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1 IntroductionThis project is divided into three sections; Curves of Constant Width, En-velopes and Duals of Plane and Space Curves. Although there are commonthemes throughout, each of the chapters can be read as seperate entities.This project takes material from the area of curves and singularities andtries to expand on some ideas. Relatively little prior knowledge is assumedand although most of the material is not technically that diÆcult, the projectincludes some quite lengthy calculations at times.Singularity theory is a relatively new subject which was established bythe American mathematician Hassler Whitney in 1955. The subject was thenexpanded by the French mathematician Ren�e Thom in the 1960s and `70s. Itwas Thom who originally came up with the idea of versal unfoldings which iscentral to this project. It is Thom's idea of versal unfoldings that enable usto tell whether certain singularities are isomorphic to cusps or swallowtails.The work of Thom greatly impressed the Spanish surrealist painter SalvadorDal�� who described his theory of catastrophes as `the most beautiful aesthetictheory in the world' [2]. The image on the front cover is a work by Dal�� called`The Swallow's Tail' painted in 1983 as a tribute to Ren�e Thom. The shapeof Dal��'s Swallow's Tail is taken directly from Thom's 4-dimensional graph ofthe same title, combined with a second catastrophe graph, the s-curve thatThom dubbed, `the cusp' [3].In the �rst chapter we study curves of constant width. That is a curvewith the property that the distance between any two parallel tangents tothe curve is constant. The simplest example is the circle but as we shall seethere are some very peculiar shapes that also satisfy this property. By wayof motivation there are many applications for curves of constant width suchas car engines, drills that produce (almost) square holes and the design ofmoney (think of the 50 pence coin). We study some of the properties of thesecurves and we try to �nd the necessary conditions to avoid the occurence ofsingular points. In the second chapter we look at a variety of envelopes. Welook at the envelopes of tangent lines to curves and look at how the envelopecan be thought of as the limit of intersections of nearby curves. We then tryto extend this to envelopes of circles of curvature. Then we look at envelopescreated by a process known as embroidery and use Thom's versal unfoldingidea to show which singularities are cusps. Keeping on the theme of tangentlines, in the �nal chapter we examine duals of curves. In 2-dimensions thedual of a curve is a way of representing all of its tangent lines. Then we2



move on to three dimensions where things get a bit more interesting. Thedual space then becomes a way of representing the tangent planes to a spacecurve, so consequently the dual is a surface. We look at three di�erent spacecurves and study their properties and discuss how they correspond to variousfeatures of the dual surface.The real attraction for this project stems from the fact that most peo-ple could gain something from its reading. This is because alongside eachtheorem there are many examples and pictures which should help in under-standing. As a result it should, I hope, be possible to see the general conceptwithout necessarily getting caught up with the intricacy of the calculations.2 Curves of Constant WidthA curve of constant width (CCW) is a convex planar shape with the propertythat the distance between any two parallel tangents of the curve is constant.That is, every tangent to the curve has the same distance to its paralleltangent. The simplest case is a circle. Later on we shall see that the ideacan be extended to certain non-convex curves containing cusps.
d d

Figure 1: Circles as curves of constant widthAs way of motivation consider the British �fty pence piece. The edges arenot straight but in fact they are slightly curved. The edges of a �fty pence(or indeed the twenty pence) piece form a curve of constant width. This isso the coin can roll freely and so its diameter can be measured by vendingmachines. 3



Figure 2: The 50p piece has a constant diameterOf course a circle would also suÆce for the coin, being a CCW, but thenmaybe it would not be so distictive. Perhaps further motivation for the studyof CCWs could be found in the Wankel rotary engine. The Wankel rotaryengine is a type of internal combustion engine invented and developed byFelix Wankel in 1950s. The engine consists of a three sided shape of constantwidth rotating in a chamber see Figure 3.
Figure 3: The Wankel engineThe engine is light-weight and reliable because of its relative simplicity. Overthe years it has been used in everything form motor cycles, cars and aero-planes to snowmobiles. There are also many other applications includingcams and drills that cut square holes. Now that we are suÆciently moti-vated, let us take a look at thier construction.2.1 Contructing Curves of Constant WidthFor each angle t, the function h(t) gives the distance to a tangent to thecurve from the origin. The line l which is to be the tangent to the curve, isperpendicular to the line of angle t at the point (h cos t; h sin t). Now let us4
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Figure 4: Support functiontake a look at the equation for the line l which is to be the equation for thetangents to the curve.Equation of line l((x; y)� (h cos t; h sin t)) � (cos t; sin t) = 0(x� h cos t) cos t + (y � h sin t) sin t = 0x cos t+ y sin t = h(t)So we de�ne F (t; x; y) = x cos t+ y sin t� h(t)We are now going to �nd the envelope of the tangent lines. This gives usthe equation for the general curve tangent to the family of lines l. Only thencan we impose the conditions necessary to be a curve of constant width. Theenvelope is constructed in the usual way, as F (t; x; y) = @F@t = 0 whereF (t; x; y) = x cos t+ y sin t� h(t)@F@t = �x sin t+ y cos t� h0(t)If we multiply F by cos t and multiply @F@t by minus sin t we obtain simulta-neous equations x cos t cos t+ y sin t cos t� h(t) cos t = 05



x sin t sin t� y cos t sin t + h0(t) sin t = 0:Then if we add the two equations we obtain the equation for x. Similarly wecan calculate the equation for y.Proposition 2.1 : The parametrization of the curve given by the supportfunction h is x = h cos t� h0 sin ty = h sin t+ h0 cos tThese are the basic equations but there are certain conditions which we mustimpose for constant width. Firstly for the sake of simplicity we will asumeh > 0 for all t.

Figure 5: Conditions for a CCWNote that the origin is not equidistant between the two tangent lines but fromthe diagram it is clear that for constant width we need to have h(t)+h(t+�) =constant. For example we can use terms such as sin t and cos t. If h(t) = sin t,then h(t+ �) = � sin t and if h(t) = cos t then h(t + �) = � cos t.e.g. If we take h(t) = 2 + sin t, thenh(t + �) = 2� sin t, so then we get thath(t) + h(t+ �) = 2 + sin t+ 2� sin t = 4:So the CCW would have a diameter of 4.6



For terms involving sin(nt) or cos(nt) we need n to be an odd integer. Say ifn = 3; h(t) = a+ sin 3t; h(t+ �) = a+ sin(3t+3�) = a� sin 3t; then we geth(t) + h(t + �) = 2a:If we used n = 2; h(t) = a+sin 2t and h(t+�) = a+sin(2t+2�) = a+sin 2t,so h(t) + h(t+ �) = 2a+ 2 sin 2twhich is not constant width.Let us take a look at some examples of CCWs and their support functions.The case h(t) = 8 + sin 3t is shown in Figure 6
Figure 6: h(t) = 8 + sin 3tNote that the number n gives the number of `sides' to the CCW. Dependingon the constants involved, sometimes the curve can be singular.
Figure 7: h(t) = 7 + sin 5t:The CCW in Figure 7 is an example of a curve which contains singularpoints causing the shape to be non-covex. Later on we shall look at thenecessary conditions for singular points to arise. Now let us look at someinteresting properties of these CCWs.7



2.2 Circumference of a CCWWe know that for the simplest of CCWs, the circle, the circumference is equalto the diameter (or width) multiplied by �. What is the relation betweenarea and width for a general CCW?If we take our curve of constant width 
 = (x cos t�h0 sin t; h sin t+h0 cos t)We need to calculate the integralZ 2�0 ds; where dsdt =s�dxdt�2 + �dydt�2So Z 2�0 ds = Z 2�0 jj
0jj dtwhere 
0 = (�h sin t� h00 sin t; h cos t+ h00cost)= (h+ h00)(� sin t; cos t)therefore jj
0jj = jh+ h00jSuppose that h+ h00 > 0 for all tLength = Z 2�0 h(t) + h00(t)dt= Z �0 h(t) + h00(t)dt+ Z 2�� h(t) + h00(t)dt= Z �0 h(t) + h00(t) + h(t + �) + h00(t + �)dtSince for a curve of constant width w we have h(t+ �) = w � h(t),ddt(h(t+ �)) = � ddt(h(t)); h00(t + �) = �h00(t)Hence Length = Z �0 (w + 0)dt = [wt]�0 = w�and we have shown the following. 8



Proposition 2.2 The circumference of a curve of constant width w is givenby w�.Remark 2.3 For a curve with singular points the curve traces backwardsand the sign then changes for h+h00. This counts as `negative distance' whensumming the perimeter. Singular curves are discussed in more depth lateron.So we have shown that the same is true for any curve of constant width, theperimeter is equal to the width or diameter multiplied by �. This is knownas Barbier's theorem, named after the French mathematician Joseph EmilleBarbier(1839-89).2.3 CurvatureThe next question we ask is what is going on with the curvature of a CCW?It seems a reasonable assumption that there is something going on betweenthe curvature and the curvature of the two points with parallel tangents.The curvature is given by � = x0y00 � x00y0(x02 + y02)3=2and x = h cos t� h0 sin tx0 = �h sin t� h cos t+ h0 cos t� h00 sin t= �(h + h00) sin tx00 = �(h + h00) cos t� (h0 + h000) sin ty = h sin t + h0 cos ty0 = h cos t +�h0 sin t+ h0 sin t + h00 cos t= (h + h00) cos ty00 = �(h + h00) sin t+ (h0 + h000) cos tThereforex0y00 � x00y0 = (h + h00) sin t(h + h00) sin t� (h+ h00) sin t(h0 + h000) cos t+(h + h00) cos t(h+ h00) cos t+ (h+ h00) cos t(h0 + h000) sin t= (h + h00)2: 9



x02 + y02 = (h+ h00)2: So therefore� = x0y00 � x00y0(x02 + y02)3=2 = (h+ h00)2(h+ h00)3 = 1h + h00 ; provided h+ h00 > 0We know that for a CCW h(t)+h(t+�) = w. By di�erentiating with respectto t we get thath0(t) + h0(t + �) = 0 and h00(t) + h00(t+ �) = 0Write � = 1� = h+ h00; then�(t) + �(t+ �) = h(t) + h00(t) + h(t+ �) + h00(t+ �) = h(t) + h(t + �) = w;the width of the CCW.So we have shown that there is a relation between the curvatures of thediametrical opposite sides.Proposition 2.4 The sum of the two radii of curvatures at parallel tangentpoints is actually the diameter of the CCW itself.�(t) + �(t + �) = w.2.4 VerticesWe have already seen that CCW's can have di�erent (odd) numbers of sidesaccording to the number n in the function h(t). A vertex is a point on thecurve where the �rst derivative of curvature is zero.We now ask the question, how many vertices does a CCW have?� = 1h+h00 = (h+ h00)�1�0 = �(h0 + h000)(h+ h00)�2So � = 0 when h0 + h000 = 0: If we use for example h = 2 + sin 3t; thenh0 = 3 cos 3t; h00 = �9 sin 3t; h000 = �27 cos 3t:Hence h+ h00 = 0for3t = �2 +m�;m 2 Z:So we have six vertices between between zero and 2�, namely at �6 + m�3 for0 � m � 5:For a CCW with h = a+sin bt where b is odd h0 = b cos bt; and h000 = b3 cos bt:So h + h00 = 0 for bt = �2 +m� that is t = �2b + m�b .So the CCW has 2b vertices between zero and 2�.10



Figure 8: A 5 sided CCW has 10 verticesWhat can we say about whether these vertices are maxima or minima?�0 = �(h0 + h000)(h+ h00)2�00 = �(h00 + h(4))(h+ h00)2 :For a curve of constant width h(t) + h(t + �) = const = w.Di�erentiating gives h(n)(t) = �h(n)(t+ �). Provided h00 + h(4) is never zero,�00(t) = ��00(t+�). That is they have opposite signs, so we have shown thatProposition 2.5 Provided h00+h(4) is never zero, then the vertices at t andt+ � have one a maximum, and the other a minimum of curvature.2.5 Singular PointsA singular point on a parametrised curve 
(t) = (x(t); y(t)) is a point where
0(t) = (0; 0). Our curve is constructed as an envelope of a family of tangentline so both F and @F@t = 0:In the general case a singular point occurs on an envelope when the extracondition that @F 2@t2 = 0 holds. Let us look at our case for a curve of constantwidth. F (t; x; y) = x cos t+ y sin t� h(t)@F@t = �x sin t+ y cos t� h(t)@2F@t2 = �x cos t� y sin t� h00(t)11



Now we substitute our values for x and y with their respective parameticequations in to the equation for the second derivative giving us@2F@t2 = �(h cos t� h0 sin t) cos t� (h sin t+ h0 cos t) sin t� h00= �h cos2 t + h0 sin t cos t� h sin2 t� h sin t cos t� h00= �h� h00:So singular points only occur if and only if h + h00 = 0. This seems to agreewith the calculations for curvature that we did earlier. We had that � = 1h+h00 .So at a singular point where h+ h00 = 0 we get that the curvature is in�nite.Remark 2.6 Cusps at the origin given by (t2; t3) and (t3; t4) both have lim-iting curvature of in�nity and these are typical singular points on a CCW,the latter typically appearing when two ordinary cusps are born or come intocoincidence and disappear.Example 2.7 Now we shall look at a particular case for a curve of constantwidth, say where h = 2 + k sin 3t.h = 2 + k sin 3th00 = �9k sin 3tSo the condition for singular points h+ h00 = 2� 8k sin 3t is equal to zero ifand only if k = 28 sin 3t for some t. So a curve will have singular points whensin 3t = 14k for some t. The function sin 3t varies between �1 and 1 so itis possible for us to chose a value k such that we can avoid singular pointsif we so wish. For �1 < 14k < 1 we will have singular points. If we choosejkj < 1=4 our curve will be free from singular points.When k is equal to 14 we get what is known as the transition moment,when singular points are `born' (compare Remark 2.6), but more on thislater.Similarily if we are given the term k we can calculate the value of aconstant term, a say, needed to be added on to h to eliminate singular pointsoccurring on our curve. h = a + k sin 3t12



a > 8k sin 3t;so we need a > 8k in general if we are give k = 5 for instancea > 8� 5� sin 3t = 40 sin 3t; for all t;which is true provided a > 40
Figure 9: CCWs with di�erent constants a.2.6 Sums of Two SinesNow let's look at some slightly more complicated examples. What about ifour function h(t) contains two terms involving sine or cosine? What is thecondition on a to to avoid singular points if we haveh = a+k1 sinn1t+k2 sinn2t; n1; n2 odd integers > 1 and k1; k2 real numbers > 0h00 = 0� n21k1 sinn1t� n22k2 sinn2th+ h00 = a+ k1(1� n21) sinn1t + k2(1� n22) sinn2tSine functions vary between �1 and 1 so it should be obvious that choosinga such that a > k1(n21�1)+k2(n22�1) we will get h+h00 non zero and henceavoid singular points. However is this the minimal condition on a the socalled transition moment? This would only be the case if sinn1t and sinn2tare both equal to 1 (or indeed �1) for some t. This poses quite an interestingquestion so lets take a moment to �nd when and if this is possible.Theorem 2.8 For p; q given odd integers, there exists t such that sin pt =sin qt = �1 if and only if p � q mod 4:13



That is sin pt and sin qt can both be equal to �1 simultaneously if and onlyif p and q di�er by a mulitple of 4.Proofsin pt = �1; sin qt = �1; where p and q are given and odd integersWe require for the same t, t = � �2p + 2k�pt = � �2q + 2l�qsubtracting the second equation from the �rst gives0 = � �2p + 2k�p + �2q � 2l�q0 = �q + p+ 4kq � 4lp4lp� 4kq = p� qSo a solution exists if and only if 4(p; q) j p � q since p; q are odd. This isequivalent to p � q mod 4. �Similar calculations show that the same conditions apply in order for bothbe equal to 1 simultaneously. So if our equation has p � q mod 4 we musttake a > k1(n21�1)+k2(n22�1) to avoid singular points. Note that when oneof the variables n is equal to 1, the case is trivial since the the term involvingit becomes zero.Example 2.9 Now lets look at an example of a nontrivial case wheren1 � n2 + 2 mod 4. We take n1 = 5; n2 = 3, that is consider a supportfunction h = a + k1 sinn1t + k2 sinn2t,h(t) + h00(t) = a + k1(1� 52) sin 5t + k2(1� 32) sin 3tWe want a such that h(t) + h00(t) is > 0 for all tFor simplicity let us write b = k1(52 � 1) and c = k2(32 � 1).We shall call f(t) = b sin 5t+ c sin 3t14



Now the problem is to �nd the maximum value of f in terms of b; c > 0. Lets = sin t. Then with the help of Maple, using half and double angle formulas,we get as a function of sf(s) = 16bs5 � (20b+ 4c)s3 + (5b+ 3c)s; jsj � 1f 0(s) = 80bs4 � 3(20b+ 4c)s2 + (5b+ 3c)The equation becomes much simpler if we substitute b = B10 ; c = 2C�B6 (i.e.B = 10b, C = 3c + 5b so if b; c > 0 then C > B2 > 0:) The equation nowbecomes f(s) = 8B5 s5 � 43(B + C)s3 + CsDi�erentiating w.r.t s givesf 0(s) = 8Bs4 � (B + C)s2 + C:Which is a quadratic in s2 with solutions s2 = B+C�pB2+C24B .We need to �nd the largest value of f(s) at any of these points and alsopossibly f(1) and f(�1) to determine the maximum of f on �1 � s � 1.Note that f(1) = 13(4B � C) (= b� c)and f(�1) = �13(4B � C) (= �b + c)It is also be helpful to write B = R cos u and C = R sinu, for R > 0 andarctan 12 < u < �2 :

Figure 10: (B;C) lies in the �rst quadrant above C = B2 .So now 15



s2 = cos u+ sin u� 14 cos u (1)Since s stands for sine, in order for the equation to be valid the right handside should lie between �1 and 1. Since the LHS is a square the RHS shouldalso be positive. It is easy to see that for an acute angle u, both � give theRHS of (1) greater than zero.For the RHS of (1) to be � 1 we requirecos u+ sin u� 1 � 4 cosusinu� 1 � 3 cos u3 cosu� sinu� 1 � 0This is considered over the range of u (for both signs).For the plus sign it is equal to zero at u = �2 so greater than or equal tozero over the range of u. For the minus sign it is �2 at u = �2 and 2 at u = 0so has one value where it is 03 cosu� sinu = 1has solution u = cos�1 35 = tan�1 43 .For equation (1) when using the upper sign we gives two solutions for sthat is when �2 > u > tan�1 43 . From using both signs, we get 4 solutions fors between tan�1 43 > u > tan�1 12 . See Figure 11.f(s) = s�8B5 s4 � 43(B + C)s2 + C�1Bf(s) = s�85s4 � 43(1 + tan u)s2 + tanu�From equation (1) we get1Bf(s) = 2s15 �4 cosu sinu� cos u� sin u� 1cos2 u �15 cos2 u2B f(s) = s(4 cos u sinu� cos u� sinu� 1) (2)We want the largest value for the RHS for the two or four values of sgiven by (1). 16



Figure 11: Number of solutions to s2.With the upper (minus) sign the bracket on the RHS of (2) is greaterthan zero for all acute u. With the lower (plus) sign the bracket on the RHSof (2) is less than zero for all acute u. So the relevant numbers to compareare15 cos2 uB f(s) = �pcos u+ sinu+ 1(4 cosu sinu� cos u� sinu� 1) = P15 cos2 uB f(s) = pcos u+ sin u+ 1(4 cos u sinu+ cos u+ sinu� 1) = QSo for the two or four values of u given by (1) (also possibly the endpoints s = �1; 1)It turns out that P = Q when sin 2u = 45 which has two solutions foru1 < u2 both acute.So Q is greater than P when 12 < tanu < 2. However when tan u > 2 onlyQ is relevant by equation (1) as only the lower sign gives values of s2 � 1.See Figure 11 and Figure 12. So rather surprisingly the only value we needconsider is Q. We should also have a greater than the end points given whens = �1 that is b� c and c� b. a > j24k1�8k2j = 8j3k1�k2j: We have shownthat 17



Figure 12: Graphs of P and Q in terms of u.Proposition 2.10 For the case where h(t) = a + k1 sin 5t + k2 sin 3t theminimum value for a we must take in order to avoid singlular points isa > B15 cos2 upcos u+ sinu+ 1(4 cosu sinu+ cos u+ sin u� 1); 8j3k1 � k2j;where B = 10k1 and u is the acute angle with tangent k2+5k110k1 :Using maple with a range of di�erent constants seems to validate thatQ is indeed the minimal value for a we need to avoid singular points. (seeAppendix A)Of course one could always search for the turning points of the functionmanually and then compute which has the greatest value.As we have seen deriving the general formula for the minimum value ofa needed to avoid singular points in the exampleh(t) = a+ k1 sin 5t+ k2 sin 3tis rather complicated. Luckily for us with this example the derivative of thefunction for the turning points was a quadratic in s2. For the next non-trivialcase dfdfd dfdf the general solution would be much more complicated. I amunsure if such solutions exist, it would be interesting to know if there wasindeed a more general formula. 18



Figure 13: Comparison of P and Q for acute u.Using cosine instead of sine in the equations has the e�ect of simply rotatingthe CCW about the origin. If we use both sine and cosine then we get somequite interesting shapes.

Figure 14: Some irregular CCWs.The number of sides of the CCW seems to be equal to the greatest of n1and n2.If we have n1 and n2 the same the question of minimal condition is quitetrivial. For h = a+ k1 sin(nt) + k2 cos(nt) Then jaj > k1k2 tan(nt)19



The question of the minimal condition on a when n1 and n2 are di�erentis more tricky and I leave this as an exercise for the reader.2.7 Other Methods of Constructing CCWsThe method that I have shown for constructing CCW is by no means the onlyone. I feel that I could not write a chapter on curves of constant width with-out at least mentioning this alternative way of constructing them. Probablythe most famous CCW (after the circle) is known as the Reuleaux triangle,named after Franz Reuleaux who taught in Berlin during the late nineteenthcentury. It Reuleaux be constructed by starting with an equilateral triangle.You then proceed by replacing each side by a circular arc with the other twosides as radii.

Figure 15: Reuleaux triangleThe vertices of the Reuleaux triangle are actually corners as the tangentsdo not have the same limit when you approach from opposite sides. This isbecause at the vertices the tangents are perpendicular to the triangle's sides(L).The corners of the Reuleaux triangle are infact the sharpest possible forany CCW. Using a similar piecewise method you construct a CCW withround corners. This is done by extending the lines in all directions, thenusing a larger circle to create the edges, then connecting them using smallercircles to �ll in the gaps. See �gure 17. Similar constructions can be doneusing any regular polygon with an odd number of sides. Another clever wayof creating CCWs is the crossed-lines method. It works as follows: Draw asmany straight lines as you like all mutually intersecting. Select a point on20



Figure 16: Limits of the tangents are di�erentone of the lines then using a compass draw an arc to the next line with thecompass point where the two lines intersect. See Figure 18.

21



Figure 17: Piecewise construction of 3-sided CCW with width R + r
22



Figure 18: Crossed lines method of constructing ccw
23



Now if I may go o� at a slight tangent and take a look at some envelopes oftangent lines to a curve.3 EnvelopesWe begin by looking at the envelopes of tangent lines to a curve. We examinethe curve y = x3 and show that its evelope �ts with the alternative de�nitionthat it is the limit of nearby curves. We then study evelopes of circles ofcurvature and try to establish the same claim. Finally we take a look atevelopes created by a process known as Embroidery.3.1 Envelopes of Tangents to a CurveLet us now take some time to look at Envelopes of the family of curves givenby the tangents to a curve. Using the fact that at any point the tangent isperpendicular to the normal the curve � can be given by the equationF (t; x) = (x� �) �N = 0:We then Calculate @F@t = (x� �)0 �N + (x� �) �N 0= �T �N + (x� �) � �T= (x� �) � �Twhere of course the standard de�nition of envelope of family of curves isgiven by DF = fx : F = @F@t = 0g:So if F = 0 then either x = � or (x� �) is perpendicular to N . As (x� �)can not additionally be perpendicular to T , the extra condition that @F@t = 0implies that either x = � or �(t) = 0:Intuitively it makes sense that x = � should be the envelope of tangentlines, since if we ask the question what is the curve that is tangent to all thetangent lines of a curve? clearly it must be the curve itself.24



Figure 19: y = x3, tangent lines of y = x3 and envelope of tangent linesSo if we have an in
exion, that is a point where the curvature, �(t) is zero, weadditionally get the the tangent line at this point included in the envelope.So for example the curve y = x3 has an in
exion at the origin, so the envelopeincludes both the curve and the tangent line at this point.From the second picture of Figure 19 it looks reasonable that the envelopewould include the tangent line at the origin. The tangent lines of graph seemto `bunch up' to the line y = 0. There is another de�nition of envelopes thatis as follows.Theorem 3.1 [1, Theorem 5.8] The envelope E1 � DF is the limit of inter-sections of nearby curves Ct:Proof Let E1 � R2 be the set of x for which there exist the followingsequences: xn = (x1n; x2n) in R2 , (tn) and (t0n) in R where tn 6= t0n for all n.We also need for all n that F (tn; xn) = F (t0n; xn) = 0, such that xn 2 Ctn\Ct0n .We also require that as n!1 that tn; t0n ! t and xn ! x where (t; x) is inthe domain of F .As n!1 we get F (tn; xn); F (t0n; xn)! F (t; x) = 0. Let f(t) = F (t; xn)for suÆciently large n. Then we get that f(tn) = f(t0n) = 0.Rolle's theorem states that any smooth function that reaches the samevalue at two points must have a stationary point somewhere between them.See Figure 21.So if f(tn) = f(t0n) = 0 then there must exist �n between tn and t0n withf 0(�n) = 0. Hence @F@t (�n; xn) = 0, and letting n!1; @F@t (tn; xn) = 0. Hence:25



Figure 20: E1 as the Limit of Intersections of Nearby Curves Ct
Figure 21: Rolle's TheoremE1 � DF �Let's attempt to prove that the envelope of the family of tangent lines tothe curve y = x3 is indeed the limit of intersection of nearby lines of thefamily. It should be fairly obvious that points the curve itself are limits ofintersections of tangent lines. Perhaps it is less obvious that the tangent lineat zero is alos the limit of nearby tangent lines.Theorem 3.2 For y = x3, every point on the tangent line at zero is thelimit of intersection of nearby tangent lines.Proof Tangent lines to y = x3 are given byy � t3 = 3t2(x� t)F = y � 3t2x + 2t3 = 026



@f@t = �6tx + 6t2 = 0So t = y = 0 or x = t and y = t3. Which as we would expect is the curveitself and the tangent line at the origin.We want for any given point on the positive x axis, say (a; 0) where a > 0,to choose two tangents at t = u; v so that the two tangents cross at (a; b) forsome b. We choose a to be postive but similar arguments apply for negativea. Now we need to �nd a sequence so that when u; v ! 0 then b! 0 and aremains the same.The two equations for tangents at u and v arey � 3u2x + 2u3 = 0y � 3v2x + 2v3 = 0Subtracting the equations gives3(u2 � v2 )x = 2(u3 � v3)and dividing by (u� v) which in non-zero gives3(u+ v)x = 2(u2 + uv + v2):We want u; v to satisfy 3(u+ v)a = 2(u2 + uv + v2) (3)so that the tangents meet on the line x = a.We need both u! 0v ! 0so that equation (3) is satis�ed.We want also y = 3u2a� 2u3 ! 0 which it inevitably will if u! 0.We can rearrange equation (3) to make a quadratic equation in v.2v2 + v(2u� 3a) + (2u2 � 3ua) = 0Then applying the quadratic formula givesv = 3a� 2u�p(2u� 3a)2 � 8(2u2 � 3ua)427



Now we need to take a sequence of u's ! 0 Let's try un = 1n .then vn = 3a�2 1n�p(2 1n�3a)2�8(2( 1n )2�3 1na)4vn = 3a� 2n �s 4n2 + 9a2 � 12n a� 8�2 1n2 � 3 1na�as n!1; vn ! 3a� 0�p0 + 9a2 � 0= 3a� 3a = 0; since a > 0as u! 0 also v; y ! 0 �So in this case the discriminant really is the limit of intersection of nearbytangent lines.3.2 Envelope of Circles of CurvatureIn the last example we saw that the envelope of tangent lines for the curvey = x3 is the limit or nearby curves. Is this true of other types of envelope?We shall now take a look at the envelope of a family of circles [1, pg106]. Weshall try to ascertain whether the envelopes are, as in the last example, thelimit of intersections of nearby curves.Let 
 : I ! R2 be unit speed, where the curvature � is never zero. Thenthe centre of curvature at 
(t) is a distance 1� in the normal direction from
(t). Centre of curvature = 
(t) + 1�(t)N(t)Now we need the equations for the families of circles of curvature. That isthe circles centered at the centre of cuvature and radius 1�(t) . Dropping tfrom the notation we havejj(x� 
)� 1�N jj2 = 1�2((x� 
)� 1�N) � ((x� 
)� 1�N) = 1�2(x� 
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) �N = 1�228



(x� 
) � (x� 
)� 2�(x� 
) �N = 0We shall denote thisF (x; t) = (x� 
) � (x� 
)� 2�(x� 
) �NWe now go about obtaining the envelope in the usual way, that is we calculatewhen both F (x; t) and @F@t (x; t) are equal to zero.@F@t = 2(x� 
)0 � (x� 
) + 2�0�2 (x� 
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) �NThis is equal to zero if and only if �0 = 0 or if (x� 
) �N = 0. In the lattercase for F to equal zero as well, (x� 
) � (x� 
) must be equal to zero also.As in the last example with tangents to a cubic we get the curve itself as aspart of the envelope. We also have @F@t = 0 when �0 = 0. So at a vertex, thatis where we a zero of �0, we additionally have the whole circle of curvatureas part of the envelope. Figure 22 shows an ellipse next to its respectiveenvelope of circles of curvature complete with the circles of curvature at thevertices.Let's take a look and see what happens when additionally @2F@t2 = 0@F@t = 2�0� (x� 
) �N@2F@t2 = 2��00 � 2�02�2 (x� 
) �N � 2�0� T �N + 2�0(x� 
) � T= 2���00 � 2�02�2 � (x� 
) �N + 2�0(x� 
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. If �0 = 0 then we get@2F@t2 = 2�00� (x� 
) �N29



Figure 22: Ellipse and envelope of circles of curvature

Figure 23: Parabola and envelope of circles of curvaturewhich equals zero if �00 = 0.Rather interestingly we �nd that every point on the original curve is apoint of regression. If the vertex is ordinary (�0 = 0; �00 6= 0) then pointsof the circle are not points of regression except for the contact point with 
(where in fact the envelope is smooth). If on the other hand we have a highervertex, that is it has at least �ve point contact with the curve, we also getthat every point on the circle of curvture is also a point of regression.
30



3.3 Intersection of Nearby CirclesWe now take a look to see if the envelope is also the limit of intersection ofnearby circles. The whole proof is rather long and complicated to includehere, so instead I shall state the result and just a brief sketch of the proof.The complete proof in Maple can be found in Appendix B. We want to knowwhether all the points on the circle of curvature at the origin are limits ofthe intersection of two nearby circles of curvature that approach the originfrom opposite directions. The circle must approach the origin from oppositedirections because of the well known theorem in curves and singularities, thatcircles do not intersect unless on other sides of a vertex. This is because theare actually nested in one another, in our case getting bigger as they getfuthe away from the origin.Sketch of Method for Determining Limit PointsFor this we look at di�erent general equations with vertices and ascertainwhat the limit points are. So for example we could use y = x2 + ax4.We �rst �nd the eqautions for the circles of curvature at two points u; von the curve. Subtracting the equations and taking out the trivial factor(u� v) gives us the equation of the line, in X and Y say, connecting the twointersections. So we now have a a linear functionX = f(Y; u; v). Substitutingback in to the equation gives us the solutions for Y; call them Y1 and Y2.The trick is to convert to polar co-ordinates, u = r cos t; v = r sin t.Then you take the limit of Yi as r ! 0, then �nd the limit of X fromf(Y; u; v)Unlike where we had intersections of nearby tangent lines, it seems asthough we always get two limit points of intersections on the envelope. Forthe case y = x2 and y = x2 + ax4, the two limit points are (0, 0) and (1, 0).For the equation y = x2 + bx5 we still two limit points, one at the origin butthis time the other is found at � 20jbj16+25b2 ; 1616+25b2�, see Figure ??So we have found that in these cases that the points on the envelope ofcircles of curvature are not all the limit of intersections of nearby curves of thefamily. We found that only two points on the envelope satisfy this property.However this still �ts in with out alternative de�nition of the envelope E1,see theorem 3.1. Before we proved that envelope E1, considered as the limitof intersections of nearby curves, lies inside the discriminantDF which is stilltrue. 31



Figure 24: Curves wtih vertices and limit points �.3.4 EmbroideryWe are now going to study another type of envelope. This time we shall lookat ones created by a process known as embroidery.The process works by taking a parametrised (closed) curve. In our case weshall take the unit circle given by (cos t; sin t). We then take the envelope ofthe family of lines connecting (cos t; sin t) to (cosmt; sinmt) for some positiveinteger m.The family of curves is given byF = x(sinmt� sin t)� y(cosmt� cos t)� sin(m� 1)t = 0:Di�erentiating gives@F@t = x(m cosmt� cos t)� y(sin t�m sinmt)� (m� 1) cos(m� 1)t = 0We need to �nd the equations for x and y that satisfy both F = @F@t = 0. Ifwe simplify the coeÆcients in the expressions for a moment it will make themethod clearer.We shall denote them F = ax + by = �p@F@t = cx+ dy = �q32



Figure 25: Embroidery for m = 2 and m = 3.We then multiply F by d and @F@t by b. Then if we subtract the equations weget (ad� bc)x + (bd� db)y = pd� qcIf we assume ad� bc 6= 0 then we get x = pd�qcad�bc : Similarly we get y = aq�pcad�bcassuming that ad � bc = (m + 1)(1 � cos(m � 1)t) 6= 0: Now when we putback the coeÆcients we getx = (m sinmt� sin t) sin(m� 1)t� (m� 1)(cos t� cosmt) cos(m� 1)t(sinmt� sin t)(m sinmt� sin t) + (cosmt� cos t)(m cosmt� cos t)= m sinmt sin(m� 1)t� sin t sin(m� 1)t� (m cos t�m cosmt + cosmt� cos t) cos(m� 1)t(m+ 1)(1� cos(m� 1)t= m cos t + cosmt� (m cos t + cosmt) cos(m� 1)t(m + 1)(1� cos(m� 1)t)= (m cos t + cosmt)(1� cos(m� 1)t)(m + 1)(1� cos(m� 1)t)= m cos t + cosmtm + 133



Similarly the expression for y can be calculated asy = m sin t+ sinmtm+ 1If on the other hand (m + 1)(1� cos(m� 1)t) = 0; that is wherecos(m� 1)t = 1, we get the whole line included as part of the envelope. Forexample if m = 2 and t = 0 we have

Figure 26: Embroidery Envelope for m = 2.F = x(sin 2t� sin t)� y(cos 2t� cos t)� sin t@F@t = x(2 cos 2t� cos t)� y(sin t� 2 sinmt)� cos tthen F = @F@t = 0 has solution x = 1 and y is arbitrary.First lets take a look at where where the singular points occur on theenvelope.@2F@t2 = x(sin t�m2 sinmt)� y(cos t�m2 cosmt) + (m� 1)2 sin(m� 1)tNow we substitute in the parametric equations for x and y and get= �m cos t + cosmtm+ 1 � (sin t�m2 sinmt)� �m sin t+ sinmtm+ 1 � (cos t�m2 cosmt)+ (m� 1)2 sin(m� 1)t= 1m+ 1(m cos t sin t�m3 cos t sinmt + cosmt sin t�m2 cosmt sinmt�m sin t cos t+ m3 sin t cosmt� sinmt cos t+m2 sinmt cosmt) + (m� 1)2 sin(m� 1)t34



= 1m+ 1((m3 + 1) sin(1�m)t) + (m� 1)2 sin(m� 1)t= �1m + 1(m3 + 1) sin(m� 1)t+ (m2 � 2m+ 1) sin(m� 1)t= �1m + 1(m3 + 1) sin(m� 1)t+ m+ 1m+ 1(m2 � 2m + 1) sin(m� 1)t= �m3 � 1 +m3 +m2 � 2m2 � 2m +m+ 1m+ 1 sin(m� 1)t= �m2 �mm+ 1 sin(m� 1)t= �m sin(m� 1)tWhich is equal to zero if and only if t = n�m�1 : So we appear to get 2(m�1)singular points on the curve, whereas for the example cusps appear to be onlym� 1 of them.

Figure 27: Embroidery Envelope for m = 4 has 6 Singular Points.On our curve we have two di�erent types of singular points. Some whichlook like cusps (we shall prove that they are in a moment) and some wherewe get the tangent line included in the curve as well. The latter occurs when(cos t; sin t) is equal to (cosmt; sinmt). So in e�ect when we draw the lineconnecting the two we are actually connecting the point with itself.35



For which singular points does this occur?t = 0; �m� 1 ; 2�m� 1 ; 3�m� 1 ; 4m�m� 1 ; ::: ; n�m� 1 ; :::mt = 0; m�m� 1 ; 2m�m� 1 ; 3m�m� 1 ; 4m�m� 1 ; ::: ; nm�m� 1 ; :::Where n = 0; 1; :::; 2m� 3 mn�m� 1 � n�m� 1 = n�So we get the same point when n is even. This means that the line inthe family joins itself to itself and hence appears in the envelope. We haveshown thatProposition 3.3 For even n when t = n�m�1t we get the whole line F (t; x; y)appearing as part of the envelope.We can use the versal unfolding condition to see what we can say aboutthese singular points. When is F a versal unfolding of an A2 singularity?First we must check when @3F@t3 = 0.@2F@t2 = x(sin t�m2 sinmt)� y(cos t�m2 cosmt) + (m� 1)2 sin(m� 1)tDi�erentiating gives@3F@t3 = x(�m3 cosmt + cos t)� y(m3 sinmt� sin t) + (m� 1)3 cos(m� 1)t= m cos t + cosmtm + 1 (�m3 cosmt+cos t)�m sin t+ sinmtm+ 1 (m3 sinmt�sint)+(m�1)3 cos(m�1)t= 1m + 1(m cos t cos t�m4 cos t cosmt�m3 cos2mt+cosmt cos t�m4 sin t sinmt+ m sin2 t�m3 sin2mt + sinmt sin t) + (m� 1)3 cos(m� 1)t= 1m+ 1(m�m4 cos(m� 1)t�m3 + cos(m� 1)t) + (m� 1)3 cos(m� 1)t= 1m + 1(m�m3 + (�2m3 � 3m2 + 2m)cos(m� 1)t36



Remember that we are looking for the extra condition that @3F@t3 equals zeroas well as @2F@t2 being zero. So we can substitute t = n�m�1 .@3F@t3 = 1m + 1(m�m3 + (�2m3 � 3m2 + 2m) cos�m� 1 n�m� 1�= 1m+ 1(m�m3 + (�2m3 � 3m2 + 2m) cosn�= 1m + 1(m�m3 � (�2m3 � 3m2 + 2m)Which equals either 1m+1(�3m3�3m2+3m) or 1m+1(m3+3m2�m). Neitherof which contain rational roots except for m = 0. So we get @3F@t3 6= 0.Remark 3.4 If we allow m to be an irrational number we get a very di�er-ent, though probably interesting situation. The curve in this case would notbe closed and would continue to loop around the origin inde�nately.We now know that the third partial derivative is non-zero, so we nowknow that we have A2 singularities. Can they be versally unfolded though?Let's look at an example with m = 2.F = x(sin 2t� sin t) + y(cos t� cos 2t)� sin t@F@x = sin 2t� sin t@F@y = cos t� cos 2tThe corresponding Jet matrix is� sin 2t� sin t cos t� cos 2t2 cos 2t� cos t � sin t + 2 sin 2t �det = (sin 2t� sin t)(� sin t + 2 sin 2t)� (cos 2t� cos 2t)(2 cos 2t� cos t)= 2 sin2 2t++sin2 t� 3 sin t sin 2t� 3 cos t cos 2t + cos2 t + 2 cos2 2t= 3� 3(sin 2t sin t+ cos 2t cos t)= 3� 3(cos t)37



For t = � this is non zero so can be versally unfolded and hence is a cusp.For t = 0 we have no versal unfolding so can say nothing about the type ofsingularity. If we do this for a general integer m we �nd that we get cuspswhere t = n�m�1 when n is odd. As we might have expected the points wheren is even and which have the line included in the envelope are not isomorphicto a cusp.It now seems an obvious question to ask whether, like in the last example,the lines included in the envelope where n is odd, are the limit of intersectionof nearby lines. However, strictly speaking this makes no sense to ask thisas it does not �t entirely with the de�ntion of an envelope. The problem isthat F (t; x; y) = x(sin 2t� sin t) + y(cos t� cos 2t)� sin thas F = @F@x = @F@y = 0 when t = 0:In this sense, t = 0 gives the whole xy-plane since F (0; x; y) = 0 for all x; y.So for this example, perhaps dissapointingly it does not seem to make sensehaving limits of intersection of nearby lines being the whole plane.For the example where m = 2 the extra solution for t = 0 can be removedwith clever use of double and half angle formulae.F (t; x; y) = x(sin 2t� sin t) + y(cos t� cos 2t)� sin tBy replacing sin 2t with 2 sin t cos t and cos 2t by 2 cos2 t� 1 we getF (t; x; y) = x(2 sin t cos t� sin t) + y(cos t� 2 cos2 t� 1)� sin tNow we subsitute t = 2u and we getF (t; x; y) = x sin 2u(2 cos 2u� 1)� y(2 cos 2u+ 1)(2 cos 2u� 1)� sin 2uNow we replace sin 2u with 2 sinu cosu and cos 2u with 1 � 2 sinu and wegetF (t; x; y) = 2x sinu cosu(1� 4 sin 2u) + 4y sin2 u(4 cos2 u� 1)� 2 cos u sinuthen cancelling 2 sinu givesF (t; x; y) = x cos u(1� 4 sin2 u) + y sinu(4 cos2 u� 1)� cos u38



This still gives the same family of curves, only now F (t; x; y) = @F@t = 0 whenu = 0 gives only the point (1; 0), which is not a point of regression. The onlypoint of regression now is at t = �; u = �2 : Presumably this sort of approachcould be used for higher values of m but of course it would be a lot morecomplicated.4 Duals of Plane CurvesIn two dimension the dual space is a way of representing all the tangentlines to a curve. Each tangent line corresponds to a point in the dual space.Consequently the whole family of tagent lines to curve correspond to anothercurve in the dual space. We begin by looking at ways of representing linesin the plane. We then at what corresponds to singularities in the dual spaceand use Thom's idea of Versal unfoldings. Finally we take a look at the dualspaces of various space curves.4.1 Representing lines in the planeIn two dimesnsions it is possible to represent the plane in several ways thatwe should be familiar with. There is the the general form; Ax+ by +C = 0,then there is the y-axis formula; y = mx + c, and also the intercept form;xa + yb = 1.Every straight line in the plane can be written in the general form Ax+By + C = 0, with A;B not both zero. Other ways which only use twoconstants such as the y-axis formula has no way of expressing vertical lines.The intercept form is even worse and cannot represent neither vertical norhorizontal lines.We have a way of representing lines, l say, in the plane by two (u; v)where u 2 S1 is the direction of vector through the origin and perpendicularto l and v 2 R is the perpendicular distance to l.(u; v) actually gives us oriented lines, that is they come equiped with adirection. Using oriented lines is much simpler than working with un-orientedwhich require some additional structure. The only di�erence is we get twocopies of everything because (u; v) bar orientation gives the same line as(�u;�v). See Figure 31.Each oriented line can be represented by its corresponding point (u; v) inwhat we cal the dual space. The dual space can be visualised as the surface39



Figure 28: Representing the line l using u and v.
Figure 29: u and v produce oriented lines.of a cylinder see Figure 30. Locally the surface of the cylinder looks likeeuclidean space where each point on the cylinder is associated with a line inthe plane.4.2 Representing the Dual of a Plane Curve as a Dis-criminantIf we use the (rabbit out of a hat) functionF (t; u; v) = H(t; u) = 
(t) � u� v; u 2 S1; v 2 R= 
(t) � (cos x; sin x)� y; (say)The discriminant is given byF = @F@t = 0@F@t = T � (cos x; sinx) = 040



Figure 30: The dual space for 2-dimensions is the surface of a cylinderT � u = 0 means that T is perpendicular to (cos x; sinx)u = �N; where u is unit length so � = �1v = 
 � uSo we get (u; v) = (�N;�
 �N): As luck would have it this is precisely thedual of 
. This is particularly fortunate for us as we can now apply a hostof tricks that we know from studying envelopes. We can use this property tosee what features in the plane correspond to various singularities in the dualspace.Since we are dealing woth 2-dimensions we need only consider A1 and A2singularities. Now F has an A1 singularity at t if and only if u = �N(t)@2F@t2 = �N � u = ��So the condition for A1 singularities is that � 6= 0@3F@t3 = �0 � u+ �T � u= �0�The condition for A2 singularity is therefore � = 0 and �0 6= 0. So we �ndthat where we have an ordinary in
exion in the plane the corresponding curvein the dual space as A2 singularity. We can now use the versality criterionto see if the singularities are cusps. 41



@F@x = (x(t); y(t)) � (� sin x; cos x)@F@y = �1At (t0; x0; y0) where we have an A2 singularity@F@x = 
 � (�T )@F@y = �1det� �
 � T �1�T:T 0 � 6= 0; hence versal unfolding is automaticSo an in
exion in the curve corresponds to a cusp in the dual space. SeeFigure dfdfdfdaASA.

Figure 31: The dual of an in
exion is a cusp.Remark 4.1 Note we get two copies in the dual space because we are lookingat oriented lines. The two cusps are on opposite sides of the dual space (uand �u) so this does not a�ect us if we are looking at the local structure.The next logical steps is to look at space curves
42



4.3 Duals of Space CurvesIn 2-dimensions we had a method for setting up a one-to-one correspondencebetween oriented tangent lines in the plane and points S1 � R in the dualspace. Similarly to when we had 2 dimensions, in 3 dimensions we can setup a one-to-one correspondence between oriented planes and points S2� Rin the dual space.This time we use an extended version of the height function,F : R � S1� R ! RF (t; u; v) = 
(t) � u� vIf we di�erntiate with respect to t@F (t; u; v)@t = T � uIf we take the discriminant set F = @F (t;u;v)@t = 0 then we get the exact set oforiented tangent planes which are given by T � u = 0; 
(t) � u = v.

Figure 32: The tangent plane as a discriminant of F .Remark 4.2 The planes are oriented by this method of construction. Look-ing at the plane in the direction of u and consider clockwise rotation aboutthe normal u gives us the orientation. This means that (u; v) and (�u;�v)look the same but they have di�erent orientation and are di�erent in the dual43



space. As with the 2-dimensional case it is easier than adding the additionalstructure (u; v) = (�u;�v). It makes no di�erence to us as we shall belooking at local strucure whereas (u; v) and (�u;�v) are far apart.We shall now look at the structure of the dual space. Each tangent plane tothe curve corresponds to a point in the dual space. For each point 
(t) thereare an in�nite number of tangent planes (namely all the planes containingthe tangent line at 
(t)). The tangent plane has two degrees of freedom asthe plane can move along or rotate about the curve so the dual to a spacecurve is infact a surface.At 
(t) we we can specify an oriented tangent plane by a unit (normal)vector u perpendicular to T (t). The plane then has the equation x�u = 
(t)�u.The set of oriented tangent planes to 
, the dual, is then identi�ed with (u; v)where v = 
(t) � u; T (t) � u = 0; where u 2 S2; v 2 R. Which is equal to thediscrimant set of F given byF (t; u; v) = 
(t) � u� v; u 2 S2; v 2 R@F@t = T:u = 0 implies u is perpendicular to Tso u = �N + �B.F = 0 implies that V = 
(t) � uSo we really do get the dual space. We shall now look at when singularpoints occur on the dual space and whether or not they can be versallyunfolded. We assume � 6= 0.@2F@t2 = �N � u = ��As we assumed � 6= 0; �� = 0 if and only if � = 0. So we get an A1singularity at t if and only if � 6= 0.@3F@t3 = �0N � u+ �(�B � �T ) � u= �0�+ ���If � = 0 then @3F@t3 = 0 if and only if � = 0, since � 6= 0 and u is a unit vector.So we get an A2 singularity if and only if � = 0; � 6= 0.@4F@t4 = �00N �u+�0(��T + �B) �u� (k2)0T �u��3N �u+�� 0B �u+�� 2N �u44



= � 0� (at � = � = 0)Which equals zero if and only if � 0 = 0. So we get an A3 singularity if andonly if � = � = 0; � 0 6= 0. Like with the 2-dimensional case we shall nowlook to see if theses singularities can be versally unfolded and hence cusps.Without loss of generality we can put our curve in to standard postition,(t� 16�2t3; 12�t2 + 16�0t3; 16��t3)where 
(t0) = 0; T (t0) = (1; 0; 0); N(t0) = (0; 1; 0) and B(t0) = (0; 0; 1).

Figure 33: The tangent plane as a discriminant of F .We are interested in the structure of the dual for points of 
 near to (0; 0; 0).Since A2 and A3 singularities occur only on osculating planes we need aparametrisation of S2 which works near (0; 0; 1): The function(x1; x2)! (x1; x2;q1� x21 � x22)is an immersion parametrising all unit vectors close to (0; 0; 1) which is thebinormal at t = 0. So we writeF (t; x; y) = 
(t) � (x1; x2;q1� x21 � x22)� y; where 
(t) = (X(t); Y (t); Z(t))dropping t form the notation gives 45



F = Xx1 + Y x2 + Zq1� x21 � x22 � x3@F@x1 = X + Z(:::::::)(x1) = X (at x1 = x2 = 0)@F@x2 = Y@F@x3 = �1F = Xx1 + Y x2 + Zq1� x21 � x22 � x3@F@x1 = X + Z(:::::::)(x1) = X (at x1 = x2 = 0)@F@x2 = Y@F@x3 = �1So the jet matrix is given by0@ X(0) Y (0) �1X 0(0) Y 0(0) 0X 00(0) Y 00(0) 0 1A
 = (X; Y; Z)
0 = (X 0; Y 0; Z 0) = T; T (0) = (1; 0; 0)
00 = T 0 = �N; N(0) = (0; 1; 0)M = 0@ 0 0 �11 0 00 �(0) 0 1ASo long as � 6= 0 the versal unfolding is automatic. Therefore the osculatingplanes correspond to a cuspidal edge and the osculating plane at a zero oftorsion corresponds to a swallowtail. See Figure 34.46



Figure 34: The tangent plane as a discriminant of F .Swallowtails consist of an A3 singularity which corresponds to the point onthe space curve with � = 0; � 0 6= 0. It has A2 singularities or cusp edgescorresponding to the osculating planes of the curve. The swallowtail alsohas a self intersection line but what does this correspond to on the originalcurve? Well each point on the dual surface corresponds to a tangent planeon the original curve. So where we have two equal points on di�erent sheetsof the dual surface there must be two points on the original curve with thesame tangent plane. We shall refer to such planes which are tangent to thecurve at two distinct points as bitangent planes.In the swallowtail we get a half-line of self intersection from the A3 singu-larity. This suggests that for all points on the original curve close to wherewe have zero torsion there is point on the other side of the torison zero thatshares the same bitangent plane.4.4 Bitangent Planes Near Torsion ZerosHow do these bitangent planes behave and is there a relation between thetwo points on either side that share a bitangent plane? We shall �rst look at47



the curve 
(t) = (t; t2; t4) which has a simple zero of torsion at the origin.
(t) = (t; t2; t4); 
(0) = (0; 0; 0)
0(t) = (1; 2t; 4t3) 
0(0) = (1; 0; 0)
00(t) = (0; 2; 12t2) 
00(0) = (0; 2; 0)
000(t) = (0; 0; 24t) 
000(0) = (0; 0; 0)The torsion at the origin �(0) = (
(0)0 � 
(0)00) � 
(0)000 = 0:The �rst derivative at the origin can be calculated as � 0(0) = 12 6= 0). So wereally do have a simple zero of torsion st the origin. We start by looking forthe equation for tangent planes of the form ax+ by + cz = d. We substituteour values for x; y and z of 
.at + bt2 + ct4 = dWe also wish the plane to be contain the tangent vector, perpendicular tothe vector (a; b; c). (a; b; c) � (1; 2t; 4t3) = 0a+ 2bt+ 4ct3 = 0So for two points on the curve t1; t2, they share a bitangent plane whenat1 + bt21 + ct41 � d = 0at2 + bt22 + ct42 � d = 0(a; b; c) � (1; 2t; 4ct3) = 0a+ 2bt + 4ct3 = 0To solve for t1 and t2 we solve when the determinant�������� t1 t21 t41 �1t2 t22 t42 �11 2t1 4t31 01 2t2 4t32 0 �������� = 0After several row operations we get2(t1 � t2)4(t1 + t2) =Discarding the trivial (t1 = t2), we are left with the solution t1 = �t2. So wehave shownProposition 4.3 For the space curve 
 either side of the simple torisionzero the points 
(t) and 
(�t) both share a common bitangent plane. SeeFigure 35. 48



Figure 35: t and �t share a bitangent plane.4.5 Bitangent Planes of Curves with Non-Simple Zerosof TorsionWhat happens when we have a non-simple zero of torsion, that is when� = � 0 = 0? We shall now look at the curve 
u(t) = (t; t2; t5 + ut3); u < 0which has two simple zeros of torsion which come together as u! 0 to forma degenerate non-simple zero of torsion at the origin.
u(t) = (t; t2; t5 + ut3)
0u(t) = (1; 2t; 5t4 + 3ut2)
00u(t) = (0; 2; 20t3 + 6ut)
000u (t) = (0; 0; 50t2 + 6u)We shall start by looking for the bitangent planes. In the same way that weperformed the calculations for the simple zero of torsion, we solve simluta-neous equations for the tangent planes at t1 and t2.at1 + bt21 + ct41 = dat2 + bt22 + ct42 = da + 2bt1 + c(5t41 + 3ut21) = 0a + 2bt2 + c(5t42 + 3ut22) = 0
49



Which is equivalent to solving the determinant of�������� t1 t21 t51 + ut31 �1t2 t22 t52 + ut32 �11 2t1 5t41 + 3ut21 01 2t2 5t42 + 3ut22 0 �������� = 0After several row operations we arrive at the equation(t1 � t2)4(3t21 + 4t1t2 + 3t22 + u) = 0As before we are not interested in when t1 is the same point as t2, so we canignore the terms (t1 � t2). This leaves us with (3t21 + 4t1t2 + 3t22 + u) = 0which looks like an ellipse when u < 0, otherwise it has no solutions. SeeFigure 36. The ellipse shrinks to a point as u! 0. See Figure 37.

Figure 36: Ellipse showing where t1 and t2 share a bitangent plane.Each point (t1; t2) on the ellipse represent an un-ordered pair or points thatshare a tangent plane on the space curve. Where do the points of zero torsion�t into the picture?For a point of zero torsion we need 
0; 
00, and 
000 linearly independent.(
0 � 
00) � 
000 = 2(60t2 + 6u) = 0which implies for a given u that the zero of torsions appear att = �r�u10 :50



So the torisons of zero on the space curve our represented on our ellipse bythe points on the diagonal line. See Figure 36. Tracing along the ellipse givesan unordered pair of bitangent planes which give us the self intersection inthe dual space. It does not matter which way you traverse around the ellipsesince (t1; t2) are an unordered pair.

Figure 37: The ellipse shrinks as u! 0.How do the points on the curve t1 and t2 travel relative to each other? Westart from the torision zero in the t1; t2 > 0 quadrant, follow the curve aroundthe ellipse anti-clockwise. We can see that t1 decreases whilst t2 increasesuntil it reaches a turning point for t2. Then t2 and t1 both decrease for amoment before hitting the turning point in t1 which then decreases untilagain both t1 and t2 are the same point on the curve, the other zero torsionpoint. See Figure 38.What are the turning points on the ellipse, or in other words how far dothe bitangent planes move away from the torsion zeros? We �rst calcluatethe gradient function of the ellipse, say F , thenrF = �@F@t1 ; @F@t2� = (6t1 + 4t2; 6t2 + 4t1)So the turning points of t1 and t2 are t1 = �32 t2 and t2 = �32 respectively.Substituting in to the original equation we get the turning points as(t1; t2) =  �r�4u15 ;�r�3u5 ! and  �r�3u5 ;�r�4u15 ! :We have shown that tosion zeros on a space curve correspond to swal-lowtail points in the dual space. We have seen that the curve 
u(t) =51



Figure 38: How the points t1 and t2 sharing a bitangent plane travel alongthe curve.(t; t2; t5 + ut3) has two zero torsion points. We have also shown that thetwo torsion points are connected by a line of self intersection. The dualsurface of 
u(t) = (t; t2; t5 + ut3) can be seen in Figure 39.From Figure 39 it does seem as though the self intersections turn aroundat two points between the two torsion zeros. It also looks as though they turnaround at the cuspidal edges (which if you remeber corrsepond to oscualtingplanes on the space curve, see Chapter 4.3. We shall now prove that this isindeed the case.Proposition 4.4 The line of self intersection of the dual of the curve 
u(t) =(t; t2; t5 + ut3); u < 0 have turning points at the cuspidal edges.Which is equivlanent to:The function of the points t1 and t2 which share a bitangent plane on thecurve 
u(t) = (t; t2; t5 + ut3); u < 0 has a turning point when the bitangentplane is also the oscualting planes.Proof 4.5 
u(t) = (t; t2; t5ut3)T = 
0u(t) = (1; 2t; 5t43ut2)�N = 
00u(t) = (0; 2; 20t36ut2)~B = T � �N = (30t4 + 6ut2;�20t3 � 6ut; 2)52



Figure 39: The dual surface of 
u(t) = (t; t2; t5 + ut3)At a turning point, for example ��q�4u15 ;q�3u5 � ; we evaluate ~B and T forboth t1 and t2. Denote u = �c2~B(t1) =  8c415 ; �4p15c345 ; 2!~B(t2) =  36c45 ;��6p15c35 ; 2!T (t1) =  1;�4cp1515 ;�4c49 !53



T (t2) =  1; 2cp155 ; 0!By de�nition T (t1) will be perpendicular (?) to B(t1) and T (t2) will be ? toB(t2). If B1 it perp to T2 however, then the bitangent plane to both t1 andt2 is also the oscualating plane at t2. If on the other hand B(t2) ? T (t1) thenthe bitangent plane is also the oscualting plane at t1. See Figure (below).Technically to complete the proof we need to show T (t1) 6= �T (t2); � 2 R.From the ellipse in Figure 36 it should be obvious that this does not occur forour particular family of curves. In the unlikely event that T (t1) is a multipleof T (t2), then we should also check that additonally either N(t1) ? B(t2) orN(t2) ? B(t2), in which case it is an osculating plane.

Figure 40: Bitangent plane for t1 and t2 of 
u(t)It turns out, that T (t1):B(t2) = 100c4=9B(t1):T (t2) = 0 �So where we get a turning point in t1 we get the osculating plane for t2.Similar calculations using other turning points show that the turning pointin t2 corresponds to the osculating plane for t1.We have also seen that the curve 
u(t) = (t; t2; t5 + ut3), has two torsionzeros which come into coincidence when u approaches zero. So the corre-sponding dual space has two swallowtails which come in to coincidence whenu becomes zero. See Figure 42. 54



Figure 41: Bitangent plane for t1 and t2 of 
u(t)
Figure 42: Dual surface of 
u(t) = (t; t2; t5 + ut3) for u = 0.4.6 Dual of Space Curve with a Zero of Curvature andTwo Torsion ZerosThe next curve we shall look at is 
u(t) = (t; t3; t4 + ut2). For u 2 R
u(t) = (t; t3; t4 + ut2)
0u(t) = (1; 3t2; 4t3 + 2ut)
00u(t) = (0; 6t; 12t2 + 2u)
000u (t) = (0; 6; 24t)� = (72t2 � 12u)((12t4 � 6ut2)2 + (�12t2 � 2u)2 + 36t2)So as in the last example we have two zeros of torsion, �pu6 , which come into coincidence at t = 0 as u! 0. 55



� = 
0 � 
00jj
0jj3 = 2(36t8 � 36t6u+ 9u2t4 + 36t4 + 12ut2 + u2 + 9t2)1=2(1 + 9t4 + 16t6 + 16t4u+ 4u2t2)3=2So the curve 
u(t) has zero curvature at t = 0 when u = 0.As in the previous example we shall start with the bitangent planes. Thebitangent planes are derived byat1 + bt31 + c(t41 + ut21) = dat2 + bt32 + c(t42 + ut22) = da + 3bt21 + c(4t31 + 2ut1) = 0a + 3bt22 + c(4t32 + 2ut2) = 0So we solve the determinant of�������� t1 t31 t41 + ut21 �1t2 t32 t42 + ut22 �11 3t1 4t31 + 2ut21 01 3t2 4t32 + 2ut22 0 �������� = 0Ignoring trivial solutions t1 = t2 we get the equationt21 + 4t1t2 + t22 = uWhich is the equation for a hyperbola. See Figure 43.So with the curve which has curvature equal zero we get a very di�erentpicture from the last example. This time the self intersection line in the dualspace does not connect the two zeros of torsion.In the example we saw in Chapter 4.5 the swallowtails opened out towardseach other and therefore interacted with each other. For this curve withlimiting zero of curvature the swallowtails open out away from each otherand therefore have no interaction locally. See Figure 44.For our curve as u! 0 the angle between the two binormals at the torsionzeros tends to �. That is they are pointing in opposite directions. So thebinormal plane rotates about the curve very quickly for a very small piece ofcurve. We shall now to prove this fact.56



Figure 43: Un-ordered points (t1; t2) sharing a bitangent plane.Proposition 4.6 
(t) = (t; t3; t4 + ut2)
0 = Ts0
00 = Ts00 + �Ns02
0 � 
00 = �s03B; where �s03 > 0
0 = (1; 3t2; 4t3 + 2ut)
00 = (0; 6t; 12t2 + 2u)
0 � 
00 = (12t4 � 6ut2;�12t2 � 2u; 6t)The torsion zeros occur at t = �pu6 .
0 � 
00 = ��23u2;�4u;�ru6�so 
0 � 
00 is parallel to ��23u 32 ;�4u 12 ;� 1p6�We have B at torsion zero is unit vector in the direction��23u 32 ;�4u 12 ;� 1p6�Let u! 0. The limit is unit vectors (0; 0;�1). Hence B has no limit. �57



We have shown that as u ! 0 the binormals at the two torsion zerosface opposite directions and have no limit. Hence the osculating plane spinsrapidly through � at this point. In the dual space this corresponds to thecuspidal edges. Though we are really only concerned with local structure,one can imagine how globally the cuspidal edges `extend away' from eachother and meet at 'in�nity'.As u ! 0 the swallowtails move further apart, they face open awayfrom each other and therefore do not interact. See Figure 44 where the twoswallowtails are shown side by side with the axes shown locating their relativepositions.

Figure 44: The two swallowtails of the dual of 
u(t) = (t; t3; t4 + ut2) .4.7 The Darboux VectorThe Darboux vector, discovered by Jean Gaston Darboux (1842 - 1917), isde�ned as D = �T + �B:The �rst derivative of the unit vectors of the Frenet-Serret frame; the tangent,normal and binormal give us the Frenet-Serret folmulas. Comparing this withthe Darboux vector showsT 0 = �N; so therefore T 0 �D = 058



N 0 = ��T + �B so N 0 �D = (��T + �B) � (�T + �B) = ��� + �� = 0B0 = �� �N; so therefore T 0 �D = 0:We �nd that the Darboux vector is perpendicular to all T', N' and B'. Ifyou imagine a particle moving along the curve, the Darboux vector givesus the axis of instantaneous rotation of the particle. On a curve where wehave two torsion zeros astride a point of zero curvature, we have three pointswhere the Darboux vector is stationary in terms of direction. When the twotorision zeros come into coincidence at the point of zero curvature, the threeDarboux stationary points come together to leave just one point on the curvewhere the Darboux vector is stationary [4]. So let us now try to validate thisproperty for our particular curve.Proposition 4.7 The Darboux vector has three stationary points seperatedby the two torsion zeros. Where the torsion zeros come into coincidence as(u ! 0) the Darboux stationary points also come together to form a singledegenerate stationary point.First we calculate the �rst derivative of the Darboux vector.D0 = (�T + �B)0 = � 0T + �T 0 + �0B + �B0 = � 0T + �(�N)�0B � �(�N)= � 0T + �0BWe want to know when D0 is parrallel to D. So we calculate when thecross product is zero.D0 �D = � 0T + �0B � �T + �B= �� 0�B + �0�Which is zero when ��0 = � 0�, or equivalently using the quotient rule, this iswhen � ���0 = 0.Using maple to Plot the graphs of �(t) and the numerator of D0 (sincewe are only interested in zeros) con�rms Proposition 4.7. See Figure 45.The �rst graph of Figure 45 shows us when u > 0 we have three solutionsfor D0 = 0, that is the stationary points of D. The second graph shows whenu = 0 we get a degenerate stationary point of D and a degenerate torsonzero at the origin. The case where u < 0 has no solutions for �(t) = 0 butthere is still a Darboux stationary point at the origin.59



Figure 45: Graphs showing D0(t) and �(t).5 ConclusionI have enjoyed working on this project and I believe that it has been aworthwile exercise. Along the way we have studied some interesting propetiesof curves.In Chapter 2 we looked at curves of constant width. First of all we lookedat how to construct their equations by using a support function for the tan-gent lines and then taking their envelope. Then we went on to look at variousproperties of these curves. We looked at the circumference and found how,as with the circle, that it is equal to � multiplied by the diameter. Then welooked at the relation between the curvature at points with parallel tangents.We then went on to look at when and where vertices occur on the curve. Afairly large part of this chapter was then devoted to analysing the criteriafor avoiding singular points on the curve for particular support functions. Ofcourse it is easy enough to �nd the condition manually; �nding the turningpoints, plugging them back into the orriginal equation and observing whichis the greatest. However we were searching for a more general formula. Weanalysed the particular case of two sine functions with n1 = 5; n2 = 3 insome depth. For this we managed to �nd a monstrous equation for the nec-essary and suÆcient constant a to avoid the occurence of singular points. SeeChapter 2.6.If there had been more time available it might have been nice to look atequations with higher values of ni. Or maybe we could have looked at three60



functions of sine, although perhaps this would not be so bad as it may �rstseem. Remember that we discussed how sin pt = sin qt = �1 for some t if andonly p � q mod 4. See Theorem 2.8. If we have three of more functions thenthere must be at least two of them such that ni � nj mod 4. What madethe case we looked at possible was that when you di�erentiate to �nd theturning points you get a quadratic in sin2 t. With higher values ni this wouldnot be so simple. Whether or not there is a more general result remains tobe seen.In Chapter 3 we took a look at some envelopes. First we observed howthe envelope of tangent lines not only included the curve itself, but also thetangent line at points of in
exion. We then looked at how there is anothertype envelope, E1, given by the limit of intersection of two two nearby curvesof the family. We went on to prove how E1 is a subset of the our de�nition ofenvelope (discriminant). See Theorem 3.1. We then proved that the tangentline at the in
exion in the envelope for the curve y = x3 is indeed containedin E1. See Theorem 3.2. We then went on to envelopes of circles of curvatureand found that at a vertex we get the circle included as part of the envelope.Then, as with the in
exion in the last example, we tried to see whether thiscircle was the limit of intersection of nearby curves. By looking at someexamples of curves with vertices we found that we only got two points in theE1 envelope which lie on the envelope of circles of curvature.If there had been more time it would have been nice to look at some moreexamples of envelopes of circles of curvature with higher order vertices. Thereare also other types of envelopes that are contained within the discriminantenvelope. There is `the envelope E2 which is a curve tangent to the Ct' .There is also E3, `the boundary of the region �lled by the curves Ct' [1].If there had been more time it would have been interesting to study somespeci�c examples of discriminant envelopes and see how they �t in with thesealternative envelopes.In the next section we considered envelopes created by a process knownas embroidery. We used Thom's idea of versal unfolding to �nd out whichsingular points were isomorphic to cusps. It turned out that it was notpossible to see if the extra tangent lines included at the points where cos(m�1)t = 1 were the limits of intersections of nearby curves. This was becauseit did not �t with the de�nition of envelopes as we had F = @F@x = @F@y =0 when t = 0.The �nal chapter was on duals of both plane and space curves. Westarted with how the dual space is a way or representing tangent lines or61



tangent planes, depending on how many dimensions we were working with.We saw that in two dimensions in
exions in the curve correspond to cuspsin the dual space. With space curves we saw that the dual space is a surfacewith the oscualting plane corresponding to cusp edges and torsion zeros toswallowtail points. We looked at some speci�c curves with torsion zeros andhow the corresponding swallowtails interacted with each other on the dualsurface. If there had been more time it would have been nice to look at somemore examples of space curves, perhaps where three torsion zeros come intocoincidence such as 
u(t) = (t; t2; t6 + ut4) for instance. Though it is a realshame that there was insuÆcient time to look at the dual of surfaces. Withsurfaces the dual sapce of a surface is another surface (whose dual is theoriginal surface). Graph functions given by z = f(x; y) have normals givenby (�fx;�fy; 1). The tangent planes close to the origin can be paramterisedby �fxX � fyY + Z = �xfx � yfy + f(x; y)It was shown byWhitney [5] that singularities on the dual surface correspondsprecisely to parabolic points on the surface. These are given when the Hessiandeterminant ���� fxx fxyfxy fyy ���� = 0It would have been nice to study look at some speci�c examples of surfacewith parabolic points and study their properties in the dual space, thoughthis could easily be a complete project in itself. This fascinating topic isdicussed in depth in Bancho� Ga�ney & McCroy [6].Special thanks to Prof. Peter Giblin without whom this project wouldnot have been possible.References[1] J.W.Bruce and P.J.Giblin Curves and Singularities: A geometrical In-troduction to Singularity Theory Cambridge University Press; 2 edition(26 Nov 1992)[2] Dal��, Salvador, `Gala, Velsquez and the Golden Fleece' (9 May 1979).Reproduced in-part in Robert Descharnes, Dal��, the Work, the Man62
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