proof We have p = a1�1 + � � � + aN�1�N�1 for some non-negative integersa1; : : : ; aN�1. From the above equation (7.3.1) we have�i � �j = ai + � � �+ aj�1for any 1 � i < j � N . On the other hand,h"i � "j; pi = h�i + � � �+ �j�1; a1�1 + � � �+ aN�1�N�1i= ai + � � �+ aj�1:be
ause h�k; �mi = Ækm for any 1 � k;m � N � 1. |From lemmas 6.7.1 and 7.3.1 we immediately dedu
eLemma 7.3.2 A Young diagram (�1; : : : ; �N) with �N = 0 redu
es to zero if andonly if it 
orresponds to an element of P+(N) that lies in a hyperplaneHi;j;
 = fx 2 V (N) j hx; "i � "ji = i� j + 
(N + l)gfor some 1 � i < j � N and integer 
.We shall denote the family of all the hyperplanes Hi;j;
 with 1 � i < j � N andinteger 
 by H. 101
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Figure 7.2: A point y and its mirror image �v(y).7.4 Hyperplanes and re
e
tionsA non-zero element v of V (N) determines an (N � 1)-dimensional hyperplanefx 2 V (N) j hx; vi = 0g:The re
e
tion �v in this hyperplane maps y 2 V (N) to �v(y) so that �v(y)� y isa s
alar multiple of v, and (�v(y) + y)=2 lies in this hyperplane (see �gure 7.2).We dedu
e �v(y) = y � 2hy; vihv; viv:More general, for any r 2 R, the re
e
tion �v;r in the hyperplanefx 2 V (N) j hx; vi = rgis given by �v;r(y) = y + 2r � hy; vihv; vi v: (7.4.2)This says that the re
e
tions �v and �v;r di�er by a translation in the dire
tionof v.Lemma 7.4.1 Let v and w be non-zero elements of V (N) and let r and t be realnumbers. The re
e
tion in the hyperplane fx 2 V (N) j hx; vi = rg maps thehyperplane fy 2 V (N) j hy; wi = tg to the hyperplane(z 2 V (N) j *z; w � 2hv; wihv; vi v+ = t� 2r hv; wihv; vi ) :Proof The mirror image of the hyperplane is given byfz 2 V (N) j h�v;r(z); wi = tg:A simple appli
ation of the above formula for �v;r gives the expli
it form of thishyperplane. |102



Lemma 7.4.2 The set V 0(N) and the set P (N) are invariant under re
e
tionin any hyperplane of H.Proof Let us 
onsider a hyperplane Hi;j;
 of H. From equation (7.4.2) we dedu
ethat the re
e
tion �"i�"j ;
 in the hyperplane Hi;j;
 is given by�v;
(w) = w + (r � hw; vi)vwhere r = i� j + 
(N + l) and v = "i � "j and thus hv; vi = 2.We have "i � "j = �i + � � �+ �j�1, and thus v 2 P (N) � V 0(N). Hen
e, wehave �v;
(w) 2 V 0(N) for any w of V 0(N). This des
ribes the invarian
e of V 0(N)under re
e
tion in Hi;j;
.Let w be an element of P (N), i.e. w lies in V 0(N) and hw; �ki is integral forany k = 1; : : : ; N � 1. Then hw; vi is integral be
ausehw; vi = hw; "i � "ji= hw; �i + � � �+ �j�1i= hw; �ii+ � � �+ hw; �j�1i :Hen
e, �v;
(w) lies in P (N). |Lemma 7.4.3 The family H of hyperplanes is invariant under re
e
tion in anyhyperplane of H.Proof The essential tool is lemma 7.4.1 by whi
h we know that the re
e
tion inthe hyperplane Hi;j;e maps the hyperplane Hk;m;f to the hyperplanefz 2 V (N) j hz; w � hv; wi vi = d� 
 hv; wig (7.4.3)with v = "i � "j, w = "k � "m, 
 = i � j + e(N + l) and d = k �m + f(N + l).We have that hv; vi = h"i � "j; "i � "ji = 2. Hen
e, all we have to know are thevalues of hv; wi whi
h are equal to h"i � "j; "k � "mi for 1 � i < j � N and1 � k < m � N .If i; j; k and m are pairwise di�erent then hv; wi = 0 and thus formula 7.4.3tells us that Hk;m;f is invariant under re
e
tion in Hi;j;e.In the remaining �ve 
ases we haveh"i � "j; "k � "mi = 8>>>>>><>>>>>>: 2 if i = k and j = m;1 if i = k and j 6= m;1 if i 6= k and j = m;�1 if j = k;�1 if m = i:103



We thus have w � hv; w; vi = 8>>>>>><>>>>>>: "i � "j if i = k and j = m;"j � "m if i = k and j 6= m;"k � "i if i 6= k and j = m;"i � "m if j = k;"k � "j if m = i:In these �ve 
ases we get by equation (7.4.3) the hyperplanes 
onsisting of allz 2 V (N) that satisfyhz; "j � "ii = j � i+ (f � 2e)(N + l) if i = k; j = mhz; "j � "mi = j �m+ (f � e)(N + l) if i = k; j 6= mhz; "k � "ii = k � i + (f � e)(N + l) if i 6= k; j = mhz; "i � "mi = i�m + (f + e)(N + l) if j = khz; "k � "ji = k � j + (f + e)(N + l) if m = i:These hyperplanes are again of the form Ha;b;
 with integers a, b, and 
 su
h that1 � a � N , 1 � b � N and a 6= b. To ensure a < b, we have to multiply bothsides of the above equations by (�1) if ne
essary. |7.5 The de
omposition of V (N) by HWe 
an write the family of hyperplanes H as the union of �N2� lo
ally �nite setsof hyperplanes, H = [1�i<j�N [
2ZHi;j;
:Hen
e, H is a lo
ally �nite set of hyperplanes. Thus, H indu
es a polyhedralde
omposition of the N -dimensional Eu
lidean spa
e V (N) whi
h is invariantunder re
e
tion in any hyperplane of H. We denote the de
omposition by D.The polyhedra of D are not ne
essarily 
ompa
t.Every hyperplane Hi;j;
 determines two half-spa
es of V (N). We denoteH+i;j;
 = fx 2 V (N) j hx; "i � "ji � i� j + 
(l +N)gand H�i;j;
 is the other half-spa
e. For a subset B � V (N) we denote by ÆB theset of interior points of B with respe
t to the topology indu
ed by the Eu
lideanmetri
.We denote H\ = N�1\i=1 H+i;i+1;0whi
h is a 
losed unbounded 
onvex subset of V (N). It is the union of (in�nitelymany) polyhedra of the de
omposition D.104



Lemma 7.5.1 P (N) \ ÆH\ = P+(N):Proof Let p be an element of P (N). Then p 2 ÆH\ if and only ifhp; "i � "i+1i > �1for i = 1; : : : ; N�1. Sin
e "i�"i+1 = �i and p 2 P (N) we have that hp; "i � "i+1iis an integer. The above 
ondition on p is therefore equivalent to hp; �ii � 0 fori = 1; : : : ; N � 1. The element p satis�es this if and only if p 2 P+(N). |Lemma 7.5.2 The set S = H�1;N;1 \H\is an N-dimensional polyhedron of the de
omposition D.Proof We have to show that the interior of S is disjoint to any hyperplane of Hand that it is not empty. The interior ÆS of S is given byÆS = fx 2 V (N) j hx; "1 � "Ni < l + 1g \fx 2 V (N) j hx; "i � "i+1i > �1 for i = 1; : : : ; N � 1g: (7.5.4)Assume that an element x of ÆS lies in a hyperplane Hj;k;
 for some 1 � j < k � Nand integer 
. We have by equation (7.5.4)hx; "j � "ki = hx; "j � "j+1i+ � � �+ hx; "k�1 � "ki> (�1) + � � �+ (�1)= j � k:Hen
e 
 has to be greater than zero, i.e. 
 � 1. Thush"j � "k; pi � j � k +N + l:Hen
ehx; "1 � "Ni = hx; "1 � "2i+ � � �+ hx; "j�1 � "ji+ hx; "j � "ki+ hx; "k � "k+1i+ � � �+ hx; "N�1 � "Ni> (�1) + � � �+ (�1) + j � k +N + l + (�1) + � � �+ (�1)= (�1)(j � 1) + j � k +N + l + (�1)(N � k)= l + 1:The inequality hx; "1 � "Ni > l+1 is in 
ontradi
tion to equation (7.5.4). Hen
ethe interior of S is disjoint to any hyperplane of H.The interior of S is not empty be
ause it 
ontains e.g. ("1+ � � �+ "N) be
auseh"1 + � � �+ "N ; "a � "bi = 0 for any 1 � a; b � N . |105



Lemma 7.5.3 For any two N-dimensional polyhedra R and T of the de
ompo-sition D of V (N) there exists a sequen
e of N-dimensional polyhedra of D, sayS1; S2; : : : ; Sk so that S1 = R, Sk = T , and the polyhedra Sj and Sj+1 di�er by are
e
tion in a hyperplane of H for j = 1; : : : ; k � 1.If R and T lie in H\ then we 
an 
hoose S2; : : : ; Sk�1 to lie in H\, too.Proof We 
hoose a point r in the interior of R, and a point t in the interior ofT . Sin
e V (N) is a 
onne
ted N -dimensional manifold, we 
an �nd a path inV (N) 
onne
ting r and t whi
h interse
ts the (N � 1)-dimensional polyhedra ofD transversally and whi
h is disjoint to the (N � 2)-skeleton of D. The sequen
eof N -dimensional polyhedra through whi
h the path from r to t is going satis�esthe 
ondition of the statement of the lemma. This is be
ause the invarian
e ofthe de
omposition of D under re
e
tion in hyperplanes of H implies that anytwo polyhedra of the de
omposition D with a 
ommon (N � 1)-dimensional sidedi�er by a re
e
tion in the hyperplane spanned by this side.If R and T lie in H\ then we 
an 
hoose the above path to lie in the interiorof H\ be
ause the interior of H\ is 
onne
ted, even after removing the (N � 2)-skeleton of D. |Lemma 7.5.4 For any element p of P+(N) whi
h does not lie on any hyperplaneof H there exists a sequen
e of elements of P+(N), p = p1; p2; : : : ; pr so thatpr lies in ÆS, and pj and pj+1 di�er by a re
e
tion in a hyperplane of H forj = 1; : : : ; r � 1.Proof Let p be an element of P+(N) that does not lie in a hyperplane ofH. Thenp lies in the interior of an N -dimensional polyhedron R of the de
omposition Dof V (N). By lemma 7.5.3 there exists a sequen
e R = S1; S2; : : : ; Sk = S ofN -dimensional polyhedra whi
h all lie in H\ so that Si and Si+1 di�er by are
e
tion in a hyperplane of H. The su

essive mirror images of p are disjointfrom H, hen
e they lie in ÆH\. They lie in P (N) by lemma 7.4.2. Therefore, theylie in P+(N) by lemma 7.5.1. The �nal element of this sequen
e of points lies inÆS as required. |Lemma 7.5.5 Let p and q be two elements of P+(N) so that there exists a hy-perplane of H with respe
t to whi
h q is the mirror image of p. Then the Youngdiagrams � and � 
orresponding to p resp. q satisfy �+ � = 0.Proof Let us 
onsider two elements p and q of P (N) that are mirror images ofea
h other with respe
t to a hyperplane Hi;j;
 of H. By equation (7.4.2) we haveq � p = b("i � "j) where b = i� j + 
(N + l)� h"i � "j; pi106



be
ause h"i � "j; "i � "ji = 2. By inter
hanging p and q we may assume thatb � 0. We have "i � "j = �i + � � � + �j�1. Sin
e p 2 P+(N) we dedu
e thathp; "i � "ji is an integer. Hen
e b is a non-negative integer.We denote the element p + b(�j�1 � �j) by y. This element y lies in thehyperplane Hi;j;
 be
ausehy; "i � "ji = hp+ b(�j�1 � �j); "i � "ji= hp; "i � "ji+ b h�j�1 � �j; "i � "ji= hp; "i � "ji+ b h�j�1 � �j; �i + � � �+ �j�1i= hp; "i � "ji+ b= hp; "i � "ji+ i� j + 
(N + l)� h"i � "j; pi= i� j + 
(N + l):From "i � "j = �i + � � �+ �j�1 and �i = ��i�1 + 2�i � �i+1 we dedu
e that"i � "j = ��i�1 + �i + �j�1 � �j. Hen
e y = q + b(�i�1 � �i). We 
laim thaty lies in P+(N). Sin
e y lies in P (N), we have to show that hy; �ki � 0 fork = 1; : : : ; N � 1. Sin
e p and q lie in P+(N) we have that hp; �ki � 0 andhq; �ki � 0 for k = 1; : : : ; N � 1. Fromhy; �ki = hp; �ki+ hb(�j�1 � �j); �kiwe dedu
e that hy; �ki � 0 for k = 1; : : : ; N � 1 ex
ept k = j. Fromhy; �ki = hq; �ki+ hb(�i�1 � �i); �kiwe dedu
e the missing 
ase hy; �ji � 0. Hen
e y lies in P+(N) and we denotethe 
orresponding Young diagram by �.We have p = y + b(�j � �j�1) and q = y + b(�i � �i�1). The Young diagram
orresponding to q is (�1; : : : ; �i+b; : : : ; �N�1). The Young diagram 
orrespondingto p is (�1; : : : ; �j + b; : : : ; �N�1) if 1 � j � N � 1, and it is (�1� b; : : : ; �N�1� b)if j = N .The redu
tions of (�1 � b; : : : ; �N�1 � b) and (�1; : : : ; �N�1; b) agree by thede�nition of the redu
tion. Hen
e, for any 1 � j � N the redu
tion of p is equalto the redu
tion of (�1; : : : ; �j + b; : : : ; �N�1; �N) with �N = 0.By lemma 6.7.2 we dedu
e that the redu
tions of the Young diagrams 
orre-sponding to p and q add up to zero. |Lemma 7.5.6 The interse
tion of P+(N) with the interior of the polyhedron Sfrom Lemma 7.5.2 
orresponds to the set of Young diagrams inside the (N�1)�l-re
tangle. 107



Proof From equation (7.5.4) we dedu
e that an element p of P+(N) lies in ÆSif and only if hp; "1 � "Ni < l + 1 and hp; "i � "i+1i > �1 for i = 1; : : : ; N � 1.By lemma 7.3.1 this is equivalent to �1 � �N < l + 1 and �i � �i+1 > �1 fori = 1; : : : ; N � 1. Sin
e � is a Young diagram, the only non-trivial 
ondition is�1 < l + 1. This means that � lies in the (N � 1)� l-re
tangle. |Remark The normal ve
tor ("i� "j) of any hyperplane Hi;j;
 of H lies in V 0(N).This implies that the de
omposition D0 of V 0(N) indu
ed by H is the orthogonalproje
tion along ("1+ � � �+ "N) of the de
omposition D of V (N). Therefore, thepolyhedra of the de
omposition D are non-
ompa
t prisms. The interse
tion ofS with V 0(N) is a 
ompa
t (N � 1)-simplex. Therefore any polyhedron of thede
omposition D0 is a 
ompa
t simplex.7.6 Resum�eWe have identi�ed the Young diagrams with less than N rows that redu
e tozero to be the interse
tion of P+(N) with a family H of hyperplanes of the N -dimensional Eu
lidean ve
tor spa
e V (N). This family of hyperplanes splits the(N�1)-dimensional Eu
lidean spa
e V 0(N) � V (N) up into (N�1)-simpli
es that
an be transformed into ea
h other by su

essive re
e
tion in these hyperplanes.If two elements p1 and p2 of P+(N) di�er by a re
e
tion in a hyperplane Hi;j;
then the redu
tions of their 
orresponding Young diagrams �1 and �2 respe
tivelydi�er by the s
alar (�1). Furthermore, if j 6= N then �1 and �2 di�er by a shiftof 
ells between the rows i and j hen
e �1 and �2 have the same number of 
ells.As a fundamental simplex we 
hoose the simplex next to the origin whoseelements 
orrespond to the Young diagrams that lie in the (N � 1)� l-re
tangle.Hen
e we have found another way to show that any Young diagram with at mostN � 1 rows is up to a sign 
ongruent modulo IN;l to a Young diagram in the(N � 1)� l-re
tangle. We 
an now interpret the sign as the parity of the numberof re
e
tions that we need in order to bring an element of P+(N) into the simplexnext to the origin.Figure 7.3 shows the situation for N = 3 and l = 3. There are three 
lassesof parallel hyperplanes in H. Their interse
tion with P (N) are the latti
e pointsp = a1�1 + a2�2 that satisfy hp; "i � "ji = 
(l +N) for some 1 � i < j � 3 andinteger 
. Sin
e hp; "i � "ji = ha1�1 + a2�2; �i + � � �+ �j�1i = ai + � � � + aj�1,the three 
lasses are a1 = �1 + 6
 for i = 1 and j = 2;a2 = �1 + 6
 for i = 2 and j = 3;a1 + a2 = �2 + 6
 for i = 1 and j = 3:108



a1 + a2 = 4a1 + a2 = 10 a1 = �1�2 a1 = 5 a1 = 11a2 = 11a2 = 5a1 + a2 = 16�1a2 = �1Figure 7.3: The latti
e P (3) � V 0(3) of elements a1�1 + a2�2.Ea
h shaded triangles is the 
onvex hull of the interse
tion of P+(N) with theinterior of a 3-dimensional polyhedron of the de
omposition D of V (3). The anglebetween �1 and �2 is ar

os �h�1; �2i =qh�1; �1i h�2; �2i� whi
h is equal to �=3.
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Chapter 8Invertibility of the Hopf matrixat roots of unityWe start with algebrai
 results in YN;l. We re
all that the dual �� of a Youngdiagram � has been introdu
ed in subse
tion 1.3.2.8.1 Multipli
ation in YN;lSin
e the Young diagrams in the (N �1)� l-re
tangle are a basis for YN;l, we 
anwrite the produ
t of any two Young diagrams as a linear 
ombination of thesebasis elements. Sin
e taking the dual is a bije
tion of these basis elements, we
an write �� =X� b�����in YN;l for integers b��� , and the summation is over all Young diagrams in the(N � 1) � l-re
tangle. It is easy to 
ompute these integers. The produ
t ��is a linear 
ombination of Young diagrams in Y by the Littlewood-Ri
hardsonrule. Then one repla
es ea
h of these summands by its redu
tion as des
ribed inse
tion 6.4.Obviously, b��� = b��� for any Young diagrams �, � and � be
ause the mul-tipli
ation of Young diagrams is 
ommutative. Interestingly, we will prove inlemma 8.1.5 that b��� = b��� whi
h implies that any permutation of the indi
esleaves b��� invariant. This result explains our motivation to de�ne b��� as the
oeÆ
ient of �� in the produ
t �� instead of referring to the 
oeÆ
ient of � inthe produ
t ��.For non-negative integers a and b we denote the re
tangular Young diagramwith a rows and b 
olumns by (ba). 110



1 3 3 4 4 421 21 321 321 321Figure 8.1: A stri
t extension � of � = (6; 3; 1; 1) by � = (6; 5; 5; 3) to (65) =(6; 6; 6; 6; 6).Lemma 8.1.1 Let � be a Young diagram with at most N � 1 rows. The onlyYoung diagram � for whi
h the summand (�N1 ) appears as a summand in theprodu
t �� in Y is the dual of �. The Young diagram (�N1 ) appears as a summandwith multipli
ity 1 in ��� in Y.Proof We assume that � is a Young diagram su
h that (�N1 ) appears as a sum-mand in the produ
t ��. Then there exists a stri
t extension � of � by � to(�N1 ).In a �rst step, we prove by indu
tion on the length of the �rst row of � thatfor every 
olumn of � the labelled 
ells read 1; 2; 3; : : : downwards as shown in�gure 8.1. This is 
lear in the 
ase �1 = 0 for the empty Young diagram.Let �1 � 1. The top label of the last 
olumn is 1 be
ause the word w(�) startswith 1. Assume that the last 
olumn of � does not read 1; 2; 3; : : : downwards,i.e. it reads 1; 2; : : : ; i � 1; i; j; : : : with j 6= i + 1. Then j has to be greater thani + 1 be
ause the last row has to be stri
tly in
reasing downwards. This impliesthat the label i+ 1 appears later than the label j in the word w(�) (be
ause therows are weakly in
reasing from left to right). But this is a 
ontradi
tion to the
onditions on stri
t extensions. We have thus proved that the last 
olumn reads1; 2; : : : ; l(�) downwards.We denote by �̂ the Young diagram that derives from � by removing its last
olumn. We remove the last 
olumn of �, and we get an extension �̂ of �̂ by aYoung diagram �0 (whi
h derives from � by removing the �rst 
olumn). Thisextension is easily seen to be stri
t be
ause the word w(�̂) derives from w(�) bydeleting the �rst appearan
e of ea
h label 1; : : : ; l(�). By the indu
tion hypothesiswe know that every 
olumn of �̂ reads 1; 2; 3; : : : downwards. Hen
e, every 
olumnof � reads 1; 2; 3; : : : downwards.In a se
ond step, we 
ount the number of o

urren
es of ea
h label in �. Leti be a label. The label i o

urs in the j-th 
olumn of � if and only if �_j + i � N .The number of 
olumns of � in whi
h the label i appears is therefore qui
klyidenti�ed as �1 � �N�i+1. 111



This implies that �i = �1��N�i+1 be
ause the number of labels i in � is equalto the length of the i-th row of �. Hen
e, � = ��.We have thus proved that if there exists a stri
t extension � of � by � to (�N1 )then � reads 1; 2; 3; : : : in every 
olumn downwards, and � = ��. In fa
t, thisextension of � by �� is easily seen to be stri
t. Its uniqueness implies that there
tangular Young diagram (�N1 ) appears exa
tly on
e as a summand of ���. |Lemma 8.1.2 The empty Young diagram ; is the only Young diagram that liesin the (N � 1)� 2l-re
tangle whi
h redu
es to either ; or to �; in YN;l.Proof Let � be a Young diagram that �ts in the (N � 1)� 2l-re
tangle and thatredu
es to either ; or �;. We write �i +N � 1� i = ki(l+N) + ri with integerski � 0 and 0 � ri � l +N � 1 for i = 1; : : : ; N � 1. Sin
e � is non-zero, we havethat none of the ri is equal to l +N � 1. Sin
e �i � 2l we have that ki is equalto either 0 or 1. Hen
e 0 � K = k1 + � � �+ kN�1 � N � 1.The 
ase K = 0 appears if and only if either �1 = l+1 (whi
h is not possiblesin
e ri 6= l+N�1), or �1 � l in whi
h 
ase � = �, and therefore � = �; impliesthat � = ;.From now on we 
onsider the 
ase 1 � K � N � 1, i.e. kj = 1 for at least oneindex j. In order that � = �;, we need that�K 0BB� r1...rN�1 1CCAG = �;:This is equivalent to 0BB� r1...rN�1 1CCAG = (l(N�K))where (l(N�K)) denotes the Young diagram that 
onsists of (N�K) rows of lengthl. This re
tangular Young diagram 
an be written as0BBBBBBBBBBBBBBB�
l +N � 2l +N � 3...l + k � 1K � 2K � 3...0
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with the notation from se
tion 6.4. Hen
e, if � redu
es to �; thenfr1; : : : ; rN�1g = fl +N � 2; l +N � 3; : : : ; l +K � 1; K � 2; K � 3; : : : ; 0g:ki = 1 for some index i implies that ri � l�2 be
ause �i+N�1� i � 2l+N�2.Hen
e, the above equality of the two sets implies that ki = 1 for at most K � 1indi
es i. Sin
e K = k1 + : : :+ kN�1 we get K � K � 1 whi
h is a 
ontradi
tion.Hen
e, there exists no Young diagram in the (N � 1)� 2l-re
tangle that redu
esto �; in the 
ase 1 � K � N � 1. |The quotient map from the ring of Young diagrams Y to YN;l fa
tors throughYN . The quotient map from Y to YN maps every Young diagram either to zeroor to a Young diagram with less than N rows. The quotient map from Y to YN;lmaps every Young diagram either to zero or (up to a sign) to a Young diagramin the (N � 1)� l-re
tangle.Lemma 8.1.3 Let � and � be Young diagrams with at most (N �1) rows. If theempty Young diagram appears as a summand of �� in YN then � = ��.Proof If the empty Young diagram appears as a summand of �� in YN then thissummand 
omes from a summand � of �� in Y whi
h be
omes the empty Youngdiagram in YN , i.e. � is an (N �k)-re
tangle for some k. Sin
e � is a subdiagramof any summand of �� in Y, we have that k � �1. In fa
t, k 
annot be greaterthan �1 sin
e any 
olumn of any (stri
t) extension of � by � has at most l(�)labelled 
ells, and l(�) � N�1 by assumption. Hen
e, � is the (N��1)-re
tangle,and by lemma 8.1.1 we dedu
e that � = ��. |Lemma 8.1.4 Let � and � be Young diagrams in the (N � 1) � l-re
tangle. Ifthe empty Young diagram appears as a summand of �� in YN;l then � = �� inwhi
h 
ase the multipli
ity of the empty Young diagram is equal to 1.Proof We know that in YN we 
an write the produ
t �� uniquely as a linear
ombination of Young diagrams with at most (N � 1) rows. Sin
e � and � haveat most l 
olumns, the summands appearing in �� in Y have at most 2l 
olumnsand the same is true in YN .By lemma 8.1.2 we know that the empty Young diagram is the only Youngdiagram in the (N � 1) � 2l re
tangle that redu
es to �; in YN;l. Hen
e, theempty Young diagram appears in YN;l as a summand of �� if and only if theempty diagram appears as a summand of �� in YN . This happens by lemma8.1.3 if and only if � = �� in whi
h 
ase the multipli
ity of the empty Youngdiagram is equal to 1. |113



Lemma 8.1.5 The 
oeÆ
ients b��� do not 
hange under any permutation oftheir indi
es.Proof Let �, � and � be any Young diagrams in the (N � 1)� l-re
tangle. Wehave (by de�nition of the integers b���)�� =X� b�����in YN;l, and therefore ��� =X� b������:When we write the right hand side of the above equation as a linear 
ombinationof Young diagrams in the (N � 1)� l-re
tangle then the 
oeÆ
ient of the emptyYoung diagram is equal to b���. This is be
ause ��� does not involve the emptyYoung diagram unless � = �, and then the 
oeÆ
ient of the empty diagram isequal to 1 as seen in lemma 8.1.4.The left hand side of the above equation is symmetri
 under permutation of �,� and � be
ause YN;l is Abelian. Hen
e b��� is symmetri
 under any permutationof its indi
es. |Let % : YN;l ! YN;l be a ring endomorphism. We de�ne an element
% =X� %(��)� 2 YN;lwhere the sum is over all Young diagrams � that lie in the (N � 1)� l-re
tangle.Obviously, 
% depends on N and l, but this shall not lead to 
onfusion be
ausewe �x N and l throughout.In se
tion 8.2 we shall 
onsider YN;l as an algebra over C and 
onstru
t 
%for an algebra homomorphism % : YN;l ! C .Theorem 8.1.6 Let % : YN;l ! YN;l be a ring endomorphism and let � be anyYoung diagram. Then �
% = %(�)
% in YN;l.Proof It is suÆ
ient to prove the statement for elements � of a basis of YN;l.Hen
e, let � be any Young diagram in the (N � 1)� l-re
tangle. We have�
% = X� %(��)��= X� %(��)X� b���v�= X� ��X� b���%(��)114



= X� ��% X� b�����!= X� ��% X� b�����!= X� ��%(��)= X� ��%(�)%(�)= %(�)X� %(�)��= %(�)
%where we used that b��� = b��� and that taking the dual indu
es a permutationof the Young diagrams in the (N � 1)� l-re
tangle. |8.2 The Hopf matrixWe re
all the results and the notation from 
hapter 5. We 
onsider the skein of theannulus C with 
oeÆ
ients C [x�1 ; v�1; s�1; (si� s�i)�1; i � 1℄ and its submoduleC+. We �x a 
omplex number � su
h that �N is a root of unity of order 2(l+N).We denote the substitution x = �, v = �N2 and s = ��N in a rational fun
tionfrom C (x; v; s) by �N l. We re
all that we denote hQ�i by h�i o

asionally.We proved in 
orollary 5.2.1 that Q
i := 0 for i � N+1, Q
N := ;, and Qdj := 0for any j with l+1 � j � l+N � 1. Sin
e a := b implies that aQ� := bQ� for anyYoung diagram �, we looked in 
hapter 6 at the ideal IN;l of the ring of Youngdiagrams Y generated by 
N�
0, 
i for i � N+1, and dj for l+1 � j � l+N�1.In parti
ular, the map � 7! �N l(h�i) from Y to C fa
tors through YN;l, whereh�i denotes the Hom
y polynomial of Q� as a subset of R2 . We 
onsider Y asan algebra over C , and the map � 7! �N l(h�i) as the algebra endomorphism ofY given by � 7! �N l(h�i)
0. We de�ne
 =X� �N l(h��i)� 2 C+where the sum is over all Young diagrams � in the (N � 1)� l-re
tangle. We 
anapply theorem 8.1.6 and getLemma 8.2.1 Q�
 := hQ�i
 for any Young diagram � in the (N � 1) � l-re
tangle.We de�ned � for any Young diagram � in se
tion 6.4. This is either equalto zero or up to a sign equal to a Young diagram �, � = "� where "2 = 1. We115



de�ne Q� = "Q� in this 
ase. Lemma 6.4.1 shows that � = � modulo the idealof the algebra of Young diagrams generated by 
N � 
0, 
i for i � N + 1, and djfor l + 1 � j � l +N � 1. We therefore getLemma 8.2.2 Q� := Q� for any Young diagram �.We 
an extend lemma 8.2.1 now to all Young diagrams �.Lemma 8.2.3 Q�
 := hQ�i
 for any Young diagram �.Proof From lemma 8.2.2 we dedu
e that hQ�i := hQ�i by looking at the evalua-tion on the unknot. We use lemma 5.2.2 and lemma 8.2.1 to getQ�
 := Q�
 := hQ�i
 := hQ�i
: |The set of Q� for all Young diagrams � is a linear basis for C+ over the s
alarsC [x�1 ; v�1; s�1; (si � s�i)�1; i � 1℄. We therefore have y
 := hyi
 for any ele-ment y of C+ over the s
alars C [x�1 ; v�1; s�1; (si � s�i)�1; i � 1℄ whenever thesubstitution �N l is de�ned for hyi.We 
onsider an oriented link diagram L1 [ L2 in the annulus as depi
ted in�gure 8.2. In fa
t, this lies in the subalgebra C+ of the skein of the annulus.When we de
orate L1 by Q� and L2 by 
 then the resulting element of the skeinof the annulus lies again in C+. This element is a s
alar multiple p� 
 of Q� byequation (2.4.2). This is similar to lemma 2.4.7. We remark that the orientationof the de
oration is now di�erent. The following lemma appeared in [3℄ with adi�erent proof.Lemma 8.2.4 We have p� 
 := 0 for any Young diagram � in the (N � 1) � l-re
tangle di�erent from the empty diagram provided we 
hoose � to be a primitiveroot of unity of order 2N(l +N).Proof Let � be a Young diagram in the (N � 1)� l-re
tangle.We de
orate the Hopf link depi
ted in �gure 8.2. We de
orate the 
omponentL1 with Q� and the 
omponent L2 with the produ
t of Q
i and 
 as depi
ted in�gure 8.3. We denote the resulting element of C+ by T . Ea
h of the two loops
an be removed at the expense of a s
alar, hen
e T is equal to p� 
ip� 
Q� in C+.On the other hand, we have Q
i
 := hQ
ii
 by lemma 8.2.1. Hen
e the loopde
orated by Q
i 
an be swallowed at the expense of the s
alar hQ
ii, while theloop de
orated with 
 is swallowed at the expense of the s
alar p�
 as before. Wethus get T := hQ
ii p� 
Q�. When we de
orate the unknot by these two elementsof C+, we get by de�nition of := thathhQ
ii p� 
Q�i := hp� 
ip� 
Q�i ;116



L1L2
Figure 8.2: The Hopf link L1[L2in the annulus.

Q�Q
i

Figure 8.3: De
orated Hopf linkin the annulus.whi
h is equivalent to hQ
ii p� 
 hQ�i := 
� 
ip� 
 hQ�i :If � lies in the (N � 1) � l-re
tangle then �N l(hQ�i) is di�erent from zero bylemma 3.6.1. Hen
e, hQ
ii p� 
 := p� 
ip� 
:From now on let � be su
h a Young diagram in the (N � 1) � l-re
tanglefor whi
h �N l(p� 
) is di�erent from zero. The above equation then implies thatp� Q
i := hQ
ii for any i � 0. This implies that hQ�; Q
ii := hQ�i hQ
ii wherehQ�; Q
ii is the Hom
y polynomial of the Hopf link with de
orations Q� and Q
i.When we look at the de�nition of E�(X) from se
tion 4.1 we see that theequality hQ�; Q
ii := hQ�i hQ
ii implies that E�(X) agrees with E;(X) after thesubstitution �N l. Lemma 4.3.3 gives expli
it formulas for E�(X) and for E;(X)after the substitution v = s�N . We thus dedu
e from E�(X) = E;(X) thatNYk=1(1 + sN+2�k�2k+1x2j�jX) := NYj=1(1 + sN�2j+1X)whi
h is equivalent toNYk=1(1 + s2�k�2kx2j�jX) := NYj=1(1 + s�2jX)sin
e �N l(sN+1) is non-zero. By the de�nition of := this is equivalent tof��N(2�k�2k)�2j�j j k = 1; : : : ; Ng = f�2Nj j j = 1; : : : ; Ng:In parti
ular, the value for k = N on the left hand side has to appear in the seton the right hand side. This means that �2N2�2j�j = �2Nj for some 1 � j � N .117



Equivalently, �2(j�j+N2�Nj) = 1. Sin
e � lies in the (N � 1)� l-re
tangle we have0 � j�j � (N � 1)l. We have 0 � N2 �Nj < N2 for 1 � j � N . Hen
e,0 � 2(j�j+N2 �Nj) < 2(N � 1)l + 2N2 = 2N(l +N)� 2l < 2N(l +N):We 
hose � to be a root of unity of order 2N(l + N), hen
e �2(j�j+N2�Nj) = 1implies that 2(j�j + N2 � Nj) = 0 whi
h implies that j�j = 0, hen
e � is theempty diagram.Our assumption that �N l(p� 
) is di�erent from zero for some Young diagram� in the (N�1)� l-re
tangle has led us to the result that � is the empty diagram.This implies that p� 
 := 0 for any Young diagram � in the (N � 1)� l-re
tangledi�erent from the empty diagram. |We immediately dedu
e from lemma 8.2.4 thatCorollary 8.2.5 h
; Q�i := 0 for every Young diagram � in the (N � 1) � l-re
tangle di�erent from the empty Young diagram.The following lemma settles the 
ase � = ; whi
h is not 
overed by lemma8.2.4. We obviously have p; 
 = h
i.Lemma 8.2.6 h
i be
omes a positive real number after substituting v = s�N andthen substituting s by any 
omplex number of norm equal to 1.Proof We denote by P the 
omplex number derived from hQ�i by �rst substi-tuting v = s�N and then substituting s by a 
omplex number � of norm equalto 1. By lemma 4.1.5 and equation (4.3.9) we have that hQ�i be
omes after thesubstitution v = s�N the S
hur fun
tion in the variables s�N+1; s�N+3; : : : ; sN�1.Hen
e, P is the S
hur fun
tion s� in the variables ��N+1; ��N+3; : : : ; �N�1. The
onjugate of � is equal to ��1 be
ause the norm of � is equal to 1. Hen
e, 
on-jugation indu
es a permutation of the variables of the S
hur fun
tion s�. Sin
ethe S
hur fun
tion is symmetri
 in its variables, the 
onjugate of P is equal toP . Hen
e, P is a real number and P 2 is a non-negative real number.We have 
 = P� hQ�iQ�, hen
eh
i =X� hQ�i2where the summation is over all Young diagram in the (N � 1) � l-re
tangle.Hen
e, h
i be
omes a non-negative real number after �rst substituting v = s�Nand then s = � . In fa
t, this sum is positive be
ause the summand for the emptyYoung diagram is equal to 1. |118



Remark One 
an prove that �N l(hQ�i) is a real number dire
tly from lemma3.6.1 be
ause ea
h fra
tion appearing as a fa
tor in the formula is self-
onjugateand therefore real. The denominators do not be
ome zero be
ause the hook lengthof any 
ell of any Young diagram in the (N�1)�l-re
tangle is smaller than l+N .Even though this alternate proof is more straightforward, the above proof givesa more detailed view on hQ�i.Lemma 8.2.7 h�i = h��i for any Young diagram � with at most (N � 1) rowsafter the substitution v = s�N .Proof This is 
he
ked qui
kly by lemma 3.6.1 by substituting v = s�N . In fa
t,it is suÆ
ient to show this for � equal to all 
olumn diagrams, i.e. h
ii = h
N�ii.Lemma 1.3.4 then ensures that h�i = h��i for any Young diagram � with at mostN � 1 rows. |Lemma 8.2.8 Let � and � be Young diagrams with at most N � 1 rows. Thenh��; �i is the 
omplex 
onjugate of h�; �i after the substitutions s2(l+N)=1, v = s�Nand xN = s�1.Proof We have ��i = �1� �N�i+1 for i = 1; : : : ; N � 1, and j��j = N�1� j�j. Bylemma 4.3.3 we getEN��(X) = NYi=1(1 + sN+2��i�2i+1x2j��jX)= NYi=1(1 + sN+2(�1��N�i+1)�2i+1x2(�1N�j�j)X)= NYi=1(1 + sN�2�N�i+1�2i+1x�2j�jX)= NYj=1(1 + s�N�2�j+2j�1x�2j�jX)where we used that xN = s�1. Hen
e, EN��(X) is the 
omplex 
onjugate of EN� (X).Lemma 4.1.5 implies that 1�� h��; �i = 1h�ih�; �i:Lemma 8.2.7 �nally implies that h��; �i = h�; �i. |
119



We �x from now on an arbitrary total ordering of all the Young diagrams thatlie in the (N�1)�l-re
tangle. The indi
es of any of the following square matri
esare ordered in this way. We denote byH the matrix whose entry indexed by Youngdiagrams � and � is the Hom
y polynomial h�; �i of the Hopf link (with framingzero and linking number 1) de
orated by Q� and Q�. Clearly, H is symmetri
.We denote the identity matrix by E.Theorem 8.2.9 We have HH = �N l(h
i)Eafter the substitutions s = x�N , v = s�N , and x by a root of unity of order2N(l +N).Proof The entry k� � of HH indexed by � and � is equal toX� h�; �ih�; ��iwhere the summation is over all Young diagrams � that lie in the (N � 1) � l-re
tangle. By lemma 4.1.3 we have that h�; �ih�; �i = h�i h�; ��i, hen
ek�� = X� h�i h�; ���i= h
; ���i:= h
; ���iwhere we used lemma 8.2.3 in the last equality. We 
an write ��� as a linear
ombination of Young diagrams in the (N � 1)� l-re
tangle. By 
orollary 8.2.5we see that only the multipli
ity of the empty Young diagram makes a non-zero
ontribution.We know by lemma 8.1.4 that the empty Young diagram appears as a sum-mand in ��� if and only if � = � in whi
h 
ase it appears with multipli
ity equalto 1. Hen
e, k�� = �N l(h
i) and k�� = 0 if � 6= �. |
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Chapter 9Hom
y polynomials at roots ofunity and YN;lWe �x integers N � 2 and l � 1. We 
onsider the substitutions of s by a primitiveroot of unity of order 2(l+N), x by an N -th root of s�1, and v by s�N . We shallabbreviate this by s2(N+l) = 1, xN = s�1, and v = s�N . We denote the Hom
ypolynomial after these substitutions by �N;l.9.1 Hom
y polynomials at roots of unityLemma 9.1.1 hQdli = 1 after the substitutions v = s�N and s2(l+N) = 1.Proof We have sN+i � s�N�i = sN+l(si�l � s�2N�i�l)= �sN+l(sl�is�2(l+N) � si�l)for any integer i. If s is a primitive root of unity of order 2(l + N) then sl+Nis equal to �1 and therefore sN+i � s�N�i = sl�i � si�l. Lemma 3.6.1 gives aformula for hQdli with substitutions v = s�N and s2(l+N) = 1,hQdli = v�1 � vs� s�1 v�1s� vs�1s2 � s�2 � � � v�1sl�1 � vs�l+1sl � s�l= sN � s�Ns� s�1 sN+1 � s�N�1s2 � s�2 � � � sN+l�1 � s�N�l+1sl � s�l= sl � s�ls� s�1 sl�1 � s�l+1s2 � s�2 � � � s� s�1sl � s�l= 1where we used that sN+i � s�N�i = sl�i � si�l. |121



Qdl Qdl Qdl Qdl= s2x�2l = s�2x2lFigure 9.1: Swit
hing 
rossings at the expense of the s
alar (s2x�2l)�1.Qdl Qdl Qdl Qdl= (s2x�2l)l Qdl Qdl Qdl Qdl= (s�2x2l)lFigure 9.2: Swit
hing 
rossings at the expense of the s
alar (s2x�2l)�l.Whenever we have lo
ally a 
omponent de
orated with Qdl overpassing asimple ar
 in a 
rossing of sign " then we 
an swit
h the 
rossing at the expenseof the s
alar (s�2x2l)" as shown in �gure 9.1 provided we make the substitutionsxN = s�1, v = s�N and s2(l+N) = 1. The argument is virtually the same as inlemma 5.1.4 and the formula 
an be derived as well from �gures 5.2 and 5.3 byapplying the map 
 from subse
tion 2.4.1 that repla
es s by �s�1.We get the skein relations in �gure 9.2 by applying the 
orresponding skeinrelations in �gure 9.1 l-times to ea
h summand of Qdl . This is possible be
auseQdl 
an be written as a sum of diagrams ea
h looking like l parallel ar
s near the
rossing.We know by theorem 17 in [2℄ that in the He
ke algebra Hl we 
an remove a
url de
orated by the idempotent 
orresponding to dl at the expense of a s
alarf that is given by f = xl2v�lsl(l�1):We de�ne p by p = �s�1xl:We have pl = f when we substitute v = s�N and s2(l+N) = 1 be
ausepl = (sl+Ns�1xl)l = xl2slNsl(l�1)where we used that sl+N = �1.The s
alars appearing in �gure 9.1 are p�2 and p2.Remark By 
onne
ting in �gure 9.2 the ar
s with a straight line at the right,we see that 
hanging from a positive 
url to a negative 
url means multipli
ationwith the s
alar (s�2x2l)l, i.e. f 2 = (s�2x2l)l. But this determines the value of fonly up to a sign. To get the exa
t value of f we need the 
omputation from [2℄as mentioned above. 122



Lemma 9.1.2 We have �N;l(K;Qdl) = pwr(K)l for any framed knot K.Proof We 
onsider a diagram of K with bla
kboard framing. It is possible byswit
hing some, say r, of the 
rossings of K to get a diagram K 0 of the unknot.Among these r swit
hes there are a swit
hes that transform a positive 
rossinginto a negative 
rossing, and b swit
hes that transform a negative 
rossing into apositive 
rossing, r = a+ b. We have wr(K 0) = wr(K) + 2b� 2a. We have�N;l(K;Qdl) = (p2l)a(p�2l)b�N;l(K 0;Qdl)by the skein relation in �gure 9.2.Using regular isotopy we 
an transform K 0 into a 
ir
le O plus a number ofpositive and negative 
urls, say 
 resp. d. We have wr(K 0) = 
 � d. A positive(resp. negative) 
url may be removed by introdu
ing the s
alar f (resp. f�1).Therefore, �N;l(K 0;Qdl) = f 
f�d�N;l(O;Qdl) = fwr(K0) = fwr(K)+2b�2awhere we used the result �N;l(O;Qdl) = 1 from lemma 9.1.1.We merge the above two lines of equations and get�N;l(K;Qdl) = p2l(a�b)�N;l(K 0;Qdl)= p2l(a�b)fwr(K)+2b�2a= pwr(K)lbe
ause f = pl after the substitutions v = s�N and xN = s�1. |9.2 Linking matrix and �-operationsThe linking number vij between di�erent 
omponents Li and Lj of a link diagramL is de�ned as the sum of the signs of all overpasses of Li over Lj. It is easilyseen to be invariant under all Reidemeister moves and is therefore an invariantof links under ambient isotopy. One veri�es the symmetry vij = vji by looking atthe diagram L �rst from above and then from below.We de�ne the self linking number of a knot diagram K to be the linkingnumber between the two 
omponents of the bla
kboard 2-parallel of K. In the
ontext of framed knots, this is the linking number between the knot and a parallelthat represents the framing. It is 
lear that this agrees with the writhe of K. Fora link diagram L we denote by vii the self linking number of the 
omponent Li.123



Lemma 9.2.1 Given a framed link L = L1 [ L2 [ : : : [ Lt and Young diagrams�2; : : : ; �t. Then�N;l(L1 [ L2 [ : : : [ Lt;Qdl; Q�2 ; : : : ; Q�t) =�N;l(L2 [ : : : [ Lt;Q�2 ; : : : ; Q�t)plv11+2Pti=2 j�ijv1i :Proof We 
onsider a diagram of L with bla
kboard framing. We look at a
rossing of L where the 
omponent L1 
rosses over another 
omponent Li, i 6= 1.We denote the sign of this 
rossing by ". We swit
h this 
rossing to an underpassfor L1. We denote the resulting link by L0. We have�N;l(L;Qdl; Q�2 ; : : : ; Q�t) = p2"j�ij�N;l(L0;Qdl; Q�2 ; : : : ; Q�t):be
ause Q�i 
an be written as a sum of diagrams ea
h of whi
h looks like j�ijparallel ar
s near the 
rossing. Applying the (left for " = �1 resp. right for " = 1)skein relation in �gure 9.1 j�ij-times gives the result. Doing this for all overpassesof L1 with all the other 
omponents we separate the de
orated 
omponent L1 andget�N;l(L;Qdl ; Q�2 ; : : : ; Q�t) =p2Pti=2 j�ijv1i�N;l(L1;Qdl)�N;l(L2 [ : : : [ Lt;Q�2 ; : : : ; Q�t):We use lemma 9.1.2 and get�N;l(L;Qdl ; Q�2 ; : : : ; Q�t) = plv11+2Pti=2 j�ijv1i�N;l(L2 [ : : : [ Lt;Q�2 ; : : : ; Q�t):|Lemma 9.2.2 Given a framed link L = L1[ : : :[Lt, Young diagrams �1; : : : ; �t,and non-negative integers n1; : : : ; nt. Then�N;l(L;Q�1Qn1dl ; : : : ; Q�tQntdl ) = �N;l(L;Q�1 ; : : : ; Q�t)p�(n1;:::;nt;j�1j;:::;j�tj;fvijg)where �(a1; : : : ; at; b1; : : : ; bt; fvijg) = X1�i;j�t aivij(2bj + laj):Proof By indu
tion on n = n1 + � � �+ nt. We proved the 
ase n = 1 in lemma9.2.1.We 
onsider the 
ase n � 2. We renumber the 
omponents so that n1 � 1. In-stead of de
orating the 
omponent Li with Q�iQnidl , for all i = 1; : : : ; t, we 
an 
on-sider the (ni+1)-parallel of Li and de
orate the 
omponents by Q�i; Qdl ; : : : ; Qdl.124



We 
an use lemma 9.2.1 to remove one of the 
omponents of Ln1+11 de
orated byQdl . We get�N;l(L;Q�1Qn1dl ; : : : ; Q�tQntdl )= �N;l(Ln1+11 [ : : : [ Lnt+1t ;Q�1 ; Qdl ; : : : ; Qdl| {z }n1 ; : : : : : : ; Q�t; Qdl ; : : : ; Qdl| {z }nt )= �N;l(Ln11 [ : : : [ Lnt+1t ;Q�1 ; Qdl ; : : : ; Qdl| {z }n1 ; : : : : : : ; Q�t; Qdl ; : : : ; Qdl| {z }nt )p�= �N;l(L;Q�1Qn1�1dl ; : : : ; Q�tQntdl )p�where � = lv11 + 20�j�1jv11 + (n1 � 1)lv11 + tXj=2(j�jjv1j + njlv1j)1A= v11(2j�1j+ l(2n1 � 1)) + 2 tXj=2 v1j(j�jj+ njl):The remaining part of the proof is algebrai
. Our indu
tion hypothesis is that�N;l(L;Q�1Qn1�1dl ; : : : ; Q�tQntdl ) = �N;l(L;Q�1 ; : : : ; Q�t)p�(n1�1;:::;nt;j�1j;:::;j�tj;fvijg):To a

omplish the indu
tion step we have to prove that�(n1; : : : ; nt; j�1j; : : : ; j�tj; fvijg) = �(n1 � 1; : : : ; nt; j�1j; : : : ; j�tj; fvijg) + �:We have�(a1; : : : ; at; b1; : : : ; bt; fvijg) = tXi=2 aivi1(2b1 + la1) + tXj=2 a1v1j(2bj + laj)+a1v11(2b1 + la1) + X2�i;j�t aivij(2bj + laj)and the last summand is not a�e
ted by the value of a1. Therefore�(a1; a2; : : : ; at; b1; : : : ; bt; fvijg)� �(a1 � 1; a2; : : : ; at; b1; : : : ; bt; fvijg)= tXi=2 aivi1(2b1 + la1) + tXj=2 a1v1j(2bj + laj) + a1v11(2b1 + la1)�� tXi=2 aivi1(2b1 + l(a1 � 1)) + tXj=2(a1 � 1)v1j(2bj + laj)+(a1 � 1)v11(2b1 + l(a1 � 1))�125



= tXi=2 aivi1l + tXj=2 v1j(2bj + laj) + v11(2b1 + l(2a1 � 1))= v11(2b1 + l(2a1 � 1)) + 2 tXj=2 v1j(bj + laj):Substituting ai = ni and bj = j�jj for i = 1; : : : ; t and j = 1; : : : ; t we get fromthe above equation that�(n1; : : : ; nt; j�1j; : : : ; j�tj; fvijg)� �(n1 � 1; : : : ; nt; j�1j; : : : ; j�tj; fvijg) = �as 
laimed. This 
ompletes the indu
tion step. |Lemma 9.2.3 We havep�(a1;a2;:::;at;b1;:::;bt;fvijg) = p�(a1+N;a2;:::;at;b1;:::;bt;fvijg)for any integers a1; : : : ; at; b1; : : : ; bt and fvijg.Proof We have�(a1 +N; a2; : : : ; at; b1; : : : ; bt; fvijg)� �(a1; a2; : : : ; at; b1; : : : ; bt; fvijg)= lv11((a1 +N)2 � a21) + 2l tXj=2 v1jaj(a1 +N � a1) + 2 tXj=1 v1jbj(a1 +N � a1)= lv11(N2 + 2a1N) + 2Nl tXj=2 v1jaj + 2N tXj=1 v1jbjwhi
h is an integer linear 
ombination of 2N and N2. In order to 
omplete theproof we mention thatp2N = (�s�1xl)2N = s�2Nx2lN = s2lx2lN = (sxN )2l = 1and pN2 = (�s�1xl)N2 = (�1)N2(sNlxN2l)s�Nl�N2= (�1)N2s�N(N+l) = (�1)N2�N = (�1)N(N�1) = 1are both equal to 1. |Lemma 9.2.3 follows in the 
ase of non-negative integers a1; : : : ; an immediatelyfrom the fa
t that dNl = ; in the ring YN;l.126



Theorem 9.2.4 Given a framed link L = L1[: : :[Lt, Young diagrams �1; : : : ; �t,and integers n1; : : : ; nt. Then�N;l(L;Q�n1 (�1); : : : ; Q�nt (�t)) = �N;l(L;Q�1 ; : : : ; Q�t)p�(n1;:::;nt;j�1j;:::;j�tj;fvijg)where �(a1; : : : ; at; b1; : : : ; bt; fvijg) = X1�i;j�t aivij(2bj + laj):Proof We know that dl� = �(�) in YN;l for any Young diagram � by lemma 6.2.1.We know by the remarks at the end of se
tion 5.2 that the Hom
y polynomialdoes not distinguish between de
orations Q� and Q� if � = � in YN;l providedone substitutes v = s�N , xN = s�1 and s2(l+N) = 1. Hen
e, lemma 9.2.2 
anbe restated with Q�ni (�i) in pla
e of Q�iQnidl . Sin
e �N(�) = � for any Youngdiagram � and by the result of lemma 9.2.3 we 
an admit negative ni, too. |With the substitutions = exp� �il +N � and x = exp � �i(l +N)N !we get p = �s�1xl = �xN+l = � exp���iN � :We denote � = �(a1; : : : ; at; b1; : : : ; bt; fvijg). We have � � lviia2i mod 2 be
ausevij = vji. We thus get (�1)� = exp(�i�)= exp �il tXi=1 viia2i!= exp �iN Nl tXi=1 viia2i! :We thus getp� = �� exp(��iN )��= exp �iN  Nl tXi=1 viia2i � �!!= exp0��iN 0�Nl tXi=1 viia2i � X1�i;j�t aivij(2bj + laj)1A1A : (9.2.1)127



If bi (whi
h is the number of 
ells of �i) is 
ongruent to zero modulo N for alli = 1; : : : ; t then 2P1�i;j�t vijaibj � 0 mod 2N , and thusp� = exp0��iN 0�Nl tXi=1 viia2i � l X1�i;j�t aivijaj1A1A= exp0��iN (N � 1)l X1�i;j�t aivijaj1A (9.2.2)be
ause p2N = 1 and tXi=1 viia2i � X1�i;j�t aivijaj mod 2:Equations (9.2.1) and (9.2.2) are given in proposition 3.2.1 in [16℄. We remarkthat Kohno and Takata are using the letter k rather than l.9.3 Transposing and 
onjugation, one wayWe denote by L the mirror image of a link diagram with bla
kboard framing. Wedenote the 
omplex 
onjugate of a 
omplex number by an overline as well.Lemma 9.3.1 Let L = L1 [ � � � [ Lt be a link diagram with bla
kboard framing,and let �; : : : ; � be Young diagrams. Then�N;l(L;Q�; : : : ; Q�) = �N;l(L;Q�; : : : ; Q�):Proof We apply the map � from subse
tion 2.4.1 to the link diagram L de
oratedby Q�; : : : ; Q�. This leaves every Q� invariant, be
ause Q� is a polynomial inQdi 'swhi
h are invariant under � by lemma 2.4.4. The map � maps L to its mirrorimage L.This tells us in the skein of the plane that � maps L de
orated with Q�; : : : ; Q�to L de
orated by Q�; : : : ; Q�. Therefore, the Hom
y polynomial (whi
h is arational fun
tion in x, v and s) of L de
orated with Q�; : : : ; Q� is mapped to theHom
y polynomial of L de
orated by Q�; : : : ; Q�. We have by de�nition that�(s) = s�1, �(x) = x�1 and �(v) = v�1. Sin
e s, x and v are roots of unity, andthe 
onjugate of any 
omplex number with absolute value 1 is equal to its inverse,we have �N;l(L;Q�; : : : ; Q�) = �N;l(L;Q�; : : : ; Q�): |128



Lemma 9.3.1 relates the Hom
y polynomial of a link L de
orated with Q�; : : : ; Q�to the Hom
y polynomial of its mirror image with the same de
orations.We now relate the Hom
y polynomial of a link L de
orated with Q�; : : : ; Q�to the Hom
y polynomial of L de
orated with Q~�; : : : ; Q~� where ~� lies in thesame �-orbit as the transposed Young diagram �_ of �. The Hom
y polynomialswill turn out to be the 
omplex 
onjugate of ea
h other.Given a Young diagram � in the (N�1)�l-re
tangle we see that the transposedYoung diagram �_ lies in the l � (N � 1)-re
tangle, and in Yl;N it is thereforeequal to a Young diagram in the (l � 1) � N -re
tangle by removing all initial
olumns of length l.Given a link L and de
orations Q�; : : : ; Q� on its 
omponents, the Hom
ypolynomial of this de
orated link is a rational fun
tion p(x; v; s) in x, v and s.The Hom
y polynomial of L with de
orations Q�_; : : : ; Q�_ is a rational fun
tionq(x; v; s) in x, v and s. We have q(x; v; s) = p(�x;�v; s�1) and q(x; v; s) =p(x; v;�s�1) by lemma 3.6.2.We want q(x; v; s) to be the 
onjugate 
omplex number of p(x; v; s) aftersubstitutions or something similar. We have to be 
areful about the substitution.We want the 2(l + N)-th root of unity ! to be substituted for s to be the samein the 
ontext of YN;l and Yl;N .The value to be substituted for v in the 
ontext of YN;l is s�N . In the 
ontextof Yl;N we substitute v by s�l. We denote v1 = s�N and v2 = s�l.The value for x involves a 
hoi
e. In the 
ontext of YN;l the 
ondition isxN = s�1 and our 
hoi
e x1 is therefore determined up to an N -th root of unity.In the 
ontext of Yl;N the 
ondition is xl = s�1, and our 
hoi
e x2 is thereforedetermined up to an l-th root of unity.The problem with the approa
h q(x; v; s) = p(x; v;�s�1) is that the 
omplex
onjugate of s is rather s�1 than �s�1.The approa
h q(x; v; s) = p(�x;�v; s�1) seems to be appropriate, sin
e s�1is the 
onjugate of s, and �v in the 
ontext Yl;N is the 
onjugate of v in the
ontext YN;l be
ause �v2 = �s�l = sN = v�11 = v1 sin
e sN+l = �1. A problemo

urs for x, sin
e �x2 is hardly ever the 
onjugate of x1. (Well, sometimes it is,as des
ribed in se
tion 9.4). We take a

ount of this problem with x by 
hoosinga suitable element in the �-orbit of the transposed Young diagram. First, we
onsider the approa
h via q(x; v; s) = p(x; v;�s�1).We denote the Hom
y polynomial after the substitutions v = v1, x = x1 ands = ! by �N;l. We denote the Hom
y polynomial after the substitutions v = v2,x = x2 and s = ! by �l;N .
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9.3.1 Transposing from YN;l to Yl;NThe de�nition of the �-operation in se
tion 6.2 was given in the 
ontext of YN;l, i.e.for Young diagrams in the (N � 1)� l-re
tangle. Here, we denote this operationby �l. In the 
ontext of Yl;N , i.e. for Young diagrams in the (l�1)�N -re
tangle,we denote the addition of an initial row of length N to a Young diagram �and then removing all 
olumns of length l by �N (�). We have �Nl (�) = � and�Nl (�) = � for any Young diagrams � and � in the (N � 1) � l-re
tangle resp.(l � 1)�N -re
tangle.First, we make the meaning of transposing pre
ise. Consider maps,F : fYoung diagrams in (N � 1)� l-re
tangleg !fYoung diagrams in (l � 1)�N -re
tangleggiven by transposing the Young diagram and then removing all initial 
olumnsof length l. Similarly:G : fYoung diagrams in (l � 1)�N -re
tangleg !fYoung diagrams in (N � 1)� l-re
tangleggiven by transposing the Young diagram and then removing all initial 
olumnsof length N . It is 
lear thatG(��N�1N (F (�l(�)))) = �and �jl (GF (�)) = �where j is the number of initial rows of length l in �. We have �Nl (�) = � for anyYoung diagram � in the (N � 1)� l-re
tangle. The above equations imply thatG and F indu
e a bije
tion of the �l-orbits and the �N -orbits. This bije
tion willbe revisited in lemma 10.1.3.The equality j�(�)j = j�j+ l�N�N�1 implies that j�(�)j � j�j+ l mod N . IfN and l are 
oprime then there exists exa
tly one element in ea
h �-orbit whosenumber of 
ells is divisible by N . If N and l are not 
oprime then the existen
eof su
h Young diagrams is not guaranteed. If j�j is divisible by N then �� j�jNN (�_)is a Young diagram in the (l� 1)�N -re
tangle whose number of 
ells is divisibleby l. The following theorem was motivated by Proposition 3.3.2 in [16℄Theorem 9.3.2 Let N � 2 and l � 1. Let �1; : : : ; �t be Young diagrams in the(N � 1)� l-re
tangle su
h that N divides the number of 
ells of ea
h �i. Denote�i = �� j�ijNN �(�i)_�. Then, for any framed link L,�N;l(L;Q�1 ; : : : ; Q�t) = �l;N(L;Q�1 ; : : : ; Q�t):130



Proof We have�(L;Q�1 ; : : : ; Q�t) = xy�(L;Q�1 ; : : : ; Q�t)x=1 (9.3.3)where y is the writhe of the diagram where every 
omponent Li is repla
ed by itsj�ij-parallel, i = 1; : : : ; t. This is a straightforward extension of 
orollary 4.1.2.Here, y = X1�i<j�t 2vijj�ijj�jj+ tXi=1 viij�ij2 (9.3.4)be
ause for i 6= j, we have that vij is half the sum of the signed 
rossings betweenthe 
omponents Li and Lj of L. Furthermore, vii is the writhe of the 
ompo-nent Li. Considering the parallels, any 
rossing between 
omponents Li and Ljbe
omes j�ijj�jj 
rossings of the same sign. This establishes equation (9.3.4).We have by theorem 9.2.4 that�l;N(L;Q�a1 (�1); : : : ; Q�at (�t)) = pw2 �l;N(L;Q�1 ; : : : ; Q�t)where w = X1�i;j�t aivij(2j�ij+Naj):Sin
e the number of 
ells of ea
h �j is divisible by l and p2l2 = 1, we 
an usew0 = X1�i;j�t aiajvijNinstead of w in the above equation. In parti
ular, for ai = j�ij=N we have�l;N(L;Q(�1)_; : : : ; Q(�t)_) = pw02 �l;N(L;Q�1 ; : : : ; Q�t)where w0 = y=N in this 
ase.We have�(L;Q(�1)_; : : : ; Q(�t)_) = �(L;Q�1 ; : : : ; Q�t)x7!�x; v 7!�v; s7!s�1by lemma 3.6.2. Hen
e, by equation (9.3.3),�(L;Q(�1)_; : : : ; Q(�t)_) = (�x)y�(L;Q�1 ; : : : ; Q�t)x=1;v 7!�v;s 7!s�1:Making the substitutions in the 
ontext of Yl;N we get�l;N(L;Q(�1)_; : : : ; Q(�t)_) = (�x2)y�(L;Q�1 ; : : : ; Q�t)x=1;v 7!�!�l;s7!!�1:131



From equation (9.3.3) and the above equations we get�N;l(L;Q�1 ; : : : ; Q�t) = xy1�N;l(L;Q�1 ; : : : ; Q�t)x=1= x�y1 �(L;Q�1 ; : : : ; Q�t)x=1; v 7!!�N ; s7!!= x�y1 �(L;Q�1 ; : : : ; Q�t)x=1; v 7!�!�l; s7!!�1= x�y1 (�x2)�y�l;N(L;Q(�1)_; : : : ; Q(�t)_)= (�x1x2)�ypw02 �l;N(L;Q�1 ; : : : ; Q�t):We thus have to prove that (�x1x2)y = pw02 :Sin
e p2 = �!�1xN2 = �xN+l2 , the above equation is equivalent to(�x1x2)y = (�xN+l2 ) yN :Sin
e N divides any j�ij, i = 1; : : : ; t, we have that y = 
N2 for some integer 
.We thus have to prove that (�x1x2)
N2 = (�xN+l2 )
Nfor any integer 
. We have that (�1)
N2 = (�1)
N , and it is therefore suÆ
ientto prove that (x1x2)N = x(N+l)2 :This is equivalent to xN1 = xl2whi
h is true sin
e x1 is an N -th root of !, and x2 is an l-th root of !. |9.4 Transposing and 
onjugation, the other wayWe set s = exp 2�i k2(l +N)!where k is an integer 
oprime to 2(l +N), and 1 � k � 2(l +N). We setx1 = exp � 2�ik2(l +N)N + 2�irN !for some 0 � r � N � 1. We setx2 = exp � 2�ik2(l +N)l + 2�iql !for some 0 � q � l � 1. 132



The other way to a
hieve that q(x; v; s) (= p(�x;�v; s�1)) is the 
onjugateof p(x; v; s) is by 
hoosing the substitutions for x, v and s in su
h a way that the
onjugate of s is equal s�1, that the 
onjugate of v1 is equal to �v2, and that the
onjugate of x1 is equal to �x2.Sin
e s, v and x are roots of unity after the substitutions we have that their
onjugates are equal to their inverses. Hen
e, the 
onjugate of s is equal to s�1.The 
onjugate of v1 is equal to v�11 , andv�11 = �s�N��1 = sN = sN+ls�l = �s�l = �v2satis�es the above 
ondition. The only remaining 
ondition is that x�11 = �x2.This is equivalent to x1x2 = �1. The rest of this se
tion solves the question whenx1x2 is equal to �1. It turns out that there are unique solutions for x1 and x2provided that l and N are 
oprime odd integers.RemarkWe have that q(x; v; s) = p(x; v;�s�1), too, but there are no 
hoi
es fork, r and q su
h that the 
onjugate of x1 is equal to x2. This is be
ause x1x2 = 1leads to the equation 2(rl+ qN)� k � 2Nl mod Z whi
h implies that k is even.This 
ontradi
ts the 
ondition that k and 2(l +N) are 
oprime.9.4.1 When is x1x2 = �1?The equation x1x2 = �1 is equivalent toexp � 2�ik2(l +N)N + 2�irN ! exp � 2�ik2(l +N)l + 2�iql ! = exp(�i)by our above notation. This equation is equivalent to� k2(l +N)N + rN +  � k2(l +N)l + ql ! � 12where 
ongruen
e means here and in the following 
ongruen
e modulo Z. This
ongruen
e is equivalent to 2(rl + qN)� k2Nl � 12 : (9.4.5)In parti
ular, Nl is a divisor of 2(rl+ qN)� k, and there exists an integer a su
hthat 2(rl + qN)� k = aNl:This implies that the greatest 
ommon divisor g:
:d:(l; N) of l and N is a divisorof k. Sin
e k is supposed to be 
oprime to 2(l +N), and g:
:d:(l; N) is a divisor133



of (l + N), we dedu
e that g:
:d:(l; N) has to be equal to 1, i.e. l and N are
oprime.If N or l is even then the equation 2(rl + qN) � k = aNl implies that k iseven. This is in 
ontradi
tion to the 
ondition that k and 2(l +N) are 
oprime.We have proved so farLemma 9.4.1 Let l, N and k be positive integers so that k is 
oprime to 2(l+N),and 1 � k � 2(l+N). There exists a solution to r and q to the 
ondition (9.4.5)only if l and N are 
oprime odd integers.We des
ribed in subse
tion 9.3.1 a relation between the Young diagrams inthe (N � 1)� l-re
tangle and the Young diagrams in the (l � 1) � N -re
tangle.The relation is indu
ed by transposing a Young diagram and then redu
ing it toits representative in the (l� 1)�N -re
tangle. But in order to be a bije
tion, wehave to 
onsider the �-orbits of the Young diagrams.The e�e
t of the �-operation 
an be 
ontrolled by theorem 9.2.4. In order tobe able to negle
t the in
uen
e of the �-operation we want p to be equal to 1 inthe 
ontext of YN;l and Yl;N . We re
all that p1 = �s�1xl1 in the 
ontext of YN;l,and p2 = �s�1xN2 in the 
ontext of Yl;N .The 
ondition �s�1xl1 = 1 is equivalent to s�1xl1 = �1 whi
h is equivalent bythe above equations to� k2(l +N) + l � k2(l +N)N + rN ! � 12 :This equation 
an be written as2rl � k2N � 12 : (9.4.6)We want p2 = �s�1xN2 = 1 as well. This is equivalent to2qN � k2l � 12 (9.4.7)whi
h di�ers from 
ondition (9.4.6) by inter
hanging l and N and inter
hangingr and q.Given 
oprime odd integers N and l, and an integer k 
oprime to 2(l+N), and1 � k � 2(l+N), we are looking for solutions for r and q that satisfy 
onditions(9.4.5), (9.4.6) and (9.4.7).If r and r0 are solutions to 
ondition (9.4.6) then 2N divides 2(r�r0)l and thusr � r0 mod N . Similarly, any solution q to (9.4.6) is unique up to 
ongruen
emodulo l. 134



Sin
e l and N are 
oprime and odd we have that 2l and N are 
oprime. Hen
e,there exist integers 
 and d su
h that2
l + dN = 1;and in parti
ular d is odd. We dedu
e that2
kl � kN = �kdand therefore r = 
kis a solution for 
ondition (9:4:6) be
ause �kd is odd sin
e k and d are odd.Sin
e 2
l + dN = 1, we have (d + l)N � 1 = l(N � 2
) where N � 2
 is odd,and d+ l is even. Thereforek(d+ l)N � kl = k(N � 2)
;and therefore q = k(d+ l)2is a solution to 
ondition (9.4.7).We have to 
he
k 
ondition (9.4.5) for these solutions. We have2(rl + qN)� kNl = 2(
kl + k(d+l)2 N)� kNl= k2
l + (d+ l)N � 1Nl= k (2
l + dN)� 1 + lNNl= kwhi
h is an odd integer and thus 
ondition (9.4.5) is satis�ed. We 
an summarizeour 
onsiderations.Lemma 9.4.2 Given positive integers l and N , there exists an integer k 
oprimeto 2(l+N) and integers r and q satisfying 
onditions (9.4.5) only if l and N are
oprime odd integers.Given positive 
oprime odd integers l and N and an integer k 
oprime to2(l + N). Let 
 and d be integers that satisfy 2
l + dN = 1. The there exist aninteger r = 
k (unique up to 
ongruen
e modulo N) and an integer q = k(d+ l)=2(unique up to 
ongruen
e modulo l) that satisfy 
onditions (9.4.5), (9.4.6) and(9.4.7). 135



Remark For the solution r = 
k we get by our 
onstru
tionx1 = exp �ik(2
� d)l +N ! and x2 = x�1:We �nally show that the solutions r and q are symmetri
, i.e. if we inter
hangeN and l then the 
orresponding solutions are r0 = q up to 
ongruen
e modulo N ,and q0 = r up to 
ongruen
e modulo l.Lemma 9.4.3 The inter
hange of N and l inter
hanges the solutions r and q.Proof Given 
oprime odd integers l and N we have2
l + dN = 1 and2
0N + d0l = 1for some integers 
, 
0, d and d0. The solutions we found arer = k
; q = kd+ l2 and, symmetri
allyr0 = k
0; q0 = kd0 +N2 :We have to show thatk
0 � kd+ l2 mod l and k
 � kd0 +N2 mod Nfor any integer k 
oprime to 2(l +N). In fa
t, we show that
0 � d+ l2 mod l; and 
 � d0 +N2 mod N:We have by the above equation that2
l + dN = 2
0N + d0l;hen
e (2
� d0)l = (2
0 � d)N:Sin
e l and N are 
oprime, we dedu
e that N divides 2
 � d0, and l divides(2
0 � d), hen
e 2
 � d0 mod N and 2
0 � d mod l:This implies that 2
 � d0+N mod N . The integer d0 is odd be
ause 2
0N+d0l = 1.Hen
e, the sum of two odd integers d0 +N is even. Sin
e N is odd, we have
 � d0 +N2 mod N:Similarly, we have that 
0 � (d + l)=2 mod l, and this 
ompletes our proof thatr0 � q mod N and q0 � r mod l. |136



Chapter 10Young-solutionsWe �x integers N � 2 and l � 1. We �x �, a primitive root of unity of orderl + N . We denote El+N = f1; �; : : : ; � l+N�1g, the set of all (l + N)-th roots of1. We denote � = exp(2�i=N). But in se
tion 10.4 we shall denote by � anotherprimitive N -th root of unity.10.1 En
oding Young diagrams in the unit 
ir-
leTo every Young diagram � in the (N � 1)� l-re
tangle we assign a set T� of Npoints on the unit 
ir
le in the 
omplex plane,T� = f1; ��N�1+1; ��N�2+2; : : : ; ��1+N�1g:This des
ribes a bije
tion between the Young diagrams in the (N�1)�l-re
tangleand the setT = ff1; �a1; : : : ; �aN�1g j 1 � a1 < � � � < aN�1 � l +N � 1g:In parti
ular, we see that the number of Young diagrams in the (N � 1) � l-re
tangle is equal to �l+N�1N�1 �. We denote ��N�k+k as the k-th element of T�,0 � k � N � 1.The group of symmetries (i.e. Eu
lidean isometries) of the set El+N is thedihedral group Zl+N / Z2 whi
h is generated by the re
e
tion in the x-axis (i.e.
onjugation) and the rotation by the angle 2�=(l + N) (i.e. multipli
ation byexp(2�i=(l +N))).The su

essive rotations by the angle 2�=(l + N) do not a
t on T be
auseevery T� has to 
ontain the element 1.137



But there is an operation of the 
y
li
 group ZN = (a j aN = 1) on T . Theelement ak of ZN , 1 � k � N � 1, a
ts on T� as the rotation of the unit 
ir
lethat brings the k-th element of T� to 1. The element b of Z2 = (b j b2 = 1) a
tsas the re
e
tion in the x-axis, i.e. 
omplex 
onjugation.We have that bab = a�1 be
ause 
x = 
�1x for any 
omplex number x where
 = ��(�N�1+1). This means that the 
onjugation by b 2 Z2 a
ts as the inversionon ZN, and therefore the dihedral group ZN / Z2 a
ts on T . We remark thatthe a
tion of ZN / Z2 on T is not free in general.We des
ribe now the a
tion of ZN / Z2 more a

urately. We refer for the�-operation to se
tion 6.2 and for the 
on
ept of the dual Young diagram �� tosubse
tion 1.3.2.Lemma 10.1.1 The generators a and b of ZN / Z2 a
t asa(T�) = T�(�);b(T�) = T��1(��)for any Young diagram � in the (N � 1)� l-re
tangle.Proof The a
tion of a transforms T� = f1; ��N�1+1; : : : ; ��1+N�1g via the rotation��(�N�1+1) into the seta(T�) = ��(�N�1+1)T�= f��(�N�1+1); 1; ��N�2+2�(�N�1+1); : : : ; ��1+N�1�(�N�1+1)g= f1; ��N�2+2�(�N�1+1); : : : ; ��1+N�1�(�N�1+1); ��(�N�1+1)g= f1; ��N�2��N�1+1; : : : ; ��1��N�1+N�2; � l��N�1+N�1g= T�(�)be
ause �(�) = (l��N�1; �1��N�1; : : : ; �N�2��N�1) and � l+N = 1. The a
tionof b transforms T� = f1; ��N�1+1; : : : ; ��1+N�1g via 
onjugation into the setb(T�) = f1; ��(�N�1+1); ��(�N�2+2); : : : ; ��(�1+N�1)g= f1; ��(�1+N�1); : : : ; ��(�N�2+2); ��(�N�1+1)g= f1; � l+N�(�1+N�1); : : : ; � l+N�(�N�2+2); � l+N�(�N�1+1)g= f1; � l��1+1; : : : ; � l��N�2+N�2; � l��N�1+N�1g= T�where � = (�1; : : : ; �N�1) is the Young diagram with �i = l � �N�i. Hen
e,�(�) = (l � �N�1; �1 � �N�1; : : : ; �N�2 � �N�1)= (�1; �1 � �N�1; : : : ; �1 � �2)= ��:We have thus proved that b(T�) = T� with �(�) = ��, hen
e b(T�) = T��1(��). |138



We remark that lemma 10.1.1 gives a se
ond proof that bab = a�1.Furthermore, we see that two elements � and � from the (N �1)� l-re
tanglelie in the same �-orbit if and only if T� and T� di�er by a rotation. We re
allthat � = exp(2�i=N).Lemma 10.1.2 The 
ardinality of the �-orbit of � is equal to the 
ardinality ofthe set f�jT� j j = 0; : : : ; N � 1gfor any Young diagram � in the (N � 1)� l-re
tangle.Proof The rotations that keep T� invariant form a �nite subgroup of S1. Any�nite subgroup of S1 is 
y
li
 and therefore there is a unique rotation by a positiveangle �, 0 < � � 2�, that generates all the rotations that keep T� invariant. The
ardinality of the �-orbit of � is then equal to N�2� by lemma 10.1.1.The rotation by � indu
es a permutation of the N points of T�. This permu-tation is a power of an N -
y
le. Hen
e, the rotation by N� indu
es the identitypermutation and thus N� is an integer multiple of 2�. Therefore, there exists aunique integer j0, 1 � j0 � N , su
h that � = 2�j0N . No other rotation �j0 with1 � j 0 < j0 keeps T� invariant. The 
ardinality off�jT� j j = 0; : : : ; N � 1gis therefore equal to j0.On the other hand, the 
ardinality of the �-orbit of � is equal to N�2� (as statedabove) whi
h is equal to j0. |10.1.1 The unit 
ir
le and the outline of Young diagramsWe des
ribe now a relation between the outline of a Young diagram and the setT� on the unit 
ir
le. We position a Young diagram � that lies in the (N �1)� l-re
tangle in an a
tual N � l-re
tangle and remove the lower and the right edgeof this re
tangle. An example is shown in �gure 10.1. We refer to the solid linein this �gure as the outline of the Young diagram.We de�ne a word w(�) with the letters `full' and `empty' by reading thesequen
e 1; �; �2; : : : ; � l+N�1 and we write `full' if the element lies in T�, and wewrite `empty' if it does not lie in T�. This word w(�) 
an be read dire
tly o� theYoung diagram � in the following way.We start at the bottom left and follow the outline of � to the top right.Whenever we go verti
ally we write `full', and whenever we go horizontally wewrite `empty'. We start with `full' be
ause �N = 0. On the other hand, 1 liesin T�. Whenever �i+1 = �i, i.e. we go one step verti
ally, then the elements��i+1+N�(i+1) and ��i+N�i are 
onse
utive in the sequen
e 1; �; �2; : : : ; � l+N�1.139



Figure 10.1: Young diagram � = (6; 5; 5; 4; 4; 2) with extended lines in the 
aseN = 8 and l = 9.
Figure 10.2: The dual Young diagram upside down.Whenever �i = �i+1 + k for some k > 0, then on the one hand we go ksteps verti
ally, and on the other hand the 
omplement El+NnT� 
ontains thek 
onse
utive elements ��i+1+N�(i+1)+1; : : : ; ��i+N�i�1. Walking along � we thusread w(�).This visualization of the word w(�) leads to a ni
e interpretation of the resultfrom lemma 10.1.1 that b(T�) = T��1(��).Figure 10.2 derives from �gure 10.1 by taking the 
omplement of � in theN � �1-re
tangle. The upper right spoke in �gure 10.1 be
omes the lower leftspoke in �gure 10.2 be
ause �� derives from this diagram after the rotation by �and thus we also have to rotate the two bounding edges of the N � l-re
tangle.Walking along the solid outline of �� and the solid spokes from the top right tothe bottom left, we read the reverse word of w(�) up to the 
y
li
 shift of lengthl � �1 due to the horizontal spoke. Hen
e, up to rotation (i.e. �-operations),b(T�) is equal to T�� .This te
hnique of reading the word w(�) allows us to present a relation be-tween T� and T�_ as explained in the following.Given any subset S of El+N with N elements, we 
an rotate this set by someangle so that 1 lies in this set. This is well de�ned up to some rotation by ZN,and thus S determines a Young diagram up to �-operation. Furthermore, the
omplement of S 
onsists of l points. These determine a Young diagram in the140



(l � 1)�N -re
tangle up to �-operation. We remark that this �-operation refersto the (l�1)�N -re
tangle whi
h means adding a row of length N and removingall 
olumns of length l. We avoid the notations �l and �N for the �-operationsin the (N � 1)� l-re
tangle resp. (l � 1)�N -re
tangle.It is obvious that every �-orbit of Young diagrams in the (N�1)� l-re
tangle
ontains a representative that lies in the (N � 1)� (l � 1)-re
tangle. Therefore,it is not a strong restri
tion to 
onsider Young diagrams in the (N � 1)� (l� 1)-re
tangle.Lemma 10.1.3 The sets El+NnT� and T(�_)� di�er by a rotation for any Youngdiagram � in the (N � 1)� (l � 1)-re
tangle.Proof We remark that �_ lies in the (l � 1)�N -re
tangle be
ause � lies in the(N � 1)� (l � 1)-re
tangle.When we transpose � in �gure 10.1 we see that the word w(�_) derives fromthe word w(�) by �rst reversing the order of its letters and then swit
hing theletters `empty' and `full'.This means that � i�1 lies in T� if and only if � l+N�i does not lie in T�_ fori = 1; : : : ; l + N . The 
omplex 
onjugate of � l+N�i is equal to � i, and therefore� i�1 lies in T� if and only if � i does not lie in T� for i = 1; : : : ; l+N . This meansthat �T� ℄ T�_ = El+N :Complex 
onjugation transforms the set T�_ into T(�_)� up to rotation by lemma10.1.1. Hen
e, El+NnT� and T(�_)� are equal up to rotation. |The example in �gure 10.1 for N = 8 and l = 9 leads to the setT� = f1; �; �4; �7; �8; �10; �11; �13g:The 
omplement isEl+NnT� = f�2; �3; �5; �6; �9; �12; �14; �15; �16g:Repla
ing � by ��1, i.e. 
onjugation, transforms this sequen
e intof�; �2; �3; �5; �8; �11; �12; �14; �15gsin
e � l+N = �17 = 1. Rotation by ��1 leads to the setf1; �; �2; �4; �7; �10; �11; �13; �14gwhi
h is equal to T� with � = (6; 6; 5; 5; 3; 1) = �_.141



10.2 Young-solutionsWe de�ned in se
tion 6.1 the quotient ring YN;l = Y=IN;l. We re
all that thering of Young diagrams Y is freely generated as an Abelian ring by the 
olumndiagrams 
1; 
2; : : :. Hen
e, a ring homomorphism � : Y ! C fa
tors through YN;lif and only if �(
0) = �(
N);�(
i) = 0 for i � N + 1; and�(dj) = 0 for l + 1 � j � l +N � 1:Sin
e the empty Young diagram 
0 is the unit for the multipli
ation, we have�(
0) = 1. Hen
e, � fa
tors through YN;l if and only if�(
N) = 1;�(
i) = 0 for i � N + 1; and (10.2.1)�(dj) = 0 for l + 1 � j � l +N � 1:In parti
ular, if � fa
tors through YN;l then � is determined by �(
1); : : : ; �(
N�1).An (N�1)-tuple (
1; : : : ; 
N�1) of 
omplex numbers is 
alled a Young-solutionif the map � : Y ! C given by�(
i) = 
i for 1 � i � N � 1�(
N) = 1;�(
i) = 0 for i � N + 1fa
tors through YN;l.Lemma 10.2.1 There is bije
tion between Young-solutions and the family of setsof pairwise di�erent 
omplex numbers fy1; : : : ; yNg that satisfyyl+Ni = yl+Nj for any 1 � i; j � N;y(l+N)N1 = 1;y1y2 � � � yN = 1:The bije
tion is given by assigning to 
i the i-th elementary symmetri
 fun
tionin y1; : : : ; yN .Proof We de�ne 
0 = 
N = 1. We de�ne a polynomial C(Z) in the variable Z,C(Z) = NXi=0(�1)i
iZi142



for any (N � 1)-tuple (
1; : : : ; 
N�1) of 
omplex numbers. We de�ne D(Z) to bethe inverse power series of C(Z),D(Z) = C�1(Z) = 1Xj=0 ÆjZjwhere the 
omplex numbers Æj depend on 
1; : : : ; 
N�1. By equations (1.1.1) and(10.2.1) we see that (
1; : : : ; 
N�1) is a Young-solution if and only if Æj = 0 for allj = l + 1; : : : ; l +N � 1.Let (
1; : : : ; 
N�1) be a Young-solution. ThenD(Z) = lXj=0 ÆjZj + 1Xj=l+N ÆjZj;and we denote the �rst summand (whi
h is a polynomial) by D0(Z), and these
ond summand (whi
h is a power series) by D00(Z). We haveC(Z)D0(Z) + C(Z)D00(Z) = 1:The maximal degree in Z of C(Z)D0(Z) is equal to l+N , and the minimal degreein Z of C(Z)D00(Z) is equal to l+N , too. The term of degree l+N in C(Z)D00(Z)is equal to Æl+NZ l+N . Hen
e,C(Z)D0(Z) + Æl+NZ l+N = 1:Equivalently, C(Z)D0(Z) = 1� �Z l+Nwhere � = Æl+N . The 
omplex number � is non-zero be
ause C(Z) is a polynomialof degree N , and D0(Z) has 
onstant term 1.Any root � of C(Z) satis�es �l+N = ��1 by the above equation. The N roots�1; : : : ; �N of C(Z) are pairwise di�erent be
ause the roots of 1 � �Z l+N arepairwise di�erent. We have �1 � � ��N = 1 be
ause the 
onstant term of C(Z) isequal to 1, and the 
oeÆ
ient of the highest term ZN of C(Z) is equal to (�1)N .We have C(Z) = (�1)N NYi=1(Z � �i)= (�1)N NYi=1�i(��1i Z � 1)= (�1)N NYi=1(��1i Z � 1)= NYi=1(1� ��1i Z):143



This means that the 
oeÆ
ient 
i of (�1)iZi in C(Z) is the i-th elementarysymmetri
 fun
tion in ��11 ; : : : ; ��1N whi
h are the inverses of the roots of C(Z).We have that (��1i )l+N = � for all i = 1; : : : ; N as mentioned above. The equation�1 � � ��N = 1 implies that (��11 � � ���1N )l+N = 1;hen
e �N = 1. (Another way to see this is the following. We have by lemma 6.3.1that dl+N = (�1)N+1dl in YN;l. Hen
e, dNl+N = (�1)(N+1)NdNl = �N (
0) = 
0 = 1by lemma 6.2.1.)This means that for any Young-solution there exists a unique set of pairwisedi�erent 
omplex numbers y1; : : : ; yN (= ��11 ; : : : ; ��1N ) su
h that y1 � � � yN = 1,yN(l+N)1 = 1, and yl+Ni = yl+Nj for any 1 � i; j � N . The uniqueness derives fromthe fa
t that y1; : : : ; yN are the inverses of the roots of C(Z).Conversely, let 
i be the i-th elementary symmetri
 fun
tion of pairwise dif-ferent 
omplex numbers y1; : : : ; yN with the properties as stated in the lemma.Denote � = y�(l+N)1 . Aside from y1; : : : ; yN there are l other (l + N)-th roots of��1, say x1; : : : ; xl. We have C(Z) = NYi=1(1� yiZ):Then its inverse power seriesD(Z) = C�1(Z)= 11� �Z l+N lYj=1(1� xjZ)= (1 + �Z l+N + � 2Z2(l+N) + � � �) lYj=1(1� xjZ)has zero as 
oeÆ
ient of Zk for k = l+ 1; : : : ; l+N � 1. Hen
e, (
1; : : : ; 
N�1) isa Young-solution. |10.3 Young-solutions and the unit-
ir
leOur notation does not distinguish between a Young-solution and the set of N
omplex numbers assigned to it by lemma 10.2.1. We re
all that � is a �xedprimitive root of unity of order l +N .Let fy1; : : : ; yNg be a Young-solution. The yi are pairwise di�erent, and their(N + l)-th powers are all equal. Hen
e, there exist integers a1; : : : ; aN�1 with144



1 � a1 < � � � < aN�1 � N + l � 1 so thatf1; y�11 y2; : : : ; y�11 yNg = f1; �a1; : : : ; �aN�1g:Therefore, y�11 fy1; : : : ; yNg = T�for some Young diagram � in the (N � 1) � l-re
tangle. If we had 
hosen y2instead of y1 then y�12 fy1; : : : ; yNg = T�for some Young diagram � in the (N � 1)� l-re
tangle. Sin
e the setsy�11 fy1; : : : ; yNg and y�12 fy1; : : : ; yNgdi�er by a rotation a rotation of the unit 
ir
le, we know by lemma 10.1.1 that� and � lie in the same �-orbit. The assignment of the �-orbit of � to theYoung-solution fy1; : : : ; yNg is therefore well de�ned.Lemma 10.3.1 The number of Young-solutions that are assigned the same �-orbit is equal to the number of Young diagrams in this orbit.Proof Let � be a Young diagram in the (N � 1) � l-re
tangle. We denoteai = �N�i + i for i = 1; : : : ; N � 1. By lemma 10.2.1 we see that the Young-solutions that are assigned the �-orbit of � arefy0; y0�a1; : : : ; y0�aN�1g(whi
h is equal to y0T�) where y0 has to satisfy the 
onditionsyl+N0 = (y0�a1)l+N = : : : = (y0�aN�1)l+N ; yN0 �(a1+���+aN�1) = 1; y(l+N)N0 = 1:These 
onditions are equivalent toyN0 �(a1+���+aN�1) = 1 and y(l+N)N0 = 1whi
h is equivalent to yN0 �(a1+���+aN�1) = 1: (10.3.2)There are N solutions for y0 in the last equation. We 
hoose one solution y00,and then the other solutions for this equation are y00�; y00�2; : : : ; y00�N�1 where� = exp(2�i=N).Our 
laim is that the 
ardinality of the following set of Young-solutionsfy00�jT� j j = 0; : : : ; N � 1gis equal to the 
ardinality of the �-orbit of �. Sin
e the rotation by y00 does notin
uen
e the 
ardinality of this set, we have to show that the 
ardinality off�jT� j j = 0; : : : ; N � 1gis equal to the 
ardinality of the �-orbit of �. This is true by lemma 10.1.2. |145



10.4 Hopf link and Young-solutionsIn 
hapter 4 we were 
onsidering the Hom
y polynomial h�; �i of the Hopf linkwith de
orations Q� and Q� on its 
omponents. This is a rational fun
tion inx, v and s. We 
onsidered in previous parts the substitution of s by a primitiveroot of unity of order 2(l+N), the substitution of x by an N -th root of s�1, andthe substitution of v by s�N .Here, it will be ne
essary to restri
t the substitutions. We will 
hoose x to bea primitive root of unity of order 2N(l + N) and we shall �x this 
hoi
e unlessstated otherwise. We will substitute s by x�N , and we will substitute v by xN2 .This is ne
essary be
ause we shall want x�N to be a primitive root of unity oforder 2(l + N) as usual, but additionally, we shall want � = x2(l+N) to be aprimitive root of unity of order N .To any Young diagram � in the (N � 1) � l-re
tangle we assign the set of
omplex numbers 
(�) = f�; ���N�1+1; : : : ; ���1+N�1g = �T�where � = xN(N�1)+2j�j and � = x�2N . This is a Young-solution be
ause�N�(�N�1+1)+���+(�1+N�1) = xN2(N�1)+2N j�j� j�j+N(N�1)2= xN2(N�1)+2N j�jx�2N(j�j+N(N�1)2 )= 1and thus the 
ondition from equation (10.3.2) is satis�ed.Lemma 10.4.1 We have 
(�(�)) = x2(N+l)
(�) for any Young diagram � in the(N � 1)� l-re
tangle.Proof The Young-solution assigned to �(�) is by the above de�nition
(�(�)) = �T�(�)where � = xN(N�1)+2j�(�)j.We have j�(�)j = j�j + l � N�N�1 be
ause �(�) derives from � by adding arow of length l and then removing all (i.e. �N�1) 
olumns of length N . Hen
e,� = xN(N�1)+2(j�j+l�N�N�1)= �x2l�2N�N�1= �x2l��N�1 :By lemma 10.1.1 we know thatT�(�) = a(T�) = ��(�N�1+1)T�:146



Hen
e, 
(�(�)) = �T�(�)= �x2l��N�1��(�N�1+1)T�= x2l��1�T�= x2(l+N)
(�): |The 
omplex 
onjugate of the set 
(�) is again a Young-solution be
ause the
ondition from equation (10.3.2) is satis�ed. We know by lemma 10.1.1 that
omplex 
onjugation of T� leads to the �-orbit of the dual �� of �. Hen
e, 
(�)
orresponds to the �-orbit of ��, i.e. 
(��) = �k
(�) for some k, 0 � k � N � 1,and � = x2(l+N). It turns out that k = 0.Lemma 10.4.2 We have 
(��) = 
(�) for any Young diagram � in the (N�1)�l-re
tangle.Proof Let � be a Young diagram in the (N �1)� l-re
tangle. We re
all that thedual �� is up to rotation the 
omplement of � in the N � �1-re
tangle. Hen
e,��i = �1 � �N�i+1 for i = 1; : : : ; N � 1, and j��j = N�1 � j�j. We thus get
(��) = �f1; ���N�1+1; : : : ; ���1+N�1g= �f1; ��1��2+1; : : : ; ��1��N+N�1g= ���1+N�1f��(�1+N�1); ��(�2+N�2); : : : ; ��(�N�1+1); 1g= ���1+N�1f1; ��(�N�1+1); : : : ; ��(�2+N�2); ��(�1+N�1)gwhere � = xN(N�1)+2j��j. We have that���1+N�1 = s1�Nx2(N�1�j�j)��1+N�1= s1�N���1x�2j�j��1+N�1= s1�Nx�2j�j�N�1= sN�1x�2j�jwhere we used that � = x�2N and s = x�N . We thus get
(��) = sN�1x�2j�jf1; ��(�N�1+1); : : : ; ��(�2+N�2); ��(�1+N�1)g:On the other hand, we have by de�nition
(�) = s1�Nx2j�jf1; ��N�1+1; : : : ; ��1+N�1g:147



The 
onjugate of x is equal to x�1 be
ause the norm of x is equal to 1. Therefore,the 
onjugate of s = x�N is equal to s�1. We thus derive from the above equationsthat 
(��) = sN�1x�2j�jf1; ��(�N�1+1); : : : ; ��(�2+N�2); ��(�1+N�1)g= 
(�): |The terms �i + N � i for i = 1; : : : ; N � 1 appear in the sets T� and 
(�)be
ause of the relation between the ring of Young diagrams and S
hur fun
tions.We 
an exploit this by relating S
hur fun
tions, Young-solutions and the Hopflink by lemmas 4.1.5 and 4.3.3. Their 
ombination implies that h�; �i= h�i isthe S
hur fun
tion s� in in�nitely many variables whi
h are to be substituted bysN+2�i�2i+1x2j�j for i = 1; : : : ; N , and all the other variables are to be substitutedby zero. This result is true under the 
ondition that � has at most N rows, andthat v is to be substituted by s�N .If � has more than N rows then the S
hur fun
tion s� be
omes zero afterthe above substitution of N variables by sN+2�i�2i+1x2j�j for i = 1; : : : ; N and allother variables are substituted by zero. Therefore, we restri
t to the interesting
ase that � has at most N rows, and we thus 
an regard s� as the S
hur fun
tionin N variables.We 
an write sN+2�i�2i+1x2j�j = s1�Nx2j�js2(�i+N�i)for i = 1; : : : ; N . We restri
t � to Young diagrams in the (N � 1) � l-re
tangleand we thus have �N = 0. Hen
e,h�; �ih�i = s� �
; 
s2(�N�1+1); : : : ; 
s2(�1+N�1)�where 
 = s1�Nx2j�j. We see that 
 is equal to the value of � that we have 
hosenin order to de�ne 
(�). In fa
t, this was our motivation for the de�nition of 
(�).We thus have proved thatLemma 10.4.3 We have s�(
(�)) = h�; �ih�ifor any Young diagram � in the (N � 1)� l-re
tangle and any Young diagram �with at most N rows, after the substitutions of x by a primitive root of unity oforder 2N(l +N), s = x�N , and v = s�N = xN2.148



We �nish our study of Young-solutions by des
ribing the e�e
t of the �-operation to the statement of lemma 10.4.3.We know by lemma 10.4.1 that 
(�k(�)) = �k
(�) for any k = 1; : : : ; N � 1,where � = x2(l+N). Sin
e s� is a homogeneous polynomial of degree j�j in Nvariables, we have that s�(
(�k(�))) = �kj�js�(
(�)):Lemma 10.4.3 implies thath�k(�); �ih�k(�)i = �kj�j h�; �ih�i (10.4.3)for any Young diagrams � and � in the (N � 1)� l-re
tangle.We 
an dedu
e this result as well from lemma 9.2.2. The lemma implies thatafter the substitutions for s, x and v we haveh�k(�); �i = p2kj�jh�; �iand D�k(�)E = h�ifor any non-negative integer k be
ause the linking number of the two 
omponentsof the Hopf link is equal to 1, and the self linking number of any 
omponent isequal to zero. Here, p = �s�1xl. Sin
e we make the substitution s = x�N , weget p2 = x2(l+N). This is our preferred primitive N -th root of unity �, and wethus dedu
e equation 10.4.3.
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Chapter 11Quantum invariants and Hom
ypolynomialIn this 
hapter we 
onsider algebras over a 
ommutative ring k. The 
ases for kwe are interested in are either C , the �eld C (q) of rational fun
tions in a variableq, or the algebra C [[h℄℄ of power series in a variable h. The 
ase k = C [[h℄℄ israther tri
ky sin
e so-
alled `
ompletions' of modules over C [[h℄℄ are ne
essary todeal with the s
alars. Furthermore, C [[h℄℄ is given the h-adi
 topology. This isdes
ribed in 
hapter XVI of [12℄.For a 
omplex semi-simple Lie algebra g we de�ne in se
tion 11.3 the Quantumenveloping algebra Uh(g) over C [[h℄℄. There exists a simpler version Uq(g) overC [q℄ whose theory is somehow parallel to Uh(g) as mentioned at the end of se
tionXVII.2 of [12℄. The translation between these two algebras is q = eh. Thedisadvantage of Uq(g) is the la
k of a universal R-matrix. The exposition givenhere deals with Uh(g) but without mentioning expli
itly the te
hni
al diÆ
ultiesarising for tensor produ
ts of Uh(g)-modules.We remark that the variable h in Uh(sl(N)) is not the same in [12℄ and [4℄, onedi�ers from the other by the fa
tor 2. Furthermore, they are 
onsidering di�erentHopf algebra stru
tures on this algebra, but lemma 11.3.3 will show that they areequivalent.11.1 Ribbon Hopf algebrasWhenever we are 
onsidering the tensor produ
t of two algebras A and B overa 
ommutative ring k, we understand the tensor produ
t to be over k and weabbreviate A
k B by A
 B.De�nition A ribbon Hopf algebra A is both an algebra and a 
oalgebra over a
ommutative ring k, i.e. there are maps � : A
 A ! A (
alled multipli
ation),150



� : k ! A (
alled the unit), � : A ! A 
 A (
alled 
omultipli
ation), and" : A ! k (
alled the 
ounit) whi
h satisfy�(idA 
 �) = �(�
 idA) = idA;�(� 
 idA) = �(idA 
 �)(i.e. A is an algebra), and(idA 
 ")� = ("
 idA)� = idA;(�
 idA)� = (idA 
�)�;(i.e. A is a 
oalgebra). Furthermore, multipli
ation and unit are homomorphismsof 
oalgebras, and, equivalently, 
omultipli
ation and 
ounit are homomorphismsof algebras. Furthermore, we require the existen
e of an anti-homomorphismS : A! A (
alled the antipode) that satis�es�(S 
 idA)� = �" = �(idA 
 S)�:Furthermore, we require the existen
e of an invertible element R 2 A
A (
alleda universal R-matrix) and an invertible and 
entral element v 2 A su
h that�op(x) = R�(x)R�1 for all x 2 A;(�
 idA)(R) = R13(1
 R);(idA 
�)(R) = R13(R 
 1);v2 = uS(u);�(v) = (R21R)�1(v 
 v)"(v) = 1S(v) = vwhere R = Pi si 
 ti, u = Pi S(ti)si, R13 = Pi si 
 1
 ti, R21 = Pi ti 
 si, and�op = �A;A� where �A;A is the 
ip of the 
omponents of A
A. We shall denoteuv�1 by � whi
h is sometimes 
alled the ribbon element.We remark that a ribbon Hopf algebra may 
ontain several universal R-matri
es.We also remark that � satis�es the equation �(�) = �
 �.The tensor produ
t of any A-modules V and W is an A 
 A-module byde�ning (a1 
 a2) � (v 
 w) = (a1v 
 a2w). The Hopf stru
ture allows us to turnV 
W into an A-module by de�ning a � (v 
 w) = �(a) � (v 
 w).The dual V � = Homk(V; k) of an A-module V be
omes an A-module byde�ning ha � �; vi = h�; S(a) � vi where a 2 A, � 2 V �, v 2 V , and h ; i is thenatural pairing between V � and V . 151



Figure 11.1: The homomorphisms �; �; F1; F2; F3; F4 (from left to right).11.2 An invariant of ribbon tanglesWe 
onsider a spe
ial 
ase of ribbon tangles. An (m;n)-ribbon tangle is a diagramof oriented ar
s and oriented simple 
losed 
urves in the square [0; 1℄ � [0; 1℄ ofthe Eu
lidean plane su
h that all the boundary points of the ar
s belong eitherto the m points at the top [0; 1℄ � 1 of the square, or to the n points at thebottom [0; 1℄� 0. (This implies that m+n has to be even). The Eu
lidean planeis assigned the standard orientation. We 
onsider only diagrams for whi
h thebla
kboard framing agrees with the a
tual framing of the tangle as explained inse
tion 2.1. (The bla
kboard framing is the diagram together with its regularneighbourhood (respe
ting 
rossings) in the plane).We 
onsider a diagram of an (m;n)-ribbon tangle T withA-modules V1; : : : ; Vkassigned to its 
omponents. We shall also refer to this assignment as a 
olouring.The boundary points at the top of T belong to ar
s that are 
oloured by, say,Vi1 ; : : : ; Vim from left to right. At the bottom we read, say, Vj1; : : : ; Vjn from leftto right. At ea
h of these endpoints, the 
orresponding ar
 is lo
ally orientedeither top-down or bottom-up. If the module we read o� at an endpoint is, say,V then we denote a module V 0 by saying that V 0 is equal to V if the 
orrespond-ing lo
al orientation is top-down, and V 0 is equal to the dual module V � if the
orresponding lo
al orientation is bottom-up.A 
oloured ribbon tangle then determines a module homomorphism J(T ),J(T ) : V 0j1 
 � � � 
 V 0jn ! V 0i1 
 � � � 
 V 0im:J(T ) is de�ned by disse
ting T into stripes in whi
h we have either a single
rossing, a single 
ap, or a single 
up as shown in �gure 11.1. For these basi
pie
es we de�ne the 
orresponding module homomorphisms now. The map J(T )is then the 
omposition of these maps read from the bottom to the top of thediagram.Consider the 
rossing at the very left of �gure 11.1. For this diagram, J(T )is a map V 
W ! W 
 V for modules V and W depending on the 
olouringand the lo
al orientations of the two ar
s. We denote J(T ) by �V;W (or �) in this
ase. We de�ne this map �V;W as �rst multiplying with the universal R-matrixR and then swit
hing the fa
tors of V 
W . This map is A-linear.For the se
ond 
rossing in �gure 11.1, the map J(T ) : V 
W ! W 
 V isdenoted by �V;W (or �). It is de�ned by �V;W = ��1W;V .152



V W
Figure 11.2: De
omposition of an oriented link diagram into simple pie
es.When the 
ap resp. 
up ar
s in �gure 11.1 are 
oloured by a module V thenthe 
orresponding module homomorphisms are (from left to right)F1 : V � 
 V ! k; F1(g 
 v) = g(v);F2 : V 
 V � ! k; F2(v 
 g) = g(�v);F3 : k ! V 
 V �; F3(1) =Xm vm 
 vm;F4 : k ! V � 
 V; F4(1) =Xm vm 
 (�vm)where fvmg is a basis for V , and fvmg is the 
orresponding dual basis for V �.Finally, a straight verti
al line determines the identity map, and the juxtapo-sition of diagrams is handled by the tensor produ
t of the involved modules.Reshetikhin and Turaev show in [22℄ that this map J(T ) is an isotopy-invariantof ribbon tangles. Any 
oloured (0; 0)-ribbon tangle T (i.e. framed link) deter-mines an A-linear map J(T ) : k ! k whi
h is the multipli
ation by an elementof k. This s
alar is invariant under isotopy of ribbon tangles, and it is 
alled theA-invariant of the 
oloured framed link.An example is shown in �gure 11.2. The 
omponents of the Hopf link are
oloured by A-modules V resp. W . The linear map from k to k is given byk F3�! V 
 V �F4�! V 
 V � 
W � 
W�V �;W��! V 
W � 
 V � 
W�W�;V ��! V 
 V � 
W � 
WF2�! k 
W � 
W =W � 
WF3�! W � 
W 
W � 
WF1�! k 
W � 
W =W � 
WF1�! k: 153



Remark The a
tion of A on the trivial module k is given by a � t = "(a)t.Furthermore, the tensor produ
t of any number of 
opies of k is again k. For anytangle T , the homomorphism J(T ) for the trivial module k is the identity of kbe
ause "uv�1 = 1 and ("
")(R) = ("
")(R�1) = 1. (In fa
t ("
id)(R) = 1
1).In parti
ular, the A-invariant of any framed link 
oloured on all of its 
omponentsby the trivial module k is equal to 1.11.3 q-deformed universal enveloping algebrasLet A = (aij)i;j=1;:::;n be a generalized Cartan matrix, i.e. aii = 2 and aij � 0for all i 6= j, and aij = 0 if and only if aji = 0. Furthermore, A has to besymmetrizable, i.e. there exists a diagonal (n�n)-matrix D with 
oprime integerdiagonal entries d1; : : : ; dn su
h that DA is symmetri
 and positive de�nite. (Itturns out that D is unique.)We de�ne for an indeterminate q and an integer j � 0[j℄q = qj � q�jq � q�1 (j � 1);[0℄q = 1;[j℄q! = [j℄q[j � 1℄q � � � [1℄q (j � 1);[0℄q! = 1;" mj #q = [m℄q![j℄q![m� j℄q! (m � j � 0):We denote by C [[h℄℄ the ring of formal power series in the variable h. The in-vertible elements of C [[h℄℄ are those power series that have a non-zero 
onstantterm.We remark that [k℄eth is well de�ned and invertible in C [[h℄℄ for any 
omplexnumber t and integer k. This is be
ause ehr � e�hr = 2hr + r33 h3 + � � � andeh� e�h = 2h+ 13h3+ � � �, and after 
an
ellation of the fa
tor h, the denominatoreh � e�h be
omes invertible.A generalized Cartan matrix determines a Lie algebra that we denote by g.Our single appli
ation will be with the Lie algebra sl(N) of tra
eless (N � N)-matri
es with 
omplex entries. (The Lie bra
ket is given by the 
ommutator[A;B℄ = AB � BA whi
h is tra
eless sin
e tr(AB) = tr(BA).)The set of diagonal matri
es of sl(N) forms a Cartan subalgebra. The Cartanmatrix A for sl(N) is of size (N � 1)� (N � 1), with entries aii = 2, aij = �1 forji� jj = 1, and aij = 0 for ji� jj > 1, where i; j = 1; : : : ; N � 1. It is symmetri
and positive de�nite, and therefore D is the identity matrix.154



De�nition Given a generalized (n � n)-Cartan matrix A, we de�ne Uh(g) asthe algebra over C [[h℄℄ topologi
ally generated by elements Hi; X+i and X�i fori = 1; : : : ; n with the following relations:[Hi; Hj℄ = 0; [Hi; X�j ℄ = �aijX�j ; [X+i ; X�j ℄ = Æij edihHi � e�dihHiedih � e�dih and1�aijXk=0 (�1)k " 1� aijk #edih (X�i )kX�j (X�i )1�aij�k = 0 for i 6= jwhere [x; y℄ = xy � yx, and Æij is the Krone
ker-delta, i.e. Æii = 1 and Æij = 0 ifi 6= j. The last equation is 
alled the Quantum-Serre-relation. We remark that(edihHi � e�dihHi)=(edih � e�dih) is de�ned over C [[h℄℄ be
ause the fa
tor h in thedenominator 
an
els with a fa
tor h in the numerator.Lemma 11.3.1 We haveethHiX+j = ethaijX+j ethHi andethHiX�j = e�thaijX�j ethHiin Uh(g) for any 
omplex number t and any integers 1 � i; j � n.Proof We have [Hi; X+j ℄ = aijX+j , hen
e HiX+j = X+j (Hi + aij). Indu
tively wededu
e that Hki X+j = X+j (Hi + aij)kfor any integer k � 0. Hen
e,ethHiX+j = Xk�0 1k! (thHi)kX+j= X+j Xk�0 1k! (th)k(Hi + aij)k= X+j eth(Hi+aij)= ethaijX+j ethHi :The result for X�j is proved similarly. |There are two ways to turn Uh(g) into a topologi
al Hopf algebra over C [[h℄℄.One way is to de�ne the 
omultipli
ation �h as�h(Hi) = Hi 
 1 + 1
Hi;�h(X+i ) = X+i 
 edihHi + 1
X+i ;�h(X�i ) = X�i 
 1 + e�dihHi 
X�i ;155



and the antipode Sh de�ned bySh(Hi) = �Hi; Sh(X+i ) = �X+i e�dihHi; Sh(X�i ) = �edihHiX�i ; (11.3.1)and the 
ounit "h de�ned by "h(Hi) = "h(X�i ) = 0:The other way is to de�ne the 
omultipli
ation �0h as�0h(Hi) = Hi 
 1 + 1
Hi;�0h(X�i ) = X�i 
 e dihHi2 + e� dihHi2 
X�iand the antipode S 0h byS 0h(Hi) = �Hi; S 0h(X+i ) = �edihX+i ; S 0h(X�i ) = �edihX�i ;and the 
ounit "0h by "0h(Hi) = "0h(X�i ) = 0:The �rst de�nition 
orresponds to de�nition 6.5.1 of [4℄, the se
ond 
orre-sponds to de�nition XVII.2.3 of [12℄. In fa
t, this is not exa
tly the de�nition ofKassel, be
ause he uses a variable h whi
h 
orresponds to 2h in our setting. Thismeans, one has to repla
e the h in our de�nition by h=2 in order to get Kassel'sde�nition.The Hopf algebras are in fa
t isomorphi
. To prove this, we �rst look at thelevel of the algebra.Lemma 11.3.2 The map f given by X+i 7! X+i e dihHi2 , X�i 7! e� dihHi2 X�i andHi 7! Hi extends to an algebra isomorphism of Uh(g).Proof We have to 
he
k that the relations are preserved. We have[f(Hi); f(X+j )℄ = [Hi; X+j e djhHj2 ℄= HiX+j e djhHj2 �X+j e djhHj2 Hi= [Hi; X+j ℄e djhHj2= aijX+j e djhHj2= f(aijX+j )where we used that [Hi; Hj℄ = 0. The 
ase for X�j is 
he
ked similarly.156



We have[f(X+i ); f(X�j )℄ = X+i e dihHi2 e� djhHj2 X�j � e� djhHj2 X�j X+i e dihHi2= X+i X�j e dihHi2 e� djhHj2 e� dihaij2 edjh�X�j X+i e dihHi2 e� djhHj2 e� djhaji2 edjh= [X+i ; X�j ℄e dihHi2 e� djhHj2 e� dihaij2 edjhwhere we used lemma 11.3.1 and the fa
t that diaij = djaji sin
e DA is a sym-metri
 matrix and that ajj = 2.If i 6= j then [X+i ; X�j ℄ = 0 in Uh(g), hen
e the above equation implies that[f(X+i ); f(X�j )℄ = f([X+i ; X�j ℄).If i = j then aij = 2 and trivially di = dj, hen
e[f(X+i ); f(X�i )℄ = [X+i ; X�i ℄:Sin
e [X+i ; X�i ℄ = (edihHi � e�dihHi)=(edih � e�dih) is a relation for Uh(g), andf(Hi) = Hi, it follows from the above equation that[f(X+i ); f(X�i )℄ = f([X+i ; X�i ℄):We have therefore [f(X+i ); f(X�j )℄ = f([X+i ; X�j ℄)for any i; j = 1; : : : ; n.Finally, the map f respe
ts the Quantum-Serre-relation be
ausef �(X�i )kX�j (X�i )1�aij�k�turns out to be a multiple of (X�i )kX�j (X�i )1�aij�k, and the fa
tor depends onlyon i and j (and not on k). In fa
t, let t and r by any non-negative integers. Thenf �(X+i )tX+j (X+i )r�= �X+i e dihHi2 �t �X+j e djhHj2 ��X+i e dihHi2 �r= (X+i )tX+j (X+i )re dihHi(t+r)2 e djhHj2 edih(1+2+���+(t+r�1))e dihaij t2 e djhajir2where we shifted (using lemma 11.3.1) t-times a fa
tor e dihHi2 past X+j , r-times afa
tor e djhHj2 past X+i , and (1 + 2 + � � �+ (t + r � 1))-times a fa
tor e dihHi2 pastX+i . Sin
e diaij = djaji, we getf �(X+i )tX+j (X+i )r� = (X+i )tX+j (X+i )re dihHi(t+r)2 e djhHj2 edih (t+r)(t+r�1)2 e dihaij(t+r)2 :157



Hen
e, f �(X+i )kX+j (X+i )1�aij�k� = (X+i )kX+j (X+i )1�aij�k�ijwhere �ij = e dihHi(1�aij )2 e djhHj2 edih (1�aij)(1�aij�1)2 e dihaij (1�aij)2whi
h is independent of k. We denoteTij = 1�aijXk=0 (�1)k " 1� aijk #edih (X�i )kX�j (X�i )1�aij�k:We have f(Tij) = Tij�ij for any i and j. Hen
e, f(Tij) = 0 for any i 6= j sin
eTij = 0 for any i 6= j. Hen
e, f respe
ts the Quantum-Serre-relation. The 
asefor X�i and X�j is proved similarly.The map f is bije
tive sin
e e dihHi2 is invertible with inverse e� dihHi2 . |Lemma 11.3.3 The algebra isomorphism f : Uh(g)! Uh(g) is an isomorphismof Hopf algebras (Uh(g);�h; "h; Sh) and (Uh(g);�0h; "0h; S 0h).Proof First, we show that f respe
ts the antipode. We havefSh(X+i ) = f(�X+i e�dihHi)= �X+i e dihHi2 e�dihHi= �X+i e� dihHi2and S 0h(f(X+i )) = S 0h �X+i e dihHi2 �= S 0h �e dihHi2 �S 0h(X+i )= e� dihHi2 (�edihX+i )= �edihe�dihX+i e� dihHi2= �X+i e� dihHi2where we used that the antipode is an anti-homomorphism and we used lemma11.3.1. Hen
e, fSh(X+i ) = S 0h(f(X+i )). Similarly, fSh(X�i ) = S 0h(f(X�i )) Finally,fSh(Hi) = f(�Hi) = �Hi = S 0h(Hi) = S 0h(f(Hi))whi
h 
ompletes the proof that f respe
ts the antipode, i.e. fSh = S 0hf .158



In order to show that f respe
ts the 
omultipli
ation, we make the observationthat �0h(ethHi) = ethHi
 ethHi for any 
omplex number t and any 1 � i � n. Thisfollows immediately from �0h(Hi) = Hi
 1+ 1
Hi by mimi
king the proof thatex+y = exey for any 
omplex numbers x and y. We therefore get(f 
 f)�h(X+i ) = (f 
 f)(X+i 
 edihHi + 1
X+i )= f(X+i )
 f(edihHi) + f(1)
 f(X+i )= X+i e dihHi2 
 edihHi + 1
X+i e dihHi2and hen
e�0h(f(X+i )) = �0h �X+i e dihHi2 �= �0h(X+i )�0h �e dihHi2 �= �X+i 
 e dihHi2 + e� dihHi2 
X+i ��e dihHi2 
 e dihHi2 �= X+i e dihHi2 
 edihHi + 1
X+i e dihHi2 :Hen
e, (f 
 f)�h(X+i ) = �0h(f(X+i )), and the 
ase for X�i is proved similarly.Finally, we have(f 
 f)�h(Hi) = (f 
 f)(Hi 
 1 + 1
Hi) = Hi 
 1 + 1
Hi = �0h(f(Hi))hen
e (f 
 f)�h = �0hf .Finally, it is trivial to see that f respe
ts the 
ounit. |11.3.1 The ribbon elementIt is interesting to note that the algebra homomorphisms (Sh)2 and (S 0h)2 areequal (it is suÆ
ient to verify this for the generators Hi; X�i ). One 
an showthat the square of the antipode is always equal to the 
onjugation by the elementu = Pi S(ti)si (where the universal R-matrix R = Pi si 
 ti) whi
h appears inthe de�nition of a ribbon Hopf algebra (see e.g. Proposition VIII.4.1 in [12℄).But we 
an �nd another element � of Uh(g) su
h that S2h(a) = �a��1 for anya 2 Uh(g) by following the approa
h indi
ated in se
tion XVII.2 of [12℄. We tryto �nd a � of the form � = eh(�1H1+���+�nHn)for integers �1; : : : ; �n. We then have (S 0h)2(Hi) = Hi = �Hi��1.We have by lemma 11.3.1eh(�1H1+���+�nHn)X+j e�h(�1H1+���+�nHn) = eh(�1a1j+���+�nanj)X+j :159



We have (S 0h)2(X+j ) = e2djhX+j by de�nition. Hen
e, the only 
ondition on � isthat �1a1j + � � �+ �nanj = 2dj (11.3.2)for j = 1; : : : ; n. If equation (11.3.2) is satis�ed then�X�j ��1 = eh(�1H1+���+�nHn)X�j e�h(�1H1+���+�nHn)= e�h(�1a1j+���+�nanj)X�j= e�2djhX�j= (S 0h)2(X�j );and hen
e S2h(a) = �a��1 for any a in Uh(g).We solve equation (11.3.2) now. This equation is equivalent toAt 0BB� �1...�n 1CCA = 0BB� 2d1...2dn 1CCA :Hen
e, �i = 2 nXj=1((At)�1)ijdj= 2 nXj=1(A�1)jidj:We are thus led to 
ompute the inverse of the Cartan matrix for sl(N). Wedenote n = N � 1. The (n� n)-Cartan matrix A for sl(N) is given by
A =

0BBBBBBBBBBBBBBB�
2 �1 0 0 � � � � � � 0�1 2 �1 0 ...0 �1 2 . . . . . . ...0 0 . . . . . . . . . 0 0... . . . . . . 2 �1 0... 0 �1 2 �10 � � � � � � 0 0 �1 2

1CCCCCCCCCCCCCCCA :
This matrix is symmetri
 and positive de�nite whi
h implies that the diagonalentries d1; : : : ; dn of D are all equal to 1. The determinant of A is equal to n+ 1160



whi
h is proved by indu
tion on the size of the matrix, n. (Develop A by the �rst
olumn, and develop one of the appearing summands by the �rst row).We de�ne the (n� n)-matrix B = (Bij)i;j=1;:::;n,Bij = min(i; j)(n+ 1�max(i; j)):Lemma 11.3.4 1n+1B is the inverse matrix of A.Proof We have (AB)ij = nXk=1AikBkj= Xk=i�1;i;i+1AikBkj= �Bi�1 j + 2Bij � Bi+1 j:For i + 1 � j we have that Bi�1 j = (i � 1)(n + 1 � j), Bij = i(n + 1 � j), andBi+1 j = (i + 1)(n + 1 � j). Hen
e, (AB)ij = 0. This means that all entriesof AB above the main diagonal are equal to zero. Sin
e AB is symmetri
, allo�-diagonal entries are equal to zero.For i = j we have that Bi�1 j = (i � 1)(n + 1 � i), Bij = i(n + 1 � i), andBi+1 j = i(n+ 1� (i+ 1)). Hen
e, the diagonal entries of AB are(AB)ii = �(i� 1)(n+ 1� i) + 2i(n+ 1� i)� i(n+ 1� (i+ 1))= n + 1:Hen
e, AB is equal to (n+ 1)-times the identity matrix. |We have nXj=1Bji = nXj=1min(i; j)(n+ 1�max(i; j))= iXj=1 j(n+ 1� i) + nXj=i+1 i(n + 1� j)= (n+ 1� i) iXj=1 j + i n�iXk=1 k= (n+ 1� i) i(i+ 1)2 + i(n� i)(n� i+ 1)2= 12 i(n+ 1� i)(n+ 1):161



Hen
e, we 
an 
ompute the value of �i from equation 11.3.3 in the 
ase ofUh(sl(N)). �i = 2 nXj=1(A�1)ji= 2n + 1 nXj=1Bji= 22(n+ 1) i(n + 1� i)(n + 1)= i(n + 1� i):We have thus provedLemma 11.3.5 The square of the antipode Sh in Uh(sl(N)) from equation 11.3.1is the 
onjugation by � = e�h where� = nXi=1 �iHi = nXi=1 i(N � i)Hi:Kassel proves in 
hapter XVII.3 that � = e�h is a ribbon element.There is another way to get the ribbon element � following Chari and Pressley(
hapter 8.3.F of [4℄). We express the sum of the positive roots as a linear
ombination of simple positive roots, PN�1k=1 tk�k. Then we get a ribbon elementehPN�1k=1 tkHk .For sl(N) we have the positive roots "i�"j for all 1 � i < j � N . The simplepositive roots are �i = "i � "i+1 for i = 1; : : : ; N � 1. We haveX1�i<j�N "i � "j = X1�i<j�N �i + � � �+ �j�1:The term �k appears as a summand in the sum on the right side of the aboveequation for some i; j if and only if i � k � j � 1. There are k possibilities for i,namely 1 � i � k, and N � k possibilities for j, namely k + 1 � j � N . Hen
e,�k appears k(N � k) times. We thus getX1�i<j�N "i � "j = N�1Xk=1 k(N � k)�kwhi
h gives the same ribbon element as by Kassel's approa
h.
162



11.3.2 The fundamental module of Uh(sl(N))The fundamental module V of Uh(sl(N)) has a basis v1; : : : ; vN on whi
h theelements Hi and X�j a
t naturally as matri
es. The matrix Eij denotes the(N � N)-matrix whose entries are zero ex
ept the entry 1 at the pla
e (i; j).The matrix 
orresponding to X+i is Ei i+1, to X�i 
orresponds Ei+1 i and to Hi
orresponds Eii � Ei+1 i+1 for i = 1; : : : ; N � 1.Lemma 11.3.6 The a
tion of � = e�h on the fundamental module V is given bye�h(vj) = eh(N+1�2j)vjfor all j = 1; : : : ; n.Proof The a
tion of Hi on the fundamental module is given by Hi(vi) = vi,Hi(vi+1) = �vi+1, and Hi(vj) = 0 for j 6= i and j 6= i + 1.We have eh� = N�1Yi=1 eh�iHi= N�1Yi=1 0�Xk�0 �kik! hkHki 1A :For the a
tion of eh� on a basis element vj we only have to look at powers of Hjand Hj�1. We geteh�(vj) = 0�Xk�0 �kjk! hkHkj1A0�Xr�0 �rj�1r! hrHrj�11A (vj)= 0�Xk�0 �kjk! hk1A0�Xr�0 �rj�1r! hr(�1)r1A (vj)= e�jhe��j�1hvj= eh(�j��j�1)vjwhere we have to interpret �0 and �N as being equal to zero whi
h just extendsour result that �i = i(N � i) for i = 1; : : : ; N � 1. The above equation impliesthat any vj is an eigenve
tor of eh� with eigenvalue
j = eh(�j��j�1)= eh(j(N�j)�(j�1)(N�(j�1)))= eh(N+1�2j): |163



The 
onstru
tion of a universal R-matrix is des
ribed in 
hapter 8.3.G of [4℄.Chari and Pressley des
ribe the a
tion of this universal R-matrix on V 
 V asR = x 24s X1�a�N Eaa 
 Eaa + X1�a6=b�N Eaa 
 Ebb + (s� s�1) X1�a<b�N Eab 
 Eba35 :In this formula, s = eh, x = e� hN , and Eab(vi) = Æbiva, i.e. Eab 
orresponds to the(N � N)-matrix whi
h is everywhere zero ex
ept the single entry 1 in the a-throw and b-th 
olumn. We remark that we 
hanged the notation q = eh giventhere to s = eh. The above formula was given by Drinfeld in [5℄.Remark Let V be an A-module for a ribbon Hopf algebra A. The multipli
ationwith a universal R-matrix followed by swit
hing the fa
tors is an automorphismof V 
 V whi
h satis�es the Yang-Baxter equation. Any s
alar multiple of asolution of the Yang-Baxter equation is again a solution, but a non-trivial s
alarmultiple of a universal R-matrix is no longer a universal R-matrix be
ause R hasto satisfy (� 
 idA)(R) = R13(1 
 R). This explains why Turaev 
ould negle
tthe fa
tor e� hN in se
tion 4.2 of [24℄ be
ause he only needed a solution of theYang-Baxter equation.We de�ne the k-linear endomorphism �R of V 
 V as the 
omposition of Rand the 
ip P of the 
omponents. This 
oin
ides with the map �V;W from se
tion11.2 for V =W = V . We remark that �R is in fa
t Uh(sl(N))-linear. We haveP Æ (Eab 
 Ekl)(vi 
 vj) = P (Æbiva 
 Æljvk)= Æljvk 
 Æbiva= Æbivk 
 Æljva= (Ekb 
 Eal)(vi 
 vj):We thus have P Æ (Eab 
 Ekl) = Ekb 
 Ealfor any 1 � a; b; k; l � N . We thus get from the above equation for R that�R = x 24s NXa=1Eaa 
 Eaa + X1�a6=b�N Eba 
 Eab + (s� s�1) X1�a<b�N Ebb 
 Eaa35 :(11.3.3)The a
tion of x�1 �R on the basis elements is therefore given byx�1 �R(vi 
 vj) = 8><>: s(vi 
 vi) i = jvj 
 vi i < jvj 
 vi + (s� s�1)vi 
 vj i > j: (11.3.4)164



Applying x�1 �R twi
e getsx�2 �R2(vi 
 vj) = 8><>: s2(vi 
 vi) i = jvi 
 vj + (s� s�1)vj 
 vi i < jvi 
 vj + (s� s�1)(vj 
 vi + (s� s�1)vi 
 vj) i > j= 8><>: s2(vi 
 vi) i = jvi 
 vj + (s� s�1)vj 
 vi i < j(1 + (s� s�1)2)vi 
 vj + (s� s�1)vj 
 vi i > j:We immediately verify by the above equations thatx�2 �R2(vi 
 vj) = (s� s�1)x�1 �R(vi 
 vj) + vi 
 vjin every 
ase i = j, i < j, or i > j. Hen
e,x�2 �R2 = (s� s�1)x�1 �R + id:Equivalently, x�1 �R� x �R�1 = (s� s�1)id: (11.3.5)The identity map of V 
 V 
an be written as id = P1�a;b�N Eaa 
 Ebb. Thisleads to an expli
it formula for �R�1,�R�1 = x�1 24s�1 NXa=1Eaa 
 Eaa + X1�a6=b�N Eba 
 Eab + (s�1 � s) X1�b<a�N Ebb 
 Eaa35whi
h is well known.We now 
ompute the 
url-fa
tor for the fundamental module V .Lemma 11.3.7 The Uh(sl(N))-linear endomorphism of the fundamental moduleV given by the 
url in �gure 11.3 is the multipli
ation with the s
alar e(N� 1N )h.Proof The endomorphism � of V determined by the (1; 1)-tangle in �gure 11.3is the 
omposition of three maps,� = (idV 
 F2) Æ ( �R 
 idV �) Æ (idV 
 F3):The maps F2 and F3 are given in se
tion 11.1, and the map �R is given in equation11.3.4. We 
onsider an element vi of the 
anoni
al basis of V for some 1 � i � N .The e�e
t of the 
up-map idV 
 F3 on vi 
 1 isvi 
 1 7! vi 
 NXk=1 vk 
 vk = NXk=1 vi 
 vk 
 vk:165



V
V

Figure 11.3: A positive 
url.�R 
 idV � maps this element tos(vi 
 vi 
 vi) + NXk=i+1 vk 
 vi 
 vk + i�1Xk=1 �vk 
 vi 
 vk + (s� s�1)vi 
 vk 
 vk�apart from the s
alar x. The 
ap-map idV 
F2 applied to this element then givess(vi 
 vi(�vi)) + NXk=i+1 vk 
 vk(�vi) + i�1Xk=1 �vk 
 vk(�vi) + (s� s�1)vi 
 vk(�vk)�apart from the s
alar x. We have by lemma 11.3.6 that vi is an eigenve
tor of themultipli
ation by � with eigenvalue 
i = sN+1�2i, hen
e vk(�vi) = 0 for k 6= i.The above expression for �(vi) is therefore equal to�(vi) = x "s(vi 
 vi(�vi)) + i�1Xk=1(s� s�1)vi 
 vk(�vk)#= x "s
i + i�1Xk=1(s� s�1)
k# vi= x "sN+2�2i + (s� s�1) i�1Xk=1 sN+1�2k#= xsNvifor any 1 � i � N . Hen
e, � is the multipli
ation by the s
alar xsN = e(N� 1N )h.| 166



Lemma 11.3.8 The Uh(sl(N))-invariant of the zero-framed unknot 
oloured bythe fundamental module is equal to [N ℄eh.Proof One 
an position the unknot with framing zero so that its diagram isa simple 
ir
le with anti-
lo
kwise orientation. This diagram determines the
omposition of the 
up- and 
ap-maps F3 and F2 whi
h map1 7! NXi=1 vi 
 vi 7! NXi=1 vi(�vi) = NXi=1 
i:The invariant of the unknot with framing zero 
oloured by the fundamental mod-ule is therefore equal to NXi=1 
i = NXi=1 sN+1�2i= sN � s�Ns� s�1= [N ℄swhere s = eh. |11.4 Uh(sl(N)) and the Hom
y polynomialWe re
all that Hk is the He
ke algebra of (k; k)-ribbon tangles with top-downorientations at its boundary points. The set of s
alars is the ring Z[s; v; x; Æ℄modulo the relation Æ(s� s�1) = v�1 � v.De�nition The variant He
ke-algebra ~HNk is de�ned in the same way as Hkwith the only di�eren
e that the ring of s
alars is C [[h℄℄ and that in the de�ningrelations we repla
e s by eh, x by e� hN , and v by e�hN .This de�nition immediately provides a ring homomorphism � : Hk ! ~HNk whi
his the substitution of s by eh, x by e� hN , and v by e�hN .Lemma 11.4.1 Let T be any (k; k)-ribbon tangle with top-down orientations atits boundary points. We 
olour all its 
omponents by the fundamental module V .Then the map �k given by T 7! J(T ) indu
es an algebra homomorphism�k : ~HNk ! EndUh(sl(N))(V 
k):
167



V1
V1

Vr
VrT

Figure 11.4: The A-invariant of T̂ 
an be 
omputed as the tra
e of �J(T ).Proof Let T be a diagram of a (k; k)-ribbon tangle. Sin
e the assigned moduleendomorphism J(T ) is an invariant of ribbon tangles, it is in parti
ular invariantunder regular isotopy of T .The skein relation in �gure 2.1 is satis�ed be
ause �R satis�es the quadrati
relation in equation (11.3.5). Furthermore, the skein relation for the 
url in �gure2.2 is mapped to zero by �k be
ause of the result for the positive 
url in lemma11.3.7. Finally, we have to 
he
k that T together with a split unknot with framingzero indu
es the endomorphism [N ℄eh�k(T ). This is true by lemma 11.3.8. |By looking at the 
ase k = 0 we immediately dedu
e from lemma 11.4.1Corollary 11.4.2 Let L be a framed link. We 
olour all of its 
omponents bythe fundamental module V . The Uh(sl(N))-invariant of L is equal to the Hom
ypolynomial of L after the substitutions of s by eh, x by e� hN , and v by e�hN .Lemma 11.4.3 Let A be a ribbon Hopf algebra over a 
ommutative ring k. LetT be an (r; r)-ribbon tangle with top-down orientations at its boundary points.We 
onsider a 
olouring of the 
losure of T and denote the modules assigned tothe 
omponents of T̂ by V1; : : : ; Vr as we read them at the boundary points of Tfrom left to right (see �gure 11.4). T indu
es a module endomorphism J(T ) ofV1 
 � � � 
 Vr. Then the A-invariant of the 
losure of T with this 
olouring isequal to the tra
e of the linear endomorphism �J(T ) of V1 
 � � � 
 Vr.168



Proof We 
hoose a basis fvimg for every module Vm, 1 � m � r, where im isrunning through some �nite index set depending on m. The r 
up-maps at thebottom of �gure 11.4 map the trivial module k to the module V1 
 � � � 
 Vr 
(Vr)� 
 � � � 
 (V1)�, and they map1 7! Xi1;:::;ir vi1 
 � � � 
 vir 
 vir 
 � � � 
 vi1:The map J(T ) on the �rst r fa
tors is a k-linear map in parti
ular. Hen
e,J(T )(vi1 
 � � � 
 vir) = Xj1;:::;jr gj1���jri1���ir vj1 
 � � � 
 vjrfor s
alars gj1���jri1���ir 2 k. Hen
e, the 
omposition of the 
up-maps and J(T ) maps1 7! Xi1;:::;ir Xj1;:::;jr gj1���jri1���ir vj1 
 � � � 
 vjr 
 vir 
 � � � 
 vi1:Finally, the r 
ap-maps map this to the s
alarXi1;:::;ir Xj1;:::;jr gj1���jri1���ir vi1(�vj1) � � � vir(�vjr)whi
h is by de�nition the A-invariant of the framed link T̂ for the spe
i�
 
olour-ing with V1; : : : ; Vr.On the other hand, sin
e �h(�) = � 
 �, the map �J(T ) 
an be written asthe 
omposition �
kJ(T ) and thus�J(T )(vi1 
 � � � 
 vir) = Xj1;:::;jr gj1���jri1���ir (�vj1)
 � � � 
 (�vjr):Hen
e the normal tra
e of this linear map is equal totr(�J(T )) = Xi1;:::;ir Xj1;:::;jr gj1���jri1���ir vi1(�vj1) � � �vir(�vjr)whi
h agrees with the above A-invariant of T̂ . |Lemma 11.4.3 motivates a de�nition. Given anA-module V and an A-moduleendomorphism V ! V , we de�ne the quantum tra
e trq(f) as the tra
e of thek-linear endomorphism �f : V ! V ,trq(f) = tr(�f);where � is the ribbon element. 169



Lemma 11.4.4 Let V be a �nite-dimensional Uh(sl(N))-module. Let f and g beC [[h℄℄-linear endomorphisms of V and � be a s
alar in C [[h℄℄. Thentrq(f + g) = trq(f) + trq(g); trq(�f) = �trq(f)Proof The proof is the same as for the normal tra
e. |We re
all that � is the spe
ialization Hk ! ~HNk , and phik is the natural map~HNk ! EndUh(sl(N))(V 
k) as des
ribed in lemma 11.4.1.Let � be a Young diagram and denote the number of its 
ells by k. The element�k(�(e�)) is a quasi-idempotent of EndUh(sl(N))(V 
k). This is be
ause e�e� = ��e�in Hk for some s
alar ��. Furthermore, the spe
ialization � : Hk ! ~HNk isa ring homomorphism and �k is an algebra homomorphism. Hen
e, we have�k(�(e�))�k(�(e�)) = �(��)�k(�(e�)).The interesting question is whether �(��) is invertible in C [[h℄℄, i.e. whetherthe 
onstant term of �(��) is non-zero.Lemma 11.4.5 �(��) is invertible in C [[h℄℄.Proof The 
onstant term of �(��) is equal to the limit h! 1 (i.e. x! 1) of therational fun
tion whi
h derives from �� by substituting Æ = (v�1 � v)=(s� s�1)and then s = x�N and v = xN2 .The limit for x ! 1 of the Hom
y polynomial of ê� after the substitutionsÆ = (v�1 � v)=(s� s�1) and then s = x�N and v = xN2 is well de�ned. This isbe
ause the only possible problem is the denominator of Æ. But a 
areful lookreveals that this problem does not o

ur be
ause limx!1 Æ is well de�ned sin
elimx!1 Æ = limx!1 v�1 � vs� s�1 = limx!1 x�N2 � xN2x�N � xN = limx!1 �N2x�N2�1 �N2xN2�1�Nx�N�1 �NxN�1 = Nby l'Hôpital's rule. On the other hand, the limit for x ! 1 of the Hom
ypolynomial of ŷ� after the substitutions Æ = (v�1�v)=(s�s�1) and then s = x�Nand v = xN2 is well de�ned by lemma 3.6.1 (we have ŷ� = Q� by de�nition). Sin
ey� = (1=��)e�, we have that the limit for x ! 1 of �� after the substitutionsÆ = (v�1 � v)=(s� s�1) and then s = x�N and v = xN2 
annot be zero. |It will not lead to 
onfusion if we denote �(y�) 2 ~HNk by y�, too. We havethat �j�j(y�) is an idempotent of the Uh(sl(N))-endomorphism ring of V 
j�j.Lemma 11.4.6 The endomorphism �j�j(y�) of V 
j�j is a proje
tion to a submod-ule for any Young diagram �. 170



Proof The essential observation is that �j�j(y�) is an idempotent. Let g be anendomorphism of a module W over any 
ommutative ring su
h that g satis�esg2 = g. We 
an write any element w of W as w = (w � g(w)) + g(w). Sin
eg2(w) = g(w) we have that w� g(w) lies in the kernel ker(g) of g. Clearly, g(w)lies in the image im(g) of g. Hen
e, any element w 2 W lies in ker(g)� im(g).Sin
e the only element of W that lies in the kernel and in the image of g is theelement 0, we have that W = ker(g)� im(g). Hen
e, g is a proje
tion of W tothe submodule im(g). |We de�ne W� to be the image of �j�j(y�) in V 
j�j.Lemma 11.4.7 Let � be any Young diagram, and let C be any framed knot.The Uh(sl(N))-invariant of C 
oloured by the module W� is equal to the Hom
ypolynomial of C de
orated by Q� after the substitutions of s = eh; x = e� hN , andv = e�Nh.Proof Let the framed knot C be represented as an oriented knot with bla
kboardframing. C 
an be positioned by regular isotopy as the 
losure of a braid � 0su
h that all of its strings are oriented downwards. We denote the number ofstrings by d0. We now have to ensure that the bla
kboard framing of � 0 agreeswith the framing of C. To do this, we multiply � 0 by �d0�d0+1 � � ��d0+j or by��1d0 ��1d0+1 � � ���1d0+j. For a unique j, the bla
kboard framing of the 
losure of this(d0 + j + 1)-braid is a diagram of the framed knot C. We denote this braid by �,and denote the number of strings by d.We denote by k the number of 
ells of �. We denote by �(k) the k-foldbla
kboard parallel of �. The de
oration of C by Q� is then the 
losure of theelement y
d� �(k) of Hkd, where k is the number of 
ells of �. This is be
ausey� = (y�)d in Hk, and ea
h fa
tor y� 
an be slid along the 
losure of � to thetop of the braid �. This is depi
ted in �gure 11.5. To be pre
ise in the followingarguments, the y�'s have to be at slightly di�erent levels.By lemmas 11.4.1 and 11.4.3 and the linearity of the quantum-tra
e we havethat the Hom
y-polynomial of C de
orated by Q� after the substitutions for s, xand v is equal to the quantum tra
e of the endomorphism �kd(y
d� �(k)) of (V 
k)
d.On the other hand, the Uh(sl(N))-invariant of C 
oloured by W� is thequantum-tra
e of the endomorphism J(�) of W
d� by lemma 11.4.3. We thushave to prove that trq(J(�)) = trq(�kd(y
d� �(k)));or, equivalently, tr(� � J(�)) = tr(� � �kd(y
d� )J(�(k))) (11.4.6)where the tra
e on the left hand side refers to W
d� , and the tra
e on the righthand side refers to (V 
k)
d. 171



y� y� y�

Figure 11.5: The element y
d� �(k) of Hkd in the 
ase � = �1��12 �1��12 
orrespond-ing to the �gure-eight knot with zero-framing, with j�j = k = 3 and d = 3.
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V
VJ(�1)J(�1) �
 ��
 � J(�(k)1 )J(�1) ��Figure 11.7: Homomorphisms arising at a 
rossing �1 in the braid � and the
orresponding multiple 
rossings �(k)1 in the braid �(k) shown in the 
ase k = 2.

(V 
W ) X
X (V 
W )

V
X

W
V W

XFigure 11.8: The braids �1 and �1�2 give the same map V 
W
X ! X
V 
W .We 
laim that we have 
ommutative diagram as shown in �gure 11.6 where �is the in
lusion of W� to V 
k. It is then 
lear that equation (11.4.6) is true.We re
all that the maps J(�), J(�(k)), �k(y�) and � are module homomor-phisms, whereas the multipli
ation by � is only a C [[h℄℄-linear map. The topsquare in �gure 11.6 
ommutes be
ause � is the in
lusion. The middle square
ommutes be
ause �k(y�) the restri
tion of �k(y�) to W� is the identity of W�.It remains to prove the 
ommutativity of the bottom square.We 
onsider a 
rossing of the braid �. Figure 11.7 depi
ts two 
ommutingdiagrams that relate three braids and the module homomorphism whi
h theyindu
e. The map J(�1) (or J(�j) for some 1 � j � d � 1, depending on theposition of the 
rossing in �) is the multipli
ation by R followed by the 
ip of thefa
tors of W� 
W� resp. V 
k 
 V 
k.The maps in the left diagram 
ommute be
ause � is the in
lusion.The maps in the right diagram 
ommute be
ause of the general behaviourdepi
ted in �gure 11.8. There, both braids indu
e the same map from V 
W 
Xto V 
W
X up to the obvious isomorphism between (V 
W )
X and V 
W
X.A short proof of this observation is given e.g. in the proof of Lemma 3.10 in [15℄.Repeated appli
ation of this result shows that the maps in the right diagram of�gure 11.7 
ommute. A 
orresponding results holds for a negative 
rossing of �.Hen
e, we have 
ommuting diagrams as we move from the bottom to the topof �, and they form the 
ommuting diagram at the bottom of �gure 11.6. |173



Lemma 11.4.8 Let L = L1 [ � � � [ Lr be a framed link whose 
omponents are
oloured with modules W�1 ; : : : ;W�r . Then the Uh(sl(N))-invariant of this link isequal to the Hom
y polynomial of the framed link L with de
orations Q�1 ; : : : ; Q�ron its 
omponents L1; : : : ; Lr after the substitutions x = e� hN , v = e�Nh, ands = eh.Proof We are able to represent L as the 
losure of a braid � with top-downorientations. To get the framing right, we introdu
e an additional straight stringbetween points i and i+1 that lies above any strings of �. We add at the bottoma (positive or negative) 
rossing between this string and the string i + 1. Bydoing this su

essively at suitable pla
es, we adjust the bla
kboard framing tobe
ome the framing of L. We then pro
eed in exa
tly the same way as in theproof of lemma 11.4.7. The only di�eren
e is that the notation gets awkwardbe
ause the modules that we read at the top and bottom of the braid � are somepermutation of W�1 ; : : : ;W�r with multipli
ities that depend on the 
hoi
e of �.Furthermore, the number of 
ells of the Young diagrams �1; : : : ; �r may vary, andthis makes the notation worse. But apart from the notation, the proof of lemma11.4.7 extends in a straightforward way to the 
ase of links. |11.4.1 W� � V�Let A be an algebra over a 
ommutative ring k su
h that the dimension (over k)of any A-module is well de�ned. An A-module V is 
alled simple if it has no othersubmodules than f0g and V . It is 
alled semi-simple if it is isomorphi
 to a dire
tsum of simple A-modules. We note that all �nite-dimensional Uh(sl(N))-modulesare semi-simple.We �x the rank N � 2 of the quantum group Uh(sl(N)). For a Young diagram� with at most N rows we shall denote by V� the simple module indexed by �.Modules V� and V� are isomorphi
 if and only if � and � di�er by initial 
olumnsof length N . For a Young diagram with more then N rows we set V� equal tothe zero-module. The map � 7! V� indu
es a ring isomorphism from YN to therepresentation ring of Uh(sl(N)) (see e.g. 
hapter XVII of [12℄ or 
hapter 7 of[13℄). This is due to the similarity of the representation theory of Uh(sl(N)) andsl(N). The latter is des
ribed in [7℄.Re
all that the quantum tra
e trq(f) of a module endomorphism f : V ! Vis the tra
e of the C [[h℄℄-linear map � � f : V ! V . The quantum dimensiondimq(V ) of the module V is de�ned as trq(idV ),dimq(V ) = trq(idV ):The fa
t that isomorphi
 modules have the same quantum dimension will be ofimportan
e. The zero-module has quantum tra
e equal to zero. We are not yetin the position to state that it is the only module of quantum dimension zero.174



Lemma 11.4.9 Let V and W be �nite-dimensional modules over a ring R, andlet f and g be module endomorphisms of V resp. W . Furthermore, we requirethat f 2 = f and g2 = g. Thenim(f)
 im(g) � im(f 
 g):Proof The module homomorphism ' : im(f) 
 im(g) ! im(f 
 g) � V 
Wgiven by f(x)
g(y) 7! (f
g)(x
y) = f(x)
g(y) is well de�ned and surje
tive.We have V = im(f)�T andW = im(g)�U where T = ker(f) and U = ker(g)be
ause f 2 = f and g2 = g. We thus haveV 
W = (im(f)� T )
 (im(g)� U)� (im(f)
 im(g))� (im(f)
 U)� (T 
 im(g))� (T 
 U):Sin
e ' is the restri
tion of this isomorphism to im(f)
 im(g) we have that ' isinje
tive, too. Hen
e, ' is a bije
tive module homomorphism. |Lemma 11.4.10 Let V and W be a �nite-dimensional Uh(sl(N))-modules. Letf and g be C [[h℄℄-linear endomorphism of V resp. W . Thentrq(f 
 g) = trq(f)trq(g):Proof The same proof as for the normal tra
e applies. The only point to be
areful about is that � operates on V 
W as (�
 �) be
ause �h(�) = (�
 �).|Lemma 11.4.11 Let � = (�1; : : : ; �r) be a Young diagram with r rows and de-note its transposed diagram by �_ = (�_1 ; : : : ; �_m), m = �1. Any submodule ofVd�1 
� � �
Vd�r whi
h is isomorphi
 to a submodule of V
�_1 
� � �
V
�_m is eitherthe zero-module or it is isomorphi
 to V�.Proof We �rst look at the level of Young diagrams. We 
onsider the lexi
ographi
order on the set of Young diagrams, i.e. for Young diagrams � and � we de�ne� > � if �i = �i for i = 1; 2; : : : ; k, and �k+1 > �k+1 for some k. We de�ne � � �if either � = � or � > �.By the multipli
ation rule for Young diagrams it is easy to 
on�rm that anysummand � of d�1d�2 � � �d�r satis�es � � � = (�1; : : : ; �r). Similarly, any sum-mand � of 
�_1 
�_2 � � � 
�_m satis�es �_ � �_. It is easy to 
he
k that the onlyYoung diagram � with j�j 
ells that satis�es � � � and �_ � �_ is �. Hen
e, theonly Young diagram that 
ould appear in both of these produ
ts is �. It appearsindeed with multipli
ity one. 175



Going from Young diagrams to Uh(sl(N))-modules we have to be sure thatthere are no summands � of d�1d�2 � � �d�r and � of 
�_1 
�_2 � � � 
�_m that di�er byinitial 
olumns of length N . This is 
lear be
ause every summand has the samenumber of 
ells j�j. Hen
e, if l(�) � N then V� is the only irredu
ible modulethat is isomorphi
 to a submodule of both Vd�1 
� � �
Vd�r and V
�_1 
� � �
V
�_m .If l(�) � N +1 then V� is the zero-module and there is no irredu
ible submodulethat o

urs as a summand in both of the tensor produ
ts. |Lemma 11.4.12 Let g be a module endomorphism of a Uh(sl(N))-module Vsu
h that g2 = g. Let W be a submodule of V . Then g(W ) is isomorphi
 to asubmodule of W .Proof g2 = g implies that W = im(gjW )� ker(gjW ). |We re
all that W� = im(�j�j(y�)) � V 
j�j.Lemma 11.4.13 For any Young diagram � we havedimq(im(�j�j(y�))) = Y
2� sN+
n(
) � s�N�
n(
)shl(
) � s�hl(
) ;where s = eh. This quantum dimension is equal to zero if and only if l(�) � N+1.Proof We denote the unknot with framing zero by O. It is the 
losure of thetrivial 1-braid. By lemma 11.4.3 we thus know that the Uh(sl(N))-invariant of O
oloured by W� is equal to trq(idW�) = dimq(W�). By lemma 11.4.7 we know thatthe Uh(sl(N))-invariant of O 
oloured by W� is equal to the Hom
y polynomialof O de
orated with Q� after the substitutions s = eh, x = e� hN and v = e�Nh.Hen
e, dimq(W�) = hQ�iwith substitutions s = eh, x = e� hN and v = e�Nh. The formula for hQ�i fromlemma 3.6.1 with these substitutions thus gives the 
laimed formula for dimq(W�).This term be
omes zero if and only if there exists a 
ell in � with 
ontent 0.This happens if and only if l(�) � N + 1. |We denote the row diagram with two 
ells by , and we denote the 
olumndiagram with two 
ells by . We re
all that y 2 ~HN2 is the idempotent derivedfrom a2, and y 2 ~HN2 is the idempotent derived from b2.Lemma 11.4.14 Eitherim(�2(y )) � V and im(�2(y )) � V ;or im(�2(y )) � V and im(�2(y )) � V :176



Proof By lemma 11.4.13 we dedu
edimq(im(�2(y ))) = trq(�2(y )) = sN � s�Ns2 � s�2 sN�1 � s�N+1s� s�1 (11.4.7)and dimq(im(�2(y ))) = trq(�2(y )) = sN � s�Ns2 � s�2 sN+1 � s�N�1s� s�1 : (11.4.8)Sin
e N � 2, both of these values are di�erent from zero. Hen
e neither �2(y )nor �2(y ) is the zero map. We have in the He
ke algebra H2 the equationy y = 0, hen
e �2(y )�2(y ) is the zero map. Hen
e neither �2(y ) nor �2(y )is the identity map of V 
2.From equations (11.4.7) and (11.4.8) we also dedu
e that �2(y ) and �2(y )have di�erent quantum tra
es, hen
e im(�2(y )) and im(�2(y )) are not isomor-phi
.We have proved so far that the submodules im(�2(y )) and im(�2(y )) arenon-trivial submodules of V 
2, and they are non-isomorphi
. Sin
e V 
2 de
om-poses by the Littlewood-Ri
hardson rule as V 
2 � V � V we have that eitherim(�2(y )) � V and im(�2(y )) � V , or we have that im(�2(y )) � V andim(�2(y )) � V . |It would be natural to 
ompute the quantum dimensions of V and V tosettle the ambiguity in lemma 11.4.15. This would involve the 
omputation ofthe a
tion of the ribbon element � on V or V . But these 
omputations 
an beavoided be
ause lemma 11.4.16 shows that im(�2(y )) � V by using the sameapproa
h as in the proof of lemma 11.4.15.Lemma 11.4.15 If im(�2(y )) � V then im(�j�j(y�)) � V� for any Youngdiagram �.Proof By indu
tion on j�j, the number of 
ells of �.If � is the empty Young diagram then y; is the empty diagram in H0, hen
e�0(y;) = id : C [[h℄℄ ! C [[h℄℄, hen
e im(�0(y;)) = C [[h℄℄ = V;.There is only one Young diagram with a single 
ell, and y is the single stringin H1. Hen
e �1(y ) is the identity map of V and thus im(�1(y )) = V .The hypothesis of the lemma is that im(�2(y )) � V . Then im(�2(y )) � Vby lemma 11.4.14. Hen
e the statement of lemma 11.4.15 is true for all Youngdiagrams � with at most 2 
ells.Let k � 3. The indu
tion hypothesis is that im(�j�j) � V� for any Youngdiagram � with less than k 
ells provided that im(�2(y )) � V . From this weshall dedu
e that im(�j�j) � V� for any Young diagram � with k 
ells.177



We remark that im(�j�j(y�)) = im(�j�j(e�)) for any Young diagram � be
ausey� and e� di�er in ~HNk by an invertible non-zero s
alar.We 
onsider �rst a Young diagram � = (�1; : : : ; �r) with k 
ells and r rowsand � di�erent from dk and 
k. We denote the transposed Young diagram by�_ = (�_1 ; : : : ; �_m), m = �1.By de�nition, we have e� = �w��w�1� with� = a�1 
 � � � 
 a�r and � = b�_1 
 � � � 
 b�_mwhere the tensor produ
t denotes the juxtaposition Hi 
 Hj � Hi+j. By thede�nition of � and using edi = ai and e
j = bj, we get�k(�) = ��1(ed�1 )
 � � � 
 ��r(ed�r ) and �k(�) = ��_1 (e
�_1 )
 � � � 
 ��_m(e
�_m ):Sin
e � is neither a single row nor a single 
olumn diagram, the rows and 
olumnsof � and �_ have lengths less than k, hen
e we know by indu
tion hypothesis andlemma 11.4.9 thatim(�k(�)) � im(��1(yd�1 ))
 � � � 
 im(��r(yd�r )) � Vd�1 
 � � � 
 Vd�r andim(�k(�)) � im(��_1 (y
�_1 ))
 � � � 
 im(��_m(y
�_m )) � V
�_1 
 � � � 
 V
�_m :Be
ause e� = �w��w�1� and thus �k(e�) = �k(�)�k(w��w�1� ), we have thatim(�k(e�)) is a submodule of im(�k(�)).On the other hand, by lemma 11.4.12, im(�k(e�)) is isomorphi
 to a submod-ule of im(�k(w��w�1� )). The positive permutation braid w� has an inverse in Hk(and in ~HNk ) and therefore �k(w�) is a module automorphism of V 
k. Hen
e,im(�k(e�)) � im(�k(�)), and hen
e im(�k(e�)) is isomorphi
 to a submodule ofim(�k(�)).Hen
e, by lemma 11.4.11, im(�k(e�)) is either isomorphi
 to V� or it is thezero-module. Hen
e im(�k(y�)) is either isomorphi
 to V� or it is the zero-module.We have dimq(im(�k(y�))) = trq(�k(y�)), and by Lemma 11.4.13 this valueis zero if and only if l(�) � N + 1. Hen
e im(�k(y�)) is not the zero module ifr = l(�) � N . Hen
e im(�k(y�)) � V� if r � N . On the other hand, if r � N+1,then V� is equal to the zero module anyway, hen
e im(�k(y�)) is the zero module.We have thus proved the indu
tion step for any Young diagram � with k 
ellswhi
h is di�erent from a single row and a single 
olumn diagram.We now 
onsider the row diagram � = dk. We have edk = ak, and (ak�1
a1)akis in Hk a non-zero s
alar multiple of ak by lemma 2.4.2. For the normalizedidempotents in ~HNk we have (ydk�1 
 y )ydk = ydk . Hen
e,�k(ydk�1 
 y )�k(ydk) = �k(ydk):178



We thus see that im(�k(ydk)) is a submodule of im(�k(ydk�1 
 y )). We have bylemmas 11.4.10 and 11.4.13 thatdimq(im(�k(ydk�1 
 y ))) = trq(�k(ydk�1 
 y ))= trq(�k�1(ydk�1)
 �1(y ))= trq(�k�1(ydk�1))trq(�1(y ))= sN � s�Nsk�1 � s�k+1 � � � sN+k�2 � s�N�k+2s� s�1 sN � s�Ns� s�16= sN � s�Nsk � s�k sN+1 � s�N�1sk�1 � s�k+1 � � � sN+k�1 � s�N�k+1s� s�1= trq(�k(ydk))= dimq(im(�k(ydk))):(The above inequality is equivalent to (sN�1 � s�N+1)(sk�1 � s�k+1) 6= 0 whi
his true due to N � 2 and k � 2). Hen
e im(�k(ydk)) is not the whole ofim(�k(ydk�1 
 y )). Furthermore, we see that im(�k(ydk)) is not the zero-modulesin
e dimq(im(�k(ydk))) is di�erent from zero. Hen
e im(�k(ydk)) is a non-trivialsubmodule of im(�k(ydk�1 
 y )). By lemma 11.4.9 and the indu
tion hypothesisfor Young diagrams with less than k 
ells, we dedu
e thatim(�k(ydk�1 
 y )) � im(�k�1(ydk�1))
 im(�1(y )) � Vdk�1 
 V :Hen
e im(�k(ydk�1
y )) � Vdk�V(k�1;1). Hen
e, im(�k(ydk)) is either isomorphi
to Vdk or isomorphi
 to V(k�1;1).We have already proved the indu
tion step in the 
ase � = (k � 1; 1), hen
ethe quantum dimension of V(k�1;1) is equal to the quantum tra
e of �k(y(k�1;1)).We havedimq(im(�k(y(k�1;1)))) = trq(�k(y(k�1;1)))= sN � s�Nsk � s�k sN+1 � s�N�1sk�2 � s�k+2 � � �� � � sN+k�2 � s�N�k+2s� s�1 sN�1 � s�N+1s� s�16= sN � s�Nsk � s�k sN+1 � s�N�1sk�1 � s�k+1 � � � sN+k�1 � s�N�k+1s� s�1= trq(�k(ydk))= dimq(im(�k(ydk))):Hen
e im(�k(ydk)) is not isomorphi
 to V(k�1;1) and therefore isomorphi
 to Vdk .The last remaining 
ase in the proof of the indu
tion step is for � = 
k. This isvery similar to the 
ase � = dk. But some hazards o

ur if k � N +1 be
ause by179



lemma 11.4.13 it 
an happen that trq(�j�j(y�)) is non-zero whereas trq(�j�j(y�_))is equal to zero.By the same argument as for � = dk, we have that im(�k(y
k)) is a submoduleof im(�k(y
k�1 
 y )). Hen
e, im(�k(y
k)) is by indu
tion hypothesis isomorphi
to a submodule ofim(�k�1(y
k�1))
 im(�1(y )) � V
k�1 
 V � V
k � V(2;1k�2) (11.4.9)Here and in the following, (2; 1k�2) denotes the Young diagram that has a �rstrow of length 2 and (k � 2) rows of length 1, i.e. it is the transposed Youngdiagram of (k � 1; 1).If k � N then we prove that im(�k(y
k)) � V
k by verifying via lemma 11.4.13that trq(�k(y
k)) 6= 0;trq(�k(y
k)) 6= trq(�k(y(2;1k�2))); andtrq(�k(y
k)) 6= trq(�k�1(y
k�1))trq(�1(y )):If k = N + 1 then V
k � 0 be
ause a module V� indexed by a Young dia-gram � with more than N rows is the zero-module. Equation 11.4.9 implies thatim(�k(y
k)) is either the zero module or it is isomorphi
 to V(2;1k�2). We alreadyknow from the indu
tion step in the 
ase of the Young diagram � = (2; 1k�2) withk 
ells that V(2;1k�2) � im(�k(y(2;1k�2))), hen
e dimq(V(2;1k�2)) = trq(�k(y(2;1k�2)))and this term is non-zero by lemma 11.4.13. On the other hand, trq(�k(y
k)) = 0for k = N+1 by lemma 11.4.13. Hen
e, im(�k(y
k)) is not isomorphi
 to V(2;1k�2),hen
e im(�k(y
k)) � V
k � 0 for k = N + 1.If k � N + 2 then both of V
k and V(2;1k�2) are the zero-module, hen
eim(�k(
k)) is the zero-module as well, hen
e im(�k(y
k)) � V
k . |Lemma 11.4.16 The image of �2(y ) : V 
2 ! V 
2 is isomorphi
 to V .Proof We assume from now on that im(�2(y )) is not isomorphi
 to V and weshall derive a 
ontradi
tion from this assumption.Under the assumption that im(�2(y )) 6� V we shall prove by indu
tion(similar to the proof of lemma 11.4.15) thatim(�k(ydk)) � V
k and im(�k(y(k�1;1))) � V(2;1k�2)for any k � 2.In the 
ase k = 2, the isomorphisms im(�2(y )) � V and im(�2(y )) � Vfollow from lemma 11.4.14.The isomorphisms im(�i(ydi)) � V
i and im(�i(y(i�1;1))) � V(2;1i�2) for any iwith 2 � i < k are our indu
tion hypothesis. We shall prove them for i = k.180



First, we prove the indu
tion step for the Young diagram (k� 1; 1). With thenotation of the proof of lemma 11.4.15 we have e(k�1;1) = �w��w�1� with� = ak�1 
 a1 and � = b2 
 b
(k�2)1 :We get im(�k(�)) � im(�k�1(ydk�1))
 im(�1(y )) � V
k�1 
 Vand im(�k(�)) � im(�2(y ))
 im(�1(y ))
(k�2) � V 
 V 
(k�2):We have that im(�k(y(k�1;1))) is isomorphi
 to a submodule of im(�k(�)) andto a submodule of im(�k(�)). By lemma 11.4.11 (or by a dire
t 
al
ulationvia the Littlewood-Ri
hardson rule) we see that V(2;1k�2) is the only non-zeromodule whi
h is isomorphi
 to a submodule of V
k�1 
 V and to a submodule ofV 
 V 
(k�2). Hen
e, im(�k(y(k�1;1))) � V(2;1k�2), or im(�k(y(k�1;1))) is the zeromodule. Sin
e the quantum tra
e of �k(y(k�1;1)) is non-zero for any k by lemma11.4.13, we have im(�k(y(k�1;1))) � V(2;1k�2).Now 
onsider dk. By the same argument as given in the proof of lemma11.4.15 we see that im(�k(ydk)) is a non-trivial submodule of im(�k(ydk�1 
 y )).Now im(�k(ydk�1 
 y )) � V
k�1 
 V � V
k � V(2;1k�2)by the indu
tion hypothesis. We proved above that V(2;1k�2) � im(�k(y(k�1;1))).Sin
e trq(�k(ydk)) 6= trq(�k(y(k�1;1))), we dedu
e im(�k(ydk)) 6� V(2;1k�2). Hen
eim(�k(ydk)) has to be isomorphi
 to V
k. This 
ompletes the indu
tion step.A 
onsequen
e of this result is that im(�N+1(ydN+1)) is isomorphi
 to V
N+1,hen
e trq(�N+1(ydN+1)) is equal to the quantum dimension of V
N+1. But thequantum tra
e of �N+1(ydN+1) is seen by lemma 11.4.13 to be di�erent from zero,whereas V
N+1 is the zero module and therefore has a quantum dimension equalto zero. This 
ontradi
tion implies that our assumption im(�2(y )) 6� V waswrong. |By the 
ombination of lemmas 11.4.15, 11.4.16 and 11.4.6 we have thus provedthat W� � V�.Theorem 11.4.17 The map �j�j(y�) is a proje
tion of V 
j�j to a submodule iso-morphi
 to V� for any Young diagram �,Lemma 11.4.8 
an now be restated.Theorem 11.4.18 Given a framed link L = L1 [ � � � [Lr whose 
omponents are
oloured with irredu
ible Uh(sl(N))-modules V�1; : : : ; V�r . Then the Uh(sl(N))-invariant of this link is equal to the Hom
y polynomial of the link L with de
ora-tions Q�1 ; : : : ; Q�r on its 
omponents L1; : : : ; Lr after the substitutions x = e� hN ,v = e�Nh, and s = eh. 181
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