PHYS258 Waves and Related Phenomena

Dr S D Barrett
S.D.Barrett@liv.ac.uk
Oliver Lodge Lab 301

Introduction

PHYS258 Waves and Related Phenomena (WARP)
Semester: 1 Level: 2 Credits: 15
Lectures: ~24 Tutorials: 4 Assignments: 3
Assessment: Examination = 70 % + Assignments = 3 x 10%

Aims
- To build on material presented in Year 1 modules (especially PHYS126)
- To introduce the use of waves in a wide range of physics
- To develop the concepts of interference and diffraction

Learning Outcomes
- Familiarity with waves and their analysis using complex number notation
- Knowledge of interference and diffraction effects and their use in physics
- Acquired an introduction to the ideas of Fourier techniques
- Acquired an introduction to the basic principles of lasers
PHYS258 Waves and Related Phenomena

Timetable

<table>
<thead>
<tr>
<th>Week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td>T1</td>
<td>T2</td>
<td>T3</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td></td>
<td></td>
<td>A1</td>
<td></td>
<td>A2</td>
<td></td>
<td>A3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Tutorials 1–4 will be in weeks 1, 4, 7 and 10
- Assignments 1–3 will be handed in by the end of weeks 5, 8 and 11

Syllabus

Fundamentals
- Wave Equation
- Phase Velocity
- Superposition (same λ)
- Standing Waves
- Sound Waves

Boundary Conditions
- Waves At Boundaries
- Impedance
- Waves in Cables

Electromagnetic Waves
- EM Waves in Free Space
- EM Waves in Dielectrics
- Polarisation of EM Waves
- Reflection of EM Waves

Superposition (different λ)
- Beats
- Wavepackets
- Bandwidth Theorem
- Group Velocity
PHYS258 Waves and Related Phenomena

<table>
<thead>
<tr>
<th>Interference</th>
<th>Fourier Methods</th>
<th>Lasers</th>
<th>Diffraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s Slits</td>
<td>Fourier Analysis</td>
<td>Principles</td>
<td>Fraunhofer Diffraction</td>
</tr>
<tr>
<td>Lloyd’s Mirror</td>
<td>Fourier Transforms</td>
<td>Applications</td>
<td>Single-Slit Diffraction</td>
</tr>
<tr>
<td>Optical Coatings</td>
<td>Diffraction and FTs</td>
<td></td>
<td>Rayleigh Criterion</td>
</tr>
<tr>
<td>Interference Filters</td>
<td></td>
<td></td>
<td>Multiple-Slit Diffraction</td>
</tr>
</tbody>
</table>

Java Applets

http://www.lon-capa.org/~mmp/applist/applets.htm

The Applet Collection

http://www.lon-capa.org/~mmp/applist/applets.htm

Java Applets
Java Applets

http://www.hazelwood.k12.mo.us/~grichert/sciweb/waves.htm

Java Applets

http://www.falstad.com/mathphysics.html

SDB 2011
Describing Waves

A moving wave must be described as a function of space and time that gives the amplitude at each point for each moment in time

$$\psi(x, t)$$

where ψ is the amplitude of the wave.

If the wave is travelling at speed v and the time is t then the wave has travelled a distance of vt. So at a later time t the function that describes the wave is

$$x' = x - vt$$

and

$$\psi(x', t) = \psi(x, t)$$

This is the most general form of a travelling wave function.
Harmonic waves have sine (or cosine) wave functions

\[\psi(x, t) = f(x) = A \sin(kx) \]

- \(kx \) is in radians
- \(k \) [radians/m]

Maximum and minimum values of \(\psi \) are \(\pm A \) of the wave

If the wave is moving with speed \(v \) in the \(+x\) direction then the equation becomes

\[\psi(x, t) = f(x - vt) = A \sin(k(x - vt)) \] \[1.1\]

Another way to write the wave function is

\[\psi(x, t) = A \sin(kx \pm \omega t) \] \[1.2\]

- \(k \) = propagation number [radians m\(^{-1}\)]
- \(\lambda \) = wavelength = \(2\pi/k \) [m]
- \(\kappa = 1/\lambda = \) [m\(^{-1}\)] (spectroscopy)
- \(\omega = kv = \) \(2\pi f \) [radians s\(^{-1}\)]
- \(v_p = \omega/k = \) [m s\(^{-1}\)]
- \(\phi = kx - \omega t = \) of the wave [radians]

Note that if \(\phi \) is constant, so \(\psi \) is constant, and hence \(v_p \) is the velocity of points of
The wave function that we have been using obeys the wave equation

\[\psi(x,t) = A \sin(kx \pm \omega t) \]

Show that [1.2] is a solution of the wave equation [1.3].

The wave function \(\psi(x,t) = A \sin(kx \pm \omega t) \) has a value of \(\psi = 0 \) at \(x = 0 \) and \(t = 0 \). This is not always the case, and the general expression for a harmonic solution to the wave equation is

\[\psi(x,t) = A \sin(kx \pm \omega t + \epsilon) \]

where \(\epsilon \) is the phase at \(x = 0 \) and \(t = 0 \). Note that sin and cos functions differ only in the selection of the value of \(\epsilon \).
Principle of Superposition

The Principle of Superposition states that the sum of any two solutions to the wave equation is another solution to the wave equation.

This is a result of the linear behaviour of the differentials in the wave equation [1.3]. For any two functions \(f \) and \(g \)

and similarly for the differential with respect to \(t \). Thus, if \(f \) and \(g \) both solve the wave equation then so does \((f + g) \).

This means that complicated waveforms can be built by adding many wave functions — a result that will be very important later on.

Complex Notation

The Euler formula is

\[
\psi(x,t) = A \cdot \text{Re}\{e^{ikx\pm\omega t + \epsilon}\} = A\cos(kx \pm \omega t + \epsilon)
\]

and so another way of writing a travelling wave function is

Where \(\text{Re}\{\ldots\} \) or \(\text{Re}\{\ldots\} \) means the real part of \(\{\ldots\} \). Note that this symbol is not usually written explicitly but is implied.

Why Use Complex Numbers?

Waves have an amplitude \((A) \) and a phase \((\phi) \). So do complex numbers, and so there is a natural tendency (though not a necessity) to use complex numbers to describe waves.
A reminder about complex numbers:

<table>
<thead>
<tr>
<th>Cartesian form</th>
<th>Polar form</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z = a + ib$</td>
<td>$z = r e^{i \phi}$</td>
</tr>
</tbody>
</table>

where

- $a = \text{real part}$
- $b = \text{imaginary part}$
- $r^2 = a^2 + b^2$
- $\tan \phi = b/a$

The algebra of complex numbers mirrors the waves that it describes. This makes calculations much simpler.

Waves in 3d

If points with the same phase form a (2d) plane in (3d) space then the wave is called a plane wave.

Consider a vector k and a plane, perpendicular to k, passing through the point r_0.

For all points in the plane

$$ k \cdot r = k \cdot r_0 = $$

So we can define a plane wave

$$ \psi(r) = $$
The time dependence for a 3d wave is just the same as we have seen for a 1d wave.

\[\psi(r) = \]

The planes of constant phase \(\phi \) are called \(\psi \), which move with the phase velocity \(v_p \).

Superposition of Waves

When two waves occupy the same space the wave functions add to create a new function. From the principle of superposition we know that this function is a solution to the wave equation and so also represents a wave.

At this point we will look at the superposition of harmonic waves of the same wavelength and frequency. In a later lecture, we will look at the result of the superposition of waves of different wavelength and frequency.

Start with two waves \(\psi_1 \) and \(\psi_2 \) that add to make \(\psi_T \)

\[\psi_T(x,t) = \]
Writing $\omega_1 = \omega_2 = \omega$ and for brevity

$$\psi_T (x,t) = A_1 \sin(\alpha_1 + \omega t) + A_2 \sin(\alpha_2 + \omega t)$$

$$= A_1 (\sin \alpha_1 \cos \omega t + \cos \alpha_1 \sin \omega t) + A_2$$

$$= \sin \omega t (A_1 \cos \alpha_1 + A_2 \cos \alpha_2) + \cos \omega t$$ \hfill [1.4]

We can simplify this if we rewrite the expressions in brackets in [1.4] as simple cos and sin terms

$$A_T \cos \alpha = A_1 \cos \alpha_1 + A_2 \cos \alpha_2 \hfill [1.5]$$

$$A_T \sin \alpha = \hfill [1.6]$$

Taking $[1.5]^2 + [1.6]^2$

$$A_T^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos (\alpha_2 - \alpha_1) \hfill [1.7]$$

Dividing [1.6] by [1.5]

$$\tan \alpha =$$

Substituting [1.5] and [1.6] into [1.4]

$$\psi_T (x,t) = A_T \cos \alpha \sin \omega t + A_T \sin \alpha \cos \omega t$$

$$= \hfill$$

Thus, the resultant wave is harmonic wave.
Looking at [1.7] for the amplitude of the wave resulting from the superposition of two waves of amplitude A_1 and A_2, when the difference $\alpha_2 - \alpha_1 = 0$ (or an integer multiple of 2π) the amplitude is a

$$A_T^2 = A_1^2 + A_2^2$$

Similarly, the amplitude of the resultant wave is a minimum when the difference $\alpha_2 - \alpha_1 = (2n+1)\pi$ where n is an integer

$$A_T^2 = A_1^2 + A_2^2 - 2A_1A_2$$

http://www.ling.udel.edu/idsardi/253/sinewave/
Standing Waves

If two waves of the same wavelength and frequency, but propagating in opposite directions, are added the result is a standing wave.

This can happen when, for example, a wave meets its reflection (we will deal with wave reflection later).

Take two harmonic waves travelling in the

$$\psi(x,t) = A_R \sin(kx - \omega t + \varepsilon_R) + A_L \sin(kx + \omega t + \varepsilon_L)$$

[1.8]

To simplify the solution, let us take $A_R = A_L = A$ and

$$\psi(x,t) = A \{ \sin(kx - \omega t) + \sin(kx + \omega t) \}$$

Use the trig identity

$$\sin A + \sin B = 2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right)$$

to write the wave function as

$$\psi(x,t) =$$

This equation describes a standing wave.

Note that the x and t variables are now in separate factors of the expression (there are no “$kx - \omega t$” terms) and so, although the wave is still a function of space and time, it does not travel through space.

Note also that the amplitude of the wave is now a function of the position in x.
By watching a standing wave evolve with time, the positions of nodes (where $\psi = 0$ at all times) and antinodes (where the amplitude is a maximum) can be identified.
Mixed Waves

If the amplitudes of the two waves are the same ($A_R + A_L$) then the resultant wave is a combination of a travelling wave and a standing wave.

Rewriting [1.8] with ($\text{where } 0 \leq R \leq 1$)

$$\psi(x, t) = A_L \{\sin(kx + \omega t) + R \sin(kx - \omega t)\}$$

$$\psi(x, t) = A_L \{(1 - R) \sin(kx + \omega t)\} +$$

$$\psi(x, t) = A_L (1 - R) \sin(kx + \omega t) +$$

$$2RA_L \sin(kx) \cos(\omega t)$$

Consider three distinct cases for possible values of R:

- No reflection wave
- Some reflection Travelling + Standing
- Perfect reflection wave

Note that if $R < 0$ (negative reflection coefficients will be covered later) the result is still a mix of travelling and standing waves, but the positions of the nodes and antinodes of the standing wave component will be interchanged.
Standing Wave Ratio

For any value of R the maxima and minima in the amplitudes will occur at fixed locations (with a separation of $\lambda/2$ between neighbouring maxima, and similarly for neighbouring minima).

Measuring the intensity of standing waves as a function of position is a means of determining wavelength — it is used in PHYS378/478 Advanced Practical Physics with microwaves.

The **Standing Wave Ratio** is defined as

$$SWR = \frac{\text{Max. amplitude}}{\text{Min. amplitude}} = \frac{A_L + A_R}{A_L - A_R}$$

If $R = 0 \quad \Rightarrow \quad SWR = 1$

If $|R| = 1 \quad \Rightarrow \quad SWR = \infty$
Many materials can be distorted by application of a force. Materials are often under small distortions — an object is restored to its original shape when the force is removed. Forces above the cause permanent deformation.

The general theory of elastic materials (continuum mechanics) is complicated because in many materials the elastic properties depend on the .

Here we will consider only the basic concepts that allow us to understand the propagation of waves in solids, liquids and gases.

Some important definitions:

Stress

\[T = \lim_{\text{Area} \to 0} \left[\frac{\text{Applied Force}}{\text{Area}} \right] \quad \text{[Nm}^{-2}] \]

Strain

If parts of a body can be moved relative to each other then the body is said to be in a state of strain. The amount of strain depends on the variation of displacement \(\psi \) with distance \(x \).

The propagation of waves is dependent on how stress and strain are related in any given medium.
Young's Modulus

\[Y = \frac{\text{stress}}{\text{strain}} \quad [\text{Nm}^{-2}] \]

If the material being stressed and strained is a wire, then

\[Y = \frac{F}{A \cdot dL} \]

For example, steel has \(Y \sim \)

(cf plastics \(Y \sim \), diamond \(Y = \))

Bulk Modulus

\[B = \quad [\text{Nm}^{-2}] \]

where \(\Delta V/V \) is the fractional change in volume under the applied pressure \(P \).

Compressibility

\[K = \frac{1}{B} = \quad [\text{N m}^{-2}] \]

Water has \(K \sim \text{N}^{-1}\text{m}^2 \Rightarrow \)
Shear Modulus

\[\mu = \left[\text{Nm}^{-2} \right] \]

where \(T \) is the applied stress and \(\alpha \) is the angle that defines the deformation.

Note that the area used in calculating the stress is the area over which the force is applied (i.e., the ‘top’ of the block).

For liquids and gases, \(\mu \) is zero.

Poisson’s Ratio

This is a measure of how much a body deforms in the direction perpendicular to the direction of stress.

\[\sigma = \]

Note that for isotropic materials, \(Y, B, \mu \) and \(\sigma \) are all inter-related.

For instance,

\[B = \frac{Y}{3(1-2\sigma)} \quad \mu = \frac{Y}{2(1+\sigma)} \]
Wave Propagation

The basic principle behind wave propagation in materials is that if there is a strain gradient in a material then the material will move.

\[F \propto \frac{\partial}{\partial x} \left(\frac{\partial \psi}{\partial x} \right) = \]

where \(\psi \) is the displacement of the material.

The force \(F \) produces an acceleration which depends on the density of the material \(\rho \)

\[F = \]

and so

\[\rho \frac{\partial^2 \psi}{\partial t^2} \propto \left(\text{the wave equation} \right) \]

Longitudinal Waves

By comparison with the wave equation introduced in Lecture 1, we see that the speed of propagation of waves depends on the density of the material and on the constant of proportionality between the strain gradient and the resultant forces generated.

A full derivation gives (no proof here)

\[V_p^2 = \frac{B + 4\mu/3}{\rho} \quad [1.9] \]

or, using the expressions relating \(B, \mu, Y \) and \(\sigma \)

\[V_p^2 = \frac{Y(1-\sigma)}{\rho(1+\sigma)(1-2\sigma)} \]
Noting that the values of σ for solid materials is typically ~ 0.25 we can make the approximation

$$v_p^2 = \frac{6Y}{5\rho} \quad \text{or} \quad v_p = \sqrt{\frac{Y}{\rho}}$$

for the phase velocity of waves travelling through solid media.

Example

Steel has $Y \sim 2 \times 10^{11}$ N/m2 ~ 200 GPa

$$\rho \sim 8000 \text{ kg/m}^3$$

$$\Rightarrow \quad v_p = \sqrt{\frac{Y}{\rho}}$$

Transverse Waves

A derivation for gives (no proof here)

$$v_p^2 = \frac{\mu}{\rho} = \frac{Y}{2\rho(1+\sigma)}$$

Taking $\sigma \sim 0.25$ we can make the approximation

$$v_p^2 = \frac{2Y}{5\rho} \quad \text{or} \quad v_p = 0.6 \sqrt{\frac{Y}{\rho}}$$

Remembering that the shear modulus $\mu = 0$ for liquids and gases, these expressions for the phase velocity for waves show that these waves cannot propagate in such materials.
Longitudinal Waves

Waves are vibrations that travel through a medium. If you understand that sentence, you have understood wave motion. Shown above are vibrating layers of air in a horizontal line. The layer at the extreme left is the one closest to the source. You could imagine a vibrating plate at the left end causing those vibrations. So the layer at the left extreme is always ahead of phase of the layers to its right. The time lag between the layers is directly proportional to the speed of sound in the medium. The key to understanding of wave motion is the simple idea that phase is different for different vibrating particles because they vibrate at different times. The more distant the source is from the center from the source, the particle that is closer to the source.

Java Applet

http://www.mta.ca/faculty/science/physics/suren/Lwave/Lwave01.html

Transverse Waves

At the right edge, you see a vibration which begins at the left end and travels towards right. If you observe any particle you would find it

SDB 2011
Seismic Waves

The ratio of the phase velocities for (or Pressure or Primary) waves and (or Shear or Secondary) waves in solids is

\[
\frac{v_p}{v_{p'}} \quad \text{for } P \text{ waves} \quad \text{and} \quad \frac{v_s}{v_{s'}} \quad \text{for } S \text{ waves}
\]

This velocity difference between \(P \) and \(S \) waves is crucial to our understanding of the interior of the Earth, as it enables seismologists to monitor earthquakes and use differential timings of the arrival of the two types of seismic waves at various locations on the Earth’s surface to refine models of the Earth’s inner structure.

Two types of surface wave, having displacement components \(\parallel \) and \(\perp \) to the Earth’s surface, also have different velocities.
Measuring the variation of wave velocities with depth gives information on the pressure and density in regions that cannot be accessed by any other probe.

http://www.gly.fsu.edu/~salters/GLY1000/Chapter3/Slide9.jpg

An earthquake can produce two types of surface wave. An S wave which has only movement of the ground is called a Love wave.

The other kind of surface wave is the Rayleigh wave, which is similar to waves rolling across the ocean. The ground moves and (in the direction that the wave is propagating). Most of the shaking felt from an earthquake is due to the Rayleigh wave.
Waves in Liquids

For waves in liquids (but not waves on the surface of a liquid) we use [1.9] with

\[v_p^2 = \frac{B}{\rho} = \frac{1}{K\rho} \]

For water we find, taking the value for \(K \) given earlier,

\[v_p \approx \]

This is less than that found for a solid like steel, but still substantially higher than the speed of sound in air (next slide) because the forces that try to restore the medium after a deformation takes place are much stronger in a liquid than in a gas.
Waves in Gases

For gases, the expression for the phase velocity can be written

\[v_p^2 = \gamma RT \frac{M}{p} \]

where

\(\gamma \) ratio of specific heats \((c_p/c_v) = 1.4 \) for air

\(R \) gas constant \(= 8.3 \text{ J mol}^{-1} \text{ K}^{-1} \) for all gases

\(T \) temperature in Kelvin \(= 300 \text{ K} \) for air

\(M \) molar mass \(= 0.029 \text{ kg mol}^{-1} \) for air

\[\Rightarrow v_p \approx 350 \text{ m/s} \] for air

The phase velocity of waves propagating through any elastic medium can be written, rather generally, as

\[v_p^2 \sim \frac{"\text{Stiffness" of medium}}{"\text{Mass" of medium}} \]

For a solid

\[v_p^2 \sim \]

For a liquid

\[v_p^2 \sim \]