
Knots and Links

H.R.Morton

Spring 2002

1



Knots and Links 1 2001-02

1 Introduction

We are all able to tie a knot in a piece of rope. What exactly do we mean
though when we say that a piece of rope is knotted?

Look at the pictures in figure 1.

Figure 1:

Let us first stop the knots escaping by joining up the ends of the rope, as
in figure 2. Compare what happens in the three cases.

In the first case we get a simple, or ‘unknotted’ circle, while in the second
case we have a circle with what appears to be a knot in it.

Let us say that the rope is knotted if no possible manipulation of it will
result in the unknotted circle. We do not allow cutting and rejoining.

The third example can clearly be undone by a little manipulation to form
the simple circle, so again the rope is unknotted.
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Figure 2:

We model this notion of a knot mathematically by referring to a closed
curve in R3 as a knot, with the special case of the simple circle, lying say as
the unit circle in a plane, known as the trivial knot or unknot. Knot theory
in the mathematical sense is then the study of closed curves in space.

We call two knots equivalent if one can be manipulated, without passing
one strand through another, to become the other knot. I give a more formal
technical description of this below, but essentially anything is allowed which
could be done with a rather stretchable piece of rope. The one manoeuvre
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which must be excluded is the analogue of the bachelor’s technique for ig-
noring knots on a piece of cotton – pull it so tight that you can hardly see
it! Using this technique on a curve with no physical thickness would get rid
of any knot.

Figure 3: Bachelor’s unknotting

We would like to know for a start if there are any knots which are not
equivalent to the trivial knot. If so, are there lots of different knots, and
how might we distinguish between them? It is easy to imagine that you have
been given two knots and by a little patient work you manage to manipulate
one to look like the other, e.g. the first and third knots in figure 2. What
happens though if you find that even after a lot of trying you can’t make
them look the same – does it follow that the knots are inequivalent, or have
you just not been dextrous enough? There is clearly a problem here, and
something else will be needed, as there is no way that failure to manipulate
can show that it is actually impossible to do so.

It should be realised that the question of how the rope is knotted isn’t
an intrinsic question about the rope alone, but rather a matter of how the
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rope is placed in space. Every closed loop of rope looks the same to an ant
inside the rope. Some of the techniques developed for the study of knots have
proved fruitful in other ‘placement problems’, i.e. in studying the different
ways in which one particular geometric object, here a closed curve, may lie
inside a larger one.

Background. The idea of looking at knotted and unknotted closed curves
goes back to Gauss and beyond. Kelvin had some idea of trying to relate
different types of atoms to knotted curves in the ether; this was taken up by a
Scottish physicist Tait, who set out to enumerate all possible different knots
in the hope of tallying them against different atoms. His lists of knots soon
showed that the task of systematically enumerating all knots was hopelessly
complicated; among other problems there are infinitely many. It is still true
today that no practical framework exists for producing a comprehensive list,
although Thistlethwaite has devised a fairly good means of handling the
simpler knots. Various mathematicians in the 1920s and 1930s developed
methods to show up a number of general properties shared by all knots,
using some very elegant geometrical techniques and exploiting the growing
interplay between algebra and this style of geometry. From this period has
come the Alexander polynomial, and interpretations of it, as well as group
theoretic invariants. Much more recently knot theory and theoretical physics
have again had close contacts.

Definition. A knot is a simple closed curve K ⊂ R3 or in S3 (more about
this later).

Definition. The complement of K is S3 − K.

We shall only deal with tame knots, e.g. smooth or polygonal curves, and
we assume that K has a solid torus neighbourhood V with

(V, K) ∼= (S1 × D2, S1 × {0}).
This is like insisting on using a piece of rope, although its exact thickness
will not matter.

It is often convenient to deal with S3 − intV = extK, the exterior of K,
which is a compact 3-manifold with boundary ∂(extK) = ∂V ∼= torus S1 ×
S1.

From the point of view of topological invariants there is not much differ-
ence between S3 − K, extK and S3 − V .

Definition. Knots K0 and K1 are homeomorphic if there exists a homeo-
morphism h : R3 → R3 such that h(K0) = K1.
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Remark. A homeomorphism from A to B is a continuous bijective map
from A to B whose inverse is also continuous.

A homeomorphism h from R3 to itself is either orientation preserving
or orientation reversing. If it is orientation reversing then its composite
with a reflection will be orientation preserving. Every orientation preserving
homeomorphism of R3 is known to be isotopic to the identity, i.e. there exists
a 1-parameter family ht, 0 ≤ t ≤ 1, of homeomorphisms with h0 = identity
and h1 = h. Then if h is orientation preserving we can deform K0 to K1

through a family of knots Kt = ht(K0). We shall call K0 and K1 equivalent
when they are related in this way. (The term ambient isotopic is also used.)

Conversely a 1-parameter sliding of a neighbourhood V of K0 to one of
K1 through R3 can be extended to such a family ht of homeomorphisms,
and models quite well the physical notion of equivalence by manipulation of
a closed loop of rope.

We then have the result, by composing with a reflection if necessary, that
two knots K0 and K1 are homeomorphic if and only if K0 is equivalent to
K1 or its mirror-image.

Remark. Some knots, for example the trefoil, are not equivalent to their
mirror image, while others such as the figure-eight knot are.

Many questions about equivalence of knots can be answered theoretically
by looking at the fundamental group GK = π1(R

3 − K), the group of K,
which is well-defined up to isomorphism.

It is true that

K0, K1 equivalent ⇒ R3 − K0
∼= R3 − K1

⇒ GK0
∼= GK1.

So knots are different (inequivalent, indeed not homeomorphic) if their groups
are not isomorphic.

The group GK is also isomorphic to π1(extK); knowledge of this group
and the subgroup coming from the torus ∂(extK) = ∂V is actually enough
to theoretically determine K.

In later sections we shall discuss the fundamental group, and give explicit
presentations of a knot group, starting from a diagram of the knot. It is
not however easy in practice to decide when two non-abelian groups are
isomorphic, so more readily compared invariants are sought to try to establish
differences between given knots; these may be particularly effective when the
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knots are known to have certain geometric properties, such as lying on some
specified closed surface in S3, or forming the boundary of each of a family
of surfaces. The geometric information either available as data or wanted as
a property of the knot may not be accessible readily from its group – the
behaviour of the knot and its relation to others may equally be more clearly
seen from some of its geometric rather than algebraic invariants. There is a
long history of interplay, usually with a grey area of indecisiveness, between
the various algebraic and geometric threads, and it has been the richness
of examples, coupled with the elusive nature of the full picture in spite of
immediate calculations being available in specific cases which has maintained
interest over many years.

1.1 Knot diagrams and moves

For our subsequent analysis it is essential that we concentrate on tame knots,
i.e. knots equivalent to finite polygonal curves or equally to regular smooth
curves. It can be shown that if two polygonal curves are equivalent then one
can be moved to the other through a family of polygonal curves, and further
that the move can be made up of a finite sequence of moves in which one
vertex is moved on a straight line and the rest are left alone. We are also
able to view a polygonal or smooth curve by means of a knot diagram, which
is a projection from some direction to a plane in which the image has only
a finite number of simple crossings. Only a small subset of directions must
be excluded (a set of dimension 1 in the 2-dimensional set of directions) in
finding a diagram. At each crossing point the two branches are distinguished
into over and under crossings. The effects of a polygonal move on a curve
are then visible on a diagram as either leaving it essentially unchanged, or
altering it by one of the three Reidemeister moves, which are shown in figure
4.

Theorem 1.1 (Reidemeister) If two diagrams represent equivalent knots
then one diagram can be converted to the other by a finite sequence of Rei-
demeister moves, along with isotopy (deformation) of the image within the
projection plane.
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I
R

II
R

III
R

Figure 4: Reidemeister’s moves

1.2 Links and linking number

We may enlarge our scope slightly and look, as Gauss did, not just at a single
closed curve but at several at once.

Definition. A link of r components is a collection L = L1 ∪ L2 ∪ . . . ∪ Lr

of r closed non-intersecting curves.

When r = 1 we have a knot. In the case r = 2 we can very simply
associate an integer with a link, which is the same for every equivalent link.
This is called the linking number of the two components.

To define the linking number lk(L1, L2) we must first choose an orientation
of each of the components, which we note on a diagram of the link by drawing
arrows on the curves. Now look at one diagram of the link and consider only
the crossings where L1 crosses over L2. Each of these crossings ci can be
given a sign εi = ±1, according to a conventional choice. The sum of these
signs

∑

εi is unaltered when the diagram is changed by Reidemeister moves.
For crossings of L1 over L2 are not affected by moves I and III, while if there
are any involved in a move of type II they occur as a pair with opposite sign,
so that the sum is unchanged.

Reidemeister’s theorem holds also for links. We may then set lk(L1, L2) =
∑

εi for any choice of diagram.

Proposition 1.2 lk(L2, L1) = lk(L1, L2).
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Proof : To calculate lk(L2, L1) we must count the crossings of L2 over L1 in
some diagram. Start with a diagram in which we count the crossings ci of L1

over L2. If we turn this diagram over and view it from the other side we get
a new diagram of the link in which the crossings ci become the crossings of
L2 over L1. Each crossing, viewed from the other side has the same sign as
it had initially, so the sum needed to calculate lk(L2, L1) from this diagram
is identical to the sum calculating lk(L1, L2) in the original diagram. 2
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2 S3 and R3.

We start by studying some explicit views of the unknot and some other
simple links. We shall use stereographic projection which maps S3 with a
point removed to R3 to convert between links in R3 and links in S3.

We first describe the stereographic projection homeomorphism h : S3 −
N → R3, where we take

S3 = {(x, t) ∈ R3 ×R; |x|2 + t2 = 1}

and N = (0, 1), the ‘North Pole’.

Definition. The map h : S3 − N → R3 defined by

h(x, t) =
1

1 − t
x

is a homeomorphism, called stereographic projection.

Its inverse g is given by g(X) = (λX, µ) where λ = 1−µ and µ =
|X|2 − 1

|X|2 + 1
.

Remark. Note that there is an orthogonal transformation of R4 carrying
any chosen point on S3 to N , so that S3 − point ∼= S3 − N , for any other
choice of point.

When we compare curves in R3 and curves in S3 using h we may note that
a homeomorphism τ say of R3 defines a homeomorphism hτh−1 of S3 − N
which can be extended to a homeomorphism of S3 by mapping N to itself.

Given a curve K ⊂ S3 not through N it is possible to find a homeomor-
phism of S3 which fixes K and carries any chosen point of S3−K to N . Hence
if there is a homeomorphism of S3 carrying one curve in S3 not through N
to another such curve then we can assume that the homeomorphism fixes N
and consequently determines a homeomorphism of their images in R3 when
projected from N .

It follows that equivalence of knots in S3 or in R3 amount to essentially
the same thing.

Definition. A great circle in S3 is the intersection of S3 with a 2-dimensional
linear subspace W of R4.

Great circles through N map to straight lines under h, while other great
circles map to circles in planes through the origin of R3. Each great circle
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meets the equatorial sphere t = 0, |x|2 = 1 in a pair of antipodal points; its
image under h also passes through these two points in R3.

Two simple examples are the great circles C1 = {(x, t); x1 = x2 = 0} and
C2 = {(x, t); x3 = t = 0}. Here h(C1 − N) = x3-axis while h(C2) is the unit
circle {x; x2

1 + x2
2 = 1, x3 = 0} in the plane x3 = 0.

We now consider the complement of C1 and of the link C1 ∪ C2. The
restriction map h|S3 − C1 → R3 − x3-axis is a homeomorphism. We can
follow this with a further homeomorphism

k : R3 − x3-axis → S1 × P

to the product of S1 with an open half-plane P = {(r, z); r > 0}, defined by

k(x1, x2, x3) =





1
√

x2
1 + x2

2

(x1, x2), (
√

x2
1 + x2

2, x3)



 .

It may be helpful to think of k as the cylindrical polar map taking (x, y, z)
to the pair eiθ ∈ S1, (r, z) ∈ P , where r, θ, z are the usual cylindrical polar
coordinates based on the z-axis.

By composing these two homeomorphisms we then have a homeomor-
phism S3 − C1

∼= S1 × P . Restricted to C2 this map carries C2 first to
h(C2) = unit circle in x3 = 0 and then to k(unit circle) = S1 × {(1, 0)}.
Restriction of the composite of the homeomorphisms to the complement of
C1 ∪ C2 then gives

S3 − (C1 ∪ C2) ∼= R3 − (x3-axis ∪ unit circle) ∼= S1 × (P − {(1, 0)}).

Any two non-intersecting great circles in S3 form a link in S3 which
can be carried homeomorphically to C1 ∪ C2 using a linear isomorphism
of R4 followed by radial projection to the unit sphere S3. The image un-
der stereographic projection from a point not on the link will be a link of
two circles in R3. We could take, for example, the great circles C2 and
{(x, t); x1 = at, x2 = 0, a 6= 0} which project stereographically from N to
form two circles, K1 in the plane x2 = 0 and the unit circle K2 in x3 = 0, as
shown in figure 5. We call this or any equivalent link the Hopf link.

Aside. We may write R4 as C2, taking points (z1, z2) ∈ C2 with z1 =
x1 + ix2, z2 = x3 + it to correspond with our earlier choice of coordinates.
Then S3 is given by |z1|2 + |z2|2 = 1 and the circles C1 and C2 in S3 are
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given respectively by z2 = 0 and z1 = 0. Their union satisfies the equation
z1z2 = 0.

A very elegant theory elaborated by Milnor shows that if f : C2 → C
is a polynomial with f(0, 0) = 0 then all small enough spheres Sε centre
(0, 0) meet f−1(0) in a curve or curves forming a link, with the link being
independent of ε for sufficiently small ε. Milnor shows further that on the
complement S3

ε − f−1(0) the map p : S3
ε − f−1(0) → S1 defined by p(z) =

f(z)/ |f(z)| ∈ S1 is a fibration. This means that the fibres Fθ = p−1(eiθ) =
{z; arg f(z) = θ} are all homeomorphic; in fact they are all surfaces, and
they fit nicely round the curve(s) f−1(0) rather like leaves round the spine
of a book.

We can see something of this in the previous examples.

Example. Take f(z1, z2) = z1. Here the result will look identical for all
choices of radius ε and we may as well use the unit sphere. The link in
question is just the curve C2 = f−1(0). Then p is defined on the complement
of C2 by p(z1, z2) = z1/ |z1| and the surface Fθ with arg z1 = θ maps stereo-
graphically into the half-plane with cylindrical polar coordinate θ in R3. The
surfaces Fθ then consist of open discs fitting around C2.

Another view of the same family is given by looking at C1 instead, taking
f(z) = z2. The surfaces Fθ then satisfy arg z2 = θ and so form part of the
great sphere in S3 with equation t = kx3 where k = tan θ. This projects to
the sphere x2

1 + x2
2 + x2

3 = 1 + 2kx3 through the unit circle in R3 and the
surfaces Fθ give a family of discs spanning the trivial knot.

Example. We may also look at the case f(z1, z2) = z1z2 (or equally z2
1−z2

2).
Here f−1(0) = C1∪C2, the Hopf link. To get a good view of the sets Fθ in this
case it is helpful to consider the function defined on the complement of C1

by g(z1, z2) = z1/z2. The inverse image g−1(λ) consists for each λ ∈ C of the
great circle z1 = λz2 and the complement of C1∪C2 is filled up by these circles

Figure 5: The Hopf link
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with λ 6= 0,∞. Each pair of such circles will form a Hopf link, as we showed
above. The subset Gθ defined as for polynomials to consist of the points
where g/ |g| = eiθ is then made up of those circles with arg λ = θ. Under
stereographic projection the image of each Gθ is given by rotating the image
of G0 around the x3-axis through the angle θ. Now G0 consists of the circles
where λ ∈ R, λ > 0, given by x1 = λx3, x2 = λt. The image in R3 forms the
intersection of the plane x1 = λx3 with the sphere x2

1 + x2
2 + x2

3 = 1 + 2λ−1x2

and the whole set G0 makes up an annulus. Moving the projection point
away from C1 allows a bounded view of a surface Gθ, along with the link
forming its boundary, as a ribbon with a single full twist.

The surfaces Fθ = {z; arg f(z) = θ} defined by Milnor’s method for
f = z1z2 in place of g are mapped to Gθ by the reflection r of R4 with
r(z1, z2) = (z1, z2), since g(r(z)) = f(z)/ |z2|2 and both will have the same
arg.

Generally the knots and links which arise from Milnor’s construction as
f−1(0) have very nice properties. The next most simple case of this can be
given by f = z3

1 − z2
2 . Then f−1(0) in S3 consists of a curve lying on a torus

|z1| = const., |z2| = const. in S3. The torus may be parametrised by the pair
(arg z1, arg z2). The relation z3

1 = z2
2 on f−1(0) shows that 3 arg z1 = 2 arg z2.

When viewed in R3 the torus is symmetric about the x3-axis, and the curve
lies on it like the boundary of a ribbon with 3/2 twists, forming a trefoil
knot.

Knots which arise in this way form a very restricted class, and a complete
(infinite) list can be given. The figure-eight knot does not appear on the list,
although it has a number of very similar properties to the trefoil.

Figure 6: The figure-eight knot
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3 The fundamental group

The classic technique of algebraic topology is to use algebraic objects —
numbers, polynomials, groups or more complicated structures — as a means
of studying geometric or topological features of a problem.

We have already seen the use of linking number in considering 2-component
links. We showed that equivalent links have the same linking number, giving
us a partial algebraic test for equivalence.

In a similar vein I shall describe a more complicated topological invariant
which is defined in a very wide context, namely the fundamental group π1(X)
of a topological space X. To say that the fundamental group is a ‘topolog-
ical invariant’ means that two homeomorphic spaces must have isomorphic
fundamental groups. It then gives a potential means for showing that two
spaces are not homeomorphic.

We shall apply it in particular to the case of knot complements R3 −K,
where the fundamental group π1(R

3−K) is often known as the ‘group of the
knot K’. Since equivalent knots have homeomorphic complements we may
be able to establish that two knots are inequivalent by showing that their
groups are not isomorphic.

3.1 Basic ideas

We shall now formulate the ideas and techniques needed to discuss the fun-
damental group of any subset of Rn; these can be carried over essentially
unaltered to any topological space.

First some brief terminology relating to paths in subsets A of Rn.

Definition. For x0, x1 ∈ X a path in X from x0 to x1 is a continuous map
a : [0, 1] = I → X such that a(0) = x0 and a(1) = x1.

Definition. The set X is path-connected if for each choice of x, y ∈ X there
is a path in X from x to y.

Example. Given x, y ∈ Rn, the straight-line path from x to y is given by
a(s) = sy + (1 − s)x, s ∈ I.

Let a, b : I → X be paths in X from x0 to x1 and from x1 to x2 respec-
tively.

Define a path a by
a(s) = a(1 − s).
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Then a is a path in A from x1 to x0 called the reverse of the path a.
Define also a path a.b from x0 to x2 by

a.b(s) =

{

a(2s), 0 ≤ s ≤ 1
2
,

b(2s − 1), 1
2
≤ s ≤ 1.

This path is called the composite of the paths a and b, and consists of tracing
out the path a followed immediately by b. Its continuity follows from the
‘piecing-together’ theorem.

We aim to capture some information about a path-connected set X by
looking at the collection of loops in X. A loop (based at x0 ∈ X) is simply
a path in X from x0 back to x0.

The set of all loops in X is inconveniently huge; we will generally get a
much more manageable view by regarding two loops as ‘the same’ if we can
deform one to the other within X.

More formally, we use the term ‘homotopy’ to denote the sort of deforma-
tion to be considered (given shortly), and then sort the loops into ‘homotopy
classes’.

These homotopy classes of loops in X will make up the fundamental group
of X (based at x0).

There are a few technical and logical things to check before everything
works out, but the major features are that

• Each element of the fundamental group is represented by a loop in X.

• Homotopic loops represent the same element.

• Composition in the group comes from composing loops.

• The inverse of an element represented by a loop a is represented by the
reverse loop a.

• A continuous map f : X → Y induces a group homomorphism from
π1(X) to π1(Y ).

• A homeomorphism induces an isomorphism of fundamental groups.

• For many spaces it is easy to give a good algebraic description of the
fundamental group.
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3.2 Technical details

Here is a brief summary of some of the technical points.
Write p(X, x0, x1) for the set of all paths in X from x0 to x1.

Definition. Let a and b be paths in p(X, x0, x1). Say that a is homotopic
to b, written a ≃ b, if there is a continuous map F : I × I → X, with

F (s, 0) = a(s), F (s, 1) = b(s), for all s ∈ I,

and
F (0, t) = x0, F (1, t) = x1 for all t ∈ I.

The map F is called a homotopy from a to b, and s and t are the path
parameter and homotopy parameter respectively. We can think of F as defin-
ing a family of intermediate paths at in p(X, x0, x1) by at(s) = F (s, t), with
a = a0 and b = a1.

Proposition 3.1 If X is convex then any two paths a and b in p(X, x0, x1)
are homotopic.

Proof : Use the straight-line homotopy from a to b, given by

F (s, t) = (1 − t) a(s) + t b(s).

For then F (s, t) ∈ X when (s, t) ∈ I × I, and F satisfies the boundary
conditions. 2

On the other hand, the straight-line homotopy can’t always be used in a
space such as R2 − {0}.
Notation. Write ℓPQ for the straight line path from P to Q, so that

ℓPQ(s) = sQ + (1 − s)P.

We shall mainly be considering loops in a path-connected space X, that
is paths with the same beginning and end point, x0 say.

Definition. A path-connected space X is simply-connected if every two
loops in p(X, x0, x0) are homotopic, for all choices of x0. (We shall see later
that it is enough to show this for just one choice of x0).

Example. Any convex set is simply-connected.

16



Knots and Links 3 2001-02

Proposition 3.2 Let f : X → Y be continuous, and let a ≃ b ∈ p(X, x0, x1).
Then the paths f ◦ a and f ◦ b in Y from f(x0) to f(x1) are homotopic.

Proof : Let F : I×I → X be the homotopy from a to b, then f◦F : I×I → Y
is the required homotopy from f ◦ a to f ◦ b.
(Just check the boundary conditions). 2

Corollary 3.3 Let q : I → I be any continuous map with q(0) = 0 and
q(1) = 1, and let b and a = b◦q be paths in Y (both from a(0) to a(1)). Then
a ≃ b.

Proof : Take a as the map f , with I in the role of X.
Since I is convex we have q ≃ 1I , as paths in I with the same endpoints,

so that a = b ◦ q ≃ b ◦ 1I = b. 2

We can think of a and a ◦ q as paths which cover the same ground in
X, but do so at different rates, related by q. This may even involve some
backtracking, if q is not monotone.

A useful case of this occurs if we have paths a1, . . . , an with ai+1(0) =
ai(1), which we compose in order. By judicious choice of a comparison map q :
I → I we can show that the resulting path is independent, up to homotopy,
of the exact rates of travel of the constituent paths.

Given a1, . . . , an as above we can define a path a = a1.a2. · · · .an by

a(s) = ai(ns − i + 1), (i − 1)/n ≤ s ≤ i/n, i = 1, . . . , n.

Then a ◦ ℓ(i−1)/n,i/n = ai.
If we choose any other dissection of I as 0 = t0 < t1 < . . . < tn = 1 we

can define a path b for which b ◦ ℓti−1,ti = ai, i.e. we travel along ai while the
path parameter s lies in the interval [ti−1, ti].

Theorem 3.4 Where paths a and b are defined as above, then a ≃ b.

Proof : Choose q with q(i/n) = ti, to be affine on each interval [(i − 1)/n, i/n].
Then

q ◦ ℓ(i−1)/n,i/n = ℓti−1,ti ,

and the graph of q consists of line segments joining the points zi = (i/n, ti) ∈
R2 in order.

Now a = b ◦ q, since

a ◦ ℓ(i−1)/n,i/n = (b ◦ q) ◦ ℓ(i−1)/n,i/n
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for each i.
Since q is continuous, and q(0) = 0, q(1) = 1 it follows that a ≃ b. 2

Corollary 3.5 (a1. · · · .aj).(aj+1. · · · .an) ≃ a1. · · · .an.

Proof : The left-hand side is given as the composite of the paths a1. · · · .an

taking tj = 1
2
, with intervals [ti−1, ti] of length 1/2j, i ≤ j and length 1/2(n−

j) otherwise. 2

Corollary 3.6 (a1.a2).a3 ≃ a1.(a2.a3).

Proof : Both are homotopic to a1.a2.a3. 2

3.2.1 Homotopy classes of paths

For a ∈ p(X, x0, x1) write [a] for the class of all paths homotopic to a. (Then
b ∈ [a] means a ≃ b).

Remark. In fact [a] = [b] ⇔ a ≃ b, since homotopy is an equivalence
relation. A complete proof of this fact requires us to show that

1. a ≃ a. (Use the homotopy F , with F (s, t) = a(s) for all t.)

2. If a ≃ b then b ≃ a. (Given a homotopy F from a to b take G(s, t) =
F (s, 1 − t) to give a homotopy from b to a.)

3. If a ≃ b and b ≃ c then a ≃ c. (Suitable piecing together of the two
given homotopies will produce a homotopy from a to c.)

Notation. Write π(X, x0, x1) for the set of homotopy classes of paths from
x0 to x1.

Then α ∈ π(X, x0, x1) can be written as α = [a], for some path a : I → X,
representing α. Any other a′ ≃ a is equally a representative of α.

Proposition 3.7 Let α ∈ π(X, x0, x1), β ∈ π(X, x1, x2), be represented as
α = [a], β = [b]. Then we can define α.β depending only on α and β, by
α.β = [a.b].
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Proof : We must show that α.β does not depend on the choice of represen-
tative paths a and b, i.e. if α = [a′] = [a] and β = [b′] = [b] then [a′.b′] = [a.b].
This amounts to showing that if a ≃ a′ and b ≃ b′ then a.b ≃ a′.b′.

So let F, G be homotopies from a to a′ and from b to b′ respectively.
Construct the homotopy H = F.G by

H(s, t) =

{

F (2s, t), 0 ≤ s ≤ 1
2

G(2s − 1, t), 1
2
≤ s ≤ 1

This map is continuous, by the piecing together theorem, applied to its def-
inition on the two closed sets [0, 1

2
] × I and [1

2
, 1] × I. Check the boundary

conditions to see that the definitions on the intersection of these two sets
agree and that H is indeed a homotopy from a.b to a′.b′. 2

Theorem 3.8 For x0 ∈ X the set π(X, x0x0) forms a group under the
operation described above (setting α.β = [a.b] where α = [a], β = [b]).

Definition. This group is called the fundamental group of X (based at x0),
and is written as π1(X, x0).

Proof : We must show

1. that the operation is associative,

2. that there is an identity element ex0 ∈ π1(X, x0),

3. that there is an inverse α−1 for each α ∈ π1(X, x0).

1. Let α, β, γ ∈ π1(X, x0), and write α = [a], β = [b], γ = [c]. Then
(a.b).c ≃ a.(b.c). So

[(a.b).c] = [a.(b.c)] = [a].[b.c] = [a].([b].[c]) = α(βγ).

Now
[(a.b).c] = [a.b].[c] = ([a].[b]).[c] = (αβ)γ,

showing that (αβ)γ = α(βγ).

[The same is true for homotopy classes of paths (not necessarily loops)
which can be composed in this order].

2. Define ex0 to be ex0 = [cx0], where cx0 is the constant path at x0, given
by cx0(s) = x0, 0 ≤ s ≤ 1.
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3. For α = [a] we may take α−1 = [a], where a is the reverse of a, i.e.
a(s) = a(1 − s).

These give identity and inverse elements in a wider context, as shown by
the two following lemmas, which complete the proof of the theorem. 2

Lemma 3.9 Let a ∈ p(X, x0, x1). Then cx0 .a ≃ a ≃ a.cx1.

Corollary 3.10 For α = [a] ∈ π(X, x0, x1) we have α = [a] = [cx0.a] =
[cx0].[a] = ex0 .α.
Similarly α = α.ex1.

Lemma 3.11 Let a ∈ p(X, x0, x1). Then a.a ≃ cx0 (and, replacing a by a,
a.a ≃ cx1).

Corollary 3.12 For α = [a] ∈ π(X, x0, x1) write β = [a] ∈ π(X, x1, x0).
Then αβ = ex0 and βα = ex1.
Again, for α ∈ π1(X, x0, x1) we have αβ = ex0 = βα. Then β is inverse to
α, and we can write [a] = α−1.

Proof of Lemma 3.9: Take q : I → I defined by

q(s) =

{

0, 0 ≤ s ≤ 1
2
,

2s − 1, , 1
2
≤ s ≤ 1.

Then q is a path in the convex set I from 0 to 1, and is thus homotopic to
the uniform path 1I , so that a ◦ q ≃ a ◦ 1I = a. We have a ◦ q = cx1.a, giving
cx1.a ≃ a, for

a ◦ q(s) =

{

a(0) = x0, 0 ≤ s ≤ 1
2
,

a(2s − 1), 1
2
≤ s ≤ 1,

= cx0.a(s) .

2

Proof of Lemma 3.11: Take r : I → I defined by

r(s) =

{

2s, 0 ≤ s ≤ 1
2

2 − 2s, 1
2
≤ s ≤ 1.

Then r is a path in I from 0 to 0, and hence r ≃ c0, the constant path at 0.
We have that a.a = a ◦ r and a ◦ r ≃ a ◦ c0 = cx0 2
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Proposition 3.13 For a, b ∈ p(X, x0, x1) we have

a ≃ b ⇔ a.b ≃ cx0 .

Proof : Write α = [a], β = [b]. Then α.β−1 = ex0 ⇔ α = β. 2

Corollary 3.14 If all loops at x0 are homotopic in X then so are all paths
in X from x0 to x1 and conversely.

3.2.2 Change of base point

Theorem 3.15 For a path-connected space X, π1(X, x1) ∼= π1(X, x0) for
any x0, x1 ∈ X, i.e. the fundamental group of X is independent, up to group
isomorphism, of the choice of basepoint.

Proof : Choose a path c in X from x0 to x1, and put γ = [c]. Define a map
θγ : π1(X, x0) → π1(X, x1) by θγ(α) = γ−1αγ.
Then θγ is a group isomorphism.

1. θγ is a homomorphism, for θγ(αβ) = γ−1αβγ = γ−1αγγ−1βγ = θγ(α) θγ(β).

2. θγ is bijective, since ϕ(= θγ−1) given by ϕ(δ) = γδγ−1 is its inverse.

2

Note that the isomorphism does in general depend on the path c, up to
homotopy.

Corollary 3.16 A space X is simply-connected ⇔ π1(X, x0) = {e} for any
choice of basepoint x0.

3.2.3 Homomorphisms

Theorem 3.17 Given a continuous map f : X → Y there is a group homo-
morphism f∗ : π1(X, x0) → π1(Y, f(x0)) defined for α = [a] by f∗(α) = [f ◦a].

Proof : The map f∗ is well-defined, for if α = [a] = [a′] we have a ≃ a′, and
so f ◦ a ≃ f ◦ a′, giving [f ◦ a] = [f ◦ a′].

Now let α = [a] and β = [b] be elements of π1(X, x0). We have f ◦ (a.b) =
(f ◦ a).(f ◦ b), on comparing their values at s ∈ I.
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Then αβ = [a.b] so

f∗(αβ) = [f ◦ (a.b)] = [(f ◦ a).(f ◦ b)] = [f ◦ a].[f ◦ b] = f∗(α) f∗(β).

2

Theorem 3.18 If f : X → Y and g : Y → Z are continuous, then (g◦f)∗ =
g∗ ◦ f∗.

Proof : Let α = [a] ∈ π1(X, x0). Then f∗(α) = [f ◦ a], so

g∗ ◦ f∗(α) = g∗(f∗(α)) = [g ◦ (f ◦ a)] = [(g ◦ f) ◦ a] = (g ◦ f)∗(α)

for each α, giving the result. 2

Remark. Take f = 1X , i.e. f(x) = x for all x ∈ X. Then f ◦ a = a so that
f∗(α) = α for all α ∈ π1(X, x0).

In other words, f∗ = 1π1(X).

Corollary 3.19 If f : X → Y is a homeomorphism then f∗ is a group
isomorphism (with inverse g∗ where g is the inverse homeomorphism to f).

Proof : f ◦ g = 1Y , so f∗ ◦ g∗ = (f ◦ g)∗ = (1Y )∗ = 1π1Y , while similarly
g∗ ◦ f∗ = 1π1(X). 2

3.3 Some examples

Convex sets, for example the whole of R2, R3, any half-plane or interval, are
all simply-connected, (their fundamental group is trivial).

Probably the simplest non-trivial example is the plane with a point re-
moved. It is not too difficult to show that the unit circle S1 ⊂ R2 and
R2 − origin have isomorphic fundamental groups. (Prove this!)

What can be established with a bit more work is that this group is infinite
cyclic. This means that it is isomorphic to C∞ (powers tk of some non-trivial
t) in multiplicative notation, or equally Z in additive notation. Because
fundamental groups do not have to be abelian I shall generally write them
multiplicatively. In this case the generator t can be represented by the simple
loop a around the unit circle with a(s) = (cos 2πs, sin 2πs).

The proof relies on making a well-defined count of the ‘winding number’
or ‘degree’ of a loop ℓ around the origin in R2, and showing that
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1. homotopic loops have the same degree,

2. loops with the same degree are homotopic.

It can be shown that the loop a above has degree 1, and that degree adds
under composition. A loop of degree k then represents tk.

There is in fact a nice way to count the degree of a loop ℓ which crosses a
radial line from the origin a finite number of times. Count the number, k+,
of anti-clockwise crossings, and the number, k−, of clockwise crossings: the
degree of ℓ is then k = k+ − k−.

We can now combine this result with our previous study of the comple-
ments of the trivial knot and the Hopf link to calculate their groups once we
know the simple description of the fundamental group of a product.

Theorem 3.20 For two spaces A and B the fundamental group of their
product A × B is given by

π1(A × B) ∼= π1(A) × π1(B).

Proof : Any loop ℓ in A × B determines loops a, b in A, B by ℓ(s) =
(a(s), b(s)), and homotopy is respected by this decomposition, i.e. ℓ ≃ ℓ′ ⇐⇒
a ≃ a′ and b ≃ b′. 2

Recall that we have previously constructed a homeomorphism from the
complement of a great circle C1 in S3 to a product, S3 − C1

∼= S1 × P .
where P is a half-plane, and therefore simply-connected. Now π1(S

1 × P ) ∼=
C∞ × {e} ∼= C∞, generated by the class of the loop ℓ(s) = (a(s), p), where a
is the loop of degree 1 round the circle and p is some fixed point of P . Hence
π1(S

3 −C1) is infinite cyclic, generated by the image in S3 of the loop ℓ; this
may be imagined from its image in R3−z-axis, where it runs once round the
axis.

Under the homeomorphism to the product S1 × P the great circle C2

becomes the circle S1 ×{(1, 0)} so that S3 − (C1 ∪C2) ∼= S1 × (P −{(1, 0)}).
Now π1(P − {(1, 0)}) ∼= C∞, generated by a loop b in P around (1, 0). Then
π1(S

1 × (P − {(1, 0)})) ∼= C∞ × C∞ and the two infinite cyclic groups are
generated by loops (a(s), constant) and (constant, b(s)) respectively. Carry-
ing these back to S3 shows that the group of the Hopf link is isomorphic to
C∞ × C∞, and is generated by two loops, one encircling C1 and the other
encircling C2.
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It is not possible to give such a simple description of a knot complement
in general. However I shall give a straightforward prescription in the next
section for a presentation of the group of a knot K starting from a diagram
of K. The justification for the method, and also for the lack of distinction
between the group of a knot in S3 and in R3 is a result of the important
theorem of van Kampen, which is summarised next.

3.4 van Kampen’s theorem

This result gives a general and powerful method for building up knowledge
of the fundamental group of a space X in terms of the fundamental groups
of some constituent pieces of X.

Given X = U1 ∪U2, with U0 = U1 ∩U2 and each of the three sets Ui open
rel X and path-connected.
The goal of van Kampen’s theorem is a description of π1(X, u0) in terms of
π1(U1), π1(U2) and π1(U0), for a choice of base point u0 ∈ U0.

Theorem 3.21 (van Kampen’s theorem I, (generators): Geometric form)
Let X = U1 ∪ U2, with U0 = U1 ∩ U2 and u0 ∈ U0 and suppose that each of
the three Ui is open rel X and path-connected.

Then every loop a at u0 in X is homotopic (in X) to a composite of loops
a1.a2 . . . ak with each loop ai lying either in U1 or U2.

Proof : Apply Lebesgue’s lemma to the continuous map a : I → X to find
k so that each subinterval of i of length ≤ 1/k is mapped by a into either U1

or U2. Write bi = a ◦ ℓ(i−1)/n,i/n, where ℓPQ is the straight line path from P
to Q. Then each bi is a path in either U1 or U2 and a = b1.b2 . . . bk.

Convert each of these paths into a loop at u0 lying in the same Ui, while
altering their product a only up to homotopy as follows. For each point
ui = a(i) choose a path di from ui to u0 lying entirely in U1 if ui ∈ U1, and
entirely in U2 if ui ∈ U2, (hence in U0 if ui ∈ U0 ). Take d0 and dk to be the
constant path at u0.

Then ai = di−1.bi.di is a loop at u0 lying either in U1 or U2 and a1.a2 . . . ak ≃
b1.b2 . . . bk = a as required, writing d for the reverse of the path d. 2

Corollary 3.22 If X = U1 ∪ U2 as in the hypotheses of the theorem (both
open rel X with U1 ∩ U2 path connected) and U1 and U2 are both simply
connected then X is simply connected.
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Proof : Any loop a at u0 ∈ X is homotopic to a1.a2 . . . ak with each ai being
a loop in U1 or U2. Hence each ai is homotopic, in U1 or U2 and thus in X, to
the constant loop at u0. Then the composite loop a1.a2 . . . ak is homotopic
in X to the constant loop at u0. 2

Example. The sphere Sn is simply-connected, for n ≥ 2.
For we need only apply the corollary taking U1 and U2 to be Sn − {N}

and Sn−{S}, the complements of the North and South poles, and observing
that U0 = Sn − {N, S} ∼= Rn − {0} is path connected for n ≥ 2.

To get a good algebraic view, use the language of generators and rela-
tions for groups.

Definition. A set of elements B in a group G (written multiplicatively)
generate G if each g ∈ G can be written as g = g1.g2 . . . gm with either gi ∈ B
or g−1

i ∈ B for each i.

Such an expression g1.g2 . . . gm is called a word in the generators B.

Example. If B = {x, y} generates G then elements of G consist of products
such as x2y−1x−2y3.

Definition. G is finitely-generated if it has a finite generating set {b1, . . . , bk}.
Remark. A cyclic group is a group with a single-element generating set
{b1}.
Remark. If f : G → H is a group homomorphism and G is generated by
{b1, . . . , bk} then the image f(G) is generated by {f(b1), . . . , f(bk)}, hence
the image of a cyclic group is always cyclic.

Note. In the case of an abelian group G, where the group operation is
written additively, the set of words in {b1, . . . , bk} are just the elements
Σλibi, λi ∈ Z. For example, G = Z×Z can be generated by b1 = (1, 0), b2 =
(0, 1), or by {(2, 1), (3, 1)} but not by {(2, 0), (0, 1)}.

It follows from standard linear algebra that G = Zk can never be gener-
ated by fewer than k elements, for a generating set must also generate Rk in
the usual sense of linear algebra. (Why?)

We can then formulate van Kampen’s theorem algebraically

Theorem 3.23 (van Kampen’s theorem I, (generators): Algebraic form)
Let X = U1 ∪ U2, with U0 = U1 ∩ U2 and u0 ∈ U0 and suppose that each of
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the three Ui is open rel X and path-connected. Write j1 : U1 → X and
j2 : U2 → X for the inclusion maps.

Then π1(X, u0) is generated by the union of the two subsets j1∗(π1(U1, u0))
and j2∗(π1(U2, u0)), i.e. every element of π1(X, u0) is a product of elements
or their inverses taken from these two subsets.

Proof : Note that an element of j1∗(π1(U1, u0)) is simply the homotopy class
in X of a loop which is homotopic to a loop in U1. Starting with [a] ∈
π1(X, u0) we can use the geometric formulation to write [a] = [a1].[a2] . . . [ak]
where each ai is a loop in U1 or U2 so that [ai] lies in one of the two subsets
claimed. 2

Corollary 3.24 Suppose that π1(U1, u0) and π1(U2, u0) are generated by b1, . . . , br

and c1, . . . , cs respectively, then π1(X, u0) is generated by b1, . . . , br, c1, . . . , cs,
where b1 = j1∗(b1) etc.

Example. We can write R2 − {k points} as U1 ∪ U2 with U1
∼= R2 −

{r points} and U2
∼= R2 − {s points}, where k = r + s, and U1 ∩ U2 is

path-connected (in fact convex).
Then, by induction on k there is a generating set of k elements for π1(R

2−
{k points}) (= Gk say). Indeed it is not difficult to use the theorem to find k
explicit loops whose homotopy classes generate the fundamental group, Gk.
We can show also that Gk can not be generated by fewer than k elements,
by considering the homomorphism f : Gk → Zk given by

f([a]) = (d1(a), . . . , dk(a))

where di(a) is the winding number of a about the ith point.
Now f is surjective, because we can find a loop ai for each i with di(ai) =

1, dj(ai) = 0, j 6= i. The image of any generating set for Gk will then
generate Zk, and we noted above that Zk requires at least k generators.

It is not clear yet just what the fundamental group of R2 −{2 points} is.
While we have a set of generators [a1], [a2] we do not know if they commute,
showing that G2 is abelian, or whether they have any other relations between
them. The only piece of information from the previous example is that it is
impossible to find one single generator for G2.

The next part of van Kampen’s theorem gives us a much clearer view of
the group, by showing how to find relations as well as generators.
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Definition. A group G has a presentation with generators b1, . . . , bk and
relations v1 = w1, . . . , vs = ws , where each vi and wi is a word in the
generators, if

1. G is generated by {b1, . . . , bk}, and

2. Two words in the generators give the same element of G ⇔ one word
can be changed to the other by a sequence of the following moves or
their inverses:

(i) replace brb
−1
r by e (the identity element),

(ii) remove e,

(iii) replace the subword vi by wi.

We then write

G =< b1, . . . , bk : v1 = w1, . . . , vs = ws > .

Examples.

1. G =< x : x2 = e > , the cyclic group of order 2.

2. G =< x : >, the infinite cyclic group.

3. G =< x, y : x3 = e, y2 = e, yx = x−1y > ∼= S3 (the permutation
group on 3 objects).

The great thing about a presentation of a group G is that it enables you
to write down homomorphisms from G to other groups.

If f : G → H is a homomorphism then we can find f(g) for any element
g ∈ G once we know f(b1), . . . , f(bk) for a set of generators.

Theorem 3.25 (Presentation theorem) If G =< b1, . . . , bk : v1 = w1, . . . , vs =
ws > and we can find b1, . . . , bk ∈ H such that vi(b1, . . . , bk) = wi(b1, . . . , bk)
for each i then there is a homomorphism f : G → H with f(bj) = bj for each
j.
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Proof : Given g ∈ G write it as a word in the generators, say g = g1 . . . gn

where each gj = b±1
i for some i . Define f(g) = f(g1) . . . f(gn) where f(gj) =

b
±1

i .
By checking through the moves allowed in 2. it can be seen that this

definition does not depend on how g has been written as a word in the
generators. It is then immediate that f is a homomorphism, for if g =
g1 . . . gn and h = h1 . . . hk are written as words in the generators we can
then write gh = g1 . . . gnh1 . . . hk and, by the definition of f ,we have f(gh) =
f(g1) . . . f(gn)f(h1) . . . f(hk) = f(g)f(h). 2

Example. We can define a homomorphism f : G → Gl(2,R) where G =<

x, y : xyx = yxy > by choosing x =
(

1 0
−1 1

)

and y =
(

1 1
0 1

)

.

The only check required is that x y x = y x y.

Important groups from this point of view are the free groups, for example
G =< x1, . . . , xk : >, with no relations. A homomorphism from the free
group G is determined by a free choice of the images of x1, . . . , xk.

When k = 1 the free group is infinite cyclic; for k > 1 the free group is
non-abelian.

To return to the setting of van Kampen’s theorem, suppose that π1(U1)
has generators x1, . . . , xk and relations v1 = w1, . . . , vs = ws, where each
vi and wi is a word in the generators. Write xi = j1∗(xi) ∈ π1(X) etc.,
and put vi = vi(x1, . . . , xk) etc. for the corresponding words in the elements
x1, . . . , xk.

Since j1∗ is a homomorphism it follows that vi = j1∗(vi), so the relations
v1 = w1 etc. will hold in π1(X).

Similarly, suppose that

π1(U2) =< y1, . . . , yr : t1 = u1, . . . , tℓ = uℓ >

and write yi = j2∗(yi) etc.

Then we know already, by van Kampen I, that π1(X) is generated by
x1, . . . , xk and y1, . . . , yr so it remains to give a sufficient set of relations.

These come from the relations in the presentations of π1(U1) and π1(U2),
together with further relations which take care of the fact that an element
of π1(X) which is represented by a loop in U0 = U1 ∩ U2 will appear as the
image of an element of π1(U1), written in the generators x, and also of an
element in π1(U2), written in the generators y.
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Write i1 : U0 → U1 and i2 : U0 → U2 for the inclusions, and suppose that
π1(U0) has generators z1, . . . , zm. Then i1∗(zj) = i2∗(zj) for each j.

Theorem 3.26 (van Kampen’s theorem II (relations)) Let X, U0, U1, U2

be as before, and let

π1(U1) =< x : v = w >, π1(U2) =< y : t = u >, π1(U0) =< z : relations > .

Then π1(X) =< x,y : v = w, t = u, i1∗(z) = i2∗(z) >.

Proof : This requires an analysis of the way in which two homotopic loops
in X can be written as a product of loops in U1 and U2 by breaking the
homotopy up into small squares each of which maps into one or other of
the subspaces, and using these to find a sequence of representations of the
element of π1(X) as words in the generators, differing only as specified by
the claimed relations. 2

Remark. The result gives a presentation of π1(X) as the ‘union’ of pre-
sentations of π1(U1) and π1(U2) with extra relations to say that the elements
determined by any generator of π1(U0) in these two groups are equal.

There are many cases where it does in fact work for suitable closed subsets
U1, U2, although it does not always apply.

Example. The group G2 = π1(R
2 − {2 points}) is free on two generators,

G2 =< x1, x2 : >.
For we can take U1 and U2 as open half-spaces with a point removed, each

with infinite cyclic fundamental group < x1 : >, < x2 : >.
We can also arrange that U0 is convex, hence simply-connected, so that

there are no generators of π1(U0). Then van Kampen’s theorem gives the
presentation claimed, where x1, x2 have been replaced by x1, x2.

The example of Gk = π1(R
2−{k points}), discussed earlier after Corollary

3.24, can similarly be completed by the use of Theorem 3.26 to show that
Gk is free on k generators, each represented by a simple loop round one of
the missing points.

Remark. The fact that S2 and similarly R3 − point are simply-connected
(noted earlier) allow a general proof that a point can be removed from any
open subset of R3 without altering its fundamental group.

Try using van Kampen’s theorem to establish this. Then deduce that the
group of the unknot in R3 (rather than S3) is infinite cyclic.

29



Knots and Links 4 2001-02

4 The group of a knot

Many properties of a knot can best be defined without reference to a specific
diagram, for example the group GK = π1(R

3−K). It is, however, particularly
useful if detailed calculations can be made using just one diagram. This is
the case for GK , and I shall now give an explicit way to find a presentation
of the group, starting from any given diagram of K.

4.1 Wirtinger’s presentation

Given a diagram of K, with k crossing points, we can think of the curve K
as divided into k arcs by the undercrossing points. Choose an orientation for
K, and select one crossing point. Start on the undercrossing arc from the
chosen crossing point c0 and label the arcs successively 1, . . . , k, labelling the
crossing points as they appear in order as undercrossings, so that arc i runs
from ci−1 to ci (possibly passing several overcrossings on the way). Finish by
setting ck = c0.

For a link L with several components, Lx, Ly, Lz, . . . say, label each com-

ponent in turn, with crossings c
(x)
0 , . . . , c

(x)
kx

on Lx, c
(y)
0 , . . . , c

(y)
ky

on Ly and

so on, where c
(y)
i is then a crossing point at which the component Ly is the

undercrossing.

Theorem 4.1 Given a diagram of a knot K with k crossings the group GK

can be presented with generators x1, . . . , xk and k relations, one for each
crossing in the diagram, to be described shortly.

Proof : Take the base point of the fundamental group GK to be the point
from which the diagram is viewed. The generator xi is defined as the element
represented by a loop, which I also call xi, passing from the base point, (i.e.
our viewpoint), by a straight line from the eye followed by a path crossing
directly under arc i from right to left and then a straight line back to the
eye, as in figure 7. Any two such loops around the arc i are homotopic in
R3 − K; another loop also representing xi is shown in figure 8.

Any loop in R3 −K which is made up of a path joined to the eye (base-
point) by two straight-line segments will appear in the diagram simply as
the image of the path – the loop xi for example will simply look like a path
crossing under the arc i.
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arc  i
xi

Figure 7:

xi

Figure 8:

Every path in R3 − K whose endpoints are visible defines a loop, by
joining the ends to the eye along the line of sight, and hence determines an
element of GK . If we choose an intermediate point in a path, also visible,
and join this also to the eye, we can define two loops, one from each part of
the path, whose composite is homotopic to the loop defined by the original
path. The two new loops then determine elements of GK whose product is
the original element. Any path which is completely visible defines a loop that
is homotopic in R3−K to the constant loop at the eye, simply by pulling all
points back to the eye along straight lines, and hence determines the identity
element of GK . It is then possible to read off the element in GK represented
by any path which crosses finitely often under K in the diagram, as a word
in the elements x±1

i . Any loop in R3 −K is homotopic to a loop of this type,
so we have established that the elements x±1

i can be taken to generate GK .
2

Remark. A fully detailed version of this result would use van Kampen’s
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xi

Plan view (from the eye)

Figure 9:

theorem; further use of the theorem will guarantee that the relations given
below are sufficient to give a complete presentation of GK .

At the crossing ci, where the incoming arc is i and the outgoing arc is
i + 1, let us suppose that the arc j(i) forms the overcrossing arc and that
it crosses with sign ε(i), under the same convention as for the discussion of
linking numbers.

Consider a loop in the form of a square lying underneath ci and crossing
once under each of the four pieces of arc which meet there. Join one corner
of the square to the eye to give a loop which represents an element of GK .
This element must be the identity e ∈ GK because the loop is homotopic to a
constant, by simply pulling the square out to its corner, when it is all visible
and can be moved back to the eye. On the other hand, the technique above
allows us to read off the element represented by the square as a product of
elements coming one from each side of the square by joining up to the eye.
Depending on how we read round the square the elements determined by the
sides will be x±1

i , x±1
i+1 and x±1

j(i).
We can alternatively read the relation as giving xi+1 in terms of xi and

xj(i), when we read round three sides of the square in place of one. We then
have the relation

xi+1 = x
−ε(i)
j(i) xix

ε(i)
j(i)

from the ith crossing. The case of a positive crossing is illustrated in figure
10.

Theorem 4.2 Wirtinger’s full presentation theorem says that GK has a pre-
sentation

GK
∼=< x1, . . . , xk; xi+1 = x

−ε(i)
j(i) xix

ε(i)
j(i) > .

Remark. In the case of a link with several components the presentation
is exactly similar, with one generator x1, . . . , xkx

, y1, . . . , yky
, . . . for each arc
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Positive crossing

i+1

ij(i)

Figure 10:

and one relation for each crossing; for a crossing c
(y)
i in which the undercross-

ing component is Ly the relation will have the form yi+1 = g−1yig where g

depends on the overcrossing arc at c
(y)
i , and will be the generator for that

arc, or its inverse.

It follows at once that all the generators of GL coming from a particular
component, Ly for example, are conjugate, i.e. yj = g−1yig for each i, j and
some g ∈ GL, since yi+1 is conjugate to yi for each i.

Remark. This illustrates a general result about fundamental groups, namely
that any closed loop in R3 − L not necessarily through the base point will
define an element of GL by first choosing a path from the base point to a
point of the loop, then going round the loop, and retracing the path to the
base point. The element of GL so defined depends on the original loop and
on the path chosen, but alteration of the path alters the element of GL only
up to conjugacy, as does any movement of the original loop in R3 −L. Then
loops, without a special restriction on base point, correspond to conjugacy
classes in GL; the conjugacy class of y1 for example is related to a meridian
loop about Ly, i.e. a loop around the edge of a small disc which crosses Ly

transversely, as illustrated in figure 8 above. The other generators yi then
clearly belong to the same conjugacy class, as they too can be represented
by meridian loops.
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4.2 The group of the trefoil

To find a presentation for the group GK of the trefoil knot K we can apply
Wirtinger’s method to the diagram illustrated in figure 11. We start with
three generators x1, x2, x3, one for each arc. The relation from crossing c0

allows us to rewrite x3 = x2x1x
−1
2 and so present the group with just two

generators. The relation from crossing c1 then reads x2x1x
−1
2 = x−1

1 x2x1

and the remaining relation, which is equivalent to this, reads x2x1x
−1
2 .x2 =

x1.x2x1x
−1
2 .

c 2c 1

c 0

1

2

3

x 1

c 3

x 1

x 3

x 2x 2

=

Figure 11:

We can rewrite these relations to give

GK =< x1, x2 : x1x2x1 = x2x1x2 > .

The curves x and y illustrated in figure 12 represent x2x1 and x1x2x1x
−1
2 x2

respectively, when completed to a loop by a straight line path to and from
the point P .

Now x = x2x1 and y = x1x2x1 so x1 = yx−1 and x2 = xx−1
1 = x2y−1 so

GK is equally generated by x and y while the relation becomes y2 = x3 in
terms of the new generators.
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x 1

x 1

x 2
x 2

x 1x 2
-1

x 2

P
y

x

Figure 12:
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5 Representations of knot groups

We shall now look at possible homomorphisms from knot groups to other
groups.

In this way we may be able to show that two knot groups are not iso-
morphic (and hence the knots are not equivalent) by comparing the possible
homomorphisms from the two knot groups to some (simpler) fixed group.

We look first at homomorphisms to abelian groups.

5.1 Abelianisation of a group

Every group G has an ‘abelianisation’, G/G′, defined formally by factoring
out the commutator subgroup G′; this is the normal subgroup of G generated
by the elements aba−1b−1 with a, b ∈ G, (see any text on group theory for
further discussion and properties). The effect of applying the natural homo-
morphism ϕ : G → G/G′ is simply to map every pair of elements in G to a
pair which commute. A presentation for G/G′ can be given readily from a
presentation of G by adding the relations that all the generators commute.

One immediate result about abelianisations is that every homomorphism
θ : G → H where H is abelian must factor through the abelianisation G/G′.
That is, there exists a homomorphism θ : G/G′ → H with θ = θ ◦ ϕ.

5.1.1 Knot and link groups

Let us distinguish between the generators of G and its abelianisation G/G′

by writing g = ϕ(g) ∈ G/G′ for the element arising from g in the abelianisa-
tion. For a link L a Wirtinger presentation for GL then gives an immediate
presentation for the group GL/G′

L, with generators x1, . . . , yky
, . . .. These

generators commute, and the Wirtinger relations give further relations of
the form yi+1 = g−1yig, which can be rewritten simply as yi+1 = yi. Set
tx = x1 = x2 = . . . , ty = y1 = y2 = . . . , . . .. Then the abelianisation is gen-
erated as an abelian group by r elements tx, ty, . . ., one for each component
of L, with no further relations, and so it is isomorphic to the free abelian
group C∞× . . .×C∞ of rank r , where L has r components. In particular the
group GK of any knot K abelianises to the infinite cyclic group, C∞

∼= Z,
generated by t = tx, represented by any meridian loop.

For a general space X the abelianisation of the fundamental group π1(X)
is known as the first homology group H1(X). Recall that any continuous map
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f : X → Y induces a homomorphism f∗ : π1(X) → π1(Y ). By considering
the homomorphism ϕY ◦ f∗ from π1(X) to the abelian group H1(Y ) we see
that there is a homomorphism, which we also write as f∗, from H1(X) to
H1(Y ), with ϕY ◦ f∗ = f∗ ◦ ϕX .

The fact that the abelianisation of the group of a link L depends only
on the number of components of the link shows that the homology group
H1(R

3 − L) of a link complement is not a useful invariant in distinguishing
between links.

Remark. Note that for the trefoil in figure 12, the abelianisation map
ϕ : GK → GK/G′

K maps the generators x1, x2 to the generator t = ϕ(x1),
while ϕ(x) = t2, ϕ(y) = t3. These powers in fact correspond to the linking
numbers of the curves x and y with K, as we shall shortly see in general.

5.1.2 Linking numbers revisited

We have already looked at the linking number of two curves K1 ∪ K2 as an
example of an invariant which was defined originally from one diagram of the
link, and then shown not to depend on the diagram chosen. We can give an
alternative proof of independence by use of the group of one component, K1

say.
For any knot K, the group H1(R

3 − K) is infinite cyclic, generated by
an element t which can be represented by any positively oriented meridian
curve, assuming that an orientation of K has been chosen. (Choice of the
opposite orientation of K would lead to the use of t−1 in place of t.) An
equivalence h from K to K ′ determines isomorphisms h∗ from GK to GK ′

and from H1(R
3 −K) to H1(R

3 −K ′). A positively oriented meridian curve
of K will be carried by h to a positively oriented meridian of K ′, since h
is orientation preserving. The induced isomorphism from H1(R

3 − K) to
H1(R

3 − K ′) then carries the generator t to the generator t′, where both
are represented by positively oriented meridians. (An orientation reversing
homeomorphism, such as a reflection, would carry t to t′−1.)

Suppose now that K1 ∪ K2 is a link, with a chosen orientation for each
component. Regard K2 as an oriented curve in the complement of K1. Then
K2 represents an element k2 ∈ GK1 up to conjugacy, and so determines an
element ϕ(k2) = tℓ ∈ GK1/G

′
K1

= H1(R
3 − K1) which depends only on K2.

Choose a diagram of K1 ∪ K2 and use it to give a Wirtinger presentation of
GK1. The curve K2 will then give an element k2 as a product of generators
of GK1, one for each crossing of K2 under K1 in the diagram, with sign
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depending on the sign of the crossing. Thus

k2 = x
ε(i1)
i1 x

ε(i2)
i2 . . . x

ε(is)
is

say, where K2 crosses under the arcs i1, i2, . . . , is of K1 in turn. Since ϕ(xi) =
t for each arc i of K1 we have ϕ(k2) = tℓ, where

ℓ =
s

∑

j=1

ε(ij) = lk(K1, K2).

This gives an alternative proof of the invariance of linking number, since
any equivalence h carrying K1 ∪ K2 to K ′

1 ∪ K ′
2 will take k2 to h(k2), and

ϕ(h(k2)) = h∗(ϕ(k2)) = h∗(t
ℓ) = t′ℓ. In this setting the linking number of

K2 with K1 may then be defined as the exponent ℓ where K2 represents tℓ in
H1(R

3 − K1), and t is the generator represented by the positively oriented
meridian.

5.2 Knot colouring

We move now from abelian representations of a knot group (which can only
have cyclic image) to look at some other homomorphisms from knot groups
that can sometimes be used to tell knots apart. The existence of such ho-
momorphisms will be shown to be detectable from a single diagram of the
knot.

Definition. The knot diagram DK can be n-coloured if we can assign a
colour di to each arc i, drawn from a palette of n colours labelled 0, . . . , n−1,
so as to satisfy the following requirements:

1. At the crossing ci the colour of the overcrossing arc j(i) must be the
average mod n of the colours of the other two incident arcs i and i + 1,
in other words

2dj(i) = di + di+1 mod n,

2. The colours di must not all be congruent mod r for any factor r > 1 of
n.

Theorem 5.1 (a) If any one diagram DK of a knot K can be n-coloured
then there is a surjective homomorphism d : GK → Dn, where Dn is the
dihedral group of symmetries of a regular n-gon.
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(b) If there is a surjective homomorphism d : GK → Dn then every diagram
of K can be n-coloured.

Proof : There is a presentation of the group Dn with two generators, a
rotation a, having an = e, and a reflection b = b0, say. Set br = arb, so that
the reflections in Dn are written b0, . . . , bn−1. Note that brbs = ar−s.
(a) Define d by d(xi) = pi where pi is the reflection bdi

. This will determine
a group homomorphism provided that the relations in the Wirtinger presen-
tation of GK are respected. Thus we require pj(i)pi+1 = pipj(i) for each i.
Now

pj(i)pi+1 = adj(i)−di+1

pipj(i) = adi−dj(i)

while condition (1) for the diagram shows that

dj(i) − di+1 = di − dj(i) mod n.

Condition (2) guarantees that the homomorphism d is surjective, since all
powers adi−dj lie in the image of d and, by (2), they generate the whole cyclic
subgroup generated by a. Together with any reflection pi the whole of Dn

then lies in the image of d.
(b) Use the Wirtinger presentation for a given diagram of K. Since all
meridians of GK are conjugate it follows that d(xi) must be a reflection for
each i, otherwise d(xi) is a rotation for each i and so the image of d consists
entirely of rotations, and is not the whole of Dn.

Write d(xi) = bdi
to define di, the colour for the i-th arc. This determines

an n-colouring for the diagram, since condition (1) follows from the relations
in GK while (2) follows from the surjectivity of d. 2

Examples. It is clear equally from the group-theoretic test, or from the
diagram check, that the unknot cannot be n-coloured for any n.

The trefoil can be 3-coloured, but cannot be n-coloured for any larger n.
(prove this)

The figure-eight knot cannot be 3-coloured, but can be 5-coloured.
Show how to distinguish the knot in figure 13 from the trefoil using n-

colouring for some suitable choice of n.

Remark. For n prime, the condition (2) is the same as saying that the
same colour must not be used for all arcs, i.e. that at least two colours must
be used.
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Figure 13:

We can write an equivalent version of condition (1) in terms of linear
equations over Zn.

Suppose that the diagram which we are using has k crossings. Write A
for the (k − 1)× k matrix with entries ai i = ai i+1 = −1, ai j(i) = 2 and other
entries zero. We require a solution

d =







d1
...
dk







to the equations Ad = 0 which must not be a multiple of







1
...
1





.

When n is prime this last restriction is sufficient for condition (2), and
it is then equivalent to asking that A should have rank < k − 1, i.e. that
the matrix given by deleting a column of A should have determinant equal
to zero modn. It can be shown from other considerations that this matrix
will always have non-zero determinant (as an integer), and in fact will be
non-zero mod 2. There are thus only a finite number of possible prime n for
which any given K can be n-coloured.
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Note for later. The matrix A(t) with entries ai i = −1, ai i+1 = t, ai j(i) =
1 − t for a positive crossing, and ai i+1 = −1, ai i = t, ai j(i) = 1 − t for a
negative crossing is the Alexander matrix derived from the Wirtinger pre-
sentation with the given knot diagram. The Alexander polynomial ∆K(t) is
the determinant of the (k − 1) × (k − 1) matrix given by deleting a column.
Now the matrix A above is A(−1), so for n prime

K is n-colourable ⇐⇒ ∆K(−1) = 0 modn.
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6 Knots and surfaces

We shall be able to find information about a knot K in R3 by constructing
a surface F lying in R3 of which K forms the boundary ∂F . We call any
such surface a spanning surface for K. Anyone familiar with vector calculus
will recall the relations given by Stokes’ theorem between integrals of vector
fields across a surface F and integrals around its boundary ∂F for example.

As in Stokes’ theorem, we shall only consider orientable spanning surfaces.
I shall summarise some facts about surfaces, considered first as ‘abstract’
surfaces, that is simply as topological spaces not necessarily lying in R3, and
then look at some features of surfaces when they are embedded in R3. For
further background consult a text such as Armstrong’s ‘Basic Topology’.

6.1 Surfaces on their own

There are a number of equivalent definitions of surfaces, using either local
properties as 2-dimensional topological or smooth manifolds, or a more com-
binatorial approach in terms of triangulations. For our purposes the com-
binatorics will give the most directly applicable view. We take a compact
surface with boundary F to be made up of a finite union of pieces {Pi}, each
homeomorphic to a closed disc, Di say, in R2. Two pieces only meet along
their boundary (the image of the bounding circle of Di); the boundary of
each Pi is made up of a finite number of intervals in such a way that each
interval forms part of the boundary of at most one other Pj .

We take the orientation of every simple closed curve in R2 to be anti-
clockwise. Then the boundary of each disc Di in R2 has a chosen orienta-
tion, which defines, by the homeomorphism with Pi, an orientation of the
boundary curve of Pi. Every interval Pi ∩ Pj common to two pieces is ori-
ented in two ways, once as part of ∂Pi and once as part of ∂Pj . We call the
surface orientable if the homeomorphisms can be chosen so that these two
orientations are opposite for every interval Pi∩Pj . We then say that we have
made a consistent choice of homeomorphisms.

Remark. The possibility of making a consistent choice can be shown to
hold for all dissections of a given F if it holds for one dissection. For example,
if F is itself just a disc in R2 dissected into a union of polygons {Pi} then
we may take Di = Pi, with the identity map, so that the boundary of each
Pi is oriented anticlockwise. The common boundary between any Pi and Pj
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will then inherit ‘cancelling’ orientations from the polygons on each side.

The boundary of F , consisting of one or more closed curves, is made up of
the parts of the boundaries of Pi which occur in only one Pi. For an orientable
surface each of these curves inherits an orientation from a consistent choice
of homeomorphisms.

Euler characteristic. Any dissection of a surface F has an Euler charac-
teristic χ defined by χ = P − E + V where P is the number of pieces, E is
the number of edges, i.e. intervals on the boundaries of the pieces, and V is
the number of vertices, the end points of the boundary intervals.

Theorem 6.1 Any two dissections for a given F have the same Euler char-
acteristic.

Theorem 6.2 Every orientable surface with r boundary curves is homeo-
morphic to Fg,r for some g, where Fg,r is an explicit surface, realisable in R3

as a sphere with g handles, and with r discs removed.

Corollary 6.3 An orientable surface is determined up to homeomorphism
by its Euler characteristic and number of boundary components.

Proof : χ(Fg,r) = 2 − r − 2g so we can find g from r and χ. 2

Figure 14 shows a fairly standard view of Fg,1.

c1 c2 c3 c4

Figure 14:

The surface Fg,r, r ≥ 1 may alternatively be viewed as the neighbourhood
of a family of closed curves c1, . . . , c2g, d1, . . . , dr−1, and some arcs joining
them together. The curves themselves may be taken to be disjoint, except
that the pairs c2i−1, c2i each meet in a single point, and we may take the arcs
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to join the points of intersection of successive pairs, and then single points
on each of the curves dj , as in the illustrations below.

Figure 15 shows the alternative view of the surface Fg,1, drawn as a neigh-
bourhood of the curves {ci}.

c2g-1c1 c2 c3 c4 c2g

Figure 15:

For the surface Fg,r add the modification in figure 16 to the right hand
end of the picture.

c2g-1
c2g d1 dr-1

Figure 16:

The fundamental group π1(Fg,r), based say at the first point of intersec-
tion, is a free group, generated by elements c1, . . . , c2g, d1, . . . dr−1, using the
path determined by the arcs to pass from the base point to a point on the
relevant closed curve. It is thus free of rank 2g + r − 1 = 1 − χ. Its abelian-
isation, H1(Fg,r), is then free abelian of this rank. The r boundary curves
can be taken to represent elements of π1(F ) when we orient them and choose
a path to each one from the base point. With the orientations shown in the
illustration these curves represent

d1, d2, . . . , dr−1 and [c1, c2] [c3, c4] . . . [c2g−1, c2g] d
−1
1 d−1

2 . . . d−1
r−1.

Here [a, b] stands for the commutator [a, b] = aba−1b−1. Consequently in

H1(F ) the boundary curves represent d1, . . . , dr−1 and
∏

d
−1

j , in multiplica-

tive notation, (−d1 − . . .− dr−1 in additive notation). When r = 1 the single
boundary curve represents the trivial element of H1(F ).
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Note. The orientations used above for the curves are consistent with a
choice of orientation for F , so we see that in general, when F has been ori-
ented and its boundary curves are taken with consistent orientation they
represent elements of the group H1(F ) whose product (sum, in additive no-
tation) is trivial. (This in fact is the original idea behind homology, which
set out to handle oriented curves in X, adding two curves by taking their
union, and declaring a curve to be equivalent to zero (null-homologous) if it
bounded an orientable surface lying in X.)

6.2 Surfaces lying in R3

We shall now consider orientable surfaces lying in 3-dimensional space. The
boundary of any such surface is then a knot or link with a consistently chosen
orientation. We shall aim to study properties of the boundary curve by means
of features of a ‘spanning surface’. One point which must now be established
is that we can always find a spanning surface for a given oriented link.

First let us apply the observation above about the boundary curves in a
surface in the case when the surface lies in R3.

Corollary 6.4 Suppose that L is a curve in the complement of a knot K,
and that F ⊂ R3 − K is an orientable surface with boundary L. Then
lk(L, K) = 0.

More generally, suppose that L1, . . . , Lr are curves in the complement of
a knot K, and that F ⊂ R3 −K is an orientable surface with boundary L1 ∪
. . .∪ Lr. Then

∑

lk(Lj , K) = 0 when the curves Lj are oriented consistently
with an orientation of F .

Proof : The curve Lj in F determines an element [Lj ] ∈ H1(F ), and
∏

[Lj ] =
1 in H1(F ), when the curves are consistently oriented.

Consider the homomorphism i∗ : H1(F ) → H1(R
3 − K) induced by the

inclusion i : F → R3−K. Now H1(R
3 −K) is infinite cyclic, with generator

t, and the curve Lj represents tlk(Lj ,K) in this group. Thus i∗[Lj ] = tlk(Lj ,K).

Because i∗ is a group homomorphism we then have i∗(
∏

[Lj ]) = t
∑

lk(Lj ,K).
But i∗(

∏

[Lj ]) = i∗(1) = 1 = t0, and so
∑

lk(Lj , K) = 0. 2
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6.2.1 Seifert’s construction

We now show how to construct an orientable surface F ⊂ R3 spanning any
given knot K. The same construction, applied to an oriented link L will give
a surface whose oriented boundary is L.

Construction. Start with an oriented diagram for K. In place of each
crossing join the overpass to the underpass by two arcs respecting the ori-
entation so as to get a number of oriented closed curves which form a new
diagram without any crossings. Arrange these closed curves, C1, . . . , Ck say,
to lie in planes at different levels in R3. If one curve lies inside another in
the diagram then place it at a higher level in R3. Each curve Cj bounds a
disc Dj in its plane. Choose the orientation of Dj consistently with that of
Cj, (this simply involves using projection to a fixed copy of R2 in the case
where Cj is oriented anticlockwise, or projection followed by a reflection in
the other case, to formally identify Dj as an oriented surface.) Finally con-
nect the discs by a twisted rectangle Ri at each crossing, in which two edges
of Ri form the part of K which was removed, while the other two edges are
joined to the discs. The result is a surface F whose boundary is K. The
orientation on Ri can be chosen so that the edge orientations cancel on each
of the two adjoining discs, so that the complete surface F is oriented, and
determines the chosen orientation on the boundary K.

The surface F has one boundary curve, so F ∼= Fg,1 for some g, called
the genus of F . We can find g easily from a calculation of χ for F , since
χ = 1 − 2g. Now let us calculate χ(F ) by adding the contributions from
Dj and Ri separately. To avoid counting edges and vertices twice, we shall
count common edges and vertices only as the contribution from the discs Dj ,
so that each rectangle will contribute two edges only, and no vertices, to the
sum. There is then a net contribution of 1 − 2 + 0 = −1 for each Ri, and
a contribution of 1 from each Dj, since there are the same number of edges
and vertices on the boundary of a disc. The result is then

χ(F ) = k − n

where there are n crossings in the diagram, and k ‘Seifert circles’, (the closed
curves Cj constructed by cutting out the crossings).

This construction shows that every knot K has an orientable spanning
surface; I shall call a spanning surface which arises from this construction on
some diagram a projection surface for K.
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Definition. The genus gK of K is the minimum genus g(F ) among all
orientable surfaces F which span K.

Although the genus of the projection surface for a diagram of K depends
on the diagram, the genus of K is an invariant of K, because any homeo-
morphism carrying K to an equivalent knot K ′ will carry a spanning surface
of K to one of K ′.

Remark. If K is spanned by a surface F ∼= D2 then we can use the
homeomorphism from F to D2 to see how K could be moved through F to
lie in a small, essentially planar, part of F . This isotopy of K within F can
be extended to R3 to give an equivalence of K with a curve bounding a disc
in a plane, so that

K is unknotted ⇐⇒ K is spanned by a disc

⇐⇒ gK = 0.

It is not always easy to find the genus for a given knot. Seifert’s con-
struction certainly will give an upper bound, just by calculating the genus
of some projection surface, but this may not be the minimum, and there are
even cases where no projection surface has the minimum genus. We shall
shortly find a readily calculated lower bound for the genus.

The trefoil has genus ≥ 1, since it is known to be knotted. The simplest
projection surface has genus 1, so we can be sure that the trefoil has genus
1.

6.2.2 General spanning surfaces

We shall restrict our attention for the moment to the case of knots, and
consider a knot K with an orientable spanning surface F lying in R3. If F
has genus g then it is homeomorphic to the standard surface Fg,1, which we
regard as made up of 2g ribbons surrounding embedded curves c1, . . . , c2g. Let
h : Fg,1 → F be a homeomorphism, and consider the corresponding curves
h(c1), . . . , h(c2g) in F . These curves may well be knotted and intertwined in
R3, but within F they lie just like c1, . . . , c2g do in Fg,1. The surface F , with
boundary K, then consists of 2g (possibly rather uneven) ribbons around
these curves. It is possible to move its boundary K within F so as to lie
as close as desired to the curves h(c1), . . . , h(c2g), using F as a guide to the
movement. In the course of moving K within F we can ensure that K is
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never moved through itself in R3, and so the final curve is a knot equivalent
to the original curve K, which bounds a surface consisting of ribbons close to
the curves h(c1), . . . , h(c2g), and a connecting set of arcs, as shown in figure
17

c1
c2 c3 c4

c1*

c3*

Figure 17:

We can think of the neighbourhood of the arcs as a disc, to which 2g
ribbons have been attached, remembering that the individual ribbons may
well be twisted and knotted and interlinked with the others as they lie in R3.
To save notation in what follows, write ci in place of h(ci) for the curves in
the surface F .

The complement R3−F is essentially the same as R3−core curves and arcs,
certainly as regards its fundamental group. We can use a similar construc-
tion to the Wirtinger presentation to find a presentation for this fundamental
group, in terms of loops around pieces of the core curves, and consequently
we can find H1(R

3 − F ). It turns out that H1(R
3 − F ) is free abelian of

rank 2g, generated by ‘meridians’ c∗1, . . . , c
∗
2g, where c∗i encircles the i-th rib-

bon. The main feature of this presentation which we shall use later is that
lk(ci, c

∗
j ) = δij . In what follows we shall not need to view F explicitly as

ribbons, nor find curves ci exactly as here, but we shall use the existence of
the generating systems c1, . . . , c2g for H1(F ) and c∗1, . . . , c

∗
2g for H1(R

3 − F ),
with their linking properties.

48



Knots and Links 6 2001-02

Let c∗ be any curve in R3 which does not meet F . Any curve x in F will
have linking number lk(x, c∗) determined by its image, when regarded as an
element of H1(F ), under the group homomorphism i∗ : H1(F ) → H1(R

3−c∗).
Suppose then that x = x1c1 + . . . + x2gc2g in H1(F ), written additively, for
some xi ∈ Z. Then lk(x, c∗) =

∑

xi lk(ci, c
∗), so that

lk(x, c∗j) = xj .

It follows that we can find the coefficients xj , and hence the element of H1(F )
which the curve x represents once we know the linking numbers of x with
each of the curves c∗j . Similarly, for c∗ =

∑

yjc
∗
j in H1(R

3 − F ) we have
lk(ci, c

∗) = yi, and again the element c∗ ∈ H1(R
3 − F ) is determined by the

linking numbers of c∗ with the basis elements ci.

Aside. We may note that the linking number gives a bilinear pairing

lk : H1(F ) × H1(R
3 − F ) → Z

taking a pair (x, c∗) to lk(x, c∗). The bases chosen for H1(F ) and H1(R
3−F )

are dual bases with respect to this pairing, and the pairing is non-degenerate.

We shall not always use the basis above in describing elements of H1(F )
and H1(R

3 − F ), but its existence guarantees certain results which we shall
call on later. Firstly, both groups can be written additively as Z2g, and
any other choice of basis {ai} for H1(F ) will determine a ‘dual’ basis {a∗

i }
of H1(R

3 − F ) with respect to the linking pairing, that is lk(ai, a
∗
j) = δij .

For, given the basis {ai} we may write cj =
∑

pijai for some invertible
integer matrix P = (pij) ∈ GL(2g,Z). Then set a∗

j =
∑

pjic
∗
i to define a

new basis {a∗
j} for H1(R

3 − F ). Now a little linear algebra shows that for
c =

∑

xiai =
∑

yjcj ∈ H1(F ) and d =
∑

x∗
i a

∗
i =

∑

y∗
j c

∗
j ∈ H1(R

3 − F )
we can think of c as having coordinate vectors x and y related by x = Py,
while for d the coordinate vectors x∗ and y∗ in the two bases are related by
y∗ = P Tx∗.

Then lk(c, d) = (y∗)Ty = (x∗)T Py = (x∗)Tx. Take c = ai and d = a∗
j to

confirm that lk(ai, a
∗
j ) = δij .
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7 The Conway polynomial

In this section we shall show how to define the Conway polynomial of a knot,
starting from a spanning surface.

7.1 Seifert matrices

Take an orientable surface F spanning a knot K. At any interior point of a
surface F in R3 there are locally two ‘sides’ to the surface, for a small enough
ball around the point is separated into two components by the surface. For
an orientable surface we can globally distinguish these two sides as ‘top’ and
‘bottom’, by saying that a line crossing F transversely passes from bottom
to top if the curve in F going round its intersection point in the right handed
sense has come from an anticlockwise curve in R2 under the homeomorphism
from the appropriate disc Di. The choice of consistent homeomorphisms
dictates which side will be which, with the alternative choice interchanging
top and bottom, and at the same time reversing the orientation of all the
boundary curves of F . There is then a map i+ : F → R3 − F defined by
pushing F in the direction of the positive normal, i.e. the normal which
crosses the surface from bottom to top.

Choose embedded curves a1, . . . , a2g in F forming a basis for H1(F ).
Translate them by i+ into R3 − F to give curves a+

1 = i+(a1), . . . , a
+
2g in

R3 − F .

Definition. The 2g × 2g integer matrix A = (aij), where aij = lk(ai, a
+
j ), a

Seifert matrix for the surface F .

This matrix can be thought of as the matrix of the linear map i+∗ :
H1(F ) → H1(R

3 − F ) with respect to the basis {ai} of H1(F ) and the
dual basis {a∗

i } of H1(R
3 − F ), where both groups are written additively as

Z2g, since the j-th column of A consists of the coordinates, in the basis {a∗
i },

of the image a+
j of the j-th basis element.

A different choice of basis for H1(F ), to a basis {bj} say, will lead to
a Seifert matrix B = QT AQ, where the matrix Q is the invertible integer
matrix (with integer inverse), which relates the two bases by bj =

∑

qijai.
Note that det Q = ±1, since Q−1 must also have integer entries.

We could interpret A as the matrix of the bilinear form H1(F )×H1(F ) →
Z pairing (x, y) to lk(x, y+). We can translate the curves x and y+ along the
normal to F so that x is moved off to the negative side, to become x− while
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y+ returns to lie on F as the curve y. The link x ∪ y+ is then equivalent
to the link x− ∪ y, so that lk(x, y+) = lk(x−, y) = lk(y, x−) by symmetry
of linking number. It follows that aji = lk(ai, a

−
j ) so that the matrix AT

represents i− : H1(F ) → H1(R
3 − F ) in the same bases as for i+.

7.2 Polynomials

Notation. For any n × n matrix A, set G(s, u) = det(sA + uAT ).

Take a Seifert matrix A for the surface F , with some choice of basis for
H1(F ).

Theorem 7.1 The polynomial G(s, u) defined from a Seifert matrix for the
surface F is independent of the choice of basis of H1(F ).

Proof : For another choice of basis we have matrix B = QT AQ and then

det(sB + uBT ) = det QT (sA + uAT )Q = (det Q)2G(s, u) = G(s, u).

2

Notation. Write G(s,−s−1) = F (s).

Theorem 7.2 We can write F (s) = ∇(z) as a polynomial in z = s − s−1.

Proof : We have

G(u, s) = det(uA + sAT ) = det(uA + sAT )T = G(s, u).

Now G is a homogeneous polynomial of degree n in s and u which is symmet-
ric. Hence it can be rewritten as a polynomial D(z, v), say, in the elementary
symmetric functions z = s + u and v = su. Put u = −s−1 to get v = −1,
z = s − s−1 and G(s,−s−1) = F (s) = ∇(z). 2

Clearly F (s−1) = (−1)nF (s). Now F (s−1) = ∇(s−1 − s) = ∇(−z). So

∇(−z) =
{∇(z), n even
−∇(z), n odd

and it is thus either an even or an odd polynomial in z depending on n.
Where K is a knot then n = 2g and so ∇(z) is a polynomial in z2.

51



Knots and Links 7 2001-02

Theorem 7.3 ∇(z) depends only on K and not on the chosen spanning
surface F .

The proof will be given later, in a slightly different form, but a version,
depending on a further assumption about spanning surfaces, follows shortly.

Definition. The polynomial ∇(z) is known as the Conway polynomial of the
knot K. A similar definition can be made for any oriented link.

Definition. The Alexander polynomial is closely related, and is basically
F (s) multiplied by a large enough power of s to clear it of negative powers
of s, and written in terms of t = s2.

Since F (s) = s−ndet(s2A − AT ) we have, up to a power of t, that the
Alexander polynomial ∆(t) is det(tA − AT ).

7.3 Properties of Conway and Alexander polynomials

Theorem 7.4 For a knot K, deg(∇(z)) ≤ 2gK.

Proof : For an n × n matrix A, the polynomial G(s, u) = det(sA + uAT ) is
homogeneous of degree n in s and u, and hence has degree ≤ n in z = s + u
when rewritten in terms of z and v = su. Where the knot K has a spanning
surface of genus g the Seifert matrix A is a 2g × 2g matrix, so that ∇(z) =
G(s,−s−1) has degree ≤ 2g in z. This is true for all spanning surfaces, since
∇(z) does not depend on the surface chosen, and hence deg(∇(z)) ≤ 2gK

where the genus gK is the minimum genus over all spanning surfaces. 2

Suppose that deg∇(z) = k. Then k is even for a knot, since ∇(z) is an even
function. Then sk∇(s − s−1) is a polynomial in s2 = t, which we write as
∆(t), the Alexander polynomial of K. The Alexander polynomial also has
degree k, which is again a lower bound for 2gK .

Theorem 7.5 The Alexander polynomial for a knot has the form

∆(t) = c0 + c1t + . . . + ckt
k, with ci = ck−i.

Proof : For a knot, ∇(−z) = ∇(z), so

∆(t−1) = s−k∇(s−1 − s) = s−k∇(s − s−1)

= s−2k∆(t)

= t−k∆(t).
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Then ∆(t) =
∑

cit
i = tk∆(t−1) =

∑

cit
k−i. 2

Theorem 7.6 For a knot K, ∇(0) = 1.

Proof : The constant term ∇(0) = G(1,−1) can be calculated from any
choice of basis for H1(F ), where F is a spanning surface and A is the resulting
Seifert matrix, as ∇(0) = det(A − AT ).

Take as basis the family of curves c1, . . . , c2g, with the property that c2r−1

and c2r only meet in one point, and otherwise pairs of curves don’t meet at
all. Write D = A − AT . Then dij = lk(ci, c

+
j ) − lk(cj , c

+
i ).

If ci and cj don’t meet, then the link ci ∪ cj is equivalent to the links
ci ∪ c+

j and c+
i ∪ cj. Then

lk(ci, c
+
j ) = lk(ci, cj) = lk(cj, c

+
i )

and so dij = 0.
Suppose now that ci and cj cross at one point in F , as in the remaining

cases with i = 2r − 1, j = 2r. We can view ci ∪ cj so that the intersection
point is seen from the top of the surface F , while otherwise we assume that
we see a finite number of crossings of ci with cj. We may then view the
link ci ∪ cj+ as having the same diagram as ci ∪ cj except at the intersection
point, where c+

j passes above ci. The link c+
i ∪ cj has the same diagram,

except this time c+
i passes above cj at the intersection point. Consequently,

the difference in linking number,

dij = lk(ci, c
+
j ) − lk(cj, c

+
i )

= lk(ci, c
+
j ) − lk(c+

i , cj)

= ±1,

depending on the sign of the crossing at the intersection point, which features
in counting crossings of cj under ci in lk(c+

i , cj) but not in lk(ci, c
+
j ). Since

dji = −dij the matrix D then has the form

D = ±
(

0 1
−1 0

)

⊕±
(

0 1
−1 0

)

⊕ . . .

giving det D = 1. 2

Example. The trefoil and figure eight knots have ∇(z) = 1 + z2 and
∇(z) = 1− z2 respectively. The only possible polynomials for knots of genus
1 are ∇(z) = 1 + nz2 for some n ∈ Z, and all of these occur.
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Seifert showed that all even polynomials ∇(z) with ∇(0) = 1 occur as the
polynomial of some knot. It is possible that the genus is strictly larger than
1
2
deg∇ and indeed there are very many non-trivial knots with ∇(z) = 1.

To prove that ∇(z) is independent of the choice of spanning surface it is
possible to use the result of Trotter on ‘S-equivalence’ of spanning surfaces.
This relies on the notion of modifying a spanning surface by ‘adding a hollow
handle’, where F is modified by embedding a copy of D2 × I in S3 − K and
avoiding F , except that the two ends D2 × {0} and D2 × {1} meet F in two
disjoint discs. A new spanning surface F ′ is formed by deleting the discs and
replacing them by the cylinder S1 × I.

Two surfaces in R3 which can be changed from one to the other by a
sequence of moves either adding or removing hollow handles are called S-
equivalent. Trotter shows that any two orientable surfaces with the same
boundary are S-equivalent.

It is then enough to show that ∇(z) is unaltered when the spanning
surface is changed by adding a hollow handle.

Start from a spanning surface F , and add a hollow handle to give a
surface F ′. Choose generators for H1(F

′) to consist of 2g generators for
H1(F ) together with two extra generators c and d, where d is the meridian
curve S1 × {1

2
} lying entirely on the hollow handle and c runs across the

handle, meeting d in just one point. Then d spans a disc which meets none
of the generators of H1(F ), so that lk(ai, c

+) = lk(ai, d
+) = lk(d, a+

i ) = 0,
while lk(d, d+) = 0.

We also have lk(c, d+) = ±1 while lk(d, c+) = 0. The Seifert matrix for
F ′ then has the form







A v 0
wT k ±1
0T 0 0





 .

We have

G′(s, u) = det







sA + uAT sv + uw 0
swT + uvT (s + u)k ±s

0T ±u 0







= −su det(sA + uAT )

= −su G(s, u),

on expanding the determinant by the last row and then by the last column.
Putting u = −s−1 gives G′(s,−s−1) = G(s,−s−1) as required.
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Remark. I am grateful to Pedro Manchon for pointing out that my def-
inition of a hollow handle in the original version of these notes was too
restrictive.

7.4 Seifert matrices again

When looking for a basis of curves for the homology of an explicit spanning
surface F for a knot it is useful not to have to manipulate the surface into any
sort of standard form. The following sufficient condition is then helpful in
ensuring that the curves chosen can be used in constructing a Seifert matrix.

Proposition 7.7 Let F be a surface in R3 of genus g, and one boundary
component. If we find curves a1, . . . , a2g in F and a∗

1, . . . , a
∗
2g in R3 −F with

lk(ai, a
∗
j) = δij then a1, . . . , a2g forms a basis for H1(F ).

Proof : We know that there exists a basis c1, . . . , c2g of H1(F ) with a dual
basis c∗1, . . . , c

∗
2g of H1(R

3 − F ). We may then write the elements ai and a∗
j

in terms of these bases, as ai =
∑

pikck and a∗
j =

∑

qjℓc
∗
ℓ , for some integer

matrices P = (pik) and Q = (qjℓ). Then

δij = lk(ai, a
∗
j ) =

∑

pikqjℓlk(ck, c
∗
ℓ) =

∑

pikqjℓδkℓ =
∑

pikqjk,

so that I = PQT . It follows that det P det Q = 1, so det P = det Q = ±1,
and P has an integer inverse. We can then express the elements {ck} as
integer combinations of {ai}, showing that {ai} also form a basis for H1(F ).
2

We may choose curves a1, . . . , a2g for a projection surface so that for each ai

there is at least one ‘crossing rectangle’ through which ai passes once, while
no other aj pass through at all. Then we can choose a curve a∗

i around this
rectangle in R3 − F to satisfy the linking conditions above, and ensure that
a1, . . . , a2g chosen in this way forms a basis for H1(F ).

Example. In the knot shown in figure 18, and more generally in figure 19,
where there are 2m and 2k half-twists as indicated, the projection surface
has genus g = 1, (from a calculation of χ), so that we need to find two curves
a1 and a2. These can be chosen so that one passes along the ribbon with
m twists, and the other along the ribbon with k twists, meeting in just one
point in the surface F .
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Figure 18:

2m

2k

Figure 19:

The entries aij = lk(ai, a
+
j ) in the resulting Seifert matrix can then be

found; it is enough in general, for i 6= j, to move aj away from F only near
the intersection points of ai with aj , to give two disjoint curves. The surface
F can be ignored after this in calculating their linking number. In the case
i = j note that the curve a+

i can be moved down, without meeting ai, so
as to lie on the surface F just to one side of ai, giving a pair of curves in
F which are equivalent to the pair ai ∪ a+

i . It is easy to draw these curves
alone, without the rest of the surface F , noting simply that as ai passes
through a rectangle then any curve lying beside it must follow the twist in
the rectangle. The diagonal entry aii is then the linking number of the curve
ai with a neighbouring parallel curve in F .
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In the example of figure 19 we have a12 = 0, a21 = 1, a11 = m, a22 = k, so
that

sA + uAT =
(

mz u
s kz

)

and ∇(z) = 1 + mkz2. This Conway polynomial will then not serve to
distinguish between the cases m = 6, k = 1 and m = 3, k = 2, for example.

p q r

Figure 20:

The knots in figure 20 with p, q, r all odd (positive or negative) also have
a projection surface of genus 1, and ∇(z) = 1 + f(p, q, r)z2. It is possible to
choose p, q, r so that f(p, q, r) = 0, while avoiding knots which are obviously
trivial. Try (p, q, r) = (−3, 5, 7).

In fact the knots with |p| , |q| , |r| > 1 can be shown to be non-trivial by
exhibiting a homomorphism from the knot group onto a non-abelian group
of 3 × 3 matrices.

7.5 Connected sums

The operation of tying two knots one after the other on a piece of rope can
be realised for closed curves as follows. Take two knots K1 and K2 lying
in disjoint half-spaces, separated by a plane R2. Draw an arc from a point
on K1 to a point on K2 which crosses the separating plane R2 just once.
Then break K1 and K2 at the ends of the arc, and join them by two edges
of a ribbon which follows the chosen arc. The resulting curve K is called
the connected sum of K1 and K2, written K = K1 + K2. It can be shown
that K is independent, up to equivalence, of the choice of arc used in the
construction.
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7.5.1 Conway polynomial for a connected sum

Surfaces F1 and F2 spanning K1 and K2 in their separate half-spaces can
be joined by the ribbon around an arc which avoids the surfaces to give a
surface F = F1 + F2 spanning their connected sum K = K1 + K2. Then, by
calculating the Euler characteristics, we have

genus(F ) = genus(F1) + genus(F2).

A basis for H1(F ) can be taken as {a(1)
i } ∪ {a(2)

j }, where {a(1)
i } lie in F1 and

form a basis for H1(F1) while {a(2)
j } similarly form a basis for H1(F2). The

curves a
(1)
i and a

(2)
j lie in separate half-spaces, so they are disjoint, and have

linking number 0. The Seifert matrix arising from this choice of basis then
has the form A = A1 ⊕A2, where A1 and A2 are Seifert matrices for F1 and
F2. Hence

∇K(z) = det(sA+uAT ) = det((sA1+uAT
1 )⊕(sA2+uAT

2 )) = ∇K1(z)∇K2(z).

7.5.2 The genus of a connected sum of knots

It is clear from the construction that there exists a spanning surface for
K = K1 + K2 of genus gK1 + gK2, so that gK ≤ gK1 + gK2.

If K1 and K2 satisfy gK1 = 1
2
deg∇K1 and gK2 = 1

2
deg∇K2 then the in-

equality gK ≥ 1
2
deg∇K shows immediately that gK = gK1 + gK2.

It is possible to prove this in general, by consideration of how a spanning
surface F ′ for K of minimal genus gK meets the separating plane. This
general result shows in particular that if K1 + K2 is unknotted (so that
gK = 0) then K1 and K2 must both be unknotted.

It can also be shown that connected sum of knots is an associative and
commutative operation, so for example K1 + K2 + K3 = K1 + K3 + K2.
Geometric arguments can be used to show further that every polygonal knot
K has a decomposition, unique up to order of factors, as K = K1 + · · · +
Kr, where the factors are non-trivial, and cannot themselves be decomposed
further.

7.6 Links and the Conway polynomial

We may extend the calculation of Conway polynomials to cover the case of
oriented links. We can again choose an oriented spanning surface F for a
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link L, to induce the chosen orientation on its boundary components. Note
that a spanning surface will have to be quite different if the orientation of
one boundary component is reversed.

Using a connected spanning surface F we may then find an n× n Seifert
matrix A as before, with n = 2g + r − 1 when L has r components. Then
take ∇(z) = det(sA + uAT ), as a polynomial in z, even or odd, depending
on the parity of n, and hence on the number of components of L. If L can
be spanned by a union of several disjoint surfaces these may be connected
by tubes to give a connected spanning surface.

Note that if L = L1 ∪L2 with lk(L1, L2) = 0 then it is always possible to
modify a surface spanning L1 to give one which avoids L2 by running tubes
around L2 to cut out pairs of punctures of the surface by L2 with opposite
signs. However it is not in general possible to do this simultaneously for L1

and L2 so that the two surfaces are disjoint.

Example. The link shown in figure 21 can be spanned by a ribbon F with
rank H1(F ) = 1, and H1(F ) can be generated by the single core curve d1

having lk(d1, d
+
1 ) = m. This gives ∇(z) = mz.

2m

Figure 21:

In general, a spanning surface F for a 2-component link L = L1 ∪ L2

has a basis c1, . . . , c2g, d1 for H1(F ), where the curve d1 lies parallel to the
component L1. We can then calculate the diagonal element lk(d1, d

+
1 ) in

the resulting Seifert matrix A as follows. The curve d+
1 can be replaced by a

parallel curve to d1 in F , so for the purposes of calculating the linking number
we may consider simply d1 and the boundary curve L1 itself. The surface
F contains a ribbon parallel to L1, whose other edge consists of the curve
d1. Remove this ribbon from F to get an orientable surface F ′ in R3 − L1
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whose oriented boundary consists of d1 and L2 with their given orientation.
Then d1 + L2 = 0 as elements of H1(F

′) and hence of H1(R
3 − L1), so that

lk(L1, d1) = −lk(L1, L2), and thus lk(d1, d
+
1 ) = −lk(L1, L2) = m say. Now

lk(ci, d
+
1 ) = lk(ci, d1) = lk(c+

i , d1),

since ci and d1 are disjoint in F , so the Seifert matrix then has the form

A =
(

B v
vT m

)

. Then

sA + uAT =
(

sB + uBT zv
zvT zm

)

,

and

∇(z) = det(sA + uAT ) = z det
(

sB + uBT v
zvT m

)

.

We can find the coefficient of z in ∇(z) by putting s = 1, u = −1, z = 0 in
the determinant above, to get

det
(

B − BT v
0 m

)

= m det(B − BT ).

As in the case of knots, with a standard choice of curves c1, . . . , c2g we have

B − BT =
(

0 1
−1 0

)

⊕ · · · ⊕
(

0 1
−1 0

)

.

Then det(B−BT ) = 1, and ∇(z) = mz+ higher terms, with m = −lk(L1, L2).

Example. For the unlink with two (or more) components we have ∇(z) = 0.

Remark. A similar analysis gives ∇(z) = mzr−1 + higher terms for a
link with r components, using a basis c1, . . . , c2g, d1, . . . , dr−1, with curves
d1, . . . , dr−1 parallel to the boundary curves L1, . . . , Lr−1 of L. The coefficient
m can be shown in this case to depend simply on the collection of linking
numbers of the r components. In fact it can be written as a polynomial in
the linking numbers of degree r − 1.

7.7 Skein relations

Let L± and L0 be oriented links with diagrams which differ only as shown in
the neighbourhood of one crossing.
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Theorem 7.8 (Conway) The polynomials of L± and L0 satisfy the linear
(skein) relation

∇L+(z) −∇L−
(z) = −z∇L0(z).

Proof : The diagrams for the three links have the same set of Seifert circles.
Construct spanning surfaces F± for L± from the projection surface F0 for L0

by adding one extra twisted rectangle. Having chosen a basis of curves for
H1(F0) we just need one further curve for H1(F±) which we can choose to go
once across the extra rectangle. This curve and its parallel in F+ will have
an apparent negative crossing as they cross through the rectangle, while the
corresponding curves in F− will have a positive crossing, but elsewhere in F±

they will look the same. If they have linking number k in F+ then they will
have linking number k + 1 in F−. The other linking numbers in the Seifert
matrices for F± are the same in each case, so the Seifert matrices have the
form

(

B v
wT k

)

,
(

B v
wT k + 1

)

.

Then

∇L+ = det
(

sB + uBT sv + uw
swT + uvT zk

)

and

∇L−
= det

(

sB + uBT sv + uw
swT + uvT z(k + 1)

)

.

Expand these determinants by the last row, and subtract, to get

∇L+ −∇L−
= −z det(sB + uBT ) = −z∇L0 .

2

Convention. It is usual in other contexts to replace z by −z in ∇(z), so
that the sign of ∇ is changed for links with an even number of components,
and in a 2-component link the coefficient of z is then the linking number of
the components. With this convention the skein relation becomes ∇+−∇− =
z∇0. For Alexander polynomials, with s =

√
t this gives

∆L+(t) − ∆L−
(t) = (

√
t − 1/

√
t)∆L0(t).
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8 A Z[t, t−1]-module determined by the group

of a knot

Every knot group G has infinite cyclic abelianisation, and thus there is a
surjective homomorphism

ϕ : G → C∞ =< t : > .

Write K for the kernel ker ϕ = {g ∈ G : ϕ(g) = 1}. In fact K is the
commutator subgroup G′ ⊂ G. Write Λ = Z[C∞] = Z[t, t−1] for the ring of
integer linear combinations of elements of C∞.

I shall describe how the abelianisation K/K ′ of K can be viewed as a
module over the ring Λ. The main requirement is to define scalar multipli-
cation λ.u ∈ K/K ′ for u ∈ K/K ′ and λ ∈ C∞, for example t2.u and t−1.u,
and to be sure that t2.u = t.(t.u), etc.

Starting with any u ∈ K and g ∈ G we may set

g.u := gug−1 ∈ K.

Notice that gh.u = g.(h.u) for g, h ∈ G.
Suppose now that ϕ(g) = ϕ(g′). Then g′g−1 ∈ K and

g′.u = g′g−1gug−1(g′g−1)−1

= gug−1(g′g−1)(g′g−1)−1 mod K ′

= g.u mod K ′,

meaning that they give the same element when K is abelianised. Hence g.u,
when regarded as an element of the abelianisation K/K ′, depends only on
ϕ(g) ∈ C∞. We can thus define t.u for any u ∈ K by choosing x ∈ G with
ϕ(x) = t and setting t.u = xux−1. When regarded as an element of the
abelian group K/K ′, (which we shall write additively), this definition for
t.u does not depend on the particular choice of x, by the calculations above.
Equally, the element x2ux−2 will then represent t2.u and x−1ux will represent
t−1.u, etc.

Example. The following element of K can then readily be written out as an
element of the module K/K ′: xux−1x3u2x−3u−1 represents t.u + 2t3.u− u =
(t+2t3 − 1).u, where scalar multiplication by a general scalar in Λ is defined
to be an appropriate integer linear combination in the abelian group.
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Definition.
The Λ-module defined in this way from the knot group is determined, up

to isomorphism of Λ-modules, by the knot, since the group G, the map ϕ
and K are all determined up to isomorphism. It is known as the Alexander
module of the knot.

Theorem 8.1 From a presentation for G and a surjective homomorphism

ϕ : G →< t : >

we can give a presentation for the Λ-module K/K ′, where K = kerϕ.

Proof : Suppose that G can be presented as G =< x1, . . . , xn : r1 =
e, . . . , rm = e >. Choose x ∈ G with ϕ(x) = t, and write uj = xjx

−kj ,
where ϕ(xj) = tkj . Then ϕ(uj) = 1 for each i, so that uj ∈ K. G can then
be generated by the elements x, u1, . . . , un, since xj = ujx

kj . The relations
can be rewritten to give m relations in these new generators, with one further
relation coming from the expression of x in terms of x1, . . . , xn.

Any word w in x, u1, . . . , un can be written, by induction on its length, as
a product of the form xkp, where ϕ(w) = tk and p is a product of elements
xru±1

j x−r. Then K itself is generated by the elements xrujx
−r, which rep-

resent truj in the module K/K ′. Thus K/K ′ is generated as a module by
u1, . . . , un.

We can give the relations in K in terms of these generators, and thus the
relations in K/K ′, as follows. For each relation ri = e write the word ri as
a word in the elements xrujx

−r, which can be done since ϕ(ri) = 1. These
relations ri = e, regarded as relations among the generators of K, together
with their conjugates by powers of x, will provide sufficient relations to pass
between words in K when viewed as words in the generators of K.

Read the word ri in the generators of K in additive notation as a linear
combination of the elements truj in the abelianisation K/K ′ to get the rela-
tions for K/K ′. Each word ri will thus be rewritten in the form

∑

qijuj for
some qij ∈ Λ. The result will be a defining set of m relations

∑

qijuj = 0 for
K/K ′. and hence an m×n presentation matrix Q for the module, which can
be used as shown below to define certain characteristic ideals E0, . . . , En of
the ring Λ, depending only on the module and not on Q. 2
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8.1 Module invariants

Certain features of a presentation matrix Q for a Λ-module are invariants of
the module itself. Where the module has n generators wj , and m relations
∑

qijwj = 0 these include, for each k, the ideal Ek ⊂ Λ generated by all
(n − k) × (n − k) minors (determinants of this sized submatrices) of the
m × n matrix Q. (This just means all those elements of Λ which arise by
taking Λ-linear combinations of the generators.)

Since every (n−k)×(n−k) minor is a Λ-linear combination of generators
of Ek+1 it follows that E0 ⊂ E1 ⊂ · · · ⊂ Λ, with Λ = Ek eventually. Where
Λ is a unique factorisation domain, as in our case, then there is a greatest
common divisor, dk say, for the generators of Ek, which is determined up to
multiplication by units (invertible elements) of the ring Λ. In the case where
Λ = Z[t, t−1] the invertible elements are simply ±tr.

The ideals referred to above are sometimes called the ‘elementary ideals’
of the module.

Theorem 8.2 The elementary ideal E0 of the Alexander module for a knot
is a principal ideal, whose generator is the Alexander polynomial. Thus the
Alexander polynomial can be found, up to a unit in Λ, from a presentation
of the group of the knot.

Example. The trefoil has group G =< x, y : xyx = yxy >. Find a
presentation for K/K ′ = G′/G′′ as a Λ-module.

The abelianisation homomorphism ϕ : G →< t : > is given by ϕ(x) =
ϕ(y) = t. So set u = yx−1. Then G is generated by x and u, with y = ux,
so the relation becomes xux2 = ux2ux. Rewrite this as ux2ux−1u−1x−1 = e
and write the LHS as a product

u(x2ux−2)(xu−1x−1)

of generators of G′.
This product becomes, in additive notation in G′/G′′,

u + t2u − tu,

so the module has generator u and relation

(1 − t + t2)u = 0,

giving a 1 × 1 relation matrix with entry 1 − t + t2.
The E0 ideal is then generated by this single entry d0 = 1 − t + t2 ∈ Λ,

so the Alexander polynomial of the trefoil is, up to a unit, ∆(t) = 1− t + t2.
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8.2 Further examples

(1) A presentation of G = π1(R
3−K) can be given for the figure-eight knot

K, by
G =< x1, x2 : x2x1x

−1
2 x1x2x

−1
1 = x1x2x

−1
1 x2 > .

Take x = x2, u1 = x1x
−1 to present G′ by u1 and its conjugates by x, with

basic relation
xu2

1xu−1
1 x−2 = u1xu−1

1 x−1.

The resulting module presentation for G′/G′′ has one generator u1, and the
relation (1−3t+t2)u1 = 0, giving the Alexander polynomial ∆(t) = 1−3t+t2,
(or better −1 + 3t − t2, so that ∆(1) = 1.)
[Confirm that this gives ∇(z) = 1 − z2.]
(2) The trefoil group can be presented by < x, y : x2 = y3 >, where
on abelianising we have ϕ(x) = t3, ϕ(y) = t2. Put X = xy−1, and u1 =
xX−3, u2 = yX−2. Then

u1X
3u1X

3 = u2X
2u2X

2u2X
2

and X = u1X
3X−2u−1

2 .

These give

u1 + t3u1 = u2 + t2u2 + t4u2

and u1 − tu2 = 0.

The resulting presentation matrix is then

Q =
(

1 + t3 −(1 + t2 + t4)
1 −t

)

and the E0 ideal is generated by det Q = 1 − t + t2. Thus ∆(t) = 1 − t + t2,
up to a unit in Λ.

Remark. There is a mechanisation of this procedure, called the ‘Free
differential calculus’, which was developed by Fox to give a quick passage
to a presentation matrix for G′/G′′ starting from the group relations in a
presentation for G.
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8.3 Trivial Alexander polynomial

In general the module G′/G′′ can be presented by u1, . . . , u2g, with 2g rela-
tions

∑

qijuj = 0, and then ∆(t) = det Q, up to a unit. Then

∆(t) = 1 ⇔ det Q is a unit in Λ,

⇔ Q has an inverse in Λ,

⇔ u1 = · · · = u2g = 0,

⇔ G′/G′′ = {0},
⇔ G′′ = G′.

Examples can be found where ∆(t) = 1 but G 6∼=Z, for instance the ‘dou-
bled’ knots described earlier in terms of a genus 1 spanning surface, although
I did not give a proof that these were in fact knotted. Other examples include
certain pretzel knots, where a homomorphism from G to a non-abelian group
of 3 × 3 matrices can be exhibited.

8.4 Other modules

Every group G with abelianisation ϕ : G →< t : > gives rise to a presentation
for G′/G′′ as a module, and thus an E0 ideal, but such groups do not in
general arise as the group of a knot. For example, G =< x, u : xu = u2x >
has abelianisation with ϕ(x) = t, ϕ(u) = e, and module presented by u with
the relation tu = 2u. The resulting ‘Alexander polynomial’ t − 2 fails to
have the symmetry properties which the polynomial for a knot would have,
(it should have even degree for a start.)

8.5 The Alexander polynomial from the Wirtinger pre-

sentation

Recall that from a diagram of a knot with k crossings there is a presentation
for the group of the knot as

G =< x1, . . . , xk : r1 = e, . . . , rk = e >,

with one generator for each arc, and one relation for each crossing, of the
form xi+1 = x

−ε(i)
j(i) xix

ε(i)
j(i), with the convention that xk+1 = x1. Any one of

the crossing relations is a consequence of the others and may be omitted, to
give a presentation with k − 1 relations.
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Choose any xj = x and rewrite with generators x, u1, . . . , uk, where ui =
xix

−1. There is then one relation uj = 1, with k − 1 others of the form
ui+1x = (uj(i)x)−ε(i)uix(uj(i)x)ε(i).

For ε(i) = 1 this gives ui+1 = t−1(−uj(i) + ui) + uj(i), and so

tui+1 − ui + (1 − t)uj(i) = 0

in the module G′/G′′, while for ε(i) = −1 we get

−ui+1 + tui + (1 − t)uj(i) = 0.

This gives a k × k presentation matrix Q, whose ith row has entries −1, t
and 1 − t in appropriate columns for the first k − 1 rows, while the last row
has a single entry of 1 in the jth place. The Alexander polynomial is then
the determinant of this k × k matrix.

8.5.1 Relation to colouring

Consider the equations Qd = 0 for a column d =







d1
...
dk





. When we put

t = −1 the equations become di+1 + di = 2dj(i) together with one equation
dj = 0. A choice of d1, . . . , dk not all 0, satisfying the equations mod n, is
exactly what is needed, for n prime, to give an n-colouring of the knot K.

Regard entries in the matrix Q(−1) as elements of Zn; the equations
then have a non-zero solution d if and only if det(Q(−1)) = 0 in Zn. Now
det(Q(−1)) = ±∆(−1) which is equal to zero in Zn if and only if ∆(−1) is
divisible by n.

This gives an alternative way to see that the trefoil can only be 3-coloured,
and the figure-eight knot can only be 5-coloured. It shows also that colouring
information is always available from knowledge of ∆. In particular it shows
that a knot with ∆(t) = 1 can not be n-coloured for any n.

Aside. A similar analysis for the equations when t is chosen to be a different
integer detects the possibility of representing the knot group G onto the
metacyclic group

< a, b : an = e, b−1ab = at > .

[See Fox’s ‘Quick trip through knot theory’ for more details.]
When ∆(t) = 1 it is more difficult to find non-trivial representations of G

on straightforward groups, although there is a general theorem which implies
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that every knot group except Z can be mapped onto some finite non-abelian
group.

8.6 The Seifert matrix route to the Alexander polyno-

mial

I shall not give a proof of the theorem relating the Seifert matrix approach
to the fundamental group calculations, but a sketch of how it arises will be
in order.

It is possible to construct from the exterior X of a given knot another
3-dimensional manifold X̃ called its infinite cyclic cover. The fundamental
group of this manifold is the group K, and hence the abelian group K/K ′

is just the group H1(X̃). As part of the construction of X̃ there is a ‘shift
homeomorphism’, which induces an isomorphism on H1(X̃). When this iso-
morphism is used to define an action of the generator of C∞ on H1(X̃) the
group can be viewed as a module over Λ. It can be established fairly readily
that this module is isomorphic to the Alexander module as previously de-
scribed. It is, however, possible to use any choice of spanning surface for the
knot, with Seifert matrix A, in making an explicit geometric construction of
the space X̃. From this construction a presentation of H1(X̃) as a Λ-module
can be found, with presentation matrix Q = tA − AT . The E0 ideal for the
module then has a single generator det(tA − AT ).
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9 New invariants

In 1984 V.F.R.Jones constructed a new invariant of oriented links VL(t) ∈
Z[t±

1
2 ], which turned out to have the property that

t−1VL+ − tVL−
= (

√
t − 1/

√
t)VL0

for links related as in the Conway polynomial relation. This was quickly
extended to a 2-variable invariant PL(v, z) ∈ Z[v±1, z±1], with the property
that

v−1PL+ − vPL−
= zPL0 .

The name ‘Homfly polynomial’ has come to be attached to P , being the
initial letters of six of the eight people involved in this further development.
The polynomial P contains both the Conway/Alexander polynomial, and
Jones’ invariant, and can be shown to contain more information in general
than both of these taken together. We have

P (1, z) = ∇(z)

P (1, s − s−1) = ∆(s2)

P (s2, s − s−1) = V (s2)

P (s, s − s−1) = ±1

The skein relation can readily be shown to determine P and V once its value
on the trivial knot is given. It has been usual to take P = 1 on the trivial
knot, although in some recent applications a different normalisation can be
more appropriate.

Given the existence of V and P we can then make some calculations. For
example, the unlink with two components has

P =
v−1 − v

z
,

V (s2) = −(s + s−1),

while the Hopf link with linking number +1 has

P = vz + (v−1 − v)v2z−1,

V (s2) = s3 − s − (s + s−1)s4 = −s(1 + s4).
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The Hopf link with linking number −1 has

P = −v−1z + (v−1 − v)v−2z−1,

V (s2) = −s−1(1 + s−4).

This illustrates the general feature that for the mirror image L of a link L,
(where the signs of all crossings are changed), we have PL(v, z) = PL(v−1,−z)
and so VL(s2) = VL(s−2). It is thus quite possible to use V in many cases to
distinguish a knot from its mirror-image, while there will be no difference in
their Conway polynomials. It is worth noting that although there are still
knots which cannot be distinguished from each other by P in spite of being
inequivalent, no non-trivial knot has so far been found for which P = 1, or
even V = 1.

9.1 Kauffman’s bracket polynomial

Before making any further calculations of the Jones polynomial V I shall give
a derivation of it, due to Kauffman, which is remarkably straightforward, and
which has subsequently been used to prove a long-standing conjecture about
the class of knots which are known as ‘alternating’. The methods adopted
by Kauffman have also led to a very nice geometric way of recovering the
algebra which Jones used in his original construction of the invariant V .

The construction starts from an unoriented link diagram D for a link L,
and associates with it an integer polynomial [D] in 3 variables A, B, and
δ. Relations between the variables are then imposed which ensure that the
polynomial is not changed when D is altered by Reidemeister moves II and
III. Finally a suitable correction for the effect of Reidemeister move I can be
made to give an invariant of the link L, which yields Jones’ original invariant
V .

The polynomial is defined inductively on the number of crossings in the
diagram, using two rules.

The principal rule relates the polynomial [D] to those of the two diagrams
given from D by selecting one crossing, and cutting it out in each of the two
possible ways. It is possible to distinguish these ways systematically by
observing that the four quadrants defined around the chosen crossing can
be labelled alternately as two types, A and B, say, by the convention that
turning the overcrossing arc anticlockwise will sweep out the two regions to
be labelled A. Then we can regard one of the two ways of cutting out the

70



Knots and Links 9 2001-02

crossing as ‘opening the A-channel’, in Kauffman’s words, when the two A
quadrants are connected to give a diagram DA, while the other way opens
the B-channel, to give a diagram DB, as shown below.

D =

A

A

BB
, DA = , DB = .

The main rule then says that

[D] = A[DA] + B[DB].

Repeated application of this rule to the remaining crossings in turn gives
an expression of [D] in terms of polynomials of diagrams with no crossings,
which then consist of a number of disjoint simple closed curves in the plane.

The second rule allows us to finish the definition, by the assignment of a
factor δ for every disjoint component of the diagram without crossings. This
can be summarised as

[O D] = δ[D],

where O D is a diagram consisting of D together with a single disjoint curve
without crossings.

While the calculation of [D] appears to depend on the order in which
crossings are removed it is fairly clear that, when D has c crossings, the
resulting polynomial will be the sum of 2c terms, each term arising by a
choice, for each crossing, of either the A-channel or the B-channel. A formal
definition of [D] can then be given in terms of what Kauffman calls the
‘states’ of the diagram D.

Definition. A marker on a diagram is a selection at one crossing of the
diagram of a pair of opposite quadrants at that crossing.

Definition. A state of a plane diagram D is a choice of one marker for each
crossing of the diagram.

These definitions could equally be made for the projection of a diagram,
in which over- and undercrossings are not distinguished.

A marker in a diagram D will be either an A-marker or a B-marker,
depending on the quadrants which are selected by it. Any state S of D will
then have a(S) markers of type A, say, and b(S) of type B, with a(S)+b(S) =
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c. Splitting the diagram D apart using the markers of the state S will yield
a number, |S|, say, of disjoint simple closed curves.

Then the polynomial [D] is defined as

[D] =
∑

states S

Aa(S)Bb(S)δ|S|.

The next step is to impose relations on A, B and δ so that [D] is unaltered
by Reidemeister moves on D. A quick calculation shows that invariance under
Reidemeister move II is guaranteed by the choice of

AB = 1, δ = −A2 − B2

and further that invariance under Reidemeister III is ensured by invariance
under Reidemeister II.

This provides Kauffman’s definition of his bracket polynomial < D >, as
a Laurent polynomial in Z[A±1] by taking

< D > = δ−1[D],

with B = A−1 and δ = −A2 − A−2.
Note that a factor of δ has been removed from [D] so that the simple

unknotted diagram O has < O > = 1. (There are reasons related to other
appearances of these polynomials why the normalisation of [D] with [O] = δ
is often more appropriate).

This bracket polynomial is then invariant under Reidemeister moves II
and III. It is not invariant under Reidemeister move I, so that it does not
directly provide a link invariant. However it can quickly be shown that < D >
is multiplied by a fixed element α±1 when D is altered by a Reidemeister move
of type I. The element α is in fact −A−3 for the Reidemeister move illustrated
here.

It is then possible to compensate for Reidemeister move I and produce an
invariant of an oriented link L as follows. Choose any diagram D of L and
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write w(D) for the signed crossing number of the diagram, i.e. w(D) =
∑

ε(c)
over crossings c in D. Now write

fL = αw(D)< D >.

Then fL does not depend on the choice of diagram, for the crossing number
does not change under Reidemeister moves II and III, while the change under
Reidemeister I exactly balances the change of the bracket polynomial.

Comparison of fL with the defining properties of Jones original polyno-
mial VL(t) shows that fL(A) = VL(A−4), so that the bracket polynomial
gives a direct approach to the Jones polynomial, requiring very little formal
machinery in its construction.

9.2 Crossing number and the Jones polynomial

One of the most satisfying results proved using the new invariants has been
the relation between the possible number of crossings in any diagram of
the knot and a simple feature of the Jones polynomial. It singles out an
alternating diagram for the knot (if it has one) as being particularly efficient
as regards number of crossings, and provides one of the relatively few ‘if and
only if’ relations between algebraic and geometric properties of knots.

Definition. For a Laurent polynomial

P =
n

∑

r=m

crA
r ∈ Z[A±1] with cm 6= 0, cn 6= 0,

set span(P ) = n − m.

Let L be a link. Then span< L > can be defined using any diagram for
L, since multiplication of a Laurent polynomial by a power of the variable
does not alter its span.

Theorem 9.1 Let L have a diagram D with c(D) crossings. Then span< L > ≤
4c(D).

Corollary 9.2 span< L > = spanfL ≤ 4c, where c is the minimum number
of crossings in any diagram of L.

Corollary 9.3 spanVL ≤ c, as a Laurent polynomial in t = A−4.
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Definition. A diagram is an obvious sum if a circle can be drawn in the
plane of the diagram meeting in two points, with some crossing points lying
on either side of the circle.

Theorem 9.4 If L has a diagram with c(D) crossings which is not an obvi-
ous sum, then span< L > = 4c(D) if and only if the diagram is alternating.

Corollary 9.5 For an alternating diagram of L which is not an obvious sum
the number of crossings in the diagram is the minimum crossing number c,
and this minimum number will only be achieved by alternating diagrams for
L. For knots without an alternating diagram spanVL < c.

Proof of theorem 9.1: Given a diagram for L with c(D) crossings we
calculate the bracket polynomial for that diagram as

< L > =
∑

states S

ϕS,

where ϕS = Aa(S)Bb(S)δ|S|−1 is a Laurent polynomial in A with B = A−1 and
δ = −A2−A−2. Put DS = maximum degree of ϕS, and dS = minimum degree of ϕS,
so that span(ϕS) = DS − dS. We have

DS = a(S) − b(S) + 2(|S| − 1),

dS = a(S) − b(S) − 2(|S| − 1).

Write S ′ < S if the state S ′ arises from S by changing some A markers
to B markers.

Proposition 9.6 If S ′ < S then DS′ ≤ DS and dS′ ≤ dS.

Proof : It is enough to show this when one marker is altered. In this
case the number of circuits will alter by one, giving |S ′| = |S| ± 1. Since
a(S ′) = a(S) − 1 and b(S ′) = b(S) + 1 the result follows at once. 2

Among all the states there is one state SA where all the markers are A,
and another, SB where all the markers are B; then SB ≤ S ≤ SA for every
state S. By the proposition, DS ≤ DSA

and dS ≥ dSB
for all states S. It

follows that the highest degree in < L > is at most DSA
and the lowest at

least dSB
so that span< L > ≤ DSA

− dSB
.

Dual states. Every state S has a dual state Ŝ in which the marker at every
crossing is changed.
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For example, ŜA = SB. We have in general that

DS − dŜ = 2a(S) − 2b(S) + 2(|S| + |Ŝ| − 2).

Theorem 9.1 now follows from the first of two ‘dual state’ results, which
relates the numbers of circuits for a state and its dual.

Proposition 9.7 For any dual states S, Ŝ of a connected diagram with c
crossings we have |S| + |Ŝ| ≤ c + 2.

Consequently, since a(SA) = c, b(SA) = 0, we have

DSA
− dSB

≤ 2a(SA) − 2b(SA) + 2c = 4c,

completing the proof of theorem 9.1. 2

The remaining results can best be viewed by considering the projection of
the knot diagram to lie, as a curve Γ with self-crossings, entirely in a plane,
or better in a 2-sphere S2. The diagram can be recovered by knowing which
of the two choices of marker at each crossing is to be the A marker, in other
words by the choice of one state from among the possible 2c states for Γ,
thought of as a selection of a marker at each crossing.

9.3 States surfaces

We construct a surface FS in R3 for any given choice of a state S of Γ
which meets the plane R2 × {0} in the singular curve Γ, having c saddle-
point singularities of the height function at the crossings of Γ. The surface
is completed above the plane by |S| local maxima, and below by |Ŝ| local
minima, and has no further singular points.

The closed surface FS is formed by placing the |S| circuits of the state
S in a plane immediately above the plane of Γ and the |Ŝ| circuits of Ŝ
immediately below, and joining them up by a surface with a saddle point at
each crossing of Γ. (This may be done explicitly in a polygonal form, but
it can just as well be viewed in terms of standard smooth saddles.) The
resulting boundary components can be capped off above and below by discs,
treating innermost components first, to give a surface FS as claimed.

Since FS lies in R3 it must be orientable, and its Euler characteristic is
given in any case as

χ(FS) = maxima + minima − saddles.

Then χ(FS) = |S| + |Ŝ| − c ≤ 2, proving proposition 9.7.
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9.4 The shaded states

The projection curve Γ divides the plane into regions which can be shaded
alternately black and white in a checkerboard pattern. Such a shading de-
termines a pair of dual states Bl and Wh, by choosing the marker at each
crossing which joins the regions of the given shading. The only choice in the
shading is to reverse the role of black and white.

It is not difficult to see that Γ comes from an alternating diagram if and
only if the states SA and SB are the checkerboard pair {Bl,Wh}.

Proposition 9.8 The surface FWh is a sphere.

Proof : Move the sphere which contains Γ slightly so that white regions are
moved up and black regions down, leaving Γ itself at the original level. This
surface will have saddles, maxima and minima as required for FWh, which is
then a 2-sphere. 2

To complete the proof of theorem 9.4, I shall have to quote a result about
graphs in S2.

Let Γ be a 4-valent graph in S2, which is not a sum (i.e. it cannot be
broken apart non-trivially by cutting in the middle of two edges). Let Γ′ be
another graph in S2 which is isomorphic to Γ by an isomorphism preserving
the local pairing of edges at vertices. Then this isomorphism extends to a
homeomorphism from S2 to S2.

Corollary 9.9 If Γ is not a sum and FS
∼= S2 then S is one of the checker-

board states.

Proof : The isomorphism of Γ in FS with Γ in the plane will extend to a
homeomorphism carrying the circuit curves of S from the sphere FS into the
plane so that they will lie in the shaded regions of one type. The markers
for S must then be the markers for that shaded state. 2

Proof of theorem 9.4: Suppose first that the diagram with c(D) crossings
is not alternating, (and not an obvious sum). Then SA is not a checkerboard
state, so by corollary 9.9 FSA

6∼= S2. Now

span< L > ≤ DSA
− dSB

= 2c(D) + 2(|SA| + |SB| − 2)

= 2c(D) + 2c(D) + 2(χ(FSA
) − 2)

< 4c(D)
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since χ(FSA
) < 2.

Conversely, if the diagram is alternating then DSA
− dSB

= 4c(D). For
any state S ′ other than SA or SB we have χ(FS′) ≤ 0, since FS′ is orientable,
and the diagram is not an obvious sum. Then

|S ′| + |Ŝ ′| ≤ c(D),

while
|SA| + |SB| = c(D) + 2.

Now if S ′ has just one B marker then |S ′| = |SA| ± 1 and |Ŝ ′| = |SB| ± 1.
The inequality above then shows that |S ′| = |SA| − 1, and consequently
DS′ < DSA

.
Since all other states S have S < S ′ for some S ′ with a single B marker

it follows that SA is the unique state with maximum degree DSA
and so

the largest degree in < L > is exactly DSA
(occurring with coefficient ±1).

Similarly the least degree in < L > is dSB
and thus span< L > = DSA

−dSB
,

completing the proof of theorem 9.4. 2
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10 Tangles and algebras

Given a link L(p,q) which has p and q half-twists respectively in the places
indicated in figure 1 it is useful, in trying to calculate < L >, to start by
concentrating on the part of the diagram involving just the p twists.

q


p


Figure 1

Begin by applying the first bracket relation at one crossing in this part
of the diagram, to get

< L > = A< L1 > + A−1< L2 >

where L1 and L2 differ from L only by removing the crossing in either of the
two ways.

If we imagine a box around the part of the diagram with p twists, then
L1 and L2 differ from L only within this box, and we could continue to
simplify < L1 > and < L2 > by altering crossings inside the box, until < L >
is written as a linear combination of brackets of diagrams which are the
same as L outside the box, but have no crossings at all inside the box.
Taking account of the second bracket relation, which allows disjoint closed
curves without crossings in a diagram to be removed, on multiplying by δ,
we can simplify further to write < L > as a linear combination of brackets
of diagrams having no crossings or closed curves inside the box. In this case
there will then be just two diagrams to account for, one where there are
connections straight through the box, and one where the two top points are
joined, as are the two bottom points.

Definition. We may formalise the calculations by referring to the piece of
knot-diagram in the box as a 2-tangle. More generally an n-tangle is a piece
of knot diagram in a box where there are n points at the top and at the
bottom where the strings enter and leave.

When a 2-tangle T gives rise to two 2-tangles T1 and T2 on cutting out
a crossing in either way, as for the first bracket relation, we shall write T
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formally as a linear combination

T = AT1 + A−1T2.

Where T forms part of a link diagram the effect, when calculating < >, is
the same as taking this linear combination of the brackets when T1 and T2

replace T . Further expansion of T1 and T2 as linear combinations of simpler
tangles will then allow a simplification of the calculation of the bracket for
the diagram.

In our example we may also make use of a natural product on the set
of 2-tangles (or equally for n-tangles where appropriate) defined by placing
one on top of another. For our purposes, tangles will be considered as equal
when altered by Reidemeister moves II and III inside their box. The product
allows us to treat the set of linear combinations of 2-tangles as an algebra over
Z[A±1], using the product as above. The tangle consisting of two straight-
through strings acts as the identity in this algebra. Write h for the other
2-tangle without crossings, with strings joining top to top and bottom to
bottom. Then we will have

σ = A + A−1h,

where σ is the 2-tangle with a single crossing whose A marker runs vertically.
(The single-crossing tangle with horizontal A marker is then A−1 + Ah and
is σ−1 in the algebra.) Under product of tangles we have

h2 = δh, hσ = (A + A−1δ)h = αh, say,

where α = −A−3.
Now any 2-tangle can be written as a linear combination of 1 and h, as

claimed above. The tangle in our example can be written as σp, which is
then rewritten, after one crossing move as

σp = Aσp−1 + A−1hσp−1 = Aσp−1 + A−1αp−1h.

Continuing similarly with σp−1 we can eventually write σp in terms of 1 and
h as

σp = Ap +
αp − Ap

δ
h.

Aside. As a short-cut, note that e = δ−1h is an idempotent (where suitable
denominators are allowed), i.e. e2 = e. Then f = 1 − e is an orthogonal
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idempotent, i.e. f 2 = f , ef = 0. Now σ = A(e + f) + δA−1e = Af + αe, so
that σp = Apf + αpe, giving the formula above.

The bracket polynomial of L(p,q) can now be calculated, using the expres-
sions for σp and σq in terms of 1 and h in place of the two tangles. The
result is a linear combination of the bracket polynomials of four diagrams,
in which tangles 1 or h are inserted in each of the two tangle boxes. These
diagrams consist of either one or two curves without crossings, giving bracket
polynomials either 1 or δ. Then

< L(p,q) > = ApAq +
1

δ2
(αp − Ap)(αq − Aq) + Ap(αq − Aq) + Aq(αp − Ap)

= (
1

δ2
− 1)(αp − Ap)(αq − Aq) + αpαq

= αpαq((1 − (−t)p)(1 − (−t)q)(
1

δ2
− 1) + 1),

where t = A4. This gives a calculation of VL after correction for the writhe
by multiplication by a suitable power of α. The factor depends on whether
p and q are even or odd or mixed; when both are even the factor is α−pα−q,
as is the case with both odd, when one of the possible orientations of the 2-
component link is chosen. With one odd and one even the factor is α±(p−q).
It is generally possible to recover the pair {p, q} from V , except for small
absolute values, when a knot can be represented both with an even pair and
a mixed pair of values, for example 2, q and −2, q − 1.

Calculations with 2-tangles depend on being able to find a 2-tangle in
the diagram. This is the next best possibility to finding a 1-tangle, which
is equivalent to writing the diagram as a connected sum. Notice that the
bracket of a connected sum is the product of the brackets for the two factors,
as, by a similar analysis, each 1-tangle may be written as a linear combination
of 1-tangles without crossings, which means simply a multiple of the single
identity 1-tangle with a straight-through string. This multiple must be the
bracket polynomial of the diagram given by joining the two ends of the 1-
tangle, i.e. one of the factors in the sum.

Similar calculations can be done with 3-tangles or even n-tangles, al-
though the algebras involved become more complicated. For example, in
dealing with 2-tangles we reduced everything to a linear combination of two
tangles, and thus a 2-dimensional algebra. For 3-tangles there are 5 basis
elements for the algebra (corresponding to tangles without crossings, while
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in general there are
(

2n
n

)

/(n+1) basis elements for the Temperley-Lieb alge-

bra which results from n-tangles. (These algebras, in a slightly varied form,
were the origin of Jones’ definition of V , although the connection with knot
diagrams was demonstrated some time later by Kauffman.)
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