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A B S T R A C T

Background: Walking surfaces vary in complexity and are known to affect stability and fall risk
whilst walking. However, existing studies define surfaces through descriptions only.
Objective: This study used a multimethod approach to measure surface complexity in order to try
to characterise surfaces with respect to locomotor stability.
Methods: We assessed how physical measurements of walking surface complexity compared to
participant's perceptual ratings of the effect of complexity on stability. Physical measurements
included local slope measures from the surfaces themselves and shape complexity measured
using generated surface models. Perceptual measurements assessed participants' perceived sta-
bility and surface roughness using Likert scales. We then determined whether these measure-
ments were indicative of changes to stability as assessed by behavioural changes including eye
angle, head pitch angle, muscle coactivation, walking speed and walking smoothness.
Results: Physical and perceptual measures were highly correlated, with more complex surfaces
being perceived as more challenging to stability. Furthermore, complex surfaces, as defined from
both these measurements, were associated with lowered head pitch, increased muscle coacti-
vation and reduced walking smoothness.
Significance: Our findings show that walking surfaces defined as complex, based on physical
measurements, are perceived as more challenging to our stability. Furthermore, certain beha-
vioural measures relate better to these perceptual and physical measures than others. Crucially,
for the first time this study defined walking surfaces objectively rather than just based on sub-
jective descriptions. This approach could enable future researchers to compare results across
walking surface studies. Moreover, perceptual measurements, which can be collected easily and
efficiently, could be used as a proxy for estimating behavioural responses to different surfaces.
This could be particularly valuable when determining risk of instability when walking for in-
dividuals with compromised stability.

1. Introduction

Walking surfaces are hugely diverse, differing in size, materials and environmental setting. Together these factors influence how
we walk, with some surfaces being more challenging to maintain stability than others. Self-reported questionnaires have shown that
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more complex surfaces cause an increase in falls when walking (Chippendale & Boltz, 2015; Nyman, Ballinger, Phillips, & Newton,
2013; Talbot, Musiol, Witham, & Metter, 2005). One common method to determine fall risk, including when walking over complex
surfaces, is from assessing stability. However, there is currently no universally accepted measure for stability; rather, a variety of
stability metrics have been proposed (as reviewed in Bruijn, Meijer, Beek, & Van Dieën, 2013), each with their own advantages and
limitations.

To assess stability whilst walking over different surfaces, we first need to clarify what constitutes a complex surface. Here we take
complexity to include uneven surfaces, slope changes and inconsistently spaced foot targets (Cham & Redfern, 2002; Graci, Elliott, &
Buckley, 2010; Marigold & Patla, 2007; Matthis & Fajen, 2014; Merryweather, Yoo, & Bloswick, 2011; Patla & Vickers, 2003; Thies,
Richardson, & Ashton-Miller, 2005) but not slippery or compliant surfaces or obstacles (Cham & Redfern, 2002; Graci et al., 2010;
Morgan, Hafner, & Kelly, 2017). Stairs are also challenging to our stability (Bosse et al., 2012; Wang et al., 2017) though they are
rarely classified as complex surfaces.

Although previous research has described a broad range of surfaces as complex, few studies have tried to objectively quantify
surface complexity by measuring physical characteristics such as mechanical properties and micro and macro structure (e.g. topo-
graphy, shape, size and location). Physical complexity of surfaces has previously been assessed through the international roughness
index (Sayers, 1984), however this measurement is mostly used for roads and also requires vehicle characteristics. Assessment of
surfaces has been attempted using the sidewalk condition index (Corazza, Di Mascio, & Moretti, 2016), but this method focuses
exclusively on pedestrianised surfaces and the number of surface distresses (potholes, deformation from roots, etc.). Other studies
that have analysed physical differences between surfaces have only assessed tactile perception using handheld materials (Skedung
et al., 2011; Tiest & Kappers, 2006). There is as yet no widely accepted, objective means of measuring the physical characteristics of
surfaces relevant to predicting walking stability.

In addition to quantifying walking surfaces complexity we also needed to assess people's stability whilst walking over each
surface. Complex surfaces are likely to cause behavioural changes indicative of the person's stability, since it may reasonably be
assumed that complex surfaces increase fall risk. Whilst no single measure of stability has been universally accepted, several be-
havioural measures might provide a proxy for stability. For example, people lower their gaze to look closer to their feet when they
walk over complex surfaces, and they increase the number of fixations to the walking surface (Marigold & Patla, 2007; Matthis, Yates,
& Hayhoe, 2018; 't Hart & Einhauser, 2012; Thomas, Gardiner, Crompton, & Lawson, 2020a). Similarly complex surfaces cause people
to shorten their step length, lower their walking speed, increase leg muscle coactivation and walk more asymmetrically (Dixon et al.,
2018; Marigold & Patla, 2008; Menant, Steele, Menz, Munro, & Lord, 2009; Voloshina, Kuo, Daley, & Ferris, 2013). Such behavioural
measures could help us to understand stability but they are often time-consuming and difficult to record. Finding alternative metrics
of stability that are easier to assess could be useful.

One potential measure of the effect of complexity on stability could be from assessing people's perception. No research, to the
authors' knowledge, has assessed whether people's perception of their stability on complex surfaces is accurate. However, research
assessing the perception of walking up stairs has shown that people can accurately identify when stairs are too high for safe walking
(Konczak, Meeuwsen, & Cress, 1992; Warren Jr., 1984). The use of perceptual ratings to assess stability over complex surfaces may be
more effective than focussing on separate physical measures given that people find it easier to categorise by combining multiple
aspects, rather than a single dimensions (Ramscar & Hahn, 2001). For example, people may readily be able to take into account
surface gradient, regularity and slipperiness when assessing perceived stability. If perceptual measures provide a sensitive measure of
physical surface complexity, and if they also predict behavioural measures of stability, then it would be far easier, quicker and
cheaper to use perceptual measures in future research rather than assessing complexity or stability.

In summary, surface complexity is known to influence stability whilst walking but few studies measure objective properties of the
walking surfaces, with most relying on qualitative and subjective descriptions (e.g. rough vs smooth). Here, we attempt to rigorously
quantify the complexity of walking surfaces using a variety of both physical and perceptual metrics to try to categorise surfaces with
respect to walking stability. We assessed how surface complexity, specified using physical measures, may alter walking stability as
reflected by changes in eye and head pitch angle, gait speed, harmonic ratios and muscle co-activation. These behavioural measures
have all been previously assessed in relation to walking stability. We also investigated how physical measures of surface complexity
correlated to perceptual measures of the effect of complexity on stability, in the hope of providing a quick and easy alternative to
these behavioural measures. We aim to develop a simple, meaningful and convenient measure for the effect of surface complexity on
stability whilst walking over surfaces of different complexity.

2. Methodology

The University of Liverpool's Ethics Committee granted ethical approval for the study in November 2017 (REF: 2672). We discuss
the methodology for the physical, perceptual and behavioural measurements in separate sections. We assessed 17 surfaces for all
three classes of measurements. As surfaces are multidimensional, we selected a wide range of typical urban surfaces in the study and
included multiple examples of each broad class to allow an assessment of generalisability. The 17 surfaces were all located on the
University of Liverpool campus, see Fig. 1, and Table 1. Surfaces are numbered in the order they were encountered for the perception
and behaviour measurement tasks for half of the participants, the remaining participants encountering the surfaces in the reverse
order. The surfaces were at least 10 m long to ensure that participants walked far enough to achieve a steady state of walking (Najafi,
Miller, Jarrett, & Wrobel, 2010).
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2.1. Physical measurements

2.1.1. Creating 3D models of the surface structure
In order to compare physical measures of surface complexity, we created 3D models using photogrammetry. This technique

creates models through a series of overlapping photographs of a surface taken from different angles. For each of the 17 surfaces, an
area of 1m2 (2 m along the direction of walking x 0.5 m perpendicular to that direction) was used to create the models. Two separate
models were created for each of the three surfaces with two distinct parts (S5, S14, S17). At least 35 pictures were taken to create
each model, with photographs covering the maximum possible angle range of the surface. A Nikon D7200, 24 megapixel, camera was
used, with an image resolution of 4000 × 6000 pixels. The 3D models were created using AgiSoft PhotoScan Standard (Version 1.4.4)
software. To create the models, we only used high quality images, as determined by the “Estimated image quality” function in the

Fig. 1. Images showing the 17 surfaces used in the study. Two images (S17A & S17B) are shown for surface 17 as it included both a corridor section
and stairs.
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software. Once created, we used Meshlab software (Cignoni et al., 2008) to simplify each model to 20,000 triangular faces.

2.1.2. 1st physical measure: relief index derived from the 3D models
From each of the 3D models we calculated the relief index as a proxy for the surface's complexity. The relief index is defined as the

ratio between the 3D surface area of the 3D model and its 2D planar area. This technique has been used as a metric for teeth
morphology (Boyer, 2008; M'kirera & Ungar, 2003), and has since been implemented for quantifying large land surface areas
(Szypula, 2017). To the authors' knowledge, it has not previously been used as a metric for smaller surface areas.

As this technique has not been used before for localised surfaces like ours, we completed a pilot study to check the replicability of
the relief index measure. We created models from two 1 m × 0.5 m surfaces not used in the main study, flat paving slabs and a
cobbled road comprised of setts. Three models were produced for each of these surfaces, with the photographs for each model taken
on different days (A, B and C). We then calculated the relief index for each model as detailed above. The relief indexes are shown in
Table 2.

The three relief indexes for both surfaces were similar, see Table 2. Thus, the models created using this method did not appear
sensitive to changes due to lighting or the angle of the photograph used to create them, with the difference in relief index between the
paved and cobbled models substantially greater than the differences between the relief indices for each surface (around 0.024 versus
0.001).

The 17 surface models originally consisted of varying numbers of faces (from 30,000 to 260,000 faces). We calculated the
percentage change in the relief index calculated using the simplified model with 20,000 faces that we report here compared to the
relief index calculated using the model with the original number of faces. The mean (± standard deviation) percentage change in the
relief index was just 0.27% (±0.61%) so standardising face number to 20,000 had little influence on the relief index.

2.1.3. 2nd physical measure: Dirichlet Normal Energy (DNE) derived from the 3D models
The 3D models of the surfaces were also used to calculate the Dirichlet Normal Energy (DNE) which reflects the local curvatures

across the 3D model surface (see Bunn et al., 2011). Like the relief index, the DNE can be used as a proxy for surface complexity.
However, it differs from the relief index in that the calculation can be weighted towards reflecting either finer or broader changes
rather than providing a single measure for the entire surface. This method has been used as a complexity metric for teeth (e.g.
Pampush et al., 2016) and bone morphology (Gardiner, Behnsen, & Brassey, 2018; Wallace, Winchester, Su, Boyer, & Konow, 2017).

We used the method described by (Shan, Kovalsky, Winchester, Boyer, & Daubechies, 2019), to calculate DNE using their im-
proved algorithm “ariaDNE”. We weighted the calculation towards reflecting localised changes that would be detectable by the feet
when walking, relative to more general surface changes such as the level change between different stairs. For further details, see the
supplementary material (SM1).

Table 1
Descriptions and approximate surface lengths (to the nearest metre) for the 17 surfaces. Three surfaces were split into two parts, listed as part A and
B.

Surface label Description of the surface Approximate length (metres)

S1 Flagstone paving 29
S2 Oblique paved slope 29
S3 11 outdoor concrete stairs including two landings 13
S4 Flagstone paving 31
S5(A & B) Three concrete stairs (A) and flagstone paving (B) 28
S6 Loose stones 30
S7 Brick slope 35
S8 Brick paving 31
S9 Fine gravel 30
S10 Small, loose pebbles 19
S11 Rough grass 34
S12 13 concrete stairs including two landings 10
S13 13 concrete stairs including two landings 10
S14(A & B) Fine gravel (A), and level grass (B) 35
S15 Stones set in concrete 31
S16 38 indoor, polished stairs including three landings 15
S17(A & B) Indoor corridor (A) and 18 polished stairs including one landing (B) 29

Table 2
The relief indexes calculated from the three photogrammetry 3D models of each of the surfaces.

Set A model Set B model Set C model

Paved 1.012 1.012 1.011
Cobbled 1.036 1.036 1.037
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2.1.4. 3rd physical measure: local slope angle
A final, simpler physical measure was used based on the local slope of each surface. This measure of slope angle did not require

surface modelling, but rather used a clinometer to measure the mean local slope angle (°) of a flat, 12 cm long extent placed onto the
surface. This was done at 20 locations along each surface, with each location separated by approximately 30 cm.

2.2. Perception measurements

2.2.1. Participants
Only participants that had no impairments or injuries that might affect their gait or vision were tested. The study consisted of 32

participants, 14 male, mean ± SD; age = 22.2 ± 5.0 years; height = 172.6 ± 8.5 cm. Twelve of these participants (10 male,
age = 27.3 ± 4.3 years; height = 178.0 ± 6.9 cm) had already completed the behavioural part of the study, but there were no
significant differences between their mean responses across the three different ratings and those of the remaining 20 participants, (F
(1, 32) = 0.22, ηp2 = 0.01, p = .643) so responses were pooled in the analyses reported here.

2.2.2. Data collection, protocol & analysis
Participants rated their perception of the 17 different surfaces using a Likert scale between 1 and 10 (Likert, 1932). For surfaces

with two components (i.e. S5, S14 & S17), participants were asked to consider both parts and to provide an overall rating. Parti-
cipants rated each surface from vision alone for, first, surface roughness (1 = “completely smooth” to 10 = “extremely rough”) and
second, stability (1 = “no problem with stability” to 10 = “I think I might fall over”) if they were to walk on the surface. They then
walked over the surface, and re-rated stability after having walked on it. Finally they described each surface in a maximum of three
words.

2.3. Behavioural measurements

2.3.1. Participants
Twenty healthy adults (14 male, age = 26.6 ± 4.2 years; height = 176.1 ± 9.1 cm) were recruited for the study. All parti-

cipants had no impairments or injuries that might affect their gait or vision.

2.3.2. Data collection
We used multiple gaze and gait measures to provide converging evidence about stability because, as discussed in the introduction,

there is no single, agreed measure of stability during locomotion. Eye movements were recorded using a Pupil Labs eye-tracking
headset (Kassner, Patera, & Bulling, 2014) that recorded pupil movement at 30 Hz and a world view at 60 Hz. We were interested in
how the stability of walking on surfaces influenced vertical gaze so we only analysed pupil movement in the vertical direction. Six
Delsys TRIGNO™ sensors (IMUs, Boston, MA, USA) were placed on the participant. Four of these sensors were used to collect inertia
data, recorded at 148 Hz. A sensor on the forehead collected gyroscopic data which was used to calculate head pitch. Another sensor
was positioned on the lower lumbar region. This provided accelerometery data that was used to calculate harmonic ratios to measure
gait symmetry, following Bellanca, Lowry, VanSwearingen, Brach, and Redfern (2013). Two sensors were positioned above the
malleoli on each legs which were used to calculate gait events. The remaining two sensors were used to collect surface electro-
myography (sEMG) data, recorded at 1111 Hz. These sensors were positioned on the antagonistic muscles of the right lower limb, the
Tibialis Anterior muscle and the medial head of the Gastrocnemius muscle.

The eye-tracker was calibrated then participants walked at a self-selected speed over the 17 surfaces (see Fig. 1 and Table 1), from
S1 to S17 for half of the participants and in the reverse order (from S17 to S1) for the remaining participants. We also collected data
that we report in a companion paper (Thomas, Gardiner, Crompton, & Lawson, 2020b) when people walked over the same 17
surfaces but with their lower vision blocked. The order of this factor (full versus partial vision) was counterbalanced across parti-
cipants. There was no significant difference for any of the measures depending on the different orders of completion of the study, F(1,
18) = 0.38, ηp2 = 0.02, p = .544. Participants stood still in front of each surface for three seconds before walking at a self-selected
speed to the end of the surface and then stood still for a further three seconds.

2.3.3. Analysis
Mean eye and head pitch angles were calculated for each participant for each surface. During calibration of the eye tracker,

participants fixated a target set at the participant's own eye height and this angle was used to define an eye angle of 0°. All vertical eye
movements were converted into angular deviations from 0°, with lower gaze, towards the feet, producing more negative eye angles. A
head pitch angle of 0° was defined as the average head position at the static period at the start and end of each surface trial, following
Thomas et al. (2020a). Head pitch angles were calculated using the gyroscopic data from the forehead sensor. The gyroscopic data
were filtered using a low pass, 10 Hz fourth-order Butterworth filter to reduce noise. Similar to Takeda et al. (2014), signal drift was
then removed using the period when the participant remained still at the start and end of each trial to provide a baseline. The
gyroscopic data (rotational velocity in deg./s) were numerically integrated for each surface to give head pitch angle.

Mean gait speed was calculated from the approximate length of the surfaces (see Table 1) and from gait events timings, calculated
from gyroscopic data at the ankles (Li, Young, Naing, & Donelan, 2010).1

Mean harmonic ratios were calculated from anteroposterior accelerometery data from the lumbar IMU. Harmonic ratios were
calculated by taking a Fourier transform of the data for each stride. The harmonic ratio is the ratio between the sum of the amplitudes
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of the even harmonics (representative of symmetrical gait) and the sum of the amplitudes of the odd harmonics (representative of
asymmetrical gait) (Gage, 1964; Smidt, Arora, & Johnston, 1971). A higher ratio represents more symmetrical, smoother gait. We
only considered harmonic ratios in the anteroposterior direction since this direction has previously been found to show the greatest
changes when walking (Brach et al., 2010; Lowry, VanSwearingen, Perera, Studenski, & Brach, 2013).

Surface EMG signals were calculated between adjacent ipsilateral gait events. Muscle co-activation was then calculated following
Winter (2005) defined by the following equation:

= ×
+

×COCON common area A B
area A area B

% 2 & 100%

where %COCAN is the percentage of muscle coactivation between the two muscles, area A is the area below the EMG curve of muscle
A (Tibialis Anterior), area B is the area below the EMG curve of muscle B (medial head of the Gastrocnemius) and the common area A &
B is the common area between both muscles.

For eye angle, head pitch angle, harmonic ratios and muscle coactivation, the first two and last two strides for each surface were
removed from the mean calculation to avoid the influence of starting and stopping walking1. Z-scores of means were then calculated
using the mean and standard deviation value from each measure. The z-scores for the physical, perceptual and muscle co-activation
measures were multiplied by −1 so that, for all measures, higher z-scores were always associated with more stable walking or less
complex surfaces.

For the results, we focused on correlations between different measures. This was due to our large range of measures in addition to
the range of walking surfaces, allowing us to investigate the relation between these factors depending on surface characteristics.
Large correlations (abs(r) > 0.5) as determined by Cohen (2013), are highlighted in each correlation table. To reduce the risk of
making Type 1 errors all statistical tests reported used an alpha level of 0.05 that was then adjusted for each correlation table using
the Bonferroni correction, based on the number of correlations executed. These calculated p-values are reported with each table.

3. Results

The results are split into two sections. Firstly we assessed how the three physical measures of surface complexity related to the
three perceptual measures on the effects of complexity on stability. Secondly we assessed how these six measures correlated to the
five behavioural measures of stability. Mean values for all measures are provided in the supplementary material (SM2).

3.1. Assessing the relation between physical and perceptual measures of surface complexity

Pearson's correlations were calculated across the mean z-scores for the 17 surfaces between all three physical and all three
perceptual measures, see Table 3.

Correlations were generally low for the relief index (the ratio of the surface to planar area). We realised that this could have been
caused by the high relief indexes occurring for surfaces with stairs. Since we do not normally step on the vertical surfaces of stairs this
may have produced a misleading ratio. We therefore repeated the Pearson's correlations between relief index and the other measures
for only the 11 surfaces without stairs, see Table 4.

Removal of the six surfaces containing stairs increased correlations for the relief index, as well as for most other measures. The
largest correlation values were found within the three physical measures and within the three perceptual measures, all of which were
significant.

To investigate further the relationship between physical and perceptual measures we conducted a principal components analysis
(PCA). Two components were established based on a criteria of the component accounting for at least 10% of the variance, see Fig. 2.

The shared surface features within groups of surfaces may explain why they generally cluster together. The two most common
verbal descriptions given by participants to each group of surfaces represented by the different colours were smooth and paving for
the red circles, stairs and steps for the blue squares and pebbles and uneven for the orange triangles. For further details please see the
supplementary material (SM3). These three groups of surfaces will henceforth be described as smooth (red circles), stairs (blue
circles) and uneven (orange triangles).

3.2. Assessing the relation between behavioural measures and physical and perceptual measures

For this section we excluded the three surfaces that had two distinct components (S5, S14 and S17). These surfaces caused
technical challenges when calculating behavioural means and behaviour may differ in anticipation of the transition from one
component to the other. For further details see the supplementary material (SM4).

Pearson's correlations were calculated across the mean z-scores for the remaining 14 surfaces between all five behavioural
measures, see Table 5. We compared these correlations to those obtained by calculating within-participant correlations for the 12

1We had intended speed to be calculated from gait events and accelerometric data recorded from IMUs on the legs, however the accelerometric
data did not record properly due to a fault with these IMUs. The gyroscopic data used to calculate gait events was not affected. Thus a simpler
measure was used to calculate gait speed, namely taking the time between the two stationary periods at the start and end of each trial, and dividing
this by the approximate length of the surface.
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participants that completed both the behaviour and perception task. Correlations were lower, but showed a similar pattern, see the
supplementary material (SM5).

Next we analysed how perceptual and physical measures compared to behavioural measures indicative of stability. Pearson's
correlations were calculated across the mean z-scores between all five of the behavioural measures and all six of the physical and
perceptual measures, see Table 6. As surfaces containing stairs were shown to reduce perceptual and physical correlations, we also

Table 3
Correlations between the mean z-scores for all 17 surfaces for every pair of physical and perceptual measures.

DNE Relief index Roughness 

ra!ng 

Pre-walk 

stability ra!ng

Post-walk 

stability ra!ng

Mean local 
slope angle

0.89* 0.13 0.78* 0.63* 0.72*

DNE - 0.50 0.67* 0.54 0.63*

Relief index - - 0.15 0.14 0.15

Roughness 
ra!ng

- - - 0.94* 0.94*

Pre-walk
stability ra!ng

- - - - 0.98*

Shaded correlation values are between physical and perceptual measures. Bold values represent large effect sizes (abs(r) > 0.5) as determined by
Cohen (2013)
* signifies p < .003 (calculated using the Bonferroni adjustment).

Table 4
Correlations between the mean z-scores for the 11 surfaces (excluding the six surfaces with stairs) for every pair of physical and perceptual
measures.

DNE Relief index Roughness 
ra!ng 

Pre-walk 
stability ra!ng

Post-walk 
stability ra!ng

Mean local 
slope angle

0.95* 0.92* 0.79* 0.63 0.71*

DNE - 0.98* 0.69 0.55 0.65

Relief index - - 0.68 0.55 0.66

Roughness 
ra!ng

- - - 0.95* 0.96*

Pre-walk 
stability ra!ng

- - - - 0.99*

Shaded correlation values are between physical and perceptual measures. Bold values represent large effect sizes (abs(r) > 0.5), as determined by
Cohen (2013). * signifies p < .003 (calculated using the Bonferroni adjustment).
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analysed surfaces when excluding stairs, see Table 7. Perceptual measures produced better estimates of behavioural stability mea-
sures than physical measures. Head angle and harmonic ratios were particularly strongly correlated. In contrast, eye angle did not
correlate significantly with any measure.

We conducted a further PCA to investigate the relationship between the physical, perceptual and behavioural measures. Three
components were established based on the same criteria as the previous PCA, see Fig. 3.

To determine an overall stability score for each individual surface, we calculated mean z-scores for each of the 14 single part
surfaces across all the 11 measures (3 physical, 3 perceptual and 5 behavioural). These mean z-scores are shown ranked from smallest
to largest in Fig. 4.

Fig. 2. A plot of the first two components of the PCA including the three physical and three perceptual measures. Component 1 (variance = 66.4%)
consisted of the roughness rating, pre-walk stability rating, post-walk stability rating, mean local slope angle and DNE. Component 2 (var-
iance = 21.3%) consisted of DNE and the relief index. Two distinct groups were established based on their values; positive for both components (red
circles, n= 8) and positive for component 1 only (blue squares, n= 6). The remaining surfaces (orange triangles) were less well grouped together
but did all score negatively for component 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 5
Correlations between the mean z-scores for the 14 surfaces (excluding the three surfaces with two components) for every pair of the five behavioural
measures.

Head angle Gait speed Harmonic ratios Muscle coactivation

Eye angle 0.43 0.23 0.46 0.60
Head angle – 0.62 0.85⁎ 0.80⁎

Gait speed – – 0.78⁎ 0.57
Harmonic ratios – – – 0.68

Bold values represent large effect sizes (abs(r) > 0.5), as determined by Cohen (2013).
⁎ Signifies p < .005 (calculated using the Bonferroni adjustment).

Table 6
Correlations between the mean z-scores for 14 surfaces (excluding the three surfaces with two components) for the six physical and perceptual
measures and the five behavioural measures.

Eye Angle Head Angle Gait speed Harmonic ratios Muscle coactivation

Mean absolute slope angle 0.37 0.39 0.14 0.33 0.32
DNE 0.04 0.52 0.12 0.52 0.45
Relief index 0.16 0.50 0.81⁎ 0.76⁎ 0.49
Roughness rating 0.33 0.71 0.15 0.61 0.48
Pre-walk stability rating 0.49 0.82⁎ 0.28 0.69 0.62
Post-walk Stability rating 0.44 0.82⁎ 0.23 0.65 0.63

Bold values represent large effect sizes (abs(r) > 0.5), as determined by Cohen (2013).
⁎ Signifies p < .0017 (calculated using the Bonferroni adjustment).
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Table 7
Correlations between the mean z-scores for 10 surfaces (excluding both stairs and surfaces with two components) for the six physical and perceptual
measures and the five behavioural measures.

Eye Angle Head Angle Gait speed Harmonic ratios Muscle coactivation

Mean absolute slope angle 0.15 0.60 0.54 0.73 0.63
DNE 0.10 0.61 0.48 0.68 0.66
Relief index 0.11 0.64 0.55 0.68 0.68
Roughness rating 0.48 0.89⁎ 0.80 0.92⁎ 0.81⁎

Pre-walk stability rating 0.68 0.93⁎ 0.86⁎ 0.93⁎ 0.86⁎

Post-walk stability rating 0.63 0.95⁎ 0.88⁎ 0.94⁎ 0.90⁎

Bold values represent large effect sizes (abs(r) > 0.5), as determined by Cohen (2013).
⁎ Signifies p < .0017 (calculated using the Bonferroni adjustment).

Fig. 3. A plot of the first two components of a Principal Component Analysis (PCA) between the 5 behavioural, 3 perceptual and 3 physical
measurements. Surfaces are coloured based on the three groups established in Fig. 2. Component 1 (variance = 55.3%) consisted of mean local
slope angle, DNE, roughness rating, harmonic ratios, pre-walk stability rating, post-walk stability rating and head angle. Component 2 (var-
iance = 20.6%) consisted of relief index, speed, harmonic ratios, head angle, muscle coactivation and DNE.

Fig. 4. Ranked mean (± SE) z-scores for each of the 14 single part surfaces across all the 11 measures. Lower z-scores are indicative of more
difficult surfaces, i.e. more complex and less stable for walking over. Surfaces are coloured according to the same smooth (red), stairs (blue) and
uneven (orange) groups used in Figs. 2 and 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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4. Discussion

The aim of this study was twofold. Firstly we wanted to see whether more complex surfaces (as assessed from physical mea-
surements) were perceived as more challenging to our stability, and secondly whether this perception translated to reductions in
stability, as assessed from a range of behavioural measures. Complex surfaces were, indeed, perceived as more challenging, with
increases in physical roughness being correlated with a perception of greater roughness and greater predicted unsteadiness when
walking over them. Furthermore, perceptual and physical measures predicted a subset of our behavioural measures.

Comparisons between physical and perceptual measurements also established three general types of surfaces as shown in Fig. 2.
These groups were labelled smooth, stairs and uneven based on common verbal descriptions of the surfaces that were provided as
part of the perception study. Uneven surfaces were less well grouped and spanned a range of materials, topographies and perceptions
of walking stability. In previous research, smooth and uneven or irregular surfaces were not objectively defined, but rather relied on
subjective descriptors (Marigold & Patla, 2007; Menz, Lord, & Fitzpatrick, 2003; Merryweather et al., 2011; Storm, Buckley, & Mazza,
2016; Tamburini et al., 2018; Thies et al., 2005). We believe that this is the first time that different walking surfaces have been more
thoroughly characterised through the use of objective, physical measures and perceptual ratings. This result strengthens the argument
for the use of more consistent terminology for studies using “uneven” or “irregular” surfaces. Additional or more precise descriptions
(i.e. sloped, rocky, irregularly spaced targets etc.) are essential to prevent misleading comparisons.

The multimethod approach used in this study may encourage future studies to compare surfaces of different complexity. By using
a range of different measures of surface complexity, we have been able to provide converging evidence about how the physical
characteristics of surfaces influence stability and how these characteristics can be readily perceived. This method can be used to
predict behavioural responses reflecting instability due to surface structure. Importantly, this study showed that simple, perceptual
measures can predict changes in behaviour as effectively as physical measures. This may provide researchers with an efficient and
effective tool to anticipate the effect of complexity on stability before conducting behavioural studies on vulnerable populations.
Researchers could use the method discussed here, determining surface characteristics from both physical and perceptual measures,
before assessing behavioural changes. An improved understanding of surface complexity should allow future research to focus more
precisely on behavioural changes due to stability fluctuating during locomotion.

This study found that perceptual and physical measures of surfaces are well correlated, as evidenced by generally large effect
sizes, and, further, that both measures also correlate with a range of behavioural measures that have been proposed as proxy
measures of stability during walking. All measures assessed smooth surfaces as providing high stability or as being less complex (see
Fig. 4). How surface complexity impacted behaviour varied depending on the behaviour being assessed. Eye angle, in particular, was
only weakly correlated with other behavioural measures (Tables 6 and 7) as well as with the perceptual and physical measures
(Table 5). This is consistent with our recent finding that eye angle, unlike head pitch angle, remained relatively constant, fixed
downward, regardless of the complexity of the surface type (Thomas et al., 2020a). As lowering of the eyes when walking is likely to
require far less energy than lowering of the head, assessing more energetically costly behaviour may provide a better indicator of
instability whilst walking. Indeed, our study showed muscle co-activation, walking smoothness assessed using harmonic ratios and
head angle (all of which are likely to be more costly to vary than eye angle) all correlated more strongly with physical and perceptual
measures than eye angle. An interesting opportunity for future research could be to determine how energetically costly different
surfaces are for walking, and which components of locomotion contribute to this increase in energetic expenditure. Also, in this study
we assessed average behaviour whilst walking over a given surface. Future research could compare changes in behavioural measures
over much shorter time periods. This approach may show stronger associations between gaze and gait behaviour, similar to that
reported recently by Matthis et al. (2018). Our next step will be to analyse how individual perceptual and behavioural measures vary
in relation to surface complexity, and to compare the data collected in the present study to when participants' lower vision is blocked
(Thomas et al., 2020b).

One common surface type that is often not considered complex, but which does impose challenges to our stability, is a flight of
stairs. Stairs had a distinct effect on our perceived and behavioural measures of stability relative to irregular surfaces (Figs. 2 & 3).
This may in part be due to stairs being uniform and so they permit repetitive, predictable gait. Indeed, walking on stairs does produce
differences in gaze, muscle activation and in biomechanics when compared to flat level walking (Cromwell & Wellmon, 2001;
McFadyen & Winter, 1988; Miyasike-DaSilva, Allard, & McIlroy, 2011; Shin & Yoo, 2016; Zietz & Hollands, 2009). These changes are
associated with decreased stability and increased fall risk so stairs are important to consider. In this study, our behavioural measures
suggested that people were relatively unstable when walking on stairs, and they also rated stairs as being relatively difficult to walk
on. Due to the differences that we found for stairs compared to smooth and uneven surfaces, we conclude that stairs are best
considered as their own distinct class of surface when analysing complexity.

5. Conclusions

In summary, we found that more complex surfaces (defined based on physical measurements) are perceived as more challenging
to our stability during locomotion. Furthermore, perceptual and physical measures of surfaces predicted behavioural measures of
stability, especially head angle, walking smoothness and muscle co-activation. Additionally, extra consideration should be taken
when including surfaces with stairs into a study. We propose that perceptual measures may provide an easy and effective method to
predict people's locomotor stability on different surfaces. This may be particularly useful for determining stability for those at greater
risk of falls, where researchers may want to minimise directly testing walking but where it is important to test for individual
differences in which surfaces may lead to instability.
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