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Look at the four diagrams in the figure. Each of them is produced by the same procedure, which
we describe shortly. In the upper left is a family of lines (360 of them, in fact) which has a very
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Figure 1: Some families of lines created by the zigzag construction, and, lower left, one incorrect
attempt to draw their envelope.

clearly defined enwvelope, that is a curve tangent to all of the lines. Though not explicitly drawn in
the figure, the envelope, which has 10 cusps or sharp points and 10 self-crossings, is immediately
evident to the eye. In the upper right the lines produce not one connected envelope but three, each
one of which has four cusps and no self-crossings though the components cross each other. The
lower left figure is rather curious: some lines are drawn and also a very loopy curve which, you
can verify, is tangent to all of the lines. However it’s a very poor excuse for an envelope of the
lines—this should evidently have four cusps and two crossings. Finally in the lower right the lines
appear to have a number of circles for their envelope—how many do you see?

In this article I shall describe the way in which these finite sets of lines are generated: the zigzag
construction. It is very striking that the lines often form visually evident envelopes; indeed that
is what prompted this investigation in the first place—the challenge is to find a curve, or several
curves, which form precisely this visually evident envelope of the lines. As the lower left example
in the figure illustrates, an arbitrary curve tangent to all the lines may well be ‘wrong’.

If we are given a family of lines, say a(t)z+b(t)y = c(t), parametrized by a continuous parameter
t, then there is a standard method for finding the envelope curve: solve for  and y between this
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Figure 2: The basic zigzag, defined by lengths of 100 and /, and angles 61, 03. In the middle figure,
p1 and po are rotations through 6; and 6y respectively. Right: a simple completed zigzag with
1 =40, 6, =45°,0, = 9°, with the zags drawn heavily. Note that the origin here has been moved
to the ‘center’ of the zigzag (see §1.1). In all the remaining figures in this article, only the zags are
drawn, and they are extended right across the viewing area.

equation and its derivative with respect to ¢, namely a'(t)z + V' (t)y = ¢/(t). (See for example [2,
p.57].) But a finite family of lines such as those being considered here will have a very wide choice
for an envelope curve tangent to all of them—how do we choose the ‘right’ one? I shall present
one method which works quite often—the whirligig construction—but I do not know the complete
answer.

Two Java applets demonstrating these constructions are at
http://www.liv.ac.uk /~tobyhall/Zigzag/
for the background leading up to the topic of this article, and
http://www.liv.ac.uk/~pjgiblin/Zigzag/
for the specific envelopes considered here.

In §1 T shall describe the zizgag construction and in §2 the whirligig construction. In §3 and
§5 I give two ways of marrying the two. In between, in §4, there are several more examples. In §6
there is a discussion of the special case (such as Figure 1, lower right) where the envelope consists
of a number of circles.

1 Zigzags

The basic idea of a zigzag is illustrated in Figure 2; the original idea comes from [1, p.114]. A
straight horizontal line—the zeroth zig—is drawn to the right from the origin, of length 100. At
the end of this another straight horizontal line—the zeroth zag—is drawn, of length [. If [ < 0 then
the line is drawn to the left and otherwise to the right; in either case it terminates at (100 + ,0).
The vector (100,0) is denoted v; and (I,0) by vo in the figure. At this stage we say that step
zero—a zig and a zag—has been completed. So far there is not much zigzagging in evidence.

But now the true zigzagging begins. We have two angles 61, 6, given to us (usually they will be
whole numbers of degrees). We draw a straight line—the first zig—of length 100 from (100 + {,0),
at an angle 67 with the positive z-axis (so this angle is measured anticlockwise from this axis). The
termination of this line is at (100 + [ 4 100 cos 01, 100sin #1). From this point we draw a line—the



first zag—of length [ at an angle 6, with the horizontal, thereby arriving at the point
(100 + I + 100 cos 01 + I cos 02,100 sin 61 + [ sin 6s).

At this stage, step one has been completed. In Figure 2, p1,p2 are counterclockwise rotations
through 61,60, respectively.

The lengths of the added lines are always alternately 100 and [. However, the angles between
the added lines and the horizontal go up by 61 and 6. respectively at every step. Thus step two
consists of drawing two lines at angles of 26,260, to the horizontal, step three of drawing two lines
at angles of 361,360, to the horizontal, etc.

There is some resemblance between the above construction and that in Maurer in [4], but we
use a pair of angles and he uses one angle.

The figures in this article are examples of sets of zags only, which are extended across the page
to give the envelopes a chance to form. Of course one could also consider the zigs alone and obtain
analogous pictures and results. Note that in all the figures, the origin has been translated to the
‘center’ of the zigzag; see §1.1 for details.

We shall need the equation of the j'" zag where ; = 0 means the original horizontal zag of
length [. Thus the oriented zag under consideration makes an angle of j with the horizontal
drawn to the right. The equation is as follows, where the axes have been translated parallel to
themselves to pass through the ‘center’ ¢ of the zigzag; see §1.1 below for a derivation. For a fuller
account, see [2, Ch.11].

50

z sin jfy — y cos j0o = nlo
501

cos(j(61 — 62) + 361) + 31 cot 65. (1)
As well as considering all the zags for given 61,60, and [ it is interesting to select just a subset
by starting from j = ky and increasing j by § > 0 at each step, that is to consider only the ;" zags
for j = ko +nd, n = 0,1,2,... in (1). In practice we shall usually take ko = 0, taking ‘every §*!
zag’. See for example Figure 3 where picking out every eighth zag (b) or every fifth zag (c) give
very different results. Of course, if there are for example 100 zags, then drawing every zag (§ = 1)
is going to produce the same effect as drawing every third zag (§ = 3), though the way in which
these zags ‘step round’ the envelope curve may well be different. We shall expand on the latter
idea in §3. For the present here is a formula ([2, p.132]) for the total number s(d) of zags which
occur before the figure closes and repeats. It is assumed that 6,6 are fixed in advance so we do
not include them in the notation for s.
360
*) = 360,001,305) @)

the round brackets denoting greatest common divisor. Two values of § (both with ky = 0) will
give the same set of zags precisely when they give the same number of zags (we are dealing here
essentially with an additive cyclic group of order s(1), generated by 1, and the subgroup generated

by ).
1.1 Derivation of the equation of a zag

For the time being the origin remains at the beginning of the zigzag. Then define ¢, ¢y, ¢ by the
equations
Vi = €1 — p1€1, V2 =Cz — p2C2, € =C1+ Ca.

Operating on the first of these equations by p, p%, ... and adding, we get

2 j j+1
Vi+pivi+pivi+...plvi=c1—p] ¢y,
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Figure 3: [ = 75, 6; = 91°, 6, = 47°. (a) The whole set of 360 zags, making a mess. (b) With
0 = 8,kp = 0 we pick out one of eight envelope components, with 360/8 = 45 zags tangent to it.
The other seven components are given by kg = 1,...,7. (c) With § = 5,k = 0 we pick out one
of five components, with 360/5 = 72 zags tangent to it. (d) The envelope of (b), generated by a
continuous family of lines. (e) The envelope of (c), generated by a continuous family of lines. The
whirligig curves in these two examples are determined by the method of §3. (f) A whirligig which
is tangent to all the zags, that is to all the lines in (a), but which is hardly a visually striking
envelope!



with a similar equation having suffix 2 throughout.
Now the point which the zigzag reaches after j steps—the end of the ;' zag—is clearly (see
Figure 2) ' .
Vi + Va4 p1vi + pave + ... plvi + phva,

where as before j = 0 means the starting zig and zag both of which are horizontal. Using the above
formulae this equals

C1 +Co — p{'_HCl — pg_HCQ.
Translating the origin to the point ¢ = ¢; + c2, called the center of the zigzag, we can drop the
first two terms. Now evaluating c; as (I — py)~'vy (where I is the identity), and similarly for p,
we find quite quickly that the two ends of the ' zag are

(ﬂ sin <j + %) 0, + sin (j + %) 0>,

2sin %01 2sin %92
100 . 1 ! . 1
—————cos(j+5)01 — ———cos(jEt5)6s],
2sin %91 (J 2) ! 2sin %92 (] 2) 2)

where the lower sign is the beginning of the zag and the upper sign is the end.

We can now check that the line (1) has the correct slope j02 and passes through one of the
above points (or alternatively passes through both points), and is hence the line along the j** zag.
This completes the proof that (1) gives the equation of this zag relative to axes parallel to the
original axes but translated to the center ¢ of the zigzag.

2  Whirligigs

The most general kind of envelope of a continuous family of lines with which we shall compare the
zag-envelope is a whirligig, defined as follows. Consider a circle, radius R centered at the origin
(that is the center ¢ of the zigzag above). With center at a point on the circumference making
an angle ¢(t) with the downward vertical draw another circle, of radius r. Orienting this circle
anticlockwise, consider the (oriented) tangent to this circle making an angle 1 (¢) with the positive
z-axis. See Figure 4. We shall take ¢, to be linear functions of £, so that the speeds of rotation
are constant:

o(t) =at+b, P(t) =ct+d, a,b,c d constants. (3)

A brief analysis shows that the point of contact of the tangent line with the circle of radius r is
(Rsin¢ + rsintyp, —Rcos¢ —rcosip),

and that the equation of the tangent line is

zsiny —ycosh = Rcos(p — ) + 7. (4)

The whirligig determined by R,r,a,b,c and d is, then, the envelope of these tangent lines as the
spinning circle of radius r moves round the circle of radius R. Whenever we draw a whirligig
we shall draw simply the curve itself which is tangent to all these lines. Mathematically, this is
obtained by solving the equation (4) and the derivative of (4) with respect to ¢ for the variables z
and y.

For the record, here is the resulting parametrization:

cx = Resing + resinty — Rasin(¢ — 1) cos ), cy = —Rccos ¢ — recosp — Rasin(p — 1) sineh.
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Figure 4: A whirligig is the envelope of lines tangent to a rotating circle of radius r whose center
moves on a circle of radius R. The angles ¢, 1 are then functions of ‘time’ ¢.

As a simple example, if a = ¢ # 0 then the whirligig is a circle with center the origin. If
a=0, ¢c#0, it is a circle with center at some point of the circle radius R.

Remark It is worth noting that what is here called a ‘whirligig’ appears also in the literature as
a ‘line-roulette’ or more specifically a ‘line trochoid’; see for example [3, Ch.17]. The connexion is
not immediate since it is usual to require a circle to roll on a fixed circle, the rolling circle carrying
with it a point, giving a ‘point-trochoid’, or a line, giving as envelope a ‘line-trochoid’. Note that
it is not assumed that the moving point (resp. line) is on the circumference of the rolling circle
(resp. tangent to the rolling circle).

In fact it is not hard to see that, in Figure 4, we can always find a circle concentric with our
fixed circle and a circle concentric with the spinning circle which do roll on one another. Taking
a > 0 there are three cases according as ¢ < 0, 0 < ¢ < a or ¢ > a and the reader may enjoy
finding the radii of the fixed and rolling circles when the rolling condition is imposed. For example,
when 0 < ¢ < a the radii are (a — ¢)R/c and aR/c. Of course r now plays the role of telling us the
location of the line rigidly attached to the rolling circle whose envelope produces the line-trochoid.

The purpose of introducing whirligigs here is to compare (4) with the equation of the j™ zag. If
every zag is one of these lines then the envelope of the lines—that is, the whirligig—will be tangent
to all the zags and so may serve as an ‘envelope of the zags’. On the other hand the whirligig
may turn out to be much more complicated than the visually evident ‘envelope of the zags’; see
Figure 1, lower left, for an example of a whirligig which is, to be sure, tangent to all the zags, but
is visually wrong. The correct whirligig is the one shown in Figure 5, left.

Remark It is clear that the whirligigs in the figures often have cusps. Here is a formula for the
number of cusps, which is left as a pleasant exercise for the reader:

2la — ¢
(a,c)

We often take a and c relatively prime, so the number is then 2|a — ¢|.



3 Zigzags and whirligigs
Firstly, a direct comparison between (1) and (4) shows that it makes good sense to take

50 .

R= r = Ll cot 36,, (5)

N sin %91 ’
and we shall always do this.
Let 61,62 and § be given integers. We consider the zags with 7 = 0,6,24,.... Let

001 = k1 and 602 =k mod 360. (6)

We shall usually take the k; to be the smallest positive residues mod 360, or the residues which are
smallest in absolute value.

Proposition Suppose that a and c are integers and that there exists T with at, b integers and
atr =k, et =ky mod 360. (7)

Then all the zags (7 = 0,6,26,... as above) are lines of the form (4) with the above a,c and
b= %91, d = 0; the zags are therefore tangent to the whirligig given by these values (and R,r as in
(5) as usual).

Remark We can use the zags with j = ko, kg + 9, ko + 26, . .. by adjusting the values of b and d to
(ko + %)01, koOs respectively.

Proof Take ¢ = at+ 561, 1 = ct, t = n7 in (4) where a,c, 7 satisfy (7). Then the line (4) clearly
coincides with the zag

zsin(ndéfs) — ycos(ndbha) = Rcos(nd(r — 62) + 561) +

forn=0,1,2,....

We shall use this simple proposition to propose whirligigs as possible envelopes of zags. Exper-
iment suggests that a more visually plausible result is obtained if @ and ¢ are reasonably small, but
the total number of zags drawn (given by s(d) as in (2)) is reasonably large. However, ‘small’ here
must be taken with a grain of salt; e.g. Figure 7 shows an example where a = 17,¢ = 8 and the
whirligig is clearly right.

An immediate solution to (7) is a = k1, ¢ = ko, 7 = 1. Note that we can take out a common
factor from a and ¢ in (7) by multiplying 7 by the same factor. So we can take out all common
factors and assume that a and c are relatively prime. Thus

kq ko
a = (kl,kQ)’ c= (kl,kQ)’ T—(G,C) (8)
is a simpler solution. We shall consider other solutions in §5 below.

Before giving a number of examples, it is worth introducing the notion of ‘stepping round’ the
whirligig. Suppose that we have found a and ¢ which are ‘correct’, as in Figure 3(c) and (e). The
family of lines in (c) can be generated by taking é = 5 or 15 or 30 or 85, or any other § with
(360,916,476) = 5, which here amounts to just § being a multiple of 5. (To obtain a =5 and ¢ =1
by the method of this section, we can take § = 85 or 115; see Example 1 of §4. We can in fact
obtain a = 5,¢ =1 from § = 5 by the method of §5.) If we take one of these values of § and draw
every ' zag, starting with the 0'" zag, then these will eventually fill up all of Figure 3(c) but will




in general dance about over the whirligig curve in (e) rather than stepping along it with the points
of contact covering the whirligig just once. When they do cover it just once we say that this value
of § makes the zags step round the whirligig.

Suppose that a and ¢, with (a,c¢) = 1, are determined by the method of this section, from a
particular value of §. For the whirligig, the small spinning circle turns |c| times before returning

to its starting place. On the other hand consider the zags given by j = dn, n = 0,1,2,.... The
number of zags before the whole zigzag repeats is given by (2), that is
360 360

(360,801,062) (360, k1, ko)

We shall take ki, ko to be the least residues of §61, 56> mod 360, in the sense of absolute value. A
negative value indicates that the selected zags (multiples of §) turn clockwise instead of anticlock-
wise. The total number of turns of the zag before returning to the start is therefore the above
number times ko, divided by 360. If drawing every 0'® zag is to step round the whirligig defined as
in the proposition, we require that (k1, k2) = (360, k1, k2), which is the same as saying that (kq, ko)
is a factor of 360:

The stepping round criterion for the method here is that (k1, ko) divides exactly into 360.

Examples are given in the next Section.

Stepping round is hard to demonstrate with a still picture, but the second Java applet mentioned
in the Introduction allows a delay between the drawing of successive zags which makes the idea
immediately attractive.

4 Examples

Example 1: 6; = 91,0; = 47. Table 1 shows all the values of a = ki/(k1,k2),c = ka/(k1, k2)
which are both < 10, for values of § from 1 to 180. The number s is the number of steps (here
the number of zags) in a complete cycle; as above, this equals 360/(360, k1,k2). Note that the
outlandish a = 17,¢ = —11 of Figure 3(f) is not in the table because of the cutoff value of 10 for a
and c.

The first entry in the table, § = 8, gives Figure 3(b), (d). The second entry, § = 15, has a and
¢ which are merely the negatives of those in the more interesting entry § = 115, and the latter has
three times as many zags tangent to it. It is shown in Figure 3(c),(e). The third entry, 6 = 16, is
like § = 8, but without the feature that the zags step round the whirligig. (This feature is indicated
in the table by a ‘1’ in the column headed ‘?’ and its absence by a ‘0’.) When § = 18, the number
of zags (20) is so small and a and c are relatively large, so this is a complicated whirligig with the
zags spaced very far apart (in terms of arclength) along it. From the zags one would never pick out
this whirligig as their envelope. For another entry in the table, § = 90 gives a = ¢ = —1, a circle,
with just 4 zags tangent to it. Note that there are no values of § < 180 for which the number of
steps s is > 72. Thus (at least for this range of d) it is to be expected that the 72-zag whirligigs are
not part of larger ones; in fact that there are 360/72 = 5 of these which are obtained by choosing
different starting points, that is different values of kq. In the above, k¢ is always chosen to be 0.

For the remaining examples, we shall not give so much detail.
Example 2: 6, = 45°, 05 = 15°. (Take [=50.)

‘6‘k1‘k2‘a‘c‘?‘s‘ Comment‘
1145 | 15 |3 |1|1]|24 correct visually: Figure 5, left
71-451105 | -3 |7 |1 |24 | wrong visually: Figure 1, lower left




(6] b [k Jafec[?[s ][ 8 [k |k [alc[?]s]
8 8 16 | 1|2 1|45 88 88 | 176 | 1 | 2 | 0| 45
15| -75 | -16 | -5 |-1|1{24 | 90 | -90 | -90 |-1|-1|1]| 4
16 | 16 32 |1 |2 ]0]45 | 96 96 | -168 | 4 |-7|1|15
18 1 -162 | 126 | -9 | 7 |1 20| 99 9 27 |1 -3 |1|40
20 20 |-140| 1 | -7 (1|18} 100 | 100 | 20 | &5 |1 |1/|18
24| 24 48 |1 (2 |1|15( 108|108 | 36 |3 |1 |1]|10
30 |-150 | -30 [ -5 |-1|1|12| 115 | 25 5 511|172
32 | 32 64 |1 |2 |0|45|120| 120 |-120 | 1 |-1| 1| 3
36 | 36 |-108 | 1 |-3 1|10 126 | -54 | 162 |-1 | 3 | 0| 20
40 | 40 80 |1 2|19 130 -50 | -10 |-5|-1|1]36
451 135 | -45 | 3 |-1 1| 8 | 135 | 45 |-135 |1 |-3|1] 8
48 | 48 96 | 1|2 |0]|15 | 138 | -42 6 |-7]1]|1)|60
54 |-126 | 18 | -7 | 1 |1 |20 | 140 | 140 | 100 | 7 | 5 | 1|18
56 | 56 | 112 | 1 | 2 |0 | 45| 144 | 144 | -72 | 2 |-1 |1 | b
60| 60 | 60 | 1 | -1 |1 | 6 ||145|-125| -25 |-5|-1 |0 |72
63| -27 | 81 |-1]3|0|40( 150 | -30 |-150 | -1 |-5 |1 |12
64| 64 | 128 | 1 | 2 [0 |45 160 | 160 | -40 | 4 |-1 (1| 9
72 72 | 144 |1 |2 (1| 5 || 162 -18 54 |-113|1|20
7| -15 | 275 | -1 |5 (1|24 168 | 168 | -24 | 7 |-1 |1 |15
80| 8 160 |1 |2 (0|9 ||170| -10 | 70 |-1| 7 |1]|36
84| 84 | -12 | 7 |-1|1|30 180|180 | 180 |1 |1 1| 2
8 | 176 | 35 | 5 |1 |0 72

Table 1: 6; = 91, 0, = 47. This table shows, for § up to 180, values of a and ¢, obtained by the
method of §3 and both < 10 in modulus, giving whirligigs which are tangent to all the s resulting
zags. Low values of a,c and high values of s tend to give recognizable envelopes. The column
headed ‘7’ contains a 1 if the zags step round the whirligig and a 0 otherwise.
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Figure 5: Left: the 'correct’ envelope for the family of lines in Figure 1, lower left (see Example
2). Here 61 = 45°,605 = 15°,1 = 50. Right: one of the three ‘correct’ envelope components for the
family in Figure 1, upper right (see Example 4). Here 6; = 21°,0, = 47°,1 = 50.
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Figure 6: Left: 6; = 21°,09 = 49°,1 = 50. The envelope has one piece, though it is hard to be sure
what it looks like. Right: the envelope produced as the envelope of a continuous family of lines.
See Example 5.

Example 3: 6, = 77°, 05 = 22°. (Take [ = 50.)

‘ 1) ‘ k1 ‘ ko ‘a‘c‘?‘ s ‘ Comment‘
131 7 2 | 7]2]1]360 See Figure 1, upper left
72 | 144 {144 | 1|1 |0 | 5 | Regular pentagon and circle: k0 changes radius

Example 4: 0; = 21°, 6, = 47° (take [ = 50). Here § = 1 gives all of Figure 1, upper right, and
& = 3 gives just one-third of the zags, which are tangent to one of the three curves visible in this
figure. The value § = 39 gives the same zags as § = 3 but the method of §3 shows that a =3, ¢ =1
provides an appropriate whirligig as in Figure 5, right. To get the other components with § = 39
we take kg = 1,2 and adjust b and d as in the Remark in §3. The value § = 69 gives the same zags
again as § = 3 but in addition steps round the figure.

Example 5: 6; = 21°,6, = 49° (take [ = 50). Here § = 1 gives a = 3,¢ = 7 by the method of §3.
See Figure 6. In order to step round the envelope we can take § = 103.

10
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Figure 7: The case 8; = 23°,05 = 32°,1 = 50 where we need a = 17, ¢ = 8 to generate the envelope
(right). See Example 6.

Example 6: 6; = 23°,0, = 32° (take [ = 50). Here, as in Figure 7, we need to take the larger
values a = 17, ¢ = 8, which are given by § = 79 using the method of §3. This value of § also steps
round the resulting whirligig.

5 An alternative method

The formula (8) is not the only solution to the equations (7) for finding a whirligig which is tangent
to all the zags. For example, with 8; = 91°,60, = 47°,§ = 5 it misses the good solutiona =5, c =1
which gives the same picture as Figure 3(c),(e).

Here is a sketch of another possible method. To simplify notation we rewrite (8) as

atr =u, c¢r=v mod w. (9)

We shall assume in what follows that 7 is an integer and that (a,c) = 1. We seek to minimise
the value of a. Let (7,w) = h; then (9) implies h|u, hlv. Write u = uirh,v = vih,w = wih,7 = 11h
so that (7,w;) =1 and (9) can be replaced by

aTy =uy, crp=v; mod wi.

It now follows, using (a,c) = 1, that ui,v;,w; cannot all have a common factor so that in fact
h = (u,v,w).

Since (71, w;) = 1 we can find the inverse s; = 7; ' mod w; and then a = syu;, ¢ = s;v1 mod
wy is a solution. So we proceed as follows:

Let g = (u1, w1, u1/g = ug, wi/g = we and, to make a as small as possible, choose for s; the
number u;l mod wy. Then a = g mod w; (so take a = ¢g) and ¢ = syv; mod w;. Note that there is
a possibility here that (s1,w1) > 1, even though (s1,ws) = 1. This would prevent us from deducing
that a and c satisfy (9), since we could not choose 71 = s7' mod w;. There is also the possibility
that a and ¢ are not, in fact, relatively prime. (87 = 73°, 62 = 26°, § = 36 makes (a,c) = 2 by this
method.) So when using this method we need to check both of these conditions en route.

Of course we can ‘minimise ¢’ by the same method. As an example, let 6; = 91°, 6, = 47°,
as in Table 1 where the method of §3 was used to find a and ¢. Then ¢ = 5,25,35,65,... all give
s = 72 steps, as in Figure 3(c), and the new method correctly predicts a = 5, ¢ = 1 is a solution
here.

11



Figure 8: Two examples where the zags are all tangent to one or more circles. Here, 6; is a factor
of 360, in fact 20°, and § = 18 on the left, 6 = 6 on the right. Here 6, = 49°,1 = 50.

Note that the ‘stepping round’ criterion is slightly different now. We need 7s() = w = 360
and since s(d) = 360/(u, v, w) and 7 = 71 (u,v,w) we need 1, =1 (or —1).

The stepping round criterion for the method here is that 7 = +1.

6 The special case when the zags are tangent to circles

A glance at Figures 8, 9 and 10 shows that there are a number of situations where the zags are all
tangent to one or more circles. We consider some of these here.

Case 1. Suppose 66; is a multiple of 360. Then clearly we can take a = 0 in (7), that is the angle
¢ in the whirligig construction (Figure 4) is constant. This means that the zags are all tangent to
one circle, as in Figure 8, left.
More generally, the j*" zag (1) coincides with the line (4), for the usual values of R and r as in
(5), when
¢=(j+3)01, % =jb mod 360.

Write j = ko +nd, n = 0,1,2,.... If mdf; is a multiple of 360 for an integer m then n =
0,1,2,...,m — 1 will give distinct ¢ and the zags will be tangent to m circles in turn which will
then repeat. See Figure 8, right, where 8; = 20°, 6, = 49°, [ = 50.

Case 2. A different way of identifying (1) and (4) is to take
¢=3(20, —01) — 361, v =30, mod 360.

This makes use of the evenness of the cosine function. If now §(26, — 61) is a multiple of 360, then
J = ko +mnd will give a constant ¢ (mod 360), namely ¢ = ko(202 —61) — %91. Thus all the zags will
be tangent to one circle. For example, Figure 9, right, we have 6; = 34°, 0y = 37° (and [ = 30),
so that 26, — 67 = 40 = 360/9. Then § = 9 gives one circle and § = 1, by an argument similar to
Case 1, gives nine circles, as shown in the figure. (If md(20 — 01) = 360N where (m, N) =1, then
we get m circles.)

The enigmatic Figure 1, lower right, is a strange hybrid: here 6; = 20°, 6, = 46° (and [ = 50)
so that 20y — 6, = 72 = 360/5, but also, as in Case 1, §; = 360/18. The case § = 1 is shown in
Figure 9, left, and we see the expected five circles. In Figure 1, lower right, we have § = 3. Since
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Figure 9: Left: five circles produced by 6; = 20°,0 = 46°,§ = 1, making 26, — 1 = 27/5. Taking
& = 5 reduces to a single circle. Right: nine circles produced by 6; = 34°,60, = 37°,6 = 1 making
20y — 601 = 27 /9. Taking 6 = 9 reduces to a single circle.

20 x 3 = 360/6 we might expect six circles as in Case 1 , but 72 x 3 =3 x 360/5 so perhaps there
are also five Case 2 circles present! What do you think?

Case 3. There is another case where the zags are all tangent to one or more circles. If §(6; —6-) is
a multiple of 27 then the cosine term on the right hand side of (1) is constant. We can then make
(1) match (4) with R =0 and

100

r=o i cos(ko(61 — 02) + 161) + Ll cot 36,.

Thus all the zags are tangent to one circle, centered at c. If kg = 0 then the radius of the circle is
%100 cot %01 + %lcot %02.

If, in fact, mdé(6; — 62) is a multiple of 27 with the integer m as small as possible then there
will be m concentric circles. An example is shown in Figure 10, where [ = 50,6; = 19°,6, = 73°.
Here 01 — 65 = —54° and § = 20 is the smallest number making §(6; — 62) a multiple of 360, so we
obtain (left) one circle with all zags tangent to it. The right hand figure shows § = 10 giving two
circles.

7 A concluding problem

What exactly is it about 61,60 and ¢ which allows the existence of a reasonably simple whirligig
tangent to the visible envelope? We want, in rough terms, a and ¢ to be small but the number s(6)
of zags to be large. I do not know the full answer to this.
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Figure 10: An example where all zags are tangent to (left) one circle and (right) two concentric
circles.
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