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Abstract:

We begin by looking at curves of constant width. We study some of their properties such as length,
vertices and the conditions necessary to avoid singular points. We then study some envelopes and verify
to what extent they are the limit of intersections of nearby curves. We then take a look at duals of plane
and space curves, comparing what features on the original curve correspond to singularities in the dual

space.
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1 Introduction

This project is divided into three sections; Curves of Constant Width, En-
velopes and Duals of Plane and Space Curves. Although there are common
themes throughout, each of the chapters can be read as seperate entities.
This project takes material from the area of curves and singularities and
tries to expand on some ideas. Relatively little prior knowledge is assumed
and although most of the material is not technically that difficult, the project
includes some quite lengthy calculations at times.

Singularity theory is a relatively new subject which was established by
the American mathematician Hassler Whitney in 1955. The subject was then
expanded by the French mathematician René Thom in the 1960s and ‘70s. It
was Thom who originally came up with the idea of versal unfoldings which is
central to this project. It is Thom’s idea of versal unfoldings that enable us
to tell whether certain singularities are isomorphic to cusps or swallowtails.
The work of Thom greatly impressed the Spanish surrealist painter Salvador
Dali who described his theory of catastrophes as ‘the most beautiful aesthetic
theory in the world’ 2. The image on the front cover is a work by Dali called
‘The Swallow’s Tail’ painted in 1983 as a tribute to René Thom. The shape
of Dali’s Swallow’s Tail is taken directly from Thom’s 4-dimensional graph of
the same title, combined with a second catastrophe graph, the s-curve that
Thom dubbed, ‘the cusp’ .

In the first chapter we study curves of constant width. That is a curve
with the property that the distance between any two parallel tangents to
the curve is constant. The simplest example is the circle but as we shall see
there are some very peculiar shapes that also satisfy this property. By way
of motivation there are many applications for curves of constant width such
as car engines, drills that produce (almost) square holes and the design of
money (think of the 50 pence coin). We study some of the properties of these
curves and we try to find the necessary conditions to avoid the occurence of
singular points. In the second chapter we look at a variety of envelopes. We
look at the envelopes of tangent lines to curves and look at how the envelope
can be thought of as the limit of intersections of nearby curves. We then try
to extend this to envelopes of circles of curvature. Then we look at envelopes
created by a process known as embroidery and use Thom’s versal unfolding
idea to show which singularities are cusps. Keeping on the theme of tangent
lines, in the final chapter we examine duals of curves. In 2-dimensions the
dual of a curve is a way of representing all of its tangent lines. Then we



move on to three dimensions where things get a bit more interesting. The
dual space then becomes a way of representing the tangent planes to a space
curve, so consequently the dual is a surface. We look at three different space
curves and study their properties and discuss how they correspond to various
features of the dual surface.

The real attraction for this project stems from the fact that most peo-
ple could gain something from its reading. This is because alongside each
theorem there are many examples and pictures which should help in under-
standing. As a result it should, I hope, be possible to see the general concept
without necessarily getting caught up with the intricacy of the calculations.

2 Curves of Constant Width

A curve of constant width (CCW) is a convex planar shape with the property
that the distance between any two parallel tangents of the curve is constant.
That is, every tangent to the curve has the same distance to its parallel
tangent. The simplest case is a circle. Later on we shall see that the idea
can be extended to certain non-convex curves containing cusps.

Figure 1: Circles as curves of constant width

As way of motivation consider the British fifty pence piece. The edges are
not straight but in fact they are slightly curved. The edges of a fifty pence
(or indeed the twenty pence) piece form a curve of constant width. This is
so the coin can roll freely and so its diameter can be measured by vending
machines.



Figure 2: The 50p piece has a constant diameter

Of course a circle would also suffice for the coin, being a CCW, but then
maybe it would not be so distictive. Perhaps further motivation for the study
of CCWs could be found in the Wankel rotary engine. The Wankel rotary
engine is a type of internal combustion engine invented and developed by
Felix Wankel in 1950s. The engine consists of a three sided shape of constant
width rotating in a chamber see Figure 3.
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Figure 3: The Wankel engine
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The engine is light-weight and reliable because of its relative simplicity. Over
the years it has been used in everything form motor cycles, cars and aero-
planes to snowmobiles. There are also many other applications including
cams and drills that cut square holes. Now that we are sufficiently moti-
vated, let us take a look at thier construction.

2.1 Contructing Curves of Constant Width

For each angle ¢, the function h(t) gives the distance to a tangent to the
curve from the origin. The line [ which is to be the tangent to the curve, is
perpendicular to the line of angle ¢ at the point (hcost, hsint). Now let us
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(hcost, hsint)

Figure 4: Support function

take a look at the equation for the line [ which is to be the equation for the
tangents to the curve.
Equation of line [

((z,y) — (hcost,hsint)) - (cost,sint) =0

(x — hcost)cost + (y — hsint)sint =0
xcost +ysint = h(t)

So we define
F(t,z,y) = xcost +ysint — h(t)

We are now going to find the envelope of the tangent lines. This gives us

the equation for the general curve tangent to the family of lines [. Only then

can we impose the conditions necessary to be a curve of constant width. The
oF

envelope is constructed in the usual way, as F'(t,z,y) = %~ = 0 where

F(t,z,y) = xcost +ysint — h(t)

oF
o = —xsint + ycost — h'(t)

If we multiply F' by cost and multiply %_1; by minus sin¢ we obtain simulta-
neous equations

zcostcost + ysintcost — h(t) cost =0

5



xsintsint — ycostsint 4+ h'(t)sint = 0.

Then if we add the two equations we obtain the equation for x. Similarly we
can calculate the equation for y.

Proposition 2.1 : The parametrization of the curve given by the support
function h s
x = hcost — h'sint

y = hsint + h' cost

These are the basic equations but there are certain conditions which we must
impose for constant width. Firstly for the sake of simplicity we will asume
h > 0 for all t.

Figure 5: Conditions for a CCW

Note that the origin is not equidistant between the two tangent lines but from
the diagram it is clear that for constant width we need to have h(t)+h(t+7) =
constant. For example we can use terms such as sint and cost. If h(t) = sint,
then h(t +7) = —sint and if h(t) = cost then h(t + 7) = — cost.
e.g. If we take h(t) = 2 +sint, then

h(t +7) = 2 —sint, so then we get that

h(t)+ h(t+m) =2+sint+2 —sint = 4.

So the CCW would have a diameter of 4.



For terms involving sin(nt) or cos(nt) we need n to be an odd integer. Say if
n =3, h(t) = a+sin3t, h(t+7) = a +sin(3t + 37) = a — sin 3¢, then we get

h(t) + h(t + ) = 2a.

If we used n = 2, h(t) = a+sin 2t and h(t+7) = a+sin(2t+27) = a+sin 2t,
S0
h(t) + h(t+ m) = 2a + 2sin 2t

which is not constant width.
Let us take a look at some examples of CCWs and their support functions.
The case h(t) = 8 + sin 3t is shown in Figure 6

Figure 6: h(t) = 8 +sin 3t

Note that the number n gives the number of ‘sides’ to the CCW. Depending
on the constants involved, sometimes the curve can be singular.

Figure 7: h(t) = 7 + sin 5t.

The CCW in Figure 7 is an example of a curve which contains singular
points causing the shape to be non-covex. Later on we shall look at the
necessary conditions for singular points to arise. Now let us look at some
interesting properties of these CCWs.



2.2 Circumference of a CCW

We know that for the simplest of CCWs, the circle, the circumference is equal
to the diameter (or width) multiplied by 7. What is the relation between
area and width for a general CCW?

If we take our curve of constant width v = (x cost—h'sint, hsin t+h' cost)
We need to calculate the integral

2m ds dz\” dy 2
d h — = — —
/0 o WHETE \/(dt) +<dt>

So
2m 2m
| as= [ i
0 0
where 7' = (—hsint — h"sint, hcost + h"cost)
= (h+h")(—sint,cost)
therefore

[l = Ik + A"
Suppose that A + A" > 0 for all ¢

27
Length = / h(t) + h"(t)dt
0

= /7r h(t) + h"(t)dt + /27r h(t) 4 b (t)dt

= / h(t) +h"(t) + h(t +7) + A" (t + m)dt
0
Since for a curve of constant width w we have h(t 4+ m) = w — h(t),

d d

(bt 4+m) =~

= (h(®),  W'(t+m) = —H"(1)

Hence -
Length = / (w+0)dt = [wt]§ = wn
0

and we have shown the following.



Proposition 2.2 The circumference of a curve of constant width w is given
by wr.

Remark 2.3 For a curve with singular points the curve traces backwards
and the sign then changes for A+ h". This counts as ‘negative distance’ when
summing the perimeter. Singular curves are discussed in more depth later
on.

So we have shown that the same is true for any curve of constant width, the
perimeter is equal to the width or diameter multiplied by 7. This is known
as Barbier’s theorem, named after the French mathematician Joseph Emille
Barbier(1839-89).

2.3 Curvature

The next question we ask is what is going on with the curvature of a CCW?
It seems a reasonable assumption that there is something going on between
the curvature and the curvature of the two points with parallel tangents.

x’y” _ x”y’

The curvature is given by xk = W

and
x = hcost—h'sint
' = —hsint — hcost+ h'cost — h"sint
= —(h+h")sint
" = —(h+h")cost — (h' + h")sint
y = hsint+ h cost
y' = hcost+ —h'sint+ h'sint + h" cost
= (h+h")cost
y' = —(h+h")sint+ (B + h")cost
Therefore
o'y — "y = (h+h")sint(h+ h")sint — (h+ h")sint(h' + h")cost +
(h+ h") cost(h+ h") cost + (h + h") cost(h' + h") sint
= (h+h")%



"% 4+ y”? = (h + h")% So therefore

ZL'Iy” _ ZL'”y, (h + hII)Z 1

T (@2 +y2)32  (h+ h")3 ~hr

h”,provided h+h" >0

We know that for a CCW h(t)+h(t+7) = w. By differentiating with respect
to t we get that

h'(t)+ k' (t+7)=0and B"(t) + A" (t +7) =0
Write p = 1 = h + A", then

K

p(t) + p(t +m) = h(t) +b"(t) + h(t + ) + h"(t +7) = h(t) + h(t + 7) = w,

the width of the CCW.
So we have shown that there is a relation between the curvatures of the
diametrical opposite sides.

Proposition 2.4 The sum of the two radii of curvatures at parallel tangent
points is actually the diameter of the CCW itself.
p(t) + p(t +7) = w.

2.4 Vertices

We have already seen that CCW’s can have different (odd) numbers of sides
according to the number n in the function A(t). A vertex is a point on the
curve where the first derivative of curvature is zero.

We now ask the question, how many vertices does a CCW have?
k=g = (h+R")7
KL, — _(h/ + h/l/)(h + hll)f2
So k = 0 when A’ + h" = 0. If we use for example h = 2 + sin 3¢, then
h' = 3cos3t, k" = —9sin3t, h'" = —27 cos 3t.
Hence -

h+ h" = Ofor3t = 3 +mm,m € Z.

So we have six vertices between between zero and 27, namely at § + %% for
0<m<5h.
For a CCW with h = a+sin bt where bis odd h' = bcosbt, and b = b3 cos bt.
So h + h" =0 for bt = § + mm that is t = 5 + 5*.

So the CCW has 2b vertices between zero and 2.

10
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Figure 8: A 5 sided CCW has 10 vertices

What can we say about whether these vertices are maxima or minima?

, —(h' + h///)
- (h—|—h”)2

(W 4 B

o (h + h//)Z

For a curve of constant width A(t) + h(t + 7) = const = w.

Differentiating gives h™(t) = —h("™ (¢ 4+ ). Provided h" + h*) is never zero,
k"(t) = —k"(t+m). That is they have opposite signs, so we have shown that

"

Proposition 2.5 Provided b +h\Y) is never zero, then the vertices at t and
t + m have one a maximum, and the other a minimum of curvature.

2.5 Singular Points

A singular point on a parametrised curve (t) = (x(t),y(t)) is a point where
v'(t) = (0,0). Our curve is constructed as an envelope of a family of tangent
line so both F' and %—f =0.

In the general case a singular point occurs on an envelope when the extra
condition that %—1;2 = 0 holds. Let us look at our case for a curve of constant
width.

F(t,z,y) = xcost +ysint — h(t)
88_}; = —xsint + ycost — h(t)
0*F

5 = cost —ysint — h"(t)

11



Now we substitute our values for x and y with their respective parametic
equations in to the equation for the second derivative giving us

0*F

a5 = —(hcost — h'sint)cost — (hsint + h' cost) sint — h"

— —hcos’t + h'sintcost — hsin?t — hsintcost — h"
— _h_ hll

So singular points only occur if and only if h + A" = 0. This seems to agree
with the calculations for curvature that we did earlier. We had that xk = ﬁ
So at a singular point where h 4+ h"” = 0 we get that the curvature is infinite.

Remark 2.6 Cusps at the origin given by (#2,¢3) and (¢3,¢*) both have lim-
iting curvature of infinity and these are typical singular points on a CCW,
the latter typically appearing when two ordinary cusps are born or come into
coincidence and disappear.

Example 2.7 Now we shall look at a particular case for a curve of constant
width, say where h = 2 + ksin 3¢.

h=2+ksin3t

h" = —9k sin 3t

So the condition for singular points A + h"” = 2 — 8k sin 3t is equal to zero if
and only if £ = Bsii 5; for some £. So a curve will have singular points when
sin 3t = ﬁ for some t. The function sin 3t varies between —1 and 1 so it
is possible for us to chose a value k such that we can avoid singular points
if we so wish. For —1 < ﬁ < 1 we will have singular points. If we choose
|k| < 1/4 our curve will be free from singular points.

When £ is equal to i we get what is known as the transition moment,
when singular points are ‘born’ (compare Remark 2.6), but more on this
later.

Similarily if we are given the term k we can calculate the value of a
constant term, a say, needed to be added on to h to eliminate singular points

occurring on our curve.

h =a+ ksin 3t

12



a > 8k sin 3t,

so we need a > 8k in general if we are give k = 5 for instance
a > 8 x5 xsindt =40sin 3¢, for all ¢,

which is true provided
a > 40

it =15 il =40 i7.= 60

Figure 9: CCWs with different constants a.

2.6 Sums of Two Sines

Now let’s look at some slightly more complicated examples. What about if
our function h(t) contains two terms involving sine or cosine? What is the
condition on a to to avoid singular points if we have

h = a+k; sin nit+ky sinnqt, ny, ny odd integers > 1 and ky, ko real numbers > 0

R =0 — nik, sinnyt — niky sin not
h+h' =a+k(1—n?)sinnt + ky(1 — n3) sinnyt

Sine functions vary between —1 and 1 so it should be obvious that choosing
a such that a > ki (n? — 1) + ko(n2 — 1) we will get h+ A" non zero and hence
avoid singular points. However is this the minimal condition on a the so
called transition moment? This would only be the case if sin n;t and sin nyt
are both equal to 1 (or indeed —1) for some ¢. This poses quite an interesting
question so lets take a moment to find when and if this is possible.

Theorem 2.8 For p,q given odd integers, there exists t such that sinpt =
singt = —1 if and only if p = g mod 4.

13



That is sin pt and sin gt can both be equal to —1 simultaneously if and only
if p and ¢ differ by a mulitple of 4.
Proof

sinpt = —1, sinqt = —1, where p and ¢ are given and odd integers

We require for the same t,

. T 2k
2p p
T 2w

t — _ _
2q q

subtracting the second equation from the first gives

0 — T Qk_ﬂ' T 2l

—— +

2p p 29 ¢
0 = —q+p+4kg—4lp

dlp—4kq = p—q

So a solution exists if and only if 4(p,q) | p — ¢ since p,q are odd. This is
equivalent to p = ¢ mod 4. [

Similar calculations show that the same conditions apply in order for both
be equal to 1 simultaneously. So if our equation has p = ¢ mod 4 we must
take a > ki(n? — 1)+ ko(n2 — 1) to avoid singular points. Note that when one
of the variables n is equal to 1, the case is trivial since the the term involving
it becomes zero.

Example 2.9 Now lets look at an example of a nontrivial case where
ny = ny + 2mod 4. We take n; = 5, ny, = 3, that is consider a support
function h = a + kqsinnqt + ko sin not,

h(t) + h"(t) = a + ki (1 — 5%) sin 5t + ky(1 — 3*) sin 3t
We want a such that h(t) + h"(t) is > 0 for all ¢
For simplicity let us write b = k1(5% — 1) and ¢ = ky(3% — 1).

We shall call
f(t) = bsin 5t + csin 3t

14



Now the problem is to find the maximum value of f in terms of b,¢ > 0. Let
s = sint. Then with the help of Maple, using half and double angle formulas,
we get as a function of s

f(s) = 16bs® — (20b + 4c)s® + (5b+ 3c)s, |s| <1
f'(s) = 80bs* — 3(20b + 4c)s* + (5b + 3c)

The equation becomes much simpler if we substitute b = %, c= % (i.e.
B =10b, C = 3c+5bsoif b, ¢ > 0 then C > g > 0.) The equation now
becomes
8B 4
f(s) = ?85 — g(B +C)s* +Cs

Differentiating w.r.t s gives
f'(s) =8Bs* — (B+C)s* + C.

Which is a quadratic in s? with solutions s? = BHCEVELCE VBB2+C2.

We need to find the largest value of f(s) at any of these points and also
possibly f(1) and f(—1) to determine the maximum of f on —1 < s < 1.
Note that f(1) = (4B —C) (=b—rc)
and f(—1) = —3(4B—-C) (=—-b+c)

It is also be helpful to write B = Rcosu and C' = Rsinu, for R > 0 and
arctan% <u<3.

vl

Figure 10: (B,C) lies in the first quadrant above C' = Z.
So now

15



5 Cosu+sinuztl

s? = (1)

4cosu

Since s stands for sine, in order for the equation to be valid the right hand
side should lie between —1 and 1. Since the LHS is a square the RHS should
also be positive. It is easy to see that for an acute angle u, both + give the
RHS of (1) greater than zero.

For the RHS of (1) to be <1 we require

cosu+sinu+1<4cosu

sinu+1<3cosu
3cosu —sinuF1>0

This is considered over the range of u (for both signs).

For the plus sign it is equal to zero at u = 7 so greater than or equal to
zero over the range of u. For the minus sign it is —2 at u = 7 and 2 at u =0
so has one value where it is 0

3cosu —sinu =1

has solution u = cos ' 2 = tan~' 3.

For equation (1) when using the upper sign we gives two solutions for s

that is when § > u > tan—! 2 3. From using both signs, we get 4 solutions for

s between tan_1 3 >u > tan™" §. See Figure 11.
8B 4
f(s)=s (FS — §(B + CO)s? —i—C’)

1 8 4
Ef(s) =5 <584 — g(l + tan u)s® + tanu)

From equation (1) we get

f( - 25 <4cosusinu$cosu$sinu—1>

15 cos? u

15cos? u
2B
We want the largest value for the RHS for the two or four values of s
given by (1).

f(s) =s(4cosusinu F cosu Fsinu — 1) (2)

16



4
= _Ij
o 3
tan u = B )
2 values *

]

r

F) (‘:%

Figure 11: Number of solutions to s.

With the upper (minus) sign the bracket on the RHS of (2) is greater
than zero for all acute u. With the lower (plus) sign the bracket on the RHS
of (2) is less than zero for all acute u. So the relevant numbers to compare
are

15 cos? u

B (s) = —Vcosu+sinu+ 1(4cosusinu — cosu —sinu — 1) = P
15 cos? u . : :
Tf(s) = Vcosu +sinu+ 1(4cosusinu + cosu +sinu — 1) = Q

So for the two or four values of u given by (1) (also possibly the end
points s = —1,1)

It turns out that P = () when sin2u = % which has two solutions for
u; < uy both acute.

So @ is greater than P when % < tanu < 2. However when tan u > 2 only
Q is relevant by equation (1) as only the lower sign gives values of s? < 1.
See Figure 11 and Figure 12. So rather surprisingly the only value we need
consider is (). We should also have a greater than the end points given when
s = +1 that is b—c and ¢ —b. a > |24k, — 8ky| = 8|3k, — ka|. We have shown
that

17
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Figure 12: Graphs of P and @ in terms of u.

Proposition 2.10 For the case where h(t) = a + kysinbt + kysin 3t the
manimum value for a we must take in order to avoid singlular points is
a> z2s—\/cosu+sinu+ 1(4cosusinu + cosu + sinu — 1), 8[3k; — ko,

15 cos?
where B = 10k; and u s the acute angle with tangent %.

Using maple with a range of different constants seems to validate that
@ is indeed the minimal value for @ we need to avoid singular points. (see
Appendix A)

Of course one could always search for the turning points of the function
manually and then compute which has the greatest value.

As we have seen deriving the general formula for the minimum value of
a needed to avoid singular points in the example

h(t) = a + ky sin 5t + ko sin 3t

is rather complicated. Luckily for us with this example the derivative of the
function for the turning points was a quadratic in s2. For the next non-trivial
case dfdfd dfdf the general solution would be much more complicated. I am
unsure if such solutions exist, it would be interesting to know if there was
indeed a more general formula.

18
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Figure 13: Comparison of P and ) for acute wu.

Using cosine instead of sine in the equations has the effect of simply rotating
the CCW about the origin. If we use both sine and cosine then we get some
quite interesting shapes.

h(t) = 7 +sin 3t + cos 5¢ R(t) = 40 + sin 7t + cos 3¢ h(t) = 10+ 3sin 3¢ + 5 cos 3t

Figure 14: Some irregular CCWs.

The number of sides of the CCW seems to be equal to the greatest of n;
and no.

If we have n; and n, the same the question of minimal condition is quite
trivial. For h = a + ky sin(nt) + ko cos(nt) Then |a| > ’]z—; tan(nt)

19



The question of the minimal condition on a when n; and n, are different
is more tricky and I leave this as an exercise for the reader.

2.7 Other Methods of Constructing CCWs

The method that I have shown for constructing CCW is by no means the only
one. I feel that I could not write a chapter on curves of constant width with-
out at least mentioning this alternative way of constructing them. Probably
the most famous CCW (after the circle) is known as the Reuleaux triangle,
named after Franz Reuleaux who taught in Berlin during the late nineteenth
century. It Reuleaux be constructed by starting with an equilateral triangle.
You then proceed by replacing each side by a circular arc with the other two
sides as radii.

Figure 15: Reuleaux triangle

The vertices of the Reuleaux triangle are actually corners as the tangents
do not have the same limit when you approach from opposite sides. This is
because at the vertices the tangents are perpendicular to the triangle’s sides
(L).

The corners of the Reuleaux triangle are infact the sharpest possible for
any CCW. Using a similar piecewise method you construct a CCW with
round corners. This is done by extending the lines in all directions, then
using a larger circle to create the edges, then connecting them using smaller
circles to fill in the gaps. See figure 17. Similar constructions can be done
using any regular polygon with an odd number of sides. Another clever way
of creating CCWs is the crossed-lines method. It works as follows: Draw as
many straight lines as you like all mutually intersecting. Select a point on
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Figure 16: Limits of the tangents are different

one of the lines then using a compass draw an arc to the next line with the
compass point where the two lines intersect. See Figure 18.
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(1)

Figure 17: Piecewise construction of 3-sided CCW with width R + r
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6 7

Figure 18: Crossed lines method of constructing ccw
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Now if [ may go off at a slight tangent and take a look at some envelopes of
tangent lines to a curve.

3 Envelopes

We begin by looking at the envelopes of tangent lines to a curve. We examine
the curve y = 2® and show that its evelope fits with the alternative definition
that it is the limit of nearby curves. We then study evelopes of circles of
curvature and try to establish the same claim. Finally we take a look at
evelopes created by a process known as Embroidery.

3.1 Envelopes of Tangents to a Curve

Let us now take some time to look at Envelopes of the family of curves given
by the tangents to a curve. Using the fact that at any point the tangent is
perpendicular to the normal the curve o can be given by the equation

F(t,z) =(x —a)-N=0.

We then Calculate

OF

Wz(w—a)'-NqL(x—a)-N'

=-T-N+(z—a) kT
=(x—a) kT

where of course the standard definition of envelope of family of curves is
given by
F
DF:{x:F:aa—t:()}.

So if F' =0 then either x = « or (x — «) is perpendicular to N. As (z — «)
can not additionally be perpendicular to 7', the extra condition that %—Iz =0
implies that either x = a or k(t) = 0.

Intuitively it makes sense that x = « should be the envelope of tangent
lines, since if we ask the question what is the curve that is tangent to all the
tangent lines of a curve? clearly it must be the curve itself.
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y==z y = 2 with tangent lines. Envelope of tangent lines.

Figure 19: y = 23, tangent lines of y = 2 and envelope of tangent lines

So if we have an inflexion, that is a point where the curvature, x(t) is zero, we
additionally get the the tangent line at this point included in the envelope.
So for example the curve y = 2% has an inflexion at the origin, so the envelope
includes both the curve and the tangent line at this point.

From the second picture of Figure 19 it looks reasonable that the envelope
would include the tangent line at the origin. The tangent lines of graph seem
to ‘bunch up’ to the line y = 0. There is another definition of envelopes that
is as follows.

Theorem 3.1 [1, Theorem 5.8] The envelope Ey C Dy is the limit of inter-
sections of nearby curves C.

Proof Let E; C R? be the set of x for which there exist the following
sequences: T, = (T1n,T2,) in R, (t,) and (¢,) in R where t, # ¢/, for all n.
We also need for all n that F(t,,v,) = F(t,,z,) = 0, such that ,, € C;,,NCy .
We also require that as n — oo that ¢,, ¢, — ¢ and z, — x where (¢,z) is in
the domain of F'.

Asn — oo we get F(t,,x,), F(t,,x,) — F(t,z) =0. Let f(t) = F(t,x,)
for sufficiently large n. Then we get that f(¢,) = f(¢,) = 0.

Rolle’s theorem states that any smooth function that reaches the same
value at two points must have a stationary point somewhere between them.
See Figure 21.

So if f(t,) = f(¢,) = 0 then there must exist 7, between t, and ¢/, with

f'(1,) = 0. Hence 25(7,,, z,) = 0, and letting n — oo, 2£(t,,, z,,) = 0. Hence:
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As n — o0,

Figure 20: E; as the Limit of Intersections of Nearby Curves C}

f'ley=0

a c b

Figure 21: Rolle’s Theorem

E, C Dy U

Let’s attempt to prove that the envelope of the family of tangent lines to
the curve y = 2% is indeed the limit of intersection of nearby lines of the
family. It should be fairly obvious that points the curve itself are limits of
intersections of tangent lines. Perhaps it is less obvious that the tangent line
at zero is alos the limit of nearby tangent lines.

Theorem 3.2 For y = 23, every point on the tangent line at zero is the
limit of intersection of nearby tangent lines.

Proof Tangent lines to y = #* are given by
y—t° =3t*(z —t)

F=y—3z+2=0
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of 2
— = —6¢ 6t =0
5% T+

Sot=y=0o0ra=tand y =t Which as we would expect is the curve
itself and the tangent line at the origin.

We want for any given point on the positive z axis, say (a,0) where a > 0,
to choose two tangents at ¢ = u, v so that the two tangents cross at (a, b) for
some b. We choose a to be postive but similar arguments apply for negative
a. Now we need to find a sequence so that when u,v — 0 then b — 0 and «
remains the same.

The two equations for tangents at v and v are

y — 3ulr +2u® =0
y—3vir+20° =0
Subtracting the equations gives
3(u? —v? )r = 2(u® — v?)
and dividing by (u — v) which in non-zero gives
3(u+v)r = 2(u? + uv + v?).
We want u, v to satisfy
3(u+v)a = 2(u® + uv + v?) (3)

so that the tangents meet on the line z = a.
We need both
u—0

v—0

so that equation (3) is satisfied.
We want also y = 3u?a — 2u® — 0 which it inevitably will if u — 0.
We can rearrange equation (3) to make a quadratic equation in v.

2v% +v(2u — 3a) + (2u? — 3ua) =0

Then applying the quadratic formula gives

3a — 2u — /(2u — 3a)? — 8(2u? — 3ua)
4

v =
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Now we need to take a sequence of u’s — 0 Let’s try u, = %

3a—21 /(21 -3a)2-8(2(1)2-31q)
1

2 4 12 1 1
vy =30 — — — —+9a2——a—8<2——3—a>

then v, =

n n? n n? n

asn — 00, v, = 3a—0—+v0+9a>—0
=3a—3a =0, sincea >0

asu—0alsov,y =0 O
So in this case the discriminant really is the limit of intersection of nearby
tangent lines.

3.2 Envelope of Circles of Curvature

In the last example we saw that the envelope of tangent lines for the curve
y = 3 is the limit or nearby curves. Is this true of other types of envelope?
We shall now take a look at the envelope of a family of circles [1, pgl06]. We
shall try to ascertain whether the envelopes are, as in the last example, the
limit of intersections of nearby curves.

Let v : I — R? be unit speed, where the curvature « is never zero. Then

the centre of curvature at y(t) is a distance % in the normal direction from

v(t).

1
Centre of curvature = y(t) + —N(t)
k(1)
Now we need the equations for the families of circles of curvature. That is
the circles centered at the centre of cuvature and radius ﬁ Dropping ¢
from the notation we have

I =) = NP = =
(6 =)~ -N) (= 7) — =) =
G- =N+ - =) N=p



(=) (r =) = =) N =0

We shall denote this
2
Flet)=(z-7)-@-7)-—(@-7) N

We now go about obtaining the envelope in the usual way, that is we calculate
when both F(z,t) and & (z, ) are equal to zero.

OF , 2%’ 2 , 2 ,
o =2(z —) -(93—7)+—/£2 (x—v)-N—;(w—v) -N—;(x—v)-N
2K’ 2
:—2T~(x—’y)—i-?(x—y)-N+ET-N—2(x—7)-T

2k
:ﬁ(x—V)'N

This is equal to zero if and only if " = 0 or if (x — ) - N = 0. In the latter
case for F' to equal zero as well, (x — ) - (z — ) must be equal to zero also.
As in the last example with tangents to a cubic we get the curve itself as as
part of the envelope. We also have %—I; = 0 when k' = 0. So at a vertex, that
is where we a zero of k', we additionally have the whole circle of curvature
as part of the envelope. Figure 22 shows an ellipse next to its respective
envelope of circles of curvature complete with the circles of curvature at the

vertices.

Let’s take a look and see what happens when additionally ‘9;71; =0
oF 2«
= 2 (r—~)-N
5 = @)
0*F 2kK" — 2K'? 2k
K]K]” _ 2/{1/2
= 2 (T) (=) N+2k'(x—n~)-T

This is again equal to zero if z = 7. If kK" = 0 then we get

*F  2K"
o7 5 @ N
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Figure 23: Parabola and envelope of circles of curvature

which equals zero if " = 0.

Rather interestingly we find that every point on the original curve is a
point of regression. If the vertex is ordinary (k' = 0,k” # 0) then points
of the circle are not points of regression except for the contact point with ~y
(where in fact the envelope is smooth). If on the other hand we have a higher
vertex, that is it has at least five point contact with the curve, we also get
that every point on the circle of curvture is also a point of regression.
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3.3 Intersection of Nearby Circles

We now take a look to see if the envelope is also the limit of intersection of
nearby circles. The whole proof is rather long and complicated to include
here, so instead I shall state the result and just a brief sketch of the proof.
The complete proof in Maple can be found in Appendix B. We want to know
whether all the points on the circle of curvature at the origin are limits of
the intersection of two nearby circles of curvature that approach the origin
from opposite directions. The circle must approach the origin from opposite
directions because of the well known theorem in curves and singularities, that
circles do not intersect unless on other sides of a vertex. This is because the
are actually nested in one another, in our case getting bigger as they get
futhe away from the origin.

Sketch of Method for Determining Limit Points
For this we look at different general equations with vertices and ascertain
what the limit points are. So for example we could use y = 2% + az*.

We first find the eqautions for the circles of curvature at two points u, v
on the curve. Subtracting the equations and taking out the trivial factor
(u—wv) gives us the equation of the line, in X and Y say, connecting the two
intersections. So we now have a a linear function X = f(Y, u,v). Substituting
back in to the equation gives us the solutions for Y, call them Y; and Y5.

The trick is to convert to polar co-ordinates, u = rcost,v = rsint.

Then you take the limit of Y; as » — 0, then find the limit of X from
f(Yiu,v)

Unlike where we had intersections of nearby tangent lines, it seems as
though we always get two limit points of intersections on the envelope. For
the case y = 22 and y = 2? + ax?, the two limit points are (0, 0) and (1, 0).
For the equation y = 22 + bxz® we still two limit points, one at the origin but

.. . 20| 16
this time the other is found at (716”51)2, 61255

So we have found that in these cases that the points on the envelope of
circles of curvature are not all the limit of intersections of nearby curves of the
family. We found that only two points on the envelope satisfy this property.
However this still fits in with out alternative definition of the envelope E1,
see theorem 3.1. Before we proved that envelope E;, considered as the limit
of intersections of nearby curves, lies inside the discriminant D which is still
true.

), see Figure 77
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y=2x y = 22 + az’ y = x%+ bz’

Figure 24: Curves wtih vertices and limit points e.

3.4 Embroidery

We are now going to study another type of envelope. This time we shall look
at ones created by a process known as embroidery.

The process works by taking a parametrised (closed) curve. In our case we
shall take the unit circle given by (cost,sint). We then take the envelope of
the family of lines connecting (cost,sint) to (cos mt, sin mt) for some positive
integer m.

The family of curves is given by

F = z(sinmt — sint) — y(cosmt — cost) — sin(m — 1)t = 0.

Differentiating gives

oF
i xz(mcosmt — cost) — y(sint — msinmt) — (m — 1) cos(m — 1)t =0
We need to find the equations for x and y that satisfy both F' = %_1;“ =0.If

we simplify the coefficients in the expressions for a moment it will make the
method clearer.
We shall denote them

= ar+by=—p

5 = cr +dy = —q
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Figure 25: Embroidery for m = 2 and m = 3.

We then multiply F' by d and %—f by b. Then if we subtract the equations we
get

(ad — be)x + (bd — db)y = pd — qc

If we assume ad — be # 0 then we get x = Z’Z:ZE. Similarly we get y = %25

assuming that ad — bc = (m + 1)(1 — cos(m — 1)t) # 0. Now when we put
back the coefficients we get

(msinmt — sint) sin(m — 1)t — (m — 1)(cost — cosmt) cos(m — 1)t

(sinmt — sint)(msinmt — sint) + (cos mt — cost)(m cos mt — cost)

_ msinmtsin(m — 1)t — sintsin(m — 1)t — (mcost — mcosmt + cosmt — cost) cos(m — 1)t
B (m+1)(1 —cos(m — 1)t

mcost + cosmt — (mcost + cosmt) cos(m — 1)t
(m +1)(1 — cos(m — 1)t)
_ (mcost +cosmt)(1 — cos(m — 1)t)
(m 4+ 1)(1 — cos(m — 1))
m cost + cos mt
m+1
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Similarly the expression for y can be calculated as
msint + sinmt
m+ 1
If on the other hand (m + 1)(1 — cos(m — 1)t) = 0, that is where

cos(m — 1)t = 1, we get the whole line included as part of the envelope. For
example if m = 2 and t = 0 we have

y:

Figure 26: Embroidery Envelope for m = 2.

F = x(sin2t —sint) — y(cos 2t — cost) — sint

OF

ot

then F' = %—I; = 0 has solution x = 1 and y is arbitrary.

First lets take a look at where where the singular points occur on the
envelope.

= x(2cos2t — cost) — y(sint — 2sinmt) — cost

O0*F
o
Now we substitute in the parametric equations for x and y and get
_ (mcost + cos mt> (sint — m? sin mt) — (msmt + sin mt) (cost — m? cosmt)
m+1 m+1
+ (m — 1)?sin(m — 1)t

= z(sint — m?sinmt) — y(cost — m? cosmt) + (m — 1)?sin(m — 1)t

= i(mcostsint—m?’ costsinmt + cosmt sint — m? cos mt sinmt — msint cost
m

+ m?®sint cos mt — sin mt cost + m? sinmt cosmt) + (m — 1)*sin(m — 1)t
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= L (P 1) sin(1 = m)t) + (m — 1) sin(m — 1)t

m+ 1
-1
= Tﬂ(m3 + 1) sin(m — 1)t + (m* — 2m + 1) sin(m — 1)t
-1 1
= mile(m3 + 1) sin(m — 1)t + %(mZ —2m + 1) sin(m — 1)t
—m3—1+m3+m?>—-2m> -2m+m+1 .
= sin(m — 1)t
m+ 1
—m? —
= %sin(m — 1)t

= —msin(m — 1)t

nm

Which is equal to zero if and only if £ = -"=. So we appear to get 2(m—1)
singular points on the curve, whereas for the example cusps appear to be only
m — 1 of them.

Figure 27: Embroidery Envelope for m = 4 has 6 Singular Points.

On our curve we have two different types of singular points. Some which
look like cusps (we shall prove that they are in a moment) and some where
we get the tangent line included in the curve as well. The latter occurs when
(cost,sint) is equal to (cosmt,sinmt). So in effect when we draw the line
connecting the two we are actually connecting the point with itself.
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For which singular points does this occur?

F— 0 T 2 3 dmm nmw
' m=1"m-1"m-1"m-1"m=1"
P mm 2mm 3mrm 4dmr nmm
me= "m—=1"m-1"m-1"m-=1"m=1"""

Where n =0,1,...,2m — 3

mnm nm

— =nm
m—1 m-—1

So we get the same point when n is even. This means that the line in
the family joins itself to itself and hence appears in the envelope. We have
shown that

nm

Proposition 3.3 For even n when t = -

appearing as part of the envelope.

t we get the whole line F(t,x,y)

We can use the versal unfolding condition to see what we can say about
these singular points. When is F' a versal unfolding of an A, singularity?

First we must check when %375 =
82F . 9 . 2 2 .
o = z(sint — m*sinmt) — y(cost — m* cos mt) + (m — 1)" sin(m — 1)t

Differentiating gives

O*F
e x(—m? cosmt + cost) — y(m®sinmt — sint) + (m — 1) cos(m — 1)t
mcost + cosmt 3 msint +sinmt , 5 . ) 3
= (—m?” cos mt+cost)— (m” sin mt—sint)+(m—1)° cos(m—1)t
m+ 1 m+ 1

1

Rl (m cos t cos t—m* cos t cos mt—m? cos® mt-+cos mt cos t—m* sin ¢ sin mt
m

+ msin®t — m®sin® mt + sinmtsint) + (m — 1)* cos(m — 1)t

1
= i(m —m*cos(m — 1)t —m® + cos(m — 1)t) + (m — 1) cos(m — 1)t
m
1
= ﬁ(m —m? + (=2m® — 3m® + 2m)cos(m — 1)t
m
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O3F

Remember that we are looking for the extra condition that %z equals zero
as well as ‘?;Tf being zero. So we can substitute ¢t = 7.
OPF 1
e m(m —m? + (=2m® — 3m? + 2m) cos (m — lmnir 1)
1 3 3 2
= i(m —m® + (—=2m”> — 3m* + 2m) cos nw
m
1
= m(m — m3 + (—2m3 — 3m2 + 2m)
Which equals either 5 (=3m? —3m?+3m) or 15 (m*+3m? —m). Neither

of which contain rational roots except for m = 0. So we get %375 # 0.

Remark 3.4 If we allow m to be an irrational number we get a very differ-
ent, though probably interesting situation. The curve in this case would not
be closed and would continue to loop around the origin indefinately.

We now know that the third partial derivative is non-zero, so we now
know that we have A, singularities. Can they be versally unfolded though?

Let’s look at an example with m = 2.

F = z(sin2t — sint) + y(cost — cos 2t) —sint

oF . .
— =sin 2t —sint
oz

oF

— = cost — cos 2t
dy

The corresponding Jet matrix is

sin 2t — sint cost — cos 2t
2cos2t —cost —sint + 2sin 2t

det = (sin 2t — sint)(—sint + 2sin 2t) — (cos 2t — cos 2t)(2 cos 2t — cos t)
= 2sin? 2t + +sin*t — 3sintsin 2t — 3 cost cos 2t + cos® t + 2 cos® 2t
=3 — 3(sin 2¢sint + cos 2t cos t)
=3 — 3(cost)
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For ¢ = 7 this is non zero so can be versally unfolded and hence is a cusp.
For t = 0 we have no versal unfolding so can say nothing about the type of
singularity. If we do this for a general integer m we find that we get cusps
where ¢ = "= when n is odd. As we might have expected the points where
n is even and which have the line included in the envelope are not isomorphic
to a cusp.

It now seems an obvious question to ask whether, like in the last example,
the lines included in the envelope where n is odd, are the limit of intersection
of nearby lines. However, strictly speaking this makes no sense to ask this
as it does not fit entirely with the defintion of an envelope. The problem is
that

F(t,z,y) = x(sin 2t —sint) + y(cost — cos 2t) — sint

has OF OF
F=—=—=0whent=0.
Jor Oy

In this sense, ¢t = 0 gives the whole zy-plane since F(0,z,y) = 0 for all z,y.
So for this example, perhaps dissapointingly it does not seem to make sense
having limits of intersection of nearby lines being the whole plane.

For the example where m = 2 the extra solution for £ = 0 can be removed
with clever use of double and half angle formulae.

F(t,z,y) = x(sin 2t —sint) + y(cost — cos 2t) — sint
By replacing sin 2t with 2sint cost and cos 2t by 2cos®t — 1 we get
F(t,z,y) = x(2sintcost — sint) + y(cost — 2cos’t — 1) — sint
Now we subsitute ¢ = 2u and we get
F(t,z,y) = xsin2u(2cos2u — 1) — y(2 cos 2u + 1)(2 cos 2u — 1) — sin 2u

Now we replace sin 2u with 2sinu cosu and cos2u with 1 — 2sinu and we
get

F(t,x,y) = 2xsinucosu(l — 4sin 2u) + 4y sin® u(4 cos> u — 1) — 2cosusinu
then cancelling 2 sin u gives

F(t,x,y) = zcosu(l — 4sin®u) + ysinu(4cos’u — 1) — cosu
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This still gives the same family of curves, only now F(t,z,y) = 95 = 0 when
u = 0 gives only the point (1, 0), which is not a point of regression. The only
point of regression now is at ¢ = m,u = 7. Presumably this sort of approach
could be used for higher values of m but of course it would be a lot more

complicated.

4 Duals of Plane Curves

In two dimension the dual space is a way of representing all the tangent
lines to a curve. Each tangent line corresponds to a point in the dual space.
Consequently the whole family of tagent lines to curve correspond to another
curve in the dual space. We begin by looking at ways of representing lines
in the plane. We then at what corresponds to singularities in the dual space
and use Thom’s idea of Versal unfoldings. Finally we take a look at the dual
spaces of various space curves.

4.1 Representing lines in the plane

In two dimesnsions it is possible to represent the plane in several ways that
we should be familiar with. There is the the general form; Az + by + C = 0,
then there is the y-axis formula; y = max + ¢, and also the intercept form,;
+¥=1

Every straight line in the plane can be written in the general form Az +
By + C = 0, with A, B not both zero. Other ways which only use two
constants such as the y-axis formula has no way of expressing vertical lines.
The intercept form is even worse and cannot represent neither vertical nor
horizontal lines.

We have a way of representing lines, [ say, in the plane by two (u,v)
where u € S is the direction of vector through the origin and perpendicular
to [ and v € R is the perpendicular distance to [.

(u,v) actually gives us oriented lines, that is they come equiped with a
direction. Using oriented lines is much simpler than working with un-oriented
which require some additional structure. The only difference is we get two
copies of everything because (u,v) bar orientation gives the same line as
(—u, —v). See Figure 31.

Each oriented line can be represented by its corresponding point (u,v) in
what we cal the dual space. The dual space can be visualised as the surface
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Figure 29: u and v produce oriented lines.

of a cylinder see Figure 30. Locally the surface of the cylinder looks like
euclidean space where each point on the cylinder is associated with a line in
the plane.

4.2 Representing the Dual of a Plane Curve as a Dis-
criminant

If we use the (rabbit out of a hat) function
F(t,u,v) = H(t,u) = (t)-u—v, ueSLveR
(t) - (cosz,sinz) —y, (say)

The discriminant is given by

oF
F: —_— =
ot 0
oF :
En =T-(cosz,sinz) =0
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Figure 30: The dual space for 2-dimensions is the surface of a cylinder

T -u =0 means that T is perpendicular to (cosz,sin x)
u = AN, where v is unit length so A = +1

V=11

So we get (u,v) = (£N, £y - N). As luck would have it this is precisely the
dual of . This is particularly fortunate for us as we can now apply a host
of tricks that we know from studying envelopes. We can use this property to
see what features in the plane correspond to various singularities in the dual
space.
Since we are dealing woth 2-dimensions we need only consider A; and A,
singularities. Now F' has an A; singularity at ¢ if and only if uw = £N(¢)
2

aa—t]; =KkN -u =K\

So the condition for A; singularities is that x # 0

O*F
e kK u+ KT -u
= KA

The condition for Ay singularity is therefore kK = 0 and &' # 0. So we find
that where we have an ordinary inflexion in the plane the corresponding curve
in the dual space as A, singularity. We can now use the versality criterion
to see if the singularities are cusps.

41



aa_i = (z(t),y(t)) - (—sinzx,cosx)

oF _
oy

At (to, zo, yo) where we have an A, singularity

-1

oF

R
OF
o~

det ( _—VTJJ: 01 ) # 0, hence versal unfolding is automatic

So an inflexion in the curve corresponds to a cusp in the dual space. See

Figure dfdfdfdaASA.

dual to
—T

tangent lines at an
ordinary inflexion

ordinary cusp

Figure 31: The dual of an inflexion is a cusp.

Remark 4.1 Note we get two copies in the dual space because we are looking
at oriented lines. The two cusps are on opposite sides of the dual space (u
and —u) so this does not affect us if we are looking at the local structure.

The next logical steps is to look at space curves
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4.3 Duals of Space Curves

In 2-dimensions we had a method for setting up a one-to-one correspondence
between oriented tangent lines in the plane and points S' x R in the dual
space. Similarly to when we had 2 dimensions, in 3 dimensions we can set
up a one-to-one correspondence between oriented planes and points S? x R
in the dual space.

This time we use an extended version of the height function,

F:RxS'xR—=R
F(t,u,v) =~(t) -u—wv
If we differntiate with respect to ¢

OF(t
oFt uwv) _ o
ot
If we take the discriminant set F' = % = 0 then we get the exact set of

oriented tangent planes which are given by T - u = 0,7(¢) - u = v.

Figure 32: The tangent plane as a discriminant of F'.

Remark 4.2 The planes are oriented by this method of construction. Look-
ing at the plane in the direction of u and consider clockwise rotation about
the normal u gives us the orientation. This means that (u,v) and (—u, —v)
look the same but they have different orientation and are different in the dual
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space. As with the 2-dimensional case it is easier than adding the additional
structure (u,v) = (—u,—v). It makes no difference to us as we shall be
looking at local strucure whereas (u,v) and (—u,—v) are far apart.

We shall now look at the structure of the dual space. Each tangent plane to
the curve corresponds to a point in the dual space. For each point () there
are an infinite number of tangent planes (namely all the planes containing
the tangent line at y(¢)). The tangent plane has two degrees of freedom as
the plane can move along or rotate about the curve so the dual to a space
curve is infact a surface.

At y(t) we we can specify an oriented tangent plane by a unit (normal)
vector u perpendicular to T'(¢). The plane then has the equation z-u = (t)-u.
The set of oriented tangent planes to v, the dual, is then identified with (u, v)
where v = y(t) - u, T(t) -u = 0, where u € S%, v € R. Which is equal to the
discrimant set of F' given by

F(t,u,v) =v(t)-u—v, ueSiveR
oF
ot

so u = AN + uB.
F =0 implies that V = ~(t) - u
So we really do get the dual space. We shall now look at when singular

points occur on the dual space and whether or not they can be versally
unfolded. We assume x # 0.

= T.u = 0 implies u is perpendicular to T’

0°F

oz = kN - u = KA
As we assumed k # 0, kA = 0 if and only if A = 0. So we get an A,
singularity at ¢ if and only if A # 0.

PF
a5 = K'N-u+rk(rB—kT) - u
= KA+ kTR
If A =0 then %?’Tf = 0 if and only if 7 = 0, since x # 0 and u is a unit vector.
So we get an Ay singularity if and only if A = 0,7 # 0.
or

o= K'N-u+r' (=T +7B)-u—(k*)T -u—k*N-u+r7'B-u+—1>N-u
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=7'p(at A =71=0)

Which equals zero if and only if 7/ = 0. So we get an A3 singularity if and
only if 7 = A = 0,7" # 0. Like with the 2-dimensional case we shall now
look to see if theses singularities can be versally unfolded and hence cusps.
Without loss of generality we can put our curve in to standard postition,

1 1 1 1

“kH Zkt? + K S RTt?)

t=5513 6 6
where (ty) = 0,7 (ty) = (1,0,0), N(to) = (0,1,0) and B(ty) = (0,0, 1).

Z

™

y(t)

Figure 33: The tangent plane as a discriminant of F.

We are interested in the structure of the dual for points of 7 near to (0,0, 0).
Since Ay and Ajz singularities occur only on osculating planes we need a
parametrisation of S? which works near (0,0, 1). The function

(11, 29) = (21, 79,1/1 — 22 — 23)

is an immersion parametrising all unit vectors close to (0,0,1) which is the
binormal at £ = 0. So we write

E(t,w,y) = () - (w1, 72,/ 1 = 2% — 3) —y, where 7(t) = (X (1), Y (1), Z(1))

dropping t form the notation gives
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F
OF

8371
oF
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OF

allfg

F

OF
o,
OF
Dy
OF
Oy

Xy +Yag+ Zy/1 — 2?2 — 22 — x5

So the jet matrix is given by

X(0) Y(@0) -1
X'(0) Y'(0) 0
X"(0) Y"(0) 0

(X,Y,2)
(X',Y',Z')=T, T(0)=(1,0,0)
T' = kN, N(0)=(0,1,0)

0o 0 -1
M=[1 0 o0
0 x(0) 0

So long as k # 0 the versal unfolding is automatic. Therefore the osculating
planes correspond to a cuspidal edge and the osculating plane at a zero of
torsion corresponds to a swallowtail. See Figure 34.
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Osculating plane Point on Cuspidal Edge

T#0

Dual to

— T

Osculating plane
T=0

Swallowtail Point

Figure 34: The tangent plane as a discriminant of F'.

Swallowtails consist of an Aj singularity which corresponds to the point on
the space curve with 7 = 0,7" # 0. It has A, singularities or cusp edges
corresponding to the osculating planes of the curve. The swallowtail also
has a self intersection line but what does this correspond to on the original
curve? Well each point on the dual surface corresponds to a tangent plane
on the original curve. So where we have two equal points on different sheets
of the dual surface there must be two points on the original curve with the
same tangent plane. We shall refer to such planes which are tangent to the
curve at two distinct points as bitangent planes.

In the swallowtail we get a half-line of self intersection from the Aj singu-
larity. This suggests that for all points on the original curve close to where
we have zero torsion there is point on the other side of the torison zero that
shares the same bitangent plane.

4.4 Bitangent Planes Near Torsion Zeros

How do these bitangent planes behave and is there a relation between the
two points on either side that share a bitangent plane? We shall first look at
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the curve (t) = (¢,#2,t*) which has a simple zero of torsion at the origin.

V(t) = (t7t27t4)7 7(0):(07070)
7 (t) = (1,2t,4t*)  +/(0) = (1,0,0)
Y'(t) = (0,2,12t*)  ~"(0) = (0,2,0)

¥"'(t) = (0,0,24t) 7" (0) = (0,0,0)

The torsion at the origin 7(0) = (v(0)" x v(0)") - v(0)" = 0.
The first derivative at the origin can be calculated as 7/(0) = 12 # 0). So we
really do have a simple zero of torsion st the origin. We start by looking for
the equation for tangent planes of the form ax + by + cz = d. We substitute
our values for z,y and z of .

at +bt* +ct* = d

We also wish the plane to be contain the tangent vector, perpendicular to
the vector (a, b, c).
(a,b,¢) - (1,2t,4t%) =0
a+ 2bt + 4ct® =0
So for two points on the curve tq, ¢y, they share a bitangent plane when
aty +bt] +ct] —d = 0
aty +bt2 +cty —d = 0
(a,b,c) - (1,2t,4ct?) = 0
a+2bt +4ct® = 0
To solve for ¢; and ¢, we solve when the determinant
o 2t -1
ty, 2 th -1
1 2t; 488 0
1 2ty 43 0
After several row operations we get
2t — to) (t, + 1) =

Discarding the trivial (t; = t3), we are left with the solution ¢; = —t,. So we
have shown

=0

Proposition 4.3 For the space curve 7y either side of the simple torision
zero the points (t) and y(—t) both share a common bitangent plane. See
Figure 35.
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Figure 35: ¢ and —t share a bitangent plane.

4.5 Bitangent Planes of Curves with Non-Simple Zeros
of Torsion

What happens when we have a non-simple zero of torsion, that is when
7 = 7' = 0?7 We shall now look at the curve v,(t) = (¢, + ut®), u <0
which has two simple zeros of torsion which come together as u — 0 to form
a degenerate non-simple zero of torsion at the origin.

Yu(t) = (t, 3,17 +ut?)

V() = (1,2t 5t 4 3ut?)
v (t) (0,2,20t* + 6ut)
Yt = (0,0,50t* + 6u)

We shall start by looking for the bitangent planes. In the same way that we
performed the calculations for the simple zero of torsion, we solve simluta-
neous equations for the tangent planes at ¢, and ..

at, + bt] + et} =d
aty + bt + cty = d
a + 2bt; + ¢(5t] 4+ 3ut?) =0
a + 2bty + c(5ts 4 3utd) =0
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Which is equivalent to solving the determinant of

t t7 H+ut? -1
ty t3  th+uts -1
1 2t 5t7+3ut? 0
1 2ty 5ty+3uty 0

=0

After several row operations we arrive at the equation
(t1 — t2)* (3] + 4t1to + 3t5 +u) = 0

As before we are not interested in when ¢; is the same point as t,, so we can
ignore the terms (t; — t5). This leaves us with (3t2 + 4t1ty + 3t3 + u) = 0
which looks like an ellipse when u < 0, otherwise it has no solutions. See
Figure 36. The ellipse shrinks to a point as u — 0. See Figure 37.

to

[

Figure 36: Ellipse showing where ¢; and ¢, share a bitangent plane.

Each point (¢1,%5) on the ellipse represent an un-ordered pair or points that
share a tangent plane on the space curve. Where do the points of zero torsion
fit into the picture?

For a point of zero torsion we need +',+”, and 7" linearly independent.

(Y x o) - " = 2(60t* + 6u) =0

which implies for a given u that the zero of torsions appear at

t =y 2
V 10
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So the torisons of zero on the space curve our represented on our ellipse by
the points on the diagonal line. See Figure 36. Tracing along the ellipse gives
an unordered pair of bitangent planes which give us the self intersection in
the dual space. It does not matter which way you traverse around the ellipse
since (t1,ty) are an unordered pair.

Figure 37: The ellipse shrinks as u — 0.

How do the points on the curve #; and %, travel relative to each other? We
start from the torision zero in the t1, ¢, > 0 quadrant, follow the curve around
the ellipse anti-clockwise. We can see that ¢; decreases whilst ¢, increases
until it reaches a turning point for ¢5. Then ¢, and ¢; both decrease for a
moment before hitting the turning point in #; which then decreases until
again both t; and ¢, are the same point on the curve, the other zero torsion
point. See Figure 38.

What are the turning points on the ellipse, or in other words how far do
the bitangent planes move away from the torsion zeros? We first calcluate
the gradient function of the ellipse, say F', then

oF OF
F=—,— ] = (6t 415, 6t 4t
\Y <8t1’8t2> (6t1 + 4to, 6ty + 4t)

So the turning points of ¢, and ¢, are t; = —%tg and t, = —% respectively.
Substituting in to the original equation we get the turning points as

—4u —3u —3u —4u
ti,ty) = | d + .
(17 2) ( \/ 15 7:F\/ 5 > an (:F\/ 5 ) \/ 15 )
We have shown that tosion zeros on a space curve correspond to swal-
lowtail points in the dual space. We have seen that the curve ~,(t) =
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1 ty =+

Figure 38: How the points ¢; and ¢, sharing a bitangent plane travel along
the curve.

(t,t%,t> + ut®) has two zero torsion points. We have also shown that the
two torsion points are connected by a line of self intersection. The dual
surface of v, (t) = (¢,t%,t° + ut®) can be seen in Figure 39.

From Figure 39 it does seem as though the self intersections turn around
at two points between the two torsion zeros. It also looks as though they turn
around at the cuspidal edges (which if you remeber corrsepond to oscualting
planes on the space curve, see Chapter 4.3. We shall now prove that this is
indeed the case.

Proposition 4.4 The line of self intersection of the dual of the curve v, (t) =
(t, 82,85 + ut®), u < 0 have turning points at the cuspidal edges.

Which s equivlanent to:

The function of the points t; and ty which share a bitangent plane on the
curve v, (t) = (t,t%,t° + ut®),u < 0 has a turning point when the bitangent
plane is also the oscualting planes.

Proof 4.5
Yu(t) = (t, 1, tPut®)
T =~.(t) = (1,2t, 5t*3ut?)
kN =" (t) = (0,2, 20£*6ut?)
B =T x kN = (30t* + 6ut?, —20t* — 6ut, 2)
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Figure 39: The dual surface of v, (t) = (¢, %, t° + ut?)

At a turning point, for exzample (—ﬂ / _1—45“, ,/_T?’“) . we evaluate B and T for
both t; and ty. Denote u = —c?

~ 4 _4 1 3
B(n) = (22, VI
15 45

N 36¢t —615¢3
4e0/15  4ct
T(h) = (1’— 15 *?)

53



T(ty) = (1,@,0)

By definition 7'(¢;) will be perpendicular (L) to B(t;) and T'(¢2) will be L to
B(ty). If By it perp to T, however, then the bitangent plane to both ¢; and
to is also the oscualating plane at to. If on the other hand B(ts) L T'(¢1) then
the bitangent plane is also the oscualting plane at ¢;. See Figure (below).
Technically to complete the proof we need to show T'(t1) # AT (t2), A € R.
From the ellipse in Figure 36 it should be obvious that this does not occur for
our particular family of curves. In the unlikely event that T'(¢;) is a multiple
of T'(t3), then we should also check that additonally either N(¢;) L B(ts) or
N(ty) L B(tz), in which case it is an osculating plane.

normal to the plane at £,

normal to the planeat ¢,

ot
Figure 40: Bitangent plane for ¢; and ¢y of ,(t)

It turns out, that

T(t).B(ty) = 100" /9
So where we get a turning point in ¢; we get the osculating plane for #s.

Similar calculations using other turning points show that the turning point
in £, corresponds to the osculating plane for t;.

We have also seen that the curve v, (t) = (¢, %> + ut?), has two torsion
zeros which come into coincidence when u approaches zero. So the corre-
sponding dual space has two swallowtails which come in to coincidence when
u becomes zero. See Figure 42.

54



Cusp Edge

Self-intersection

Swallowtail Point
Swallowtail Point

Figure 41: Bitangent plane for ¢; and ty of ,(t)

Figure 42: Dual surface of 7, (t) = (¢,t2, > + ut?) for u = 0.

4.6 Dual of Space Curve with a Zero of Curvature and
Two Torsion Zeros

The next curve we shall look at is v, () = (¢, 3, ¢* + ut®). For u € R

Yu(t) = (£, 4 + ut?)
() = (1,36 4% 4 2ut)
v (t) (0, 6t, 12> + 2u)
Y'(t) = (0,6,24t)

(72t — 12u)

= ((12t* — 6ut?)? + (—12t2 — 2u)? + 36¢2)

So as in the last example we have two zeros of torsion, i\/% , which come in
to coincidence at t = 0 as u — 0.
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VX" (3685 — 36t0u + 9uPtt + 36t% + 12ut? + u + 9t2)1/?
K = =
|12 (1 + 9t* + 165 + 16t*u + 4u?t2)3/2

So the curve ,(t) has zero curvature at t = 0 when u = 0.
As in the previous example we shall start with the bitangent planes. The
bitangent planes are derived by

aty + bt3 4 c(t} +ut?) = d
aty + bt + c(th + ut?) = d
a + 3bt] + c(4t] + 2ut,) =0
a + 3bta + c(4t3 4 2uty) = 0

So we solve the determinant of

tot tt4ut? -1
ty ¢ th+uts -1
1 3t 483 +2ut? 0
1 3ty 4t3+2ut; 0

=0

Ignoring trivial solutions t; = t, we get the equation
2+ Atity +t:=u

Which is the equation for a hyperbola. See Figure 43.

So with the curve which has curvature equal zero we get a very different
picture from the last example. This time the self intersection line in the dual
space does not connect the two zeros of torsion.

In the example we saw in Chapter 4.5 the swallowtails opened out towards
each other and therefore interacted with each other. For this curve with
limiting zero of curvature the swallowtails open out away from each other
and therefore have no interaction locally. See Figure 44.

For our curve as u — 0 the angle between the two binormals at the torsion
zeros tends to w. That is they are pointing in opposite directions. So the
binormal plane rotates about the curve very quickly for a very small piece of
curve. We shall now to prove this fact.
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u=1

O<u<< 1

Figure 43: Un-ordered points (¢1,t,) sharing a bitangent plane.

Proposition 4.6

,yl X ,YII — K)S,?)B,
v = (1,3t 4t + 2ut)
7" = (0, 6t, 12t* + 2u)

v(t) = (t, 13, t* + ut?)

’)/I:TSI

f)/ll :TSH_FKJNSIZ

where ks > 0

v x " = (12t* — 6ut®, —12t* — 2u, 6t)

The torsion zeros occur at t = i\/%.

P}/IX’Y”:<

2 4 u
—2u?, —du, =
3’LL ’ u, \/7>

2
SO ’Y’ X ,),l/ is parallel to <—§u%7 _4u%7 +

[op}

We have B at torsion zero is unit vector in the direction

Let w — 0. The limit is unit vectors (0,0, £1). Hence B has no limit. O

3

__ug,

4li1>
_u2,_
V6

S7

1
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We have shown that as v — 0 the binormals at the two torsion zeros
face opposite directions and have no limit. Hence the osculating plane spins
rapidly through 7 at this point. In the dual space this corresponds to the
cuspidal edges. Though we are really only concerned with local structure,
one can imagine how globally the cuspidal edges ‘extend away’ from each
other and meet at ’'infinity’.

As u — 0 the swallowtails move further apart, they face open away
from each other and therefore do not interact. See Figure 44 where the two
swallowtails are shown side by side with the axes shown locating their relative
positions.

Figure 44: The two swallowtails of the dual of 7, (t) = (¢, 3, t* + ut?) .

4.7 The Darboux Vector

The Darboux vector, discovered by Jean Gaston Darboux (1842 - 1917), is
defined as
D =7T+ kB.

The first derivative of the unit vectors of the Frenet-Serret frame; the tangent,
normal and binormal give us the Frenet-Serret folmulas. Comparing this with
the Darboux vector shows

T" = kN, so therefore T'- D =0
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N'=—kT+7BsoN' D= (—kT+71B)- (1T 4+ kB) = —k7T + 7 =0
B'=—7-N, so therefore T"- D = 0.

We find that the Darboux vector is perpendicular to all T’, N’ and B’. If
you imagine a particle moving along the curve, the Darboux vector gives
us the axis of instantaneous rotation of the particle. On a curve where we
have two torsion zeros astride a point of zero curvature, we have three points
where the Darboux vector is stationary in terms of direction. When the two
torision zeros come into coincidence at the point of zero curvature, the three
Darboux stationary points come together to leave just one point on the curve
where the Darboux vector is stationary [4]. So let us now try to validate this
property for our particular curve.

Proposition 4.7 The Darboux vector has three stationary points seperated
by the two torsion zeros. Where the torsion zeros come into coincidence as
(u — 0) the Darboux stationary points also come together to form a single
degenerate stationary point.

First we calculate the first derivative of the Darboux vector.

D' = (tT+&B) =17'T+7T"+ +'B+ kB =1'T + 7(kN)k'B — k(TN)
7T + k'B

We want to know when D’ is parrallel to D. So we calculate when the
cross product is zero.

D'xD = 7T+kBx7T+ kB

—7'kB + k't

Which is zero when 7' = 7'k, or equivalently using the quotient rule, this is
when (%)' = 0.

Using maple to Plot the graphs of 7(¢) and the numerator of D’ (since
we are only interested in zeros) confirms Proposition 4.7. See Figure 45.

The first graph of Figure 45 shows us when u > 0 we have three solutions
for D' = 0, that is the stationary points of D. The second graph shows when
u = 0 we get a degenerate stationary point of D and a degenerate torson
zero at the origin. The case where u < 0 has no solutions for 7(¢) = 0 but
there is still a Darboux stationary point at the origin.
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Figure 45: Graphs showing D'(t) and 7(¢).

5 Conclusion

I have enjoyed working on this project and I believe that it has been a
worthwile exercise. Along the way we have studied some interesting propeties
of curves.

In Chapter 2 we looked at curves of constant width. First of all we looked
at how to construct their equations by using a support function for the tan-
gent lines and then taking their envelope. Then we went on to look at various
properties of these curves. We looked at the circumference and found how,
as with the circle, that it is equal to m multiplied by the diameter. Then we
looked at the relation between the curvature at points with parallel tangents.
We then went on to look at when and where vertices occur on the curve. A
fairly large part of this chapter was then devoted to analysing the criteria
for avoiding singular points on the curve for particular support functions. Of
course it is easy enough to find the condition manually; finding the turning
points, plugging them back into the orriginal equation and observing which
is the greatest. However we were searching for a more general formula. We
analysed the particular case of two sine functions with ny = 5,ny = 3 in
some depth. For this we managed to find a monstrous equation for the nec-
essary and sufficient constant a to avoid the occurence of singular points. See
Chapter 2.6.

If there had been more time available it might have been nice to look at
equations with higher values of n;. Or maybe we could have looked at three
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functions of sine, although perhaps this would not be so bad as it may first
seem. Remember that we discussed how sin pt = sin ¢t = —1 for some ¢ if and
only p = ¢ mod 4. See Theorem 2.8. If we have three of more functions then
there must be at least two of them such that n; = n; mod 4. What made
the case we looked at possible was that when you differentiate to find the
turning points you get a quadratic in sin®¢. With higher values n; this would
not be so simple. Whether or not there is a more general result remains to
be seen.

In Chapter 3 we took a look at some envelopes. First we observed how
the envelope of tangent lines not only included the curve itself, but also the
tangent line at points of inflexion. We then looked at how there is another
type envelope, E, given by the limit of intersection of two two nearby curves
of the family. We went on to prove how F is a subset of the our definition of
envelope (discriminant). See Theorem 3.1. We then proved that the tangent
line at the inflexion in the envelope for the curve y = 22 is indeed contained
in F. See Theorem 3.2. We then went on to envelopes of circles of curvature
and found that at a vertex we get the circle included as part of the envelope.
Then, as with the inflexion in the last example, we tried to see whether this
circle was the limit of intersection of nearby curves. By looking at some
examples of curves with vertices we found that we only got two points in the
E; envelope which lie on the envelope of circles of curvature.

If there had been more time it would have been nice to look at some more
examples of envelopes of circles of curvature with higher order vertices. There
are also other types of envelopes that are contained within the discriminant
envelope. There is ‘the envelope Ey which is a curve tangent to the C;’ .
There is also Ej, ‘the boundary of the region filled by the curves C,’ [1].
If there had been more time it would have been interesting to study some
specific examples of discriminant envelopes and see how they fit in with these
alternative envelopes.

In the next section we considered envelopes created by a process known
as embroidery. We used Thom'’s idea of versal unfolding to find out which
singular points were isomorphic to cusps. It turned out that it was not
possible to see if the extra tangent lines included at the points where cos(m —
1)t = 1 were the limits of intersections of nearby curves. This was because
it did not fit with the definition of envelopes as we had F' = 83_5 = %—Z =
0 when ¢ = 0.

The final chapter was on duals of both plane and space curves. We
started with how the dual space is a way or representing tangent lines or

61



tangent planes, depending on how many dimensions we were working with.
We saw that in two dimensions inflexions in the curve correspond to cusps
in the dual space. With space curves we saw that the dual space is a surface
with the oscualting plane corresponding to cusp edges and torsion zeros to
swallowtail points. We looked at some specific curves with torsion zeros and
how the corresponding swallowtails interacted with each other on the dual
surface. If there had been more time it would have been nice to look at some
more examples of space curves, perhaps where three torsion zeros come into
coincidence such as 7, (t) = (¢,t%,¢® + ut*) for instance. Though it is a real
shame that there was insufficient time to look at the dual of surfaces. With
surfaces the dual sapce of a surface is another surface (whose dual is the
original surface). Graph functions given by z = f(z,y) have normals given
by (= fz, —fy,1). The tangent planes close to the origin can be paramterised
by
— [ X — ny +Z=—af — yfy + f(a:,y)

It was shown by Whitney [5] that singularities on the dual surface corresponds
precisely to parabolic points on the surface. These are given when the Hessian
determinant

fmw f:z:y
f:z:y fyy

It would have been nice to study look at some specific examples of surface
with parabolic points and study their properties in the dual space, though
this could easily be a complete project in itself. This fascinating topic is
dicussed in depth in Banchoff Gaffney & McCroy [6].

Special thanks to Prof. Peter Giblin without whom this project would
not have been possible.
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