A Brief History

Black Hole [definition]:

A region of space from which nothing, not even light, can escape.

When did the concept of a black hole originate? Earlier than you think.

Rev John Michell (1783) – "If [the size of] a sphere of the same density of the Sun were to exceed that of the Sun in the proportion of 500 to 1 … all light emitted from such a body would be made to return towards it by its gravity."

In the 1800s the idea of such 'dark stars' was largely ignored.
Warping Space and Time

A Brief History

- Einstein (1915) General Theory of Relativity
- Schwarzschild (1916) Calculation of gravity of a compact mass
- Eddington (1926) Stars compressed to the 'Schwarzschild radius'
- Chandrasekhar (1931) Massive stars at the end of their lives will collapse
- Oppenheimer (1939) Nothing can stop the collapse of massive stars
- General Relativity predicts that time stops at the Schwarzschild radius and so such collapsed stars were called 'frozen stars'.

Finkelstein (1958)
At the Schwarzschild radius there is an event horizon – a 'one-way membrane'

Golden Age of GR and BH (~1960 – 1975)
- Kerr / Newman / Penrose / Hawking
- 1964 First use of the term 'black hole'
- 1967 Discovery of pulsars
- 1969 Identified as neutron stars
- Gravitational collapse of stars is not just a hypothetical possibility!

Pieces of the Puzzle

- Escape Velocity
- General Relativity
- We will look at each of these pieces of the puzzle in turn
- Stars and Galaxies
- Detecting Gravity

Escape Velocity

We will look at each of these pieces of the puzzle in turn
Warping Space and Time

Escape Velocity

What goes up must come down? Right?
Wrong, not if it goes up fast enough.

The threshold speed needed for an object to escape the gravitational pull of a body is called the *escape velocity*. If you throw something up with a speed less than the escape velocity then it will fall back.

The force of gravity pulling an object (like you) towards a body (like the Earth) depends on both of the masses involved and the distance between them. The escape velocity does not depend on the mass of the object — the escape velocity for a 1 kg satellite is the same as for a 1 ton satellite or even a 1000 ton space station.

Escape Velocity

The escape velocity at the surface of a body depends on the ratio of the mass to the radius

Some escape velocities:

- Velocity to escape the **Moon** = 2 km/s
 (≈ 5,000 mph)
- Velocity to escape the **Earth** = 11 km/s
 (≈ 25,000 mph)
- Velocity to escape the **Sun** = 600 km/s
 (> 1,000,000 mph)

600 km/s may sound like a lot, but it is only 0.2% of the speed of light

Escape Velocity

Let’s compress the Sun to smaller sizes and see what happens to the escape velocity.

<table>
<thead>
<tr>
<th>R (km)</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>v (km/s)</td>
<td>0</td>
<td>1000</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
<td>5000</td>
</tr>
</tbody>
</table>

Escape Velocity

If we compress the Sun into a sphere of radius 3 km then we form a black hole.

What if we start with a body with a different mass?

For the **Earth** the Schwarzschild radius is

- Moon: ~ 0.1 mm
- Mt Everest: ~ atom

We know of no way that this can happen for any mass smaller than that of a star, but that doesn’t mean that it’s impossible.
Although all sizes are possible, small BH don't last.

Aside: Quantum Mechanics* allows particles and antiparticles to be created from borrowed energy, as long as they annihilate and pay back the borrowed energy on very short time scales.

* See "The Weird World of the Very Very Small"

Although all sizes are possible, small BH don't last.

How is this particle-antiparticle creation relevant to the lifetime of BH? What might happen if they are created just outside the event horizon?

There is a net flux of particles radiating from the event horizon of the BH called Hawking radiation. This radiation increases with decreasing mass, so small BH evaporate! More about this later in the talk.

What happens if we compress an object to a size smaller than the Schwarzschild radius?

The event horizon, the point at which the escape velocity is equal to the speed of light, is still the same (the Schwarzschild radius).

For massive stars (M > 10M☉) nothing that we know of can stop the core collapse during a supernova and so all the mass is compressed to an infinitely small point – a singularity.

We cannot tell if this is what actually happens inside a BH because it is all hidden inside the event horizon. Could we ever see a "naked" singularity? Not according to the Cosmic Censorship Hypothesis.
Warping Space and Time

General Relativity

Einstein’s General Theory of Relativity
First presented in 1915 and published in 1916

What does it say? \[G = 8\pi T \]

The main principle of GR can be expressed by this one equation that looks deceptively simple.

- \(G \) is the geometry of space
- \(T \) is the distribution of mass

Mass distorts space!

\[G = 8\pi T \]

The equation is sometimes reduced to the more prosaic description

- Mass tells space how to curve
- Space tells mass how to move

What do we mean by curved space?

Any image trying to explain this uses the analogy of 2-dimensional space curving into a third dimension.

To warp or curve 3-dimensional space we need a fourth dimension which humans, not unnaturally, find very difficult to imagine.

General Relativity

Black holes produce infinitely warped space

Predictions of General Relativity

- The precession of the orbit of Mercury
- Gravitational lensing
- Stars seen during the total solar eclipse of 1919 were found to be slightly shifted in position.
Warping Space and Time

Predictions of General Relativity

Time slows down in a gravitational field

Gravitational Waves

One of the predictions of GR is gravitational waves.

The ripples in spacetime are tiny — 1 part in 10^{20}

Gravitational Waves

Merger of two neutron stars

Gravitational Waves

If binary pulsars emit gravitational waves they must be slowly losing energy, and this would mean that they would be expected to slow down (black line).

This is precisely what is observed (blue points).
Warping Space and Time

Stars and Galaxies

Black Holes Are Born
Core collapse of a massive star – Supernova*

Black Holes Feed
Infalling matter forms an accretion disk

Black Holes Feed
Accretion disk and x-ray jets

* See "The ABC of Stellar Evolution"
Warping Space and Time

Black Holes Feed

Accretion disk and x-ray jets

The infalling matter is heated by the tidal forces and emits light and x-rays. The accretion process can convert more than 25% of the infalling mass into energy. Compare this to nuclear fusion in stars, where less than 1% of the mass is converted into energy.

Black Holes Feed

Is this how black holes feed on neighbouring stars?

Black Hole Jets

Supermassive Black Holes

Zooming in to the centre of the Milky Way
Warping Space and Time

Supermassive Black Holes

Stars orbiting the BH at the centre of the Milky Way

![Image](image1.png)

Supermassive Black Holes

How big is the SMBH at the centre of the Milky Way?

From the orbits of the stars the SMBH mass is determined to be 4 million M_\odot.

Other SMBH are much larger:
- Andromeda Galaxy: 250 million M_\odot
- Sombrero Galaxy: 1 billion M_\odot
- Largest SMBH: > 20 billion M_\odot

Measuring Curved Space

Gravity Probe B

2004

![Image](image2.png)
Warping Space and Time

Detecting Extreme Gravity

SWIFT
Gamma-Ray Burst Mission
2004

FERMI
Gamma-Ray Space Telescope
2008

Detecting Gravity Waves

LIGO
Laser Interferometer Gravitational Wave Observatory

The gamma-ray cycle of PG 1553+113
Warping Space and Time

Detecting Gravity Waves

eLISA = Evolved Laser Interferometer Space Antenna

LIGO is sensitive to waves with periods of less than a second. This means that it can detect waves created by the merger of two black holes, but this does not happen very often.

By comparison, eLISA will be sensitive to waves with much longer periods, from seconds to hours. This should mean that eLISA can detect signals from BH within our galaxy and SMBH in other galaxies.

It is also hoped that eLISA will be able to detect the gravitational waves created by the biggest singularity of them all – the Big Bang.*

* See "The Beginning of Everything"
Warping Space and Time

Measuring an Event Horizon

Event Horizon Telescope

Pieces of the Puzzle

Escape Velocity
General Relativity
We have looked at the science facts
Now let’s look at the science fiction
Stars and Galaxies
Detecting Gravity

Science Fiction

Does Hollywood ever get it right?

Ship is parked right next to the event horizon
Ship is pulled into a planetary black hole
Ship is powered by an onboard black hole

Science Fiction

Is a BH-powered star drive possible?
For BH with mass less than a kg, not much energy is available (E = mc²).
For BH with a mass more than that of Mount Everest, Hawking radiation is very weak.
For BH with mass ~ 1 million tons the power in the Hawking radiation would be equivalent to the output of ~ 100 million nuclear power stations and the BH would last ~ 100 years.

if the radiation from such a BH, smaller than an atom, could be captured or directed, then that is enough energy to power a starship.
Warping Space and Time

Science Fiction
What about shortcuts through space?
Wormholes?
Hyperspace?

Science Fiction
What about shortcuts through space?
Wormholes?
Hyperspace?

Science Fiction
What about time travel?

Science Fiction
Hawking proposed the
Chronology Protection Conjecture
A wormhole allowing time travel will
collapse before anything has time to
travel through it.

"Making the Universe safe for historians"
Warping Space and Time

The Problem

There's a problem.

General Relativity (GR) works really well for massive objects (like stars).
Quantum Mechanics (QM) works really well for tiny objects (like atoms).*

But, what if the object is massive and tiny?
Then we need (drum roll)... **Quantum Gravity.**

The problem: GR and QM are not good bedfellows.
A universal 'Theory of Everything' has proven to be elusive.

* See "The Weird World of the Very Very Small"

The Future

Maybe quantum mechanics will prevent a singularity from forming, thus avoiding the horrible properties like infinite density and infinitely warped space.

For instance, String Theory describes a ten-dimensional universe in which the fundamental building blocks are 'strings' rather than the more familiar 'particles'.

If String Theory is right, black holes are 'fuzzballs' without a singularity at their core. They are just 'balls of string'.
But, is the universe described by String Theory the one in which we live?

The Future

Einstein never really believed that quantum mechanics was the right description of the microscopic world.
He spent most of his later years wrestling with a Theory of Everything.
If a genius like Einstein could not get his head around the problem, what will it take?

Maybe some unexpected discoveries, for instance from LIGO or eLISA, will point the way forward to a better understanding of black holes.