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Chapter 1

Introduction

This thesis is concerned with the differential geometry of plane curves and surfaces

in 3-space, with a particular emphasis on the properties of symmetry revealing or

encoding type constructions. Such constructions are used in a wide variety of real

world applications, mostly falling under the umbrella term Computer Vision. These

include: object recognition (e.g. iris and finger print scanning), object reconstruc-

tion (e.g. from partly occluded or poorly resolved photo and video images), medical

imaging (e.g. 3D reconstructions from multiple CT scans) and CGI (skeletonisation

and shading effects).

To form such symmetry constructions it is necessary to identify for a given curve, or

surface, the set of pairs of points which have parallel tangents or which both touch a

bi-tangent circle or sphere. We call these objects pre-sets and they have a rich math-

ematical structure of their own. Once the pre-set is known, and if it is sufficiently

well behaved, we can use it to form symmetry constructions. Many different symme-

try constructions have been studied in the literature and creation of new types and

variations on the existing models is an active research area. They all have differing

applications and/or reveal special features of the host geometry. The work described

here considers two such constructions: (i) a symmetry construction to smooth plane

curves called the Mid-Point Locus and (ii) a family of symmetry constructions to

smooth surfaces known collectively as equidistants of the surface. A chapter sum-

mary now follows:

9



CHAPTER 1. INTRODUCTION 10

In chapter 2 we introduce the Mid-Point Locus to a plane curve. The pre-set here is

the set of pairs of points through which we can draw a bi-tangent circle, whilst the

mid-points of chords joining such pairs forms the Mid-point Locus itself. We describe

conditions under which the Mid-Point Locus fails to be smooth and investigate factors

influencing the angle between the tangents to the Mid-Point Locus and its host curve

at points of contact. We study special branches of the Mid-Point Locus formed as

midpoints of lines connecting pairs of points with parallel tangents on the host curve

(a 2D analogue of the equidistants). The Mid-Point Locus can be used to skeletonise

a closed curve (or indeed any 2D shape) and in chapter 3 we look at various methods

of reconstructing the original curve given its Mid-Point Locus.

The remainder of the thesis is devoted to surface symmetry. We consider the pre-set

Π of pairs of surface points with parallel tangent planes; either on disjoint surfaces or

local to a parabolic point of a single surface piece. From this pre-set we can construct

the equidistants which are affine invariants of the surface. If we have points p, q ∈ Π

then the corresponding equidistant point is given by (1 − λ) p + λ q where λ ∈ [0, 1]

is some fixed proportion along the chord. Since λ and 1 − λ give the same equidis-

tant we find that the equidistant with λ = 1
2

has a special symmetry. We call it the

Mid-Parallel Tangents Surface (MPTS) and show that it has some unique singular

behaviour quite apart from the other equidistants.

In chapter 4 we study the pre-set Π itself for the case of disjoint surface pieces, ex-

ploring the maps linking the parameters at the two points of tangency and some

of their singularities. For Π in the local case we consider the same issues and also

the effect of the parabolic point being an ordinary cusp of Gauss. In this setting

we describe the necessary arrangement of a number of special curves on the surface

through the cusp of Gauss. In chapter 5 we study the MPTS in the disjoint surfaces

case, obtaining exact conditions for cusp edge and swallowtail singularities and their

corresponding versal unfolding criteria. We also consider the case of bi-tangent plane

pairs and the ruled surface formed by chords joining such pairs. Some interesting

results are obtained concerning the relationship of this surface to the MPTS. In the
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local case we consider similar phenomena but now with an emphasis on forming the

equidistants as envelopes of certain generating families. We show how the MPTS has

some interesting singular behaviour local to special parabolic points, designated A∗
2,

which have never been previously studied. In the A3 case we show how the equidistant

has interesting singular behaviour for certain special (and symmetric) values of λ. In

both cases we look at how these singularities transition either side of the special λ

values. Chapter 6 contains detailed proofs that the generating families used to form

equidistants local to A2, A∗
2 and A3 points are valid. The chapter is separated into

sections for equidistants to plane curves and surfaces.

The final chapter contains some experimental results for equidistants local to special

surface points occurring in families of surfaces, e.g. equidistants local to a parabolic

point undergoing a Morse transition (non-versal A3) and also transitions about points

of the surface where the height function on the surface is A4 or D4 singular. The

D4 cases are particularly elusive as Π is not easily parameterised and alternative

approaches are required. We obtain some useful qualitative information using simpler

diffeomorphic settings.



Chapter 2

The Mid-Point Locus

2.1 Introduction

The Mid-Point Locus (MPL) was introduced in the early 1980s by Asada and Brady

[3] as a means of capturing the essential symmetry of a planar shape. The pre-set in

this case is the set of pairs of points through which we can draw a bi-tangent circle.

This is the 2D pre-symmetry set and its structure has been extensively studied so here

we concentrate on the MPL itself (which is formed as the mid-points of chords joining

pairs of points in the pre-symmetry set). The work elaborates on that of Giblin and

Brassett [8] and a summary of this chapter is as follows:

1. We describe conditions under which the MPL fails to be smooth and investigate

its local structure under such circumstances.

2. If γ is a plane curve to which we form the MPL then the angle between the

tangents to γ and the MPL at a point of contact (which is always at a vertex

on γ) varies considerably. We study a number of the factor influencing this

phenomenon.

3. In plotting the MPL it is possible to generate ‘false’ branches, corresponding to

midpoints of lines connecting pairs of points with parallel tangents on γ. We

study such branches and also their interaction with the MPL.

12



CHAPTER 2. THE MID-POINT LOCUS 13

2.2 Some Preliminaries

Here we establish a number of results concerning the local structure of the MPL and

one global result regarding closed curves that we will need later in the chapter. First

some definitions:

Definition 2.2.1 Given a smooth curve γ in R2 the Mid-Point Locus (MPL) is the

locus of mid-points of chords of the contact points of circles bi-tangent to γ together

with all limit points of this set. Thus, if γ1 = γ(s) and γ2 = γ(t) are the two points

of tangency then the corresponding point of the MPL is, m(s, t) = (γ1 + γ2)/2.

Definition 2.2.2 Given a smooth curve γ in R2 the Pre-Symmetry Set (PSS) of γ

is the set of all pairs of points on γ to which we can construct a bi-tangent circle.

Local Structure of the Mid-Point Locus

Locally, let γ1 = γ(s) and γ2 = γ(t) be unit speed parameterisations1 of disjoint arcs

of a smooth curve γ near points of contact with a bi-tangent circle2 (oriented as shown

in figure 2.1) with T1, T2 and N1, N2 their unit tangents and normals. Now consider

h(s, t) = (γ1 − γ2) · (T1 − T2). (2.1)

Clearly γ1 = γ2 and T1 = T2 are both impossible in our setup and we claim:

Proposition 2.2.3 The closure of h−1(0) is exactly the local PSS.

Proof: h = 0 if and only if γ1 − γ2 ⊥ T1 − T2 if and only if γ1 − γ2 ‖ N1 − N2, i.e.

γ1 − γ2 + r(N1 − N2) = 0 for some r ∈ R. Thus, γ1 + rN1 = γ2 + rN2 and the

common vector u = γi + rNi is the centre of a bi-tangent circle to γ of radius r > 0

(see figure 2.1). ¤
1i.e. ‖γ′(s)‖ = ‖γ′(t)‖ = 1 ∀ s, t
2Note: In figure 2.1 the orientation of the circle agrees with that of γ1 and γ2 at the points of

tangency. We call this a coherent bi-tangent circle and locally we can always set things up this way.

However, given a global parameterisation for γ this may not hold, e.g. the larger circle in figure 2.2.
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g 2
N 2

N 1

u

r

r

g 1
Figure 2.1: Local geometry of a bi-tangent circle to γ(t).

We can now use proposition 2.2.3 to find the local structure of the MPL (except

in the case of a bi-tangent line which will be considered separately). Firstly, let

us take a point (s, t) in the PSS of γ and determine the slope of the tangent here.

Let γ1 = γ(s) and γ2 = γ(t) be the points of tangency and furthermore assume

1− rκ2(0) 6= 0, where κ2 is the curvature at γ2 and r is the radius of the bi-tangent

circle. This being the case then the Jacobian of the map h has maximal rank and

by the inverse function theorem we can write t = t(s). Substituting t = t(s) into

h(s, t) = 0 and differentiating with respect to s we obtain

(T1 − T2t
′) · (T1 − T2) + (γ1 − γ2) · (κ1N1 − κ2N2t

′) = 0.

If we now expand, substitute γ1−γ2 = r(N2−N1), and simplify we obtain, 1− rκ1−
t′ (1− rκ2) = 0, from which we state:

Proposition 2.2.4 Given a point (s, t) in the PSS of a smooth curve γ then the slope

of the PSS here is
dt

ds
= −

(
1− rκ1

1− rκ2

)

provided 1 − rκ2 6= 0, where κ2 is the curvature at γ2 and r is the radius of the

bi-tangent circle.

We now ask, when is the MPL (= m(h−1(0)) a smooth curve? If m is a local diffeo-

morphism then h−1(0) and the MPL have the same local structure up to a smooth
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g

C o h e r e n t
C i r c l e

I n c o h e r e n t
C i r c l e

Figure 2.2: Coherent and incoherent bi-tangent circles.

change of coordinates in the plane. Taking (s, t) as a point in the PSS then m is a

local diffeomorphism here provided Dm, the 2×2 Jacobian matrix of the map m, has

maximal rank here, i.e. det(Dm) = det ( T1/2 T2/2 ) 6= 0. This only fails to hold if

T1 = λT2 for some λ ∈ R, but since our parameterisation is unit speed then λ = ±1.

Now T1 = T2 is impossible thus T1 = −T2 and so the points lie at either end of a

diameter on the bi-tangent circle.

When is h−1(0) a smooth curve? Again this will be the case provided

Dh = ( (1− T1 · T2)(1− rκ1) (1− T1 · T2)(1− rκ2) )

has maximal rank, and this only fails to hold if both entries are zero. Now T1 ·T2 = 1

if and only if T1 = T2 which we have already discounted, so Dh has maximal rank,

and h−1(0) is smooth, provided 1 − rκ1 6= 0 or 1 − rκ2 6= 0, i.e. provided the circle

is not bi-osculating. So, given that h−1(0) is smooth, the MPL is smooth provided

the only vector mapped to zero by both Dh and Dm is the zero vector. Suppose

µ = (u, v) is a non-zero vector mapped to zero by both Dh and Dm. If we form the

3× 2 matrix M̃ , which is Dh on top of Dm (ignoring non-zero row multipliers) then

M̃ µ =


 1− rκ1 1− rκ2

T1 T2





 u

v


 = 0.

Thus, u (1− rκ1) + v (1− rκ2) = 0 and uT1 + v T2 = 0. The second equation tells us

that both u and v must be non-zero and furthermore that u = ±v, since T1 and T2 are
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both unit vectors. Now, since we have discounted T1 = T2 we must have u = v 6= 0.

Cancelling the u’s and v’s from both equations gives us the following:

Proposition 2.2.5 Given a smooth plane curve γ with γ1 and γ2 being points of

contact of a bi-tangent circle, then the MPL of γ is smooth here provided T1 6= −T2

or κ1 + κ2 6= 2/r. Remark: For the MPL to be singular would mean imposing four

conditions on the variables s, t and r, so singular points of the MPL are clearly

non-generic phenomena.

We now determine the tangent direction to the MPL at a given point. Provided the

MPL is smooth then we know from the discussion above that the tangent direction

to h−1(0) in the st–plane is taken by the map Dm to the tangent direction to the

MPL. The tangent vectors to h−1(0) lie in the kernel of the map Dh and if (u, v) is

such a vector then, (1−T1 ·T2)(u (1− rκ1)+ v (1− rκ2)) = 0, so that (u, v) is parallel

to ((1− rκ2),−(1− rκ1)). We know that 2Dm = (T1 T2) and hence we state:

Proposition 2.2.6 Given a smooth plane curve γ with bi-tangent circle contacts at

γ1 and γ2 then the tangent direction to the MPL at the point corresponding to this

pair is given by

(T1 T2)


 1− rκ2

−1 + rκ1


 = T1(1− r κ2)− T2(1− r κ1)

where T1, T2 and κ1, κ2 are unit tangents and curvatures at the two points respectively,

and r is the radius of the bi-tangent circle.

Global Considerations

As stated above, if we have a global parameterisation for γ then h = 0 may not find

all possible bi-tangent circles to γ. In fact we demonstrated that h = 0 will only pick

out coherently oriented circles. To find all possible bi-tangent circles we would need

to also consider

g(s, t) = (γ1 − γ2) · (T1 + T2). (2.2)

Now g = 0 has the trivial solutions s = t and any pair of points for which T1 = −T2

but a similar argument to that given above shows that the non-trivial solutions pick
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Figure 2.3: Parallel tangents and common normals on a smooth closed curve γ.

out all incoherent bi-tangent circles to γ. Thus, if G is the closure of g−1(0) and H

is the closure of h−1(0) (excluding all trivial solutions) then we state:

Proposition 2.2.7 Given a smooth curve γ in R2 then PSSγ = G ∪H.

Now we prove a useful global result concerning smooth closed curves. Let γ be a

smooth closed curve and γi and γj be any two distinct points on γ. If we fix γi then

it is easy to show that we can find a point γj such that the tangents at γi and γj are

parallel, e.g. γ3 and γ4 in figure 2.3. What isn’t immediately obvious is that we can

find any pair γi, γj on γ with parallel tangents and a common normal3, e.g. γ1 and

γ2 in figure 2.3. However, we claim that this is indeed the case by:

Proposition 2.2.8 For any smooth closed curve γ there exists at least one pair of

distinct points on γ with a common normal.

Proof: Consider the lengths of all possible chords to γ. This is clearly a closed interval

of real numbers and so the absolute maximum must be achieved. We claim that the

chord, pq say, of maximal length is normal to γ at both ends since if we fix one end,

p, and consider the distance-squared function4 from p to γ, which by choice of pq has

a maximum at q, then the chord is normal at q. If we now repeat the argument with

p and q reversed the result follows. ¤
3By which we mean that the normal line through γ1 is the same as that through γ2 (equivalent

to γ1 and γ2 lying at either end of a diameter of a bi-tangent circle to γ).
4i.e. F = ‖p− γ‖2 = (p− γ) · (p− γ).
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2.3 Singular Structure of the Mid-Point Locus

The MPL is generically smooth but, by proposition 2.2.5, if the contact points lie at

either end of a diameter on a bi-tangent circle and, in addition, the curvatures κ1 and

κ2 at the two points satisfy κ1 +κ2 = 2/r, then the MPL fails to be smooth. Our aim

in this section is to describe, by means of an example, the singular structure of the

MPL under such circumstances and also to determine conditions for the singularity

to be an ordinary cusp.

A Closed Curve Example

We start with a smooth simple closed curve γ(t) for which the tangents at t = 0 and

t = π, corresponding to the origin and another point on the y–axis, are both parallel

to the x–axis. This is the same as saying that the two points share a common normal

and there must always be such a pair of points by proposition 2.2.8. If we write

γ(t) = (X(t), Y (t)) then we can express the above requirements as, X(0) = Y (0) =

0, Y ′(0) = Y ′(π) = 0 and X(π) = 0. To satisfy these conditions with a closed curve

we can choose for example X and Y to have the form

X(t) = a sin t + b (1− cos 2t) , Y (t) = c (1− cos t) + d (1− cos 2t).

For the MPL to be singular we also need to satisfy the condition κ(0) + κ(π) = 2/r.

Using the standard Cartesian formula for curvature

κ =
Y ′′X ′ −X ′′Y ′

((X ′)2 + (Y ′)2)
3
2

and taking positive square roots we obtain the following for κ(0) and κ(π)

κ(0) =
c + 4d

a2
and κ(π) =

c− 4d

a2
.

Now, r = Y (π)/2 = c, so the condition on curvatures is satisfied by

2c

a2
=

2

c
⇒ c = ±a.

Writing X and Y as Taylor series about t = 0 we obtain

x = X(t) = at + 2bt2 − a

6
t3 − 2b

3
t4 +

a

120
t5 +

4b

45
t6 + ... ,
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Figure 2.4: γ(t) = (2 sin t + 1
2
− 1

2
cos 2t, 1− 2 cos t + cos 2t).

y = Y (t) =
c + 4d

2
t2 − 1 + 16d

24
t4 +

1 + 64d

720
t6 + ...

If we now solve for t as a function of x from the equation x = X(t) we obtain

t =
1

a
x− 2b

a3
x2 +

48 b2 + a2

6a5
x3 − b (40 b2 + a2)

a7
x4 + ...

and substituting this t into the expression for Y (t) gives

Y (t(x)) =
c + 4d

2a2
x2 − (2c + 8d) b

a4
x3 +

80 cb2 + ca2 + 320db2

8a6
x4 + ... = f(x)

where f(x) is the graph of γ(t) close to t = 0 (the origin in our setup). We can now

set t = s + π in our original functions for X(t) and Y (t) so that s = 0 corresponds to

t = π, repeat the above procedure and obtain a function g(x) which is the graph of

γ(t) close to t = π. The expression for g(x) turns out to be

g(x) = 2c− c− 4d

2a2
x2 +

(2c− 8d) b

a4
x3 − 80cb2 + ca2 − 320db2

8a6
x4 + ...

If we now write f = f(t) and g = g(s) and solve equation (2.1) for t as a function of

s, i.e.

h(s, t) = ((t, f(t))− (s, g(s))) · (Tf (t)− Tg(s)) = 0

(where Tf (t) and Tg(s) are the unit tangents to f and g respectively) then we can

obtain the MPL as

m : (s, t(s)) 7→
(

1

2
(s + t(s)),

1

2
(f(t(s)) + g(s))

)
.



CHAPTER 2. THE MID-POINT LOCUS 20

We are now in a position to derive the general condition for our singularity to be

an ordinary cusp since if Cx(i) and Cy(i) denote the coefficients of the ith term in

the series expansions of the x and y coordinates of the MPL then, according to

Porteous [20] (p.12), our condition is

det


 Cx(2) Cy(2)

Cx(3) Cy(3)


 6= 0.

Substituting c = ±a from our earlier requirement on curvatures we obtain the condi-

tion ±8(d2 − b2)/a5 6= 0. So summarising the above we have:

Proposition 2.3.1 The smooth closed curve

γ(t) = (a sin t + b (1− cos 2t), c (1− cos t) + d (1− cos 2t))

has singular MPL if a = ±c and the singular points will be ordinary cusps provided

b 6= ±d.

We will now choose particular values for a, b, c and d in order to see more clearly

what is going on, say a = 2, b = 1
2
, c = 2 (= a) and d = −1. Thus

X(t) = 2 sin t +
1

2
− 1

2
cos 2t, Y (t) = 1− 2 cos t + cos 2t.

This is the lung shaped curve in figure 2.4. Our expressions f and g become

f(t) = −1

4
t2 +

1

8
t3 − 1

16
t4 + ... , g(s) = 4− 3

4
s2 − 3

8
s3 − 1

4
s4 + ...

We can now calculate the PSS as the zeros of equation (2.1). This is a function in s

and t and if we solve h(s, t) = 0 in t as a function of s we obtain

t = s +
3

2
s2 +

3

4
s3 − 2 s4 − 85

16
s5 + ...

All that remains is to map these points to the MPL using the map m to obtain

m(s) =

(
3

4
s2 +

3

8
s3 − s4 − 85

32
s5 + ... , 2− 1

2
s2 − 1

2
s3 − 11

32
s4 +

19

32
s5 + ...

)

which clearly has an ordinary cusp when s = 0, corresponding to the point (0, 2),

since m′(0) = (0, 0), m′′(0) = (3/2,−1) and m′′′(0) = (9/4,−3). So m′′(0) and

m′′′(0) are linearly independent. Figure 2.5 shows the entire MPL for γ with a cusp
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R e d  b r a n c h  n o t  p a r t  o f  M P L  -  
d u e  t o  p a i r s  o f  p o i n t s  w i t h  
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P r e - s y m m e t r y  s e t

( 0 , 2 )

( 1 , 0 )

Figure 2.5: The curve γ with MPL overlaid. The arrowed red coloured branch (which

terminates at inflexions on γ) is not part of the MPL.

clearly visible at the point (0, 2). We also see a cusp at the point (1, 0) which we

might expect since X ′(π/2) = X ′(3π/2) = 0 and κ(π/2) = 1, κ(3π/2) = 0 so that

κ(π/2) + κ(3π/2) = 1 = 2/r since r = 2 here, and so the parallel tangent and

curvature condition is satisfied here also. Figure 2.5 also shows a false branch which

is the locus of midpoints of lines joining points on γ with parallel tangents but not

necessarily a common normal. Clearly these pairs of points satisfy equation (2.2)

but say something entirely different about the symmetry of γ. We will study these

branches in more detail later in the chapter. Figures 2.6 and 2.7 show the result of

perturbing γ by altering the value of c. We know by proposition 2.3.1 that for a non-

smooth MPL we must have c = ±a. Figure 2.6 shows that making c slightly smaller

than a (c = 1.8) results in blunting of the points of the cusps, whilst figure 2.7 shows

that making c slightly larger than a (c = 2.2) turns the cusps into tight loops. Note:

Figures 2.4 to 2.7 where produced using the Linux based Liverpool Surface Modeling

Package (LSMP) written by Richard J. Morris [16].
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Figure 2.6: Effect of reducing c to 1.8. Notice the blunting of the cusps on the MPL.

Figure 2.7: Effect of increasing c to 2.2. The cusps on the MPL are now tight loops.
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General Common Normal Case

We now consider a general common normal situation where the two points of tangency

need not even belong to the same curve. We choose axes so that one point is at the

origin and the other lies at the point (0, 2r) on the positive y–axis with tangents at

both points being parallel to the x–axis. The curve piece passing through the origin

we will call γ1(s) = (s, f2s
2 + f3s

3 + ...) and that passing through (0, 2r) we will call

γ2(t) = (−t, 2r + g2t
2 − g3t

3 + ...). Note: we parameterise γ2 using (−t) in order to

render our bi-tangent circle coherent. The setup is thus

x

y
g 2

0

2 r
g 1

Let, f(s) = f2s
2+f3s

3+f4s
4+f5s

5+... and g(t) = 2r+g2t
2−g3t

3+g4t
4−g5t

5+... then

the curvatures κf (0) and κg(0) at the points of tangency are 2f2 and−2g2 respectively,

so the condition for a non-smooth MPL is, κf (0) + κg(0) = 2/r ⇒ g2 = f2 − 1/r.

We now solve h(s, t) = 0 for t as a function of s to obtain

t = s +
3r(f3 + g3)

2f2r − 1
s2 + ...

provided f2 6= 1/(2r). We observe that the slope of the tangent to the PSS at s = t = 0

is +1. This is what we expect since by proposition 2.2.4 the unique condition for this

to occur is indeed κf +κg = 2/r. We also note that the denominator in the coefficient

of the s2 term is non-zero provided the circle is not osculating at γ1. We now apply

the MPL map5

m : (s, t(s)) 7→
(

1

2
(s− t(s)),

1

2
(f(s) + g(t(s)))

)

to obtain

m(s) =

(
3r(f3 + g3)

2(2f2r − 1)
s2 + ... , r +

2f2r − 1

2r
s2 + ...

)
.

5Here we use s− t(s) in the x-component as (−t) is our parameter on γ2.
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Clearly m′(0) = 0 and the condition for the singular point to be an ordinary cusp is

(20f2) r − (52f 2
2 ) r2 + (64f2

3 − 4g4 + 4f4) r3+

(−32f2
4 + 27f3g3 + 21f3

2 + 16f2g4 − 3g3
2 − 16f2f4) r4+

(24f2g3
2 − 16g4f2

2 − 24f3
2f2 + 16f4f2

2) r5 6= 3.

2.4 Slope of the Mid-Point Locus at a Vertex

Looking at figure 2.5 we observe that the MPL terminates on γ at a number of points.

If we imagine a bi-tangent circle in the lower right interior of γ we can see how, as

the circles get smaller and approach the lower right extremity of γ, the points of

tangency (2-point contact) get closer together until in the limit they coincide in a

place of 4-point contact with γ, i.e. a vertex. So the MPL terminates on γ at points

of maximum or minimum curvature. However, as figure 2.5 shows, the angle at which

the MPL meets the curve varies considerably and here we consider this phenomenon.

We simplify the calculations by choosing axes so that γ passes through the origin at

the vertex and also such that the x–axis is tangent to γ at this point. Since we are

only interested in local effects we will express γ as a power series about the origin,

say γ(s) = (s, f(s)) where f(s) = a2s
2 + a3s

3 + a4s
4 + a5s

5 + ... Note: we have no

constant or linear terms as a result of our choice of axes. Also, since we know that

the origin is a vertex on γ we can also eliminate the cubic term since

κ =
f ′′

(1 + (f ′)2)
3
2

⇒ κ′ =
−3f ′′(2f ′f ′′)

2(1 + (f ′)2)
5
2

+
f ′′′

(1 + (f ′)2)
3
2

.

Now f ′(0) = 0 so κ′(0) = 0 ⇔ f ′′′(0) = 6a3 = 0 ⇔ a3 = 0. Thus we can write

f(s) = a2s
2 + a4s

4 + a5s
5 + ... and use g(t) = a2t

2 + a4t
4 + a5t

5 + ... to describe the

other point of tangency. Now we can calculate the PSS as the zeros of equation (2.1).

This is a function in s and t and writing it as a power series we obtain

h(s, t) = 2a2 (a2
3 − a4)s

5 − 6a2 (a2
3 − a4)ts

4 + 4a2 (a2
3 − a4)t

2s3

+4a2 (a2
3 − a4)t

3s2 − 6t4s + 2a2 (a2
3 − a4)t

5 + ...
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We now solve h(s, t) = 0 in t, eliminating the trivial solution t = s by writing

t = −s + t2s
2 + t3s

3 + ..., equating coefficients of h(s, t(s)) to zero and solving for the

ti to obtain

t = −s +
a5

a2
3 − a4

s2 − a5
2

a2
3 − a4

s3 − 1

2(a2
3 − a4)

(2a5a
8
2 − 3a7a

6
2 + 8a4a5a

5
2 − 6a3

2a5a6

+6a3
2a4a7 − 10a2

4a5a
2
2 + 6a5a6a4 − 5a3

5 − 3a7a
2
4)s

4 + ...

We can now determine the MPL using

m : (s, t(s)) 7→
(

1

2
(s + t(s)),

1

2
(f(t(s)) + g(s))

)

which gives us the following

m(s) =

(
a5

2(a2
3 − a4)

s2 − a5
2

2(a2
3 − a4)2

s3 + ... , a2s
2 − a2a5

(a2
3 − a4)

s3 + ...

)
.

Hence

dm

ds
=

(
a5

(a2
3 − a4)

s− 3a5
2

2(a2
3 − a4)2

s2 + ... , 2a2s− 3a2a5

(a2
3 − a4)

s2 + ...

)

and thus we state:

Proposition 2.4.1 Given a smooth curve γ(s) = (s , a2s
2 + a4s

4 + a5s
5 + ...) with

an ordinary vertex at the origin and the x–axis tangent to the curve here, then the

limiting tangent direction of the MPL as it meets γ at the vertex is

lim
s→0

{TMPL} =
(
a5, 2a2(a2

3 − a4)
)
.

Immediately we can make various observations, which are borne out by figure 2.5:

(i) If a5 = 0 so that γ is highly symmetric about the y–axis, then the MPL ap-

proaches γ along the normal to γ at the point of contact. We see examples like

this in the uppermost and rightmost vertices of figure 2.5.

(ii) If a2 is small compared with a5, so that γ has small curvature, then the MPL

approaches γ almost along the tangent to γ at the point of contact. We see an

example like this in the vertex on the left side of figure 2.5.
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(iii) If a2 is large compared with a5, so that γ has large curvature and is highly

symmetric about the y–axis, then the MPL approaches γ almost along the

normal to γ at the point of contact. We see an example like this in the vertex

in the bottom left of figure 2.5.

(iv) Finally, if we look at the expressions for h, t and m above we see the term

a2
3 − a4 appearing over and over again. If we look at the distance squared

function from a point on γ to the point u = (0, 1/(2a2)), the centre of curvature

to γ at the origin, we have

F (t) = ‖γ(t)− u‖2 = t2 +

(
− 1

2a2

+ a2t
2 + a4t

4 + ...

)2

=
1

4a2
2
+

a2
3 − a4

a2

t4 + ...

from which we see the significance of the a2
3−a4 term. If this is zero we have a

higher vertex at the origin and, if a5 6= 0, then the MPL approaches γ directly

along the tangent to γ at the point of contact.

2.5 Parallel Tangents and the Mid-Point Locus

If we look at the bottom left part of figure 2.5 we observe what appears to be two

branches of the MPL outside of γ in very close contact with one another. In fact of

these branches the one which crosses γ then terminates at a vertex on γ is a true

part of the MPL. The other branch, which meets γ at inflexions (the red branch),

is not actually part of the MPL but is generated as the locus of midpoints of lines

connecting points with parallel tangents but not necessarily a common normal on γ.

This branch is actually part of a construction called the Mid-Parallel Tangents Locus

(MPTL) and it says something quite different about the symmetry of γ. We will

investigate its properties in more detail later in the chapter.

The interesting part as far as the MPL is concerned is that the two branches seem

to display a very high degree of contact with one another, looking almost coincident

over a large part of their respective lengths. We will investigate if there is a generic

effect or of in fact it is just a quirk of our chosen example. Again we will simplify

the geometry by choosing the x–axis to be bi-tangent to γ with one of the points of
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Figure 2.8: Geometrical setup for bi-tangent line case.

tangency at the origin and the other at the point (1, 0). Hence we are interested in

the degree of contact of the two branches at (1
2
, 0). We now let

γ1(s) = (s, as2 + bs3 + cs4 + ds5 + ...) , γ2(t) = (t + 1, a1t
2 + b1t

3 + c1t
4 + d1t

5 + ...)

represent pieces of γ in neighbourhoods of the two points of tangency with the line.

Hence the geometrical setup is as shown in figure 2.8. We now calculate the PSS as

the zeros of equation (2.1), i.e.

h(s, t) = ((s, f(s))− (t + 1, g(t))) · (Tf (s)− Tg(t))

where f(s) = as2 + bs3 + cs4 + ds5 + ... , g(t) = a1t
2 + b1t

3 + c1t
4 + d1t

5 + ... and

Tf (s) and Tg(t) represent the respective unit tangents. This is a function in s and t

and writing it as a power series we obtain

h(s, t) = (2a2) s2− (2a1
2) t2 +(6ab) s3 +(2a2−2aa1) ts2 +(2a1

2−2aa1) t2s− (6a1b1) t3

+(8ac + 9b2/2− 6a4 − ab) s4 + (6ab− 2ba1) ts3 + (−3ba1 − 3ab1) t2s2

+(6a1b1 − 2ab1) t3s + (−8a1c1 − 9b2
1/2 + 6a1

4 − a1b1) t4 + ...

Immediately we see that h(s, t) = 0 has two solution sets, one for each branch. Solving

for t as a function of s we obtain

tf =
a

a1

s− 3(b1a
2 − ba1

2)

2a1
3

s2 − 9b1aa1
2b− 4ca1

4 − 9a3b1
2 + 4a3c1a1

2a1
5 s3 + ...,
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tr = − a

a1

s +
2a2a1 − 3b1a

2 − 3ba1
2 − 2aa1

2

2a1
3 s2 − 1

2a1
5
(6a2b1a1

2 − 4a2a1
3 + 2aa1

4

−6aba1
3 − 10a3b1a1 + 9b1aa1

2b + 2ba1
4 + 4ca1

4 + 2a3a1
2 + 9a3b1

2 − 4a3c1a1)s
3 + ...

as the domains of the false (f = false) and real (r = real) branches. We can now map

these to the distinct branches using

m : (s, t(s)) 7→
(

1

2
(s + t(s) + 1),

1

2
(f(t(s)) + g(s))

)
.

If we express the results as graphs of functions, mf and mr say, about the point (1
2
, 0)

we have

mf (x) =
2aa1

a + a1

x2 +
4(a3b1 + ba1

3)

(a + a1)
3 x3 + ... ,

mr(x) =
2a (a1 + a) a1

(a− a1)
2 x2+

4(4a2a1
3 + 5a3b1a1 + 5aba1

3 + a4b1 + ba1
4 − 4a3a1

2)

(a− a1)
4 x3+...

So the two branches are clearly tangential (both have no constant or linear term)

but is there higher degree contact? Equating the coefficients of the x2 terms leads

to either a = 0 or a1 = 0 and setting a (or a1) to zero in mf and mr leads to the

same coefficient for x3 in both cases, namely 4b (or 4b1), so the two branches have

fourth (or higher) order contact. Of course, in general neither a nor a1 are zero and

the branches will merely be tangential.

Remark: Returning to the example of figure 2.5, if we move γ by 0.5 in the positive y

direction then the x–axis will be tangential to γ when t = ±π/3 and also at the point

of contact of the two branches. If we now express the two pieces of γ in neighbourhoods

of the points of tangency as power series then we can calculate the coefficients a

and a1 analogous to our setup above. These turn out to be a = 6/(
√

3 + 2)2 and

a1 = 6/(
√

3− 2)2. If we now calculate the coefficients of x2 in the expansions of mf

and mr above we obtain

2aa1

a + a1

=
6

7
,

2a(a + a1)a1

(a− a1)
2 =

7

8

or 0.857 compared to 0.875. So although the two branches are in fact only tangential

they are extremely close, much as y = x2 and y = (1 + 10−10)x2 are only tangential

at the origin but appear indistinguishable to the eye.
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Singular Mid-Point Locus in Bi-Tangent Line Case

A bi-tangent line to γ can be regarded as a limiting case of a bi-tangent circle of infinite

radius. However the condition for the MPL to be singular in this case is different and

we now determine it. Following the argument set out after proposition 2.2.4 we know

that the MPL fails to be smooth if we can find a non-zero vector µ = (u, v) such

that M̃µ = 0 where M̃ is the 3 × 2 matrix which is Dh on top of Dm (ignoring

any non-zero row multipliers). For this case we will need an alternative form for the

function h(s, t) of equation (2.1) which is equivalent to the previous form but avoids

the term 1− T1 · T2 appearing in Dh (since this term is zero at the point of interest).

Hence we use

h(s, t) = (γ1 − γ2) · (N1 + N2)

whence

Dh = ( T1 ·N2 − κ1λ(1 + T1 · T2) , −T2 ·N1 − κ2λ(1 + T1 · T2) )

where λ is the analogue of r in the bi-tangent circle case. At the point of bi-tangency

with the line we have T1 · N2 = T2 · N1 = 0 and so Dh = −2λ ( κ1, κ2 ). As before

Dm = ( T1, T2 )/2 and so we require

M̃ µ =


 κ1 κ2

T1 T2





 u

v


 = 0.

but T1 = T2 which implies u = −v and we state:

Proposition 2.5.1 Given a smooth curve γ with a line bi-tangent at γ1 and γ2 then

the MPL is singular at the mid-point of the line γ1 and γ2 when κ1 = κ2.

Referring to the geometry of figure 2.8 again with now κf = κg at the points of

tangency (i.e. f2 = g2 in the respective Taylor expansions) then the parameterisation

of the MPL is

m(s) =

(
1

2
− 3(f3 + g3)

4f2

s2 + ... , f2s
2 + ...

)

which is clearly singular at (1
2
, 0). The condition for the singularity to be an ordinary

cusp is given by

f2 6= 3(f3
2 − g3

2)

2(f3 + g4 + g3 − f4)
.
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g

Figure 2.9: Construction of the MPTL.

2.6 The Mid-Parallel Tangents Locus

Although our principal area of interest in this chapter is the MPL it is appropriate to

conclude this chapter by looking at the MPTL in a bit more detail and to construct

the full locus for our example of figure 2.5. First a definition:

Definition 2.6.1 Given a smooth closed curve γ, the MPTL is formed as the mid-

points of lines joining any two points of γ with parallel tangents.

It is clear that every point of γ will contribute to the MPTL and that some points

will contribute more than once. If we pick a point on γ, draw the tangent line, and

then drag an imaginary ruler parallel to this line across γ then we are guaranteed

at least one other point on γ where the ruler touches. Figure 2.9 shows an example

where six points each contribute five points to the MPTL, i.e. the midpoints of the

dashed lines connecting each point with the other five. To determine the domain

of the MPTL we need an expression whose zeros will pick out points with parallel

tangents on γ. If γ1 = γ(s) and γ2 = γ(t) are any two points on γ with T1, T2 and

N1, N2 their respective unit tangents and normals then consider

f(s, t) = T1 ·N2.
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We have some trivial solutions (since f = 0 when γ1 = γ2) but all other solution pairs

(s, t) designate distinct points on γ with parallel tangents. To find conditions for

the MPTL to be singular we again use the argument set out after proposition 2.2.4,

i.e. given f−1(0) is smooth, then the MPTL is smooth provided there is no non-zero

vector µ = (u, v) such that M̃µ = 0 where M̃ is the 3× 2 matrix which is Df on top

of Dm (ignoring non-zero row multipliers). Now

Df = ( κ1N1 ·N2 , −κ2T1 · T2 )

so Df = (±κ1,∓κ2 ) when f = 0 (as T1 = ±T2) and Dm = ( T1 T2 )/2 so

M̃ µ =


 ±κ1 ∓κ2

T1 T2





 u

v


 = 0.

Since T1 = ±T2 when f = 0 then u = ±v and we state:

Proposition 2.6.2 Given a smooth curve γ with parallel tangents at γ1 and γ2 then

the MPTL is singular at the mid-point of the line joining these points if: (i) κ1 = −κ2

when T1 = T2, or (ii) κ1 = κ2 when T1 = −T2.

We can use the above information to determine the slope of the tangent to the MPTL

at a given point since the tangent to m(f−1(0)) is the image under Dm of a non-zero

kernel vector of Df . If (u, v) is such a vector then we know from the above that

v = ±(κ1/κ2) u. So (u, v) is parallel to (κ1,±κ2) and since we have parallel tangents

Dm = (T1 , ±T1)/2. Hence

Dm


 u

v


 = λ (T1 , ±T1)


 κ2

±κ1


 = λ (κ2 ± κ1) T1 for some λ ∈ R.

So the tangent to the MPTL is always parallel to T1 (or T2) and since any smooth

curve is the envelope of its tangent lines we have the following:

Proposition 2.6.3 On the MPTL of a smooth curve γ the tangent at any point is

parallel to the pair of parallel tangents on γ which generated that point. Moreover the

MPTL is the envelope of mid-lines parallel to pairs of parallel tangents on γ.
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Figure 2.10: The full MPTL of the example of figure 2.5. The smaller figure is the

graph of f−1(0), the preset of the MPTL.

Figure 2.10 shows the full MPTL for the example of figure 2.5. We see that it consists

of two branches: the one outside of γ that we have already discussed, and a second

closed branch, like a distorted triangle, which displays three singular points that look

like ordinary cusps. Since parallelism is an affine invariant property we can use a

simplified model to determine an ordinary cusp condition for the MPTL.

We will place one parallel tangent at the origin pointing along the positive x–axis and

perform a shear transformation to place the other parallel tangent on the y–axis at

(0, 2k) and pointing in the direction of the positive or negative x–axis (depending as

T1 = ±T2). Hence we are left with a model very similar to that used in section 2.3

but with a different domain for our mid-point map, namely f−1(0), and a different

singularity condition, namely that given by proposition 2.6.2.
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The curve piece passing through the origin we will call γ1(s) = (s, f2s
2 + f3s

3 + ...)

and that passing through (0, 2k) we will call γ2(t) = (εt, 2k + g2t
2 + εg3t

3 + ...). So if

T1 = T2 then ε = 1 whilst if T1 = −T2 then ε = −1.

Let, f(s) = f2s
2 +f3s

3 +f4s
4 +f5s

5 + ... and g(t) = 2k+g2t
2 +εg3t

3 +g4t
4 +εg5t

5 + ...

then the curvatures κf and κg at the points of tangency are 2f2 and 2εg2 respectively,

so the condition for a non-smooth MPTL is, g2 = −f2 in either case. We now solve

f(s, t) = 0 for t as a function of s to obtain

t = −ε s− 3ε (−ε2g3 + f3)

2f2

s2 + ...

We observe that the slope of the tangent to f−1(0) at s = t = 0 is ∓1 depending as

T1 = ±T2. We now apply the mid-point map to obtain the following parameterisation

for the MPTL

MPTL(s) =

(
3(g3 − f3)

4f2

s2 + ... , k + (g3 − f3) s3 + ...

)
.

Clearly MPTL′(0) = 0 and the condition for the singular point at (0, k) to be an

ordinary cusp is given by, 9(f3 − g3)
2 6= 0. So provided f3 6= g3 then the singular

point will be an ordinary cusp.
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2.7 Chapter Summary

In this chapter we have investigated the local structure of a symmetry construction

to plane curves called the Mid-Point Locus (MPL). It is formed as the midpoints of

chords joining points on a smooth curve γ to which we can fit a bi-tangent circle. It

has some appealing features that are not shared by more well documented symmetry

constructions, e.g. it is generically a smooth curve and has end points actually at

vertices on γ (rather than some distance away as with the symmetry set and medial

axis). In proposition 2.2.5 we determined the (non-generic) condition for the MPL to

be singular whilst in proposition 2.4.1 we found an expression for the limiting tangent

direction to the MPL as it meets a vertex on γ.

We also considered the limiting case of bi-tangent lines to γ (which can be regarded as

bi-tangent circles of infinite radius) and in proposition 2.5.1 determined the condition

for the MPL to be singular in this case. Bi-tangent lines to γ also contribute points

to another symmetry construction called the Mid-Parallel Tangents Locus (MPTL)

which is formed as the mid-points of chords joining points on γ with parallel tangent

lines. We investigated the relationship between the MPL and MPTL at shared points

and showed that, in general, they are merely tangential. We also considered the

MPTL in its own right, showing in proposition 2.6.3 that the tangent to the MPTL

at any point is parallel to the pair of tangent lines on γ which generated that point.

Also in proposition 2.6.2 we gave the condition for the MPTL to be singular.



Chapter 3

Reconstruction from the Mid-Point

Locus

3.1 Introduction

In this chapter we consider the following important question: If we are given a pa-

rameterisation for the MPL, say m(t) = (u(t), v(t)), of a smooth curve γ(t) what

additional information do we need in order to reconstruct γ? We will look at two

possible options: (i) The radius function r (i.e. for each point on m we know the

radius of the bi-tangent circle which gave rise to that point) and (ii) The chord angle

function φ (i.e. for each point on m we know the angle between the tangent to m and

the chord of which m is the mid-point). First a definition:

Definition 3.1.1 Given a smooth curve γ in R2 the Symmetry Set (SS) is the locus

of centres of circles bi-tangent to γ. Thus, if γ1 = γ(s) and γ2 = γ(t) are two points

of tangency with a circle then the corresponding point of the SS is

c(s, t) = γ1 + r N1 (= γ2 + r N2)

where r is the radius of the bi-tangent circle.

If we are given the SS as a parameterised curve, say c(s) = (x(s), y(s)) and the

radius function r(s) (where s is arclength on c so that c is unit speed) then we can

35
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g

c

Figure 3.1: A smooth curve γ(t) as the envelope of bi-tangent circles centred on a

smooth curve c(t) (shown dashed).

reconstruct γ as the envelope of the circles1 (e.g. figure 3.1). If ω is a point on the

circumference of a circle of radius r centred on c, then the family of such circles can

be written as

F (s, ω) = (c− ω) · (c− ω)− r2.

Hence we have
∂F

∂s
= 2(c− ω) · T − 2r

dr

ds

and

DF = {ω ∈ R2 : ∃s ∈ R with F = ∂F/∂s = 0 }
is the envelope of the circles. If T and N are the unit tangent and normal to c

then they are linearly independent and so can be used as a basis for R2. So writing

c − ω = λT + µN (where λ, µ ∈ R) and substituting into ∂F/∂s = 0 we obtain,

2λ − 2r (dr/ds) = 0 so that λ = r (dr/ds). Substituting into F = 0 we obtain,

λ2 + µ2 = r2 so that µ = r
√

1− (dr/ds)2 and so for each circle the two points of

tangency are at

γi = c−
(

r
dr

ds

)
T ±


r

√
1−

(
dr

ds

)2

 N (i = 1, 2). (3.1)

1Provided |dr/ds| ≤ 1. In a physical sense, if the circles are growing (or shrinking) in size at a

faster rate than we are moving along c(t) then a real envelope cannot form. We can express the

requirement as, r′(t)2 ≤ x′(t)2 + y′(t)2. See ‘Curves and Singularities’ [6] Ch.5 for more detail on

reconstruction from the SS.
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c ( s )

m ( t )
N
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g 1

r T m

g 2

Figure 3.2: Geometrical relation between the symmetry set and the MPL.

3.2 Reconstructing γ from m and r

Unfortunately we cannot directly reconstruct γ from m and r using the above method

since although we know the radius of the circle generating each point of m we do not

have sufficient information to place its centre. We can however use equation (3.1) to

derive a relationship between c and m. If we can reconstruct c from m and r then we

will be able to reconstruct γ from c and r using the envelope method. As figure 3.2

shows, m is the mid-point of the line joining the two points of tangency, γ1 and γ2,

and the line perpendicular to this through m is tangent to c. Using equation (3.1)

we have

m = c−
(

r
dr

ds

)
T (3.2)

where s is arclength on c. If we now write everything in terms of some general

parameter t (i.e. not necessarily arclength) then

m(t) = c(t)− r(t)

(
dr

dt

dt

ds

)(
dc

dt

dt

ds

)
= c(t)− r(t)r′(t)

c′(t)
s′(t)2

where ′ ≡ d/dt. Also since c(s) is unit speed we have

(
dc

dt

dt

ds

)
·
(

dc

dt

dt

ds

)
= 1 ⇒ c′(t) · c′(t) = s′(t)2.
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If we now let R(t) = r(t) · r′(t) then

m(t) = c(t)−
(

R(t)

c′(t) · c′(t)
)

c′(t).

This represents a pair of simultaneous ODE’s for which m and R are known and we

seek to find c. If we write this as (c − m) c′ · c′ = R c′ then we can eliminate the

non-linear terms by dotting both sides in turn with the linearly independent vectors,

‖ c′ ‖ T = (x′, y′) and ‖ c′ ‖ N = (−y′, x′), to give the following pair of simultaneous

ODE’s

(x− u, y − v) · (x′, y′) = R and (x− u, y − v) · (−y′, x′) = 0

where m(t) = (u(t), v(t)). If we write these in matrix form we obtain


 y − v −x + u

x− u y − v





 x′

y′


 =


 0

R




and inverting the 2× 2 matrix we obtain


 x′

y′


 =

1

(x− u)2 + (y − v)2


 y − v x− u

−x + u y − v





 0

R




which holds provided (x − u)2 + (y − v)2 6= 0, i.e. provided c 6= m. If we now let

X = x− u and Y = y − v then


 X ′ + u′

Y ′ + v′


 =

1

X2 + Y 2


 Y X

−X Y





 0

R




whence

X ′ =
RX

X2 + Y 2
− u′ and Y ′ =

RY

X2 + Y 2
− v′.

With the equations in this form a method of numerical solution becomes apparent

since if we are given a boundary condition, say X(0) = a, Y (0) = b, then we can

calculate the slope to the solution curve at (0, 0) as

(X ′(0), Y ′(0)) =

(
aR(0)

a2 + b2
− u′(0) ,

b R(0)

a2 + b2
− v′(0)

)
.

If we now increment t by an infinitesimal amount δt, move to a new position

(X(0) + δtX ′(0), Y (0) + δtY ′(0))
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Figure 3.3: A solution curve and bi-tangent circle envelope in the m and r case with

m(t) = (t, 0) and r(t) = 0.1 + 2t + 6t2.

and repeat the process we can form a unique solution curve. Note: existence and

uniqueness are assured, provided we keep away from points where X = Y = 0 (i.e.

crossing points of m and c), as the Lipschitz condition for a system of linear first

order equations is satisfied (see Ince [12] section 3.3). Importantly, there is nothing

to restrict us on our choice of boundary condition so given m and r we obtain a

two parameter family of corresponding symmetry sets, although not all of these will

enable us to form an envelope and thus reconstruct γ. We now summarise the above

findings in:

Proposition 3.2.1 Given the MPL, m, of a smooth curve γ and a smooth function r

describing the radius of the circle generating each point of m, then we can reconstruct

the unique symmetry set c of γ provided we know at least one point on c. Moreover,

whenever | dr/ds |≤ 1 on c, where s is arclength on c, then γ can be locally recon-

structed as the envelope of bi-tangent circles centred on c. Without a given point on

c we are left with a 2-parameter family of symmetry sets corresponding to m not all

of which will yield a real envelope.
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Figure 3.4: Detail of envelope formation for m and r case with m(t) = (t, 0) and

r(t) = 0.1 + 2t + 6t2.

Example 3.2.2 We will choose the MPL to be a line segment, say m(t) = (t, 0)

where t ∈ [0, 2] and r(t) = 0.1 + 2t + 6t2. Thus u(t) = t, v(t) = 0 and R(t) =

(0.1 + 2t + 6t2)(2 + 12t). Hence we must solve

x′(t) =
(1 + 6t)(1 + 20t + 60t2)(x(t)− t)

5(x(t)2 − 2tx(t) + t2 + y(t)2)
, y′(t) =

(1 + 6t)(1 + 20t + 60t2)y(t)

5(x(t)2 − 2tx(t) + t2 + y(t)2)
.

If we take as a boundary condition x(0) = y(0) = 1 then the solution curve, c(t), is

shown in the left half of figure 3.3. On the right half of this figure we draw a number

of the bi-tangent circles centred on c(t) and see an envelope forming in the lower left

portion of the figure. A detail of this region is shown in figure 3.4.

3.3 Reconstructing γ from m and φ

Here we exploit the fact that the line perpendicular to the chord generating each

point of m, is always tangent to c. If we form the envelope of these lines we should

be able to reconstruct c and moreover we will be able to retrieve the radius function

as part of the process. Let m(t) = (u(t), v(t)), φ(t) be the angle between the normal

to m(t) and the chord at each point (measured anti-clockwise) and p = (x, y) be a

general point on the line through m(t) perpendicular to the chord, i.e.
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m
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g

g
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Now ‖m′‖N = (−v′, u′) and rotating this vector φ radians anti-clockwise gives

(x− u, y − v) · ((cos φ)u′ − (sin φ)v′, (sin φ)u′ + (cos φ)v′) = 0

leading to a family of lines

F (t, p) = (x− u)((cos φ)u′ − (sin φ)v′) + (y − v)((sin φ)u′ + (cos φ)v′) = 0. (3.3)

If we now solve F = ∂F/∂t = 0 for x and y we obtain c(t) = (x(t), y(t)) as an

envelope of this family of lines. We know from equation (3.2) that for each point on

m we have

r
dr

ds
= −

√
(x(t)− u(t))2 + (y(t)− v(t))2

(
= r

dr

dt
/

ds

dt

)
.

Now

ds

dt
=

√
dx

dt

2

+
dy

dt

2

and r
dr

dt
=

d

dt

(
r2

2

)

So

r(t)2 = −2

∫ t

0

√
{x′(t)2 + y′(t)2} {(x(t)− u(t))2 + (y(t)− v(t))2} dt + C. (3.4)

We can choose C so that the RHS here is non-negative throughout the range of

values for t but we are still faced with a choice over the sign of the square root in

the integrand. Clearly though, only one of the options will allow us to get back to m

given x, y and r. From equation (3.2) we have

m = c−
(

r
dr

dt

)(
ds

dt

)−1

T
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Figure 3.5: Determining the sign of ε.

and from equation (3.4)

r
dr

dt
=

1

2

d

dt
(r2) = −ε

(
ds

dt

)
‖ m− c ‖

where

ε =





+1 for +ve square root,

−1 for -ve square root.

Thus

m = c + ε ||m− c||T.

Now when r is decreasing, T points towards the corresponding point on m so that

ε = 1 (and vice-versa) as shown in figure 3.5. The radius function need not be

monotone over the range of t so ε can change sign, but with this in mind we now have

(at least in principle) the SS and radius function, and so can reconstruct γ as the

envelope of bi-tangent circles. Of course in the real world equation (3.4) will most

often only be solvable numerically and we will be left with a table of values for r

versus t. Note: we choose C so that the RHS of equation (3.4) is always non-negative

but we still have infinitely many choices so given m and φ we obtain a one parameter

family of corresponding symmetry sets. This is in some sense an improvement on the

m and r case as we only have one degree of freedom. Summarising we have:
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Proposition 3.3.1 Given the MPL, m, of a smooth curve γ and a smooth function

φ describing the angle between the chord generating each point of m and the normal

to m (measured anti-clockwise), then we can reconstruct the unique symmetry set c of

γ provided we know the radius of at least one bi-tangent circle generating a point on

m. Moreover, wherever the envelope existence criterion is met then γ can be locally

reconstructed as the envelope of bi-tangent circles centred on c. Without a given radius

for a point on m we are left with a 1-parameter family of symmetry sets corresponding

to m not all of which will yield a real envelope.

Example 3.3.2 Again we will choose the MPL to be a line segment, say m(t) = (t, 0)

where t ∈ [0, 1] and φ(t) = πt. Thus u(t) = t, v(t) = 0 and φ′(t) = π. Solving the

envelope equations F = ∂F/∂t = 0 gives us the following for the SS

c(t) =

(
π t (tan (π t))2 + π t− tan (π t)

π
(
(tan (π t))2 + 1

) ,
1

π
(
(tan (π t))2 + 1

)
)

In this case we can actually solve the integral equation explicitly and if we take

C = 1.5 we obtain

r(t) =

√
1.5 +

cos (2 π t)

π2
.

Although r is decreasing for t ∈ [0, 0.5) and increasing for t ∈ (0.5, 1] the integrand of

equation (3.4) conveniently changes sign at the crossover point to give us the correct

ε throughout. Figure 3.6 shows m (the straight line segment from 0 to 1), c (the

U-shaped curve touching m at (0.5, 0)) and twenty bi-tangent circles of appropriate

radius centred on c. The envelope of these circles (i.e. γ) is shown in pieces (one each

in the upper and lower half planes). The figure also shows the chords appropriate to

each circle crossing m at the mid-point of each.

Example 3.3.3 This time we will have a non-straight MPL and keep φ constant.

So we choose the MPL to be an ellipse, say m(t) = (2 cos(t), sin(t)) where t ∈ [0, 2π]

and φ(t) = Φ, a constant angle between 0 and 2π. Thus u(t) = 2 cos(t), v(t) = sin(t)

and φ′(t) = 0. Solving the envelope equations F = ∂F/∂t = 0 gives us the following

for the components of c = (x, y)



CHAPTER 3. RECONSTRUCTION FROM THE MID-POINT LOCUS 44

- 1

- 0 . 5

0

0 . 5

1

1 . 5

- 1 - 0 . 5 0 0 . 5 1 1 . 5 2

Figure 3.6: Formation of γ given m(t) = (t, 0) (line segment from (0, 0) to (1, 0)) and

φ(t) = πt. The symmetry set, c, is marked in red whilst the blue curve pieces (the

envelope of circles) represent γ.

x(t) =
3

2
(cos (Φ))2 (cos (t))3 − 3 cos (Φ) (cos (t))2 sin (Φ) sin (t)

− 2 cos (t) (cos (Φ))2 + 2 cos (t) + 4 cos (Φ) sin (Φ) sin (t) ,

and

y(t) = −4 sin (t) (cos (Φ))2 + 3 sin (t) (cos (Φ))2 (cos (t))2

− 2 sin (Φ) cos (t) cos (Φ) +
3

2
sin (Φ) (cos (t))3 cos (Φ) + sin (t) .

If we take Φ = 0 then c is the envelope of normals to m (i.e. the evolute of m)

c(t) =

(
3

2
(cos(t))3, −3 sin (t) + 3 sin (t) (cos (t))2

)
.

Again the integral equation is explicitly solvable and taking C = 15 we obtain

r(t) =
1

2

√
60 + 9

(
3 (cos (t))4 − 9 (cos (t))2 + 7

)
(sin (t))2.
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Figure 3.7: Formation of γ given m(t) = (2 cos t, sin t) (the central ellipse) and φ(t) =

0. The symmetry set, c, is marked in red whilst the blue curves (the envelope of

circles) represent γ.

In this example r is increasing for t ∈ (0, π/2) ∪ (π, 3π/2) and decreasing for t ∈
(π/2, π) ∪ (3π/2, 2π). However the integrand of equation (3.4) changes sign at the

transition points to give us the correct ε throughout. Figure 3.7 shows m (the ellipse),

c (the curved four point star) and twenty bi-tangent circles of appropriate radius

centred on c. The envelope of these circles (i.e. γ) is shown as two intersecting

flattened ovals. The figure also shows the chords appropriate to each circle, the

mid-point of each touching m so that m is actually the envelope of the chords.
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Figure 3.8: The graph of y = 9
2
cos(t) sin(t) showing the relationship between number

of singular points on c and the angle Φ in Example 3.3.3.

We can extend this example by asking: what is the relationship between Φ and the

existence of singular points on c? With Φ = 0 then c is the evolute of m and we have

four singular points on m where t = 0, π and ±π/2. Solving x′(t) = y′(t) = 0 for Φ

in the general expressions for x and y above gives

tan(Φ) =
9

2
cos(t) sin(t)

but the maximum magnitude of the RHS here is 2.25 (when t = nπ/4 where n is an

odd integer) so as figure 3.8 shows, when | tan(Φ)| > 2.25 there are no real solutions

and c is smooth. When | tan(Φ)| < 2.25 there are four real solutions and c has four

singular points, and when | tan(Φ)| = 2.25 the solutions coincide in pairs to give two

degenerate singular points on c. Figure 3.7 shows that with Φ = 0 the solutions are

equispaced along the t–axis at t = 0, π/2, π and 3π/2.



CHAPTER 3. RECONSTRUCTION FROM THE MID-POINT LOCUS 47

3.4 Fixed Angle Envelopes

We conclude this chapter with a general discussion of the fixed angle envelopes intro-

duced in example 3.3.3 above. We seek to find a relationship between the constant

Φ and the existence of singular points on the resulting envelope for a general smooth

curve γ(t) = (u(t), v(t)) and also determine the condition for any singular points that

do arise to be ordinary cusps.

We start by simplifying our geometry by translating the point of interest on γ to the

origin and rotating in the plane so that, locally, γ lies in the upper half plane and is

tangent to the t–axis at the origin. Hence, close to the origin we can write

γ(t) = (t, a2t
2 + a3t

3 + a4t
4 + ... ).

Solving F = ∂F/∂t = 0, where F is the family of lines given by equation (3.3) and

φ = Φ (a constant) we obtain the fixed angle envelope, Ψ(t) = (x(t), y(t)), of γ.

Extracting the coefficients of the linear terms of x and y we have

Cx(1) =
tan Φ (3a3 + 2a2

2 tan Φ)

2a2
2 ((tan Φ)2 + 1)

, Cy(1) =
−3a3 − 2a2

2 tan Φ

2a2
2 ((tan Φ)2 + 1)

(3.5)

with Cx,y(i) denoting the coefficient of ti in the Taylor expansion of x (or y) about

t = 0. Thus x′(0) = y′(0) = 0 when 3a3+2a2
2 tan Φ = 0. When tan Φ = 0 (i.e. Φ = nπ

where n ∈ Z) then x′(0) = 0 and y′(0) = 0 also when a3 = 0. When Ψ′(0) = 0 the

condition for the singular point to be an ordinary cusp is that Ψ′′(0) and Ψ′′′(0) are

linearly independent, which is equivalent to

Cx(2) Cy(3)− Cx(3) Cy(2) =
12 (2 a2

4 − 2 a2 a4 + 3 a3
2)

2

a2 (4 a2
4 + 9 a3

2)
6= 0. (3.6)

Finally, if the singularity is degenerate then it will be exactly A3 (i.e. F = F ′ = F ′′ =

F ′′′ = 0 but F (4) 6= 0) when

a5 6= a3 (38 a2
4 + 27 a3

2)

10 a2
2

. (3.7)

If we now calculate the curvature κ of γ and its first three derivatives at t = 0 we

obtain κ(0) = 2a2, κ′(0) = 6a3, κ′′(0) = 24(a4 − a3
2) and κ′′′(0) = 120 a5 − 456 a3 a3

2.

We can now express the above results in terms of κ and its derivatives and state:
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Proposition 3.4.1 Let γ be a smooth curve in the plane and F be the family of lines

that at each point p of γ makes a constant angle Φ to the normal to γ at p, then the

curve Ψ formed as the envelope of this family is smooth at the point corresponding to

p on γ provided

κp
2 tan Φ + κ′p 6= 0 (3.8)

where κp is the curvature of γ at p and derivatives are with respect to arclength on γ.

For points p where equation (3.8) fails to hold then the singular point on Ψ will be an

ordinary cusp provided

2 κ′p
2 − κp κ′′p 6= 0. (3.9)

If equations (3.8) and (3.9) both fail to hold then the singular point will be exactly A3

provided

κp
2κ′′′p − 6κ′p

3 6= 0. (3.10)

* In the special case Φ = 0 then Ψ is smooth at the point corresponding to p on γ

provided κ′p 6= 0, i.e. p is not a vertex on γ.

Remark: Looking back to example 3.3.3 we see that the last part of proposition 3.4.1

is verified since c displays singular points precisely at values of t giving vertices on

m. Note: In many of the expressions above we see a2 appearing as a factor in the

denominator, hence we must have a2 6= 0. If a2 = 0 then γ has an inflexion at the

origin and the corresponding point on ε goes to infinity for all Φ.

A General Expression for Ψ

We can underline this point regarding inflexions on γ by finding a general expression

for the fixed angle envelope Ψ. Let p be a point on γ (parameterised by arclength s)

and x be a general point on the line through p at an angle Φ to N (the normal to γ

at p) as shown in figure 3.9. Note: here Φ = φ − π/2 where φ is the angle used in

example 3.3.3. Hence we have

(x− γ) ·N = ||x− γ|| cos Φ.

Since N and T (the tangent to γ at p) are linearly dependent they can be used as a



CHAPTER 3. RECONSTRUCTION FROM THE MID-POINT LOCUS 49
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Figure 3.9: Construction of the fixed angle envelope Ψ.

basis for R2 and we can write, x− γ = λT + µN , where λ, µ ∈ R. Hence

λ = (x− γ) · T = − sin Φ ||x− γ|| and µ = (x− γ) ·N = cos Φ ||x− γ||.

Multiplying the first expression by cos Φ and the second by sin Φ and adding we

obtain

λ cos Φ + µ sin Φ = 0, (3.11)

and

F = (x− γ) · (T cos Φ + N sin Φ) = 0.

Now, F can be regarded as the family of lines through γ at an angle Φ to the normal

to γ at each point and differentiating with respect to s we obtain

∂F

∂s
= (µκ− 1) cos Φ− λκ sin Φ = 0. (3.12)

Now solving F = ∂F/∂s = 0, which is equivalent to solving equations (3.11) and

(3.12) for λ and µ, we obtain λ = (sin Φ cos Φ)/κ and µ = (cos2 Φ)/κ. Hence we

state:

Proposition 3.4.2 Let γ be a smooth curve and Ψ be the envelope of lines at a fixed

angle Φ to the normal to γ at each point, then

Ψ = γ +

(
sin Φ cos Φ

κ

)
T +

(
cos2 Φ

κ

)
N

whence it is clear that as κ → 0 then Ψ →∞.
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Figure 3.10: γ(t) = (t, at2 + bt3) shown dotted with fixed angle envelope Ψ in bold.

Here Φ = π/4.

Example 3.4.3 As a simple example we will take γ(t) = (t, at2 + bt3) and Φ = π/4

so that tan Φ = 1. If we let a = 2, b = 0 and solve equation (3.8) we obtain the unique

solution t = 1/12, so that the envelope, Ψ, has one singular point. Also equation (3.9)

has no real solutions so the singular point is in fact an ordinary cusp. The left half of

figure 3.10 shows γ as the dotted parabola with Ψ, shown in bold, displaying a single

ordinary cusp where t = 1/12.

If we now let a = 2 and b = 1 then equation (3.8) has four solutions, two real and

two complex. The real solutions are t = −2/3± (
√

55 + 5
√

246)/15. Again equation

(3.9) has no real solutions so the two singular points on the envelope are ordinary

cusps. The right half of figure 3.10 shows γ as the dotted cubic with the fixed angle

envelope Ψ, shown in bold, displaying two ordinary cusps.
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Figure 3.11: Example 3.4.4 with Φ = 0. γ (in light) with fixed angle envelope Ψ (in

bold) showing six ordinary cusps.

Example 3.4.4 We will now look at a more involved example, choosing γ to be a

smooth closed convex curve with six vertices, γ(t) = ( 5 sin t + 1
2
cos 2t , 5

2
+ cos t ).

We will look at three values of Φ, determining the number of singular points on Ψ in

each case:

(i) First we take Φ = 0 whence Ψ is the evolute of γ and, by proposition 3.4.1, we

anticipate six singular points on Ψ corresponding to the six vertices on γ. We

find that equation (3.8) has six real solutions whilst equation (3.9) is non-zero

at each. Thus Ψ has six ordinary cusps as shown in figure 3.11.

(ii) Now taking Φ = π/5 we find that equation (3.8) has four real solutions and that

equation (3.9) is non-zero at each. Thus Ψ has four ordinary cusps as shown in

figure 3.12.

(iii) Finally we take Φ = 0.45π and find that equation (3.8) has no real solutions

thus Ψ is smooth as shown in figure 3.12. Of course this is as we might expect

since we are very close to Φ = π/2, whence Ψ is the envelope of tangents to γ,

which just reproduces γ itself.
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Figure 3.12: Example 3.4.4 with Φ = π/5. γ (in light) with fixed angle envelope Ψ

(in bold) showing four ordinary cusps.

So much for our three particular values of Φ but the overall picture as Φ ranges

smoothly from 0 to π/2 is that we start with six cusps on Ψ and finish with Ψ = γ.

Between these two extremes pairs of cusps come together in degenerate singular points

and then disappear2. It is natural to ask: what is the nature of these degenerate sin-

gularities?

To answer this we return to our general setup and choose axes so that a point on γ

giving rise to such a degenerate singularity is at the origin. We know from equation

(3.5) that Ψ is singular when tan Φ = (−3a3)/(2a2) and from equation (3.6) that this

singular point is degenerate (i.e. A≥3) if a4 = (2a2
4 + 3a3

2)/(2a2). If Φ0 is the value

of Φ giving a singular point on Ψ when t = 0 then the components of Ψ here are,

x0 = tan Φ0/(2a2(1 + tan Φ0
2)) and y0 = 1/(2a2(1 + tan Φ0

2)).

2This is close to occurring for the cusp pair in the upper right quadrant of figure 3.12.
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Figure 3.13: Example 3.4.4 with Φ = 0.45π. γ (in light) with smooth fixed angle

envelope Ψ.

We will now use the theory of unfoldings3 to determine whether the family of lines

F (t, x, y, Φ) is a versal unfolding of an A3 singularity on Ψ when t = 0. To do this we

create a new variable, say m = tan Φ (so our unfolding parameters are now x, y and

m), and calculate the 2-jets with constant of ∂F/∂x, ∂F/∂y and ∂F/∂m evaluated

at t = 0, x = x0, y = y0 and m = m0 = tan Φ0. These turn out to be

j2 ∂F
∂x (t=0) = 1 + 3a3

a2
t + 9a3

2

2a2
2 t2,

j2 ∂F
∂y (t=0) = − 3a3

2a2
2 + 2a2 t + 3a3 t2,

j2 ∂F
∂m(t=0) = 2a2

3

4a2
4+9a3

2 − 6a2
2a3

4a2
4+9a3

2 t + 4a2
5

4a2
4+9a3

2 t2.

Now, F (t, x, y, Φ) is a versal unfolding of an A3 singularity on Ψ when t = 0 provided

these 2-jets form a basis for the space of all polynomials of degree ≤ 2 over R.

3See ‘Curves and Singularities’ [6] Ch.6 for details.
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This is equivalent to saying that the 3× 3 matrix

Q =




CFx(0) CFx(1) CFx(2)

CFy(0) CFy(1) CFy(2)

CFm(0) CFm(1) CFm(2)




formed with the coefficients of the 2-jets, is non-singular. However, det Q = (4a2
4 +

9a3
2)/(2a2

2) which is always positive4 and so the unfolding F (t, x, y, Φ) is always

versal here. Hence we can state:

Proposition 3.4.5 Let γ be a smooth plane curve and γ(t0) be a point of γ with

Φ0 a value of Φ such that the fixed angle envelope, Ψ(t) = (x(t), y(t)), of γ has

exactly an A3 singularity when t = t0, then the ‘big discriminant’ surface of γ namely,

M(t, Φ) = (x(t), y(t), Φ), has a swallowtail at (x0, y0, Φ0).

Remark: Returning to example 3.4.4 we see that figures 3.11 to 3.13 represent hori-

zontal slices through the ‘big discriminant’ surface M at Φ = 0, π/5 and 0.45π. The

surface M is shown from various angles in figures 3.14 to 3.17 from which it is evident

that there are three degenerate singular points for t ∈ [0, 2π] and Φ ∈ [0, π/2] (other

ranges for Φ just repeat part of this surface).

We can find these points by simultaneously solving equations (3.8) and (3.9) using nu-

merical methods, whence we obtain (to two decimal places): (t1, Φ1) = (2.02, 0.36π),

(t2, Φ2) = (4.22, 0.16π) and (t3, Φ3) = (6.13, 0.28π). Also equation (3.10) is non-zero

at each point. The three swallowtail points are highlighted in figures 3.14 to 3.17.

4Note: det Q is undefined when a2 = a3 = 0.
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Figure 3.14: Big discriminant surface M of example 3.4.4. Bottom view.
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Figure 3.15: Big discriminant surface M of example 3.4.4. Oblique view.
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Figure 3.16: Big discriminant surface M of example 3.4.4. Oblique view.
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Figure 3.17: Big discriminant surface M of example 3.4.4. Top view.
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3.5 Chapter Summary

In this chapter we demonstrated two methods of reconstructing a smooth curve γ

given its MPL and some additional information: (i) In proposition 3.2.1 we showed

that, given the MPL and a smooth function r describing the radius of the circle gen-

erating each point of the MPL, we can reconstruct the unique symmetry set c to γ

(given at least one point of c) and that using c and r we can reconstruct γ as the

envelope of circles centred on c. (ii) In proposition 3.3.1 we showed that, given the

MPL and a smooth function φ describing the angle between the chord generating

each point of the MPL and its normal here, we can reconstruct the unique symmetry

set c of γ (provided we know the radius of at least one bi-tangent circle generating

a point on the MPL). Here too we can reconstruct γ as the envelope of bi-tangent

circles centred on c since the radius function r is retrieved as part of the method.

The second reconstruction method motivated the general study of fixed angle en-

velopes. If F is the family of lines that at each point of γ makes a constant angle

Φ to the normal to γ then the fixed angle envelope Ψ is formed as the envelope of

these lines. In proposition 3.4.1 we obtained conditions for Ψ to be singular and also

additional conditions to determine when a singular point is A2 (ordinary cusp) or

more degenerate. In proposition 3.4.2 we obtained a parameterisation for Ψ (using

Φ and the curvature function on γ) and showed that Ψ →∞ local to inflexions of γ.

Finally we looked at examples of families of envelopes for varying Φ, noting changes

in the numbers of cusps which occur at swallowtail points of the big bifurcation set.



Chapter 4

Parallel Tangency in R3

4.1 Introduction

There are many constructions available to measure the local symmetry of 3D shapes.

Two of the most well documented are the Symmetry Set and Medial Axis which are

formed as the centres of spheres bi-tangent to the shape. Both of these construc-

tions have important applications in computer vision but they are restricted by their

dependence on spheres whose essential properties are lost under all but Euclidean

transformations of R3. As a result we are motivated to study symmetry construc-

tions which are invariant under the much wider range of affine transformations of

R3. One such construction is the Centre Symmetry Set (CSS) which is formed as

the envelope of chords joining parallel tangent pairs on the shape. It measures the

departure of the shape from central symmetry and since its construction only depends

on parallelism it is affinely invariant. See Giblin and Holtom [9] for more detail on

the CSS and its properties.

The singularities of the CSS have been extensively studied by Giblin and Zaka-

lyukin [11] so here we consider a closely related affinely invariant family of con-

structions called equidistants. These are formed by points at a fixed proportion along

chords joining parallel tangent pairs and we find that the CSS is swept out by the

singularities of this family, much as the evolute or focal set is swept out by the sin-

gularities of offsets to curves or surfaces. This introductory chapter will concentrate

58
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purely on the set of pairs of points on a surface (or surfaces) which have parallel tan-

gent planes and the properties of maps linking the parameters describing such points.

We start by recalling some basic differential geometry of surfaces and introducing

some important notation.

Some Basic Notions

Let p be a smooth point on a surface piece M in R3. If we perform Euclidean

transformations which take p to the origin and rotate so that the xy–plane is tangent

to M here, then M is said to be locally in special Monge form. In this form our

calculations are simplified as M can be locally described as the graph of a function

z = f(x, y) where f = fx = fy = 0 and the unit normal n = (0, 0, 1) at p = 0. When

f is a smooth function in x and y we can write

f(x, y) = (a0x
2 + a1xy + a2y

2) + (b0x
3 + b1x

2y + b2xy2 + b3y
3) + h.o.t. (4.1)

where ‘h.o.t.’ is used to designate all terms in a series expansion of higher degree than

those displayed before it. The behaviour of M in a neighbourhood of p is generically

of three distinct types depending on the intersection of M with its tangent plane

here: (i) p is called an elliptic point if M meets its tangent plane in an isolated point,

e.g. f(x, y) = x2 + y2 at p = 0. (ii) p is called a hyperbolic point if M meets its

tangent plane in two curves crossing transversely, e.g. f(x, y) = x2−y2 at p = 0, and

(iii) p is called a parabolic point if M meets its tangent plane in a cuspidal curve, e.g.

f(x, y) = x2+y3 at p = 0. The upper half of figure 4.1 shows these three contact types.

If we consider the family of planes through the origin which contain the z–axis then

each will intersect M forming a curve in that plane. The signed curvature of such

curves at 0 are called sectional curvatures of M at 0. Their extrema, say κ1 and

κ2, are called principal curvatures and the directions in which they occur are called

principal directions. Also, the product K := κ1 κ2 is called the Gauss curvature of

M at 0. All of this gives us another way of characterising the three types of point

described above since at elliptic points K > 0 (i.e. κ1 and κ2 have the same sign),

at hyperbolic points K < 0 (i.e. κ1 and κ2 have opposite signs) and at parabolic

points K = 0 (i.e. κ1 = 0 and/or κ2 = 0). Directions in which the sectional
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Figure 4.1: Contact with tangent plane at elliptic, hyperbolic, parabolic and cusp of

Gauss points. The bold black lines show the curve of intersection between the surface

and its tangent plane.

curvature is zero are called asymptotic directions and if κ1 = κ2 = 0 then 0 is a

degenerate parabolic (or planar) point. Generically the locus of points on M which

are parabolic consists of smooth disjoint curves called parabolic curves. These curves

separate regions of elliptic and hyperbolic points on M and have major significance

in computer vision applications, e.g. parabolic points appear as inflexions on the

apparent contour of a surface. Parabolic points are clearly points where the tangent

plane has especially high contact with M . With the surface in Monge form the

function f can be regarded as the height function on M in the direction (0, 0, 1). We

can parameterise all directions close to (0, 0, 1) by (a, b, 1), with a and b both close to

zero, so that the family of height functions takes the local form

H(x, y; a, b) = (x, y, f(x, y)) · (a, b, 1) = f(x, y) + ax + by.

The degree of contact of M with its tangent plane is now measured by singularities

of this height function and using Arnold’s standard notation for singularities of func-

tions [1] we say f is of type Ak
+ (resp. Ak

−) if, by a smooth change of coordinates

in x and y, we can reduce to the normal form ±x2 + yk−1 (resp. ±x2 − yk−1). More

specifically, and with reference to f as given in equation (4.1):
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(i) f is of type A1 at 0 if and only if its quadratic terms do not form a perfect square.

This is equivalent to saying that 0 is not a parabolic point for which the algebraic

condition is a1
2 6= 4a0a2. When this holds f is described as a Morse function and can

be reduced to one of ±(x2 +y2), ±(x2−y2). So the zero set of f is locally an isolated

point or two transversely intersecting curves, i.e. elliptic and hyperbolic points as

described above.

(ii) f is of type A≥2 at 0 if and only if its quadratic terms form a perfect square. Thus

0 is a parabolic point, a1
2 = 4a0a2, and f can be reduced to a0x

2 + b0x
3 + b1x

2y +

b2xy2 + b3y
3 + h.o.t. If in addition a0 6= 0 and b3 6= 0 then f is exactly A2 and can be

reduced to ±x2 + y3. Thus the zero set of f is locally an ordinary cusp as described

above.

(iii) f is of type A≥3 at 0 if and only if its quadratic terms form a perfect square, so

that a1
2 = 4a0a2, but with a0 6= 0 and b3 = 0. In this case x divides the cubic part

of f and it can be reduced to a0x
2 + (c4 − b2

2/4a0)y
4. If the coefficient of y4 here

is non-zero then f is exactly A3. When b2 6= 0 then 0 is called an ordinary cusp of

Gauss of elliptic or hyperbolic type. For the elliptic type (A3
+ with b2

2 < 4a0c4) the

intersection of the surface with its tangent plane is an isolated point whilst for the

hyperbolic type (A3
− with b2

2 > 4a0c4) it is a tacnode. The lower half of figure 4.1

shows these two contact types.

This covers all the generic cases which can occur for a given surface but in 1-parameter

families of surfaces more complicated situations are possible. At an A4 we have

c4 − b2
2/4a0 = 0 with the intersection of M and its tangent plane at 0 forming a

rhamphoid cusp. Such points generically represent a degenerate cusp of Gauss where

two ordinary cusps of Gauss have momentarily come together. Another degenerate

case is that of D4 points at which the quadratic terms of f vanish completely forming

what is termed a flat umbilic. We will say something about such non-generic points in

the final chapter but now we go on to describe the geometrical setting for the disjoint

surface pieces case.
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4.2 Disjoint Surfaces

Let M and N be disjoint surface pieces in R3. As usual we seek to simplify our

geometry and so we translate such that the centre of our neighbourhood of interest on

N lies at the origin and rotate so that the xy–plane is tangent here. Since parallelism

is an affine invariant property we can also perform a shear transformation so that

the centre of our neighbourhood of interest on M lies on the z–axis (at z = k say).

Clearly the tangent plane to M at (0, 0, k) is also parallel to the xy–plane. Now,

writing M as the graph of a function f of local variables s and t, and N as the graph

of a function g of local variables u and v we have

M : (s, t) 7→ (s, t, k + f(s, t)) and N : (u, v) 7→ (u, v, g(u, v))

with fx = fy = gx = gy = 0 at (0, 0). Note: here we are using x and y as place

holders to denote differentiation with respect to the first and second local variables

respectively. Now, the condition for parallel tangent planes on M and N is simply,

fx(s, t) = gx(u, v) and fy(s, t) = gy(u, v). We can now define a map

π : (s, t, u, v) 7→ (fx − gx , fy − gy) (4.2)

the zeros of which will give us precisely those pairs of points (s, t) on M and (u, v)

on N with parallel tangent planes. The geometry of the setup is shown schematically

in figure 4.2.

Structure of the Set of Parallel Tangent Pairs

We now consider the set Π = {(s, t, u, v) ∈ R4 : π(s, t, u, v) = 0}, determine conditions

for it to be smooth, investigate ways in which it can be parameterised and study some

features of the maps associated with such parameterisations. Our motivation is clear

since any calculations here will be greatly simplified if we are able to write any two

of s, t, u and v as functions of the remaining two. To this end we examine some of

the classical theory of maps from the plane to the plane and see how it can be used

in this context. First a definition:

Definition 4.2.1 Let D be an open set in Rn and f : D → Rm. The Critical Set, Σf ,

of f is that subset of D for which the rank of the Jacobian of f falls below maximal
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x

z

Figure 4.2: Geometry of setup for disjoint surface pieces.

rank i.e. min(n,m). Points in Σf are known as critical points and their images in

Rm are known as critical values. The set f(Σf ) is called the discriminant or critical

locus of f .

We will take our points of parallelism at (s, t) = (u, v) = 0 so that all expressions

below are evaluated at these points. Now

Jπ =


fxx fxy −gxx −gxy

fxy fyy −gxy −gyy


 . (4.3)

This has maximal rank, and thus Π is smooth at 0, provided some 2 × 2 minor has

non-zero determinant. The first two columns represent Hf , the Hessian matrix of f ,

whilst the last two represent (-1 times) Hg, the Hessian matrix of g. Hence Π is cer-

tainly smooth provided either M or N is non-parabolic at 0 (since this is equivalent

to either det(Hf ) 6= 0 or det(Hg) 6= 0).

The remaining possibility is that M and N are both parabolic at 0 but there exists

a 2 × 2 minor using one the first two columns with one of the last two columns

which has a non-zero determinant. If we rotate the setup in the z–axis so that the

principal directions on M at 0 are aligned with the x and y axes then we can write

f(x, y) = x2 + h.o.t. and thus fxx(0) = 2 and fxy(0) = 0. If we consider the first and
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third columns of Jπ then the 2× 2 matrix formed by them has non-zero determinant

at 0 if and only if gxy(0) 6= 0. Similarly the matrix formed by the first and last

columns of Jπ has non-zero determinant if and only if gyy(0) 6= 0. Note: we need

not consider options using the second column since we know, by assumption, that

this is linearly dependent on the first. Hence we can still find a 2 × 2 minor with

non-zero determinant provided either gxy(0) 6= 0 or gyy(0) 6= 0. When both are zero

(a non-generic situation since we are imposing three conditions on N) then the unique

asymptotic directions at the two parabolic points coincide and we state:

Proposition 4.2.2 With the geometry stated above then Π is smooth at 0 unless both

points are parabolic and their unique asymptotic directions are parallel.

We will return to the both points parabolic case at the end of this section but for

now we can assume, without loss of generality, that M is non-parabolic at (0, 0, k).

Hence by the implicit function theorem, there exists a map

h : (u, v) 7→ (s(u, v), t(u, v)) (4.4)

such that π(s(u, v), t(u, v), u, v) ≡ 0. We can determine when h is a local diffeomor-

phism but studying its Jacobian

Jh =


su sv

tu tv


 .

We know that for (s, t, u, v) ∈ Π we have fx(s(u, v), t(u, v)) = gx(u, v) and fy(s(u, v), t(u, v))

= gy(u, v). If we differentiate both of these expressions in turn with respect to u and

v we obtain

{fxx(s(u, v), t(u, v))} su + {fxy(s(u, v), t(u, v))} tu = gxx(u, v),

{fxx(s(u, v), t(u, v))} sv + {fxy(s(u, v), t(u, v))} tv = gxy(u, v)

and

{fxy(s(u, v), t(u, v))} su + {fyy(s(u, v), t(u, v))} tu = gxy(u, v),

{fxy(s(u, v), t(u, v))} sv + {fyy(s(u, v), t(u, v))} tv = gyy(u, v).

These can be written in matrix form as, Hf Jh = Hg, and we know that Hf is non-

singular at 0 hence Jh = Hf
−1 Hg. From this expression we see that Jh(0) is singular

(or non-singular) as Hg(0) is and so we state:
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P r o j .

F o l d  m a p C u s p  m a p

Figure 4.3: Fold and Cusp maps. The dark line in the upper figures represents the

contour generator (or critical set) of the vertical projection and, in the lower figures,

the apparent contour or critical locus of the projection.

Proposition 4.2.3 With the geometry stated above then the map h : (u, v) 7→ (s, t)

is a local diffeomorphism if and only if both M and N are non-parabolic at (0, 0).

Fold and Cusp Maps

We have dealt with the case where h is a local diffeomorphism but Whitney showed

in [24] that there are two further stable maps from the plane to the plane, namely the

fold map and the cusp map. We now recall some of their basic properties. Firstly,

provided Jh does not have zero rank at 0 then we can make diffeomorphic changes

of coordinate in the source and target spaces1 to write h(u, v) = (u, t(u, v)), the so-

called canonical form (Note: u, v and t here are not the same as those above, but

we will retain these names for simplicity). With the map in this form the Jacobian

simplifies thus

Jh =


 1 0

tu tv




whence it is clear that det(Jh) = 0 ⇔ tv = 0. Hence Σh = {(u, v) : tv = 0} and by

the implicit function theorem this is smooth if and only if tvv 6= 0 or tuv 6= 0. We now

state some important propositions concerning fold and cusp maps. Proofs of these

propositions and further details can be found in Lu [13] Ch.2.

1Which is described as an A–equivalent (or RL–equivalent) change of coordinates.
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Proposition 4.2.4 If det(Jh) = 0 with Σh smooth and h|Σh an immersion at 0 then

h is a fold map.

Whitney showed that any h satisfying these criteria is A–equivalent to the standard

fold map h0 : (x, y) 7→ (x, y2) in a neighbourhood of 0. If we look at the map h0

we can see where the term “fold” comes from since if we lift from R2 → R3 using

(x, y) 7→ (x, y, y2) we form a parabolic cylinder containing the x–axis and as the left

half of figure 4.3 shows this looks rather like a folded piece of paper. Now

Jh0 =


1 0

0 2y




so that det(Jh0) = 0 if and only if y = 0 and Σh0 = {(x, y) : y = 0}. Hence the

critical set of the map h0 is just the x–axis. This is as we expect since Σh0 can also

be thought of as the contour generator of the lifted surface viewed (in this instance)

from y = +∞. Also h0|Σh0 = (x, 0) so the apparent contour is smooth.

Proposition 4.2.5 If det(Jh) = 0 with Σh smooth but h|Σh is an ordinary cusp at

0 then h is a cusp map.

In this case Whitney showed that any such h is A–equivalent to the map h1 : (x, y) 7→
(x, xy − y3) in a neighbourhood of 0. Lifting to R3 using (x, y) 7→ (x, y, xy − y3) we

form a surface rather like a twisted plane, as shown in the right half of figure 4.3.

Now

Jh1 =


1 0

y x− 3y2




so that det(Jh1) = 0 if and only if x = 3y2 and Σh1 = {(x, y) : x = 3y2}. Hence the

critical set of the map h1 is represented by a parabola through the origin and viewing

the lifted surface from y = +∞ gives an ordinary cusp at the origin as an apparent

contour, hence the name. Also h0|Σh0 = (3y2, 4y3), which is clearly an ordinary cusp.

Now consider the Gauss map of N , i.e. the map GN : N 7→ S2 where p 7→ np the

oriented unit normal at p. For this map it is standard theory2 that (i) GN is a local

diffeomorphism if and only if p is non-parabolic, (ii) GN is a fold map if and only

2See Banchoff et al. [4] for a proof.
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if p is parabolic but not a cusp of Gauss, and (iii) GN is a cusp map if and only

if p is an ordinary cusp of Gauss. So if GM is the Gauss map of M then it is a

local diffeomorphism (since we assume M to be non-parabolic). The map h relates

points on N to points on M with parallel tangent planes and so we have the following

equivalence of maps

N M S 2G Mh

G N

= ~

This is because the unit normal on N maps to the same unit normal on M under h.

Hence h ≡ GM
−1 ◦GN and since GM

−1 is also a local diffeomorphism then h and GN

have identical singularities enabling us to state:

Proposition 4.2.6 The map h : (u, v) 7→ (s, t) is: (i) a fold map if and only if M is

non-parabolic at (0, 0, k) and N is parabolic but not a cusp of Gauss at (0, 0, 0), (ii)

a cusp map if and only if M is non-parabolic at (0, 0, k) and N is an ordinary cusp

of Gauss at (0, 0, 0).

The classification of map germs from the plane to the plane begins with three stable

cases (local diffeomorphism, fold, cusp) and we have considered where our map h has

each of these forms. We now go on to consider the codimension 1 map germs (lips,

beaks). Further detail on lips and beaks maps can be found in Rieger [21].

Lips and Beaks Maps

We will restrict the level of degeneracy by insisting that the map

σ(u, v) = sutv − svtu (= det Jh)

is a Morse function at 0. We know from the Morse lemma3 that if σ is Morse at

0 then Σh = σ−1(0) is either an isolated point (σuu σvv − σuv
2 > 0) or a transverse

crossing (σuu σvv − σuv
2 < 0) and h is called a lips map in the first case and a beaks

3Further details on Morse functions and the Morse Lemma can be found in ‘Curves and Singu-

larities’ [6] p.88–89
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( i )  L i f t e d  L i p s  M a p  :  h 3 ( x ,  y ) = ( x ,  y ,  x 2 y  +  y 3 ) ( i i )  L i f t e d  B e a k s  M a p  :  h 4 ( x ,  y ) = ( x ,  y ,  x 2 y  -  y 3 )

Figure 4.4: Lifted surfaces for the standard lips and beaks maps. The three upper

figures in each case show the apparent contour viewed from y = +∞ through a

transition either side of the lips/beaks point.

map in the second. The standard form of a lips/beaks map is h3,4(x, y) = (x, x2y±y3)

with ‘+’ in the lips case and ‘–’ in the beaks. Figure 4.4 shows the lifted surfaces for

these two standard maps.

In order to proceed we will need some notation. We take as our starting point the

initial setup described in above and assume that M is non-parabolic at (0, 0, k) whilst

N as parabolic at (0, 0, 0). We can further simplify the calculations by rotating about

the z–axis so that the principal directions to N at the origin lie along the x and y axes,

with the unique asymptotic direction here being along the y–axis. This simplifies the

Taylor expansion of g about u = v = 0 as follows

g(u, v) = u2 + (g30 u3 + g21 u2v + g12 uv2 + g03 v3) + h.o.t. (4.5)

where we have re-scaled in the z-direction to make the coefficient of u2 equal to 1.

We can write the Taylor expansion for f(s, t) about s = t = 0 as

f(s, t) = (f20 s2 + f11 st + f02 t2) + (f30 s3 + f21 s2t + f12 st2 + f03 t3) + h.o.t. (4.6)
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and if we perform an affine transformation of the form

Λ =




a 0 0

b c 0

0 0 a2


 , a, b, c ∈ R

then Λ : (x, y, z) 7→ (ax, bx+ cy, a2z). This transformation preserves the y–axis, the

z–axis and xy–plane, but allows us to remove the st term from the expansion of f

when M is elliptic at (0, 0, k) or the s2 term when M is hyperbolic at (0, 0, k). Also

by choosing appropriate values for a we can ensure that the coefficients of s2 and t2

in the elliptic case, or st and t2 in the hyperbolic case, are the same. Hence when M

is elliptic we have

f(s, t) = a(s2 + t2) + (f30 s3 + f21 s2t + f12 st2 + f03 t3) + h.o.t. (4.7)

and when it is hyperbolic we have

f(s, t) = a(st + t2) + (f30 s3 + f21 s2t + f12 st2 + f03 t3) + h.o.t. (4.8)

Using the same convention on coefficient subscripts we can write the components of

h in equation (4.4) as

s(u, v) = (s10 u + s01 v) + (s20 u2 + s11 uv + s02 v2) + h.o.t., (4.9)

t(u, v) = (t10 u + t01 v) + (t20 u2 + t11 uv + t02 v2) + h.o.t. (4.10)

Now Σh = {(u, v) : σ(u, v) = 0} and so Σh is singular if and only if σu = σv = 0 and

σ is Morse at 0 if and only if σuuσvv 6= σ2
uv. Taking g in the form given by equation

(4.5) and f in either of the forms of equations (4.7) or (4.8) depending as M is elliptic

or hyperbolic at (0, 0, k), then we can successively determine the coefficients sij and

tij in equations (4.9) and (4.10) using the parallel tangency conditions fx = gx and

fy = gy. Hence we can find a series expansion for σ and the 1-jet in each case is as

follows

j1 σ =
g12

a2
u +

3 g03

a2
v (f elliptic), j1 σ =

−4 g12

a2
u +

−12 g03

a2
v (f hyperbolic).

Hence in either case we have σu = 0 if and only if g12 = 0 and σv = 0 if and only

if g03 = 0. For σu = σv = 0 (i.e. the critical set singular) we require g03 = g12 = 0.



CHAPTER 4. PARALLEL TANGENCY IN R3 70

We know from above that g03 = 0 means that the origin is a cusp of Gauss on

N , but not an ordinary cusp of Gauss since g12 = 0. Also since g12 = 0 then the

cusp of Gauss is non-degenerate provided g04 6= 0. With g03 = g12 = 0 we now

consider the parabolic curve on N which passes through the origin and is given by

P = gxx gyy − gxy
2 = 0. With g in the form of equation (4.5) the 1-jet of P is

j1 P = 4 g12 u+12 g03 v. So g12 = g03 = 0 tells us that the parabolic curve is singular.

If we calculate det(HP ) = PxxPyy − Pxy
2 we find that the condition for this to be

non-zero at the origin is

8 g04 (g22 − g21
2)− 3 g13

2 6= 0. (4.11)

By the Morse lemma, if the LHS here is positive then P is an isolated point at the

origin, whilst if it is negative then P is a transverse crossing here. The condition for

σ to be Morse at 0 is exactly the same as that of equation (4.11), so σ is Morse at 0

as the parabolic curve is. To decide whether h is a lips or beaks map we can use the

following result by Tari [22]:

Proposition 4.2.7 Let h be an A–equivalent germ to H(u, v) = (u, F (u, v)). If we

have ∂3F/∂v3(0, 0) 6= 0, then h is a lips/beaks map if and only if its critical set is the

zero set of a Morse function.

In our case h(u, v) = (s(u, v), t(u, v)) and so we seek a smooth change of variables φ

say, which will reduce h to the form of proposition 4.2.7, i.e.

h

H

= ~
f

( u , v ) ( s , t )

2 2 2

In finding the coefficients sij in the expansion for s described by equation (4.9) we find

that s10 = 1/a (f elliptic) or s10 = −4/a (f hyperbolic). Thus su 6= 0 at the origin

and by the implicit function theorem we can write s(u, v) = U say, and solve for u

as a function of U and v. We can then substitute this expression for u into t(u, v)

giving F (U, v) = t(u(U, v), v) and apply the proposition. For both f elliptic and f

hyperbolic the coefficient of v3 in the expansion for F is 2 g04/a which is non-zero

since we assume a non-degenerate cusp of Gauss on N at 0. Hence we state:
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Proposition 4.2.8 Let 0 on N be a non-degenerate cusp of Gauss at which the

parabolic curve is singular but is the zero set of a Morse function. Then h : (u, v) 7→
(s, t) is (i) a lips map if and only if the parabolic curve has an isolated point at 0,

and (ii) a beaks map if and only if the parabolic curve has a transverse crossing at 0.

Both points Parabolic

With our notation established we can now return to the case where both points of

tangency are parabolic. We can take g in the form of equation (4.5) but for f we

need a parabolic form where the unique asymptotic direction is never parallel with

that of g (i.e. the y–axis) to ensure that Π is locally smooth. To this end we choose

f to have the form

f(s, t) = ε (as + t)2 + (f30 s3 + f21 s2t + f12 st2 + f03 t3) + h.o.t. (4.12)

where ε = ±1. The 1-jet of the first parallel tangency equation, fx − gx = 0, is

−2u + 2εat + 2εa2s so we can certainly write u as a smooth function of s, t and v.

If we do this and substitute the result into the second parallel tangency equation,

fy − gy = 0, then we obtain, j1(fy − gy) = 2εt + 2εas, so we can write t as a smooth

function of s and v. Calculation shows this to be

t = −as− 3a2f03 − 2af12 + f21

2ε
s2 +

3g03

2ε
v2 + h.o.t.

and substituting this into the expression for u we can write u as a smooth function

of s and v thus

u =
3 (f30 + a2f12 − af21 − a3f03)

2
s2 +

3ag03 − g12

2
v2 + h.o.t.

So in this case the map relating the parameters at the two points of tangency is

h : (s, v) 7→ (t(s, v), u(s, v)). The critical set of h is Σh = {(s, v) : ts uv − tv us = 0}
and this has 1-jet a (g12 − 3 a g03) v. So the critical set is smooth provided a 6= 0 and

a 6= g12/(3g03). The map h restricted to its critical set and parameterised by s is as

follows

h|Σh =

(
−as− f21 − 2af12 + 3a2f03

2ε
s2 + ... ,

3 (f30 + a2f12 − af21 − a3f03)

2
s2 + ...

)

which is clearly an immersion at 0 provided a 6= 0. Thus we state:
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Figure 4.5: Geometry of setup for parallel tangents on a single surface piece.

Proposition 4.2.9 With the geometry stated above, if both points of parallel tangency

are parabolic then provided (i) the asymptotic directions at the two points are not

parallel, and (ii) a 6= 0 and a 6= g12/(3g03), then t and u can be written as smooth

functions of s and v and the map h : (s, v) 7→ (t(s, v), u(s, v)) is a fold.

4.3 The Local Case

In this section we turn our attention to neighbouring pairs of points on a single sur-

face piece with parallel tangent planes. We are necessarily talking about pairs in a

neighbourhood of a parabolic point since locally we cannot have points of parallel

tangency otherwise. We will see that this case introduces complications that could

not exist for disjoint surface pieces, and take particular interest in the case where

the parabolic point is a cusp of Gauss where we examine the arrangement of various

special curves on the surface through the cusp of Gauss. First we will describe the

geometrical setting for the local case.

Let N be a smooth surface piece in R3 with parabolic point at the origin. We will

retain the simplifications and notation of the two surface case, but now the points p

and q both lie on N in a neighbourhood of the origin4. The equation of the surface

4Note: In this section we will (loosely) use p and q to designate both points in the parameter

plane of the surface and same points lifted onto the surface itself.
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is N : (x, y) 7→ (x, y, g(x, y)) where g is of the form given in equation (4.5). The

condition for parallel tangent planes on N is gx(s, t) = gx(u, v) and gy(s, t) = gy(u, v),

and the zero set of the map

π : (p, q) 7→ (gx(p)− gx(q), gy(p)− gy(q))

will give us those points p = (u, v, g(u, v)) and q = (s, t, g(s, t)) with parallel tangent

planes on N . The geometry of this setup is shown in figure 4.5.

For this case we are faced with a problem that could not arise in the disjoint surfaces

case, namely that points in the diagonal ∆ = {(s, t, u, v) : s = u and t = v} are always

a solution of our parallel tangency equations. We encountered a similar problem in

section 2.4 when we looked at the MPL to a plane curve and found that γ1 = γ2 was

always an un-welcome addition to the PSS. In that case we were able to eliminate

the problem by showing that the function giving pairs of points on a bi-tangent circle

was a Morse function. Unfortunately this approach is not available to us here and

so a different approach is required. We take g as given in equation (4.5) but use an

alternative coefficient numbering scheme thus

g(x, y) = x2 + b0 x3 + b1 x2y + b2 xy2 + b3 y3 + c0 x4 + c1 x3y + c2 x2y2 + ... (4.13)

so that bi (i = 0 .. 3) is used for the coefficients of the cubic terms, cj (j = 0 .. 4) is used

for the coefficients of the quartic terms etc. So, from our earlier definitions, if b3 = 0

then 0 on N is a cusp of Gauss. The cusp of Gauss is non-degenerate if b2
2 6= 4c4

and ordinary if also b2 6= 0.

If we let F (s, t, u, v) = gx(s, t)− gx(u, v) and G(s, t, u, v) = gy(s, t)− gy(u, v) then

F = ( 2s + 3b0s
2 + 2b1st + b2t

2 + ... )− ( 2u− 3b0u
2 − 2b1uv − b2v

2 − ... ) = 0

whence it is clear by the implicit function theorem that we can write s = s(t, u, v) or

u = u(s, t, v) using F = 0. If we choose the former and let G1(t, u, v) = G(s(t, u, v), t, u, v)

then G1 = 0 represents a single equation for the parallel tangent set with our trou-

blesome points now being given by t = v. We can write

s = (s100 t+s010 u+s001 v)+(s200 t2+s020 u2+s002 v2+s110 tu+s101 tv+s011 uv)+h.o.t.
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substitute into F = 0 and determine the coefficients sijk. Doing this we obtain

s = u +
b2

2

(
v2 − t2

)
+ b1 (uv − tu) + h.o.t. (4.14)

and substituting this into G1 we expect to obtain a result of the form

G1(t, u, v) = (t− v)k H(t, u, v) = 0 where k ∈ N and (t− v) - H (4.15)

provided t = v is always a solution of G1 = 0. If we can find such an H then H = 0

will be the true parallel tangent set with the p = q points removed. First we show

that G1 must have a factor (t − v) using a variation of the Hadamard lemma (see

‘Curves and Singularities’ [6], Lemma 4.28(ii), p.86):

Proposition 4.3.1 Given any smooth function g of three variables, say t, u and v,

then g(t, u, v) = (t− v) h(t, u, v) for some smooth h, if and only if g(t, u, t) = 0.

Proof: [⇐] Set x = v−t and let g̃(t, u, x) = g(t, u, x+t). Then g̃(t, u, 0) = g(t, u, t) = 0

which implies g̃(t, u, x) = x h̃(t, u, x) for some smooth function h̃ by Hadamard’s

lemma, or equivalently g(t, u, t) = 0 implies that g(t, u, v) = (t− v) h(t, u, v) for some

smooth function h. [⇒] follows trivially. ¤

So we can be assured that G1 has a factor (t− v) and in fact calculation shows that,

G1 = (t− v) (3b3t + 2b2u + 3b3v + h.o.t.) so that H = 3b3t + 2b2u + 3b3v + h.o.t. since

H(t, u, t) = 6b3t + 2b2u + h.o.t. 6= 0, i.e. (t − v) is not a factor of H and k = 1 in

equation (4.15) above. Thus t or v can be expressed uniquely as a smooth function

of the other two variables when b3 6= 0 (i.e. the origin is not a cusp of Gauss). We

choose to write t = t(u, v) and find that

t = −2b2

3b3

u− v + h.o.t.

Hence the map h : (u, v) 7→ (s, t) is of the form

h(u, v) =

(
u + h.o.t., −2b2

3b3

u− v + h.o.t.

)

so that det(Jh) = −1 at the origin and we state:

Proposition 4.3.2 The map h : (u, v) 7→ (s, t) is a always a local diffeomorphism

when the origin is a parabolic point but not a cusp of Gauss.
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Ordinary Cusp of Gauss Case

When the origin is an ordinary cusp of Gauss then b3 = 0 but b2 6= 0 and since the

change of variable x 7→ −x takes b2 to −b2 in equation (4.13), we can assume without

loss of generality that b2 > 0. Now H = 2b2u+h.o.t. and we can write u as a smooth

function of t and v thus

u =
b2

2 − 4c4

2b2

t2 +
b2

2 − 4c4

2b2

tv − 2c4

b2

v2 + h.o.t.

Our expression for s obtained as equation (4.14) still holds and if we substitute this

expression for u into it we obtain

s = −2c4

b2

t2 +
b2

2 − 4c4

2b2

tv +
b2

2 − 4c4

2b2

v2 + h.o.t.

We see that the coefficients of the quadratic terms of s are the same as those of u in

reverse order. This interesting pattern holds true for the coefficient sets of all orders

in the expansions for s and u due to the following symmetry property:

Proposition 4.3.3 s(t, v) = u(v, t) for all t, v close to 0.

Proof: ({a, b}, {c, d}) ∈ Π if and only if ({c, d}, {a, b}) ∈ Π i.e. it doesn’t matter in

which order we name the two points (a, b) and (c, d). Now ({a, b}, {c, d}) ∈ Π gives

a = s(b, d) and c = u(b, d), whilst ({c, d}, {a, b}) ∈ Π gives a = u(d, b) and c = s(d, b).

The result follows. ¤

Since s and u are parameterised by t and v the parallel tangent set here is smooth.

However, it is clear that the map h : (t, v) 7→ (s, u) is highly degenerate since it has

co-rank 2. Instead we will consider the pair of maps, F1 : (t, v) 7→ (s(t, v), t) and F2 :

(t, v) 7→ (u(t, v), v). Now F1,2(t, t) consists of limit points of the true parallel tangent

set which also lie in ∆ and so:

Proposition 4.3.4 The image of the diagonal in the tv–plane under F1 or F2 is the

parabolic curve on N .
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Proof: We have gx(s(t, v), t) = gx(u(t, v), v) and gy(s(t, v), t) = gy(u(t, v), v) for all

t, v ∈ Π. If we differentiate both of these with respect to t and v we obtain

gxx st + gxy = gxx ut

gxx sv = gxx uv + gxy

gxy st + gyy = gxy ut

gxy sv = gxy uv + gyy

but using proposition 4.3.3 with t = v we have st(t, t) = uv(t, t) and sv(t, t) = ut(t, t)

so the second and fourth expressions above, evaluated at (t, t), are the same as the

first and third. Now if we multiply the third by gxx and subtract the first multiplied

by gxy we obtain gxx gyy − gxy
2 = 0 as required. ¤

Considering F2 then

F2(t, v) =

(
b2

2 − 4c4

2b2

t2 +
b2

2 − 4c4

2b2

tv − 2c4

b2

v2 + h.o.t., v

)

so that det(JF2) = 0 at the origin and ΣF2 = {(t, v) : ut = 0}, i.e.

ΣF2 :
b2

2 − 4c4

2b2

(2t + v) + h.o.t. = 0.

If the cusp of Gauss is ordinary then b2
2 6= 4c4 and we can write ΣF2 : v = −2t+h.o.t.

so that F2|ΣF2 is an immersion at 0. A similar argument holds for the map F1 where

we have ΣF1 = {(t, v) : sv = 0} and we state:

Proposition 4.3.5 For the set of points p = (s, t, g(s, t)) and q = (u, v, g(u, v)) with

parallel tangent planes in the neighbourhood of an ordinary cusp of Gauss on a smooth

surface piece z = g(x, y) where g is of the form of equation (4.13) with b3 = 0 then

(i) s and u can be written as smooth functions of t and v, and (ii) F1 : (t, v) 7→ (s, t)

and F2 : (t, v) 7→ (u, v) are fold maps.

For F1 and F2 we also have F1|ΣF1 = F2|ΣF2 which is geometrically obvious since this

curve represents the boundary of the region on N which contains candidate points

for parallel tangent pairs. Hence we define:

Definition 4.3.6 The Parallel Tangents Boundary Curve (PTBC) is the boundary

of the region on N which contains points for which a parallel tangent partner exists.
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The projection of this curve to the parameter plane of N is

PTBC =

(−b2
2 − 12c4

8b2

v2 + h.o.t, v

)
.

Arrangement of Special Curves through a Cusp of Gauss

Here we seek to determine the relationship between the PTBC and several other

important curves which pass through the cusp of Gauss on N . The curves that we

consider are: the Parabolic Curve (PC), the Flecnodal Curve (FC) which is the locus

of points on M where some tangent line has 4-point (or higher) contact and, the

Bi-tangent Plane Curve (BPC) which is the locus of points p on N for which there

exists a distinct point q with the same tangent plane. Calculating parameterisations

of the PC and FC projected to the parameter plane of N we obtain

PC =

(
b2

2 − 6c4

b2

v2 + h.o.t, v

)
and FC =

(
2c4(b2

2 − 8c4)

b2
3 v2 + h.o.t, v

)
.

For the BPC we need points p = (s(t, v), t, g(s(t, v), t)) and q = (u(t, v), v, g(u(t, v), v))

on N such that γ = (p−q)·N = 0 where N is any normal vector at p or q. Calculation

shows the series expansion for γ in t and v to be

γ =
(b2

2 − 4c4)(v − t)3(v + t)

4
+ h.o.t.

The first term in the numerator here is non-zero when the cusp of Gauss is non-

degenerate. The second term defines the diagonal in the tv-parameter plane which

we know maps to the parabolic curve under F1 or F2 by proposition 4.3.4. For the

last factor we seek a solution of γ = 0 of the form t = −v + h.o.t. the image of which

under F1 or F2 must be the BPC by elimination. Calculation shows this to be

BPC =

(
−2c4

b2

v2 + h.o.t, v

)
.

We can be further assured that t = −v + h.o.t. is a pre-image of the BPC under F1

or F2 by the following proposition:

Proposition 4.3.7 Let Ω = {(t, v) : F1(t, v) and F2(t, v) are contact points of a

bi-tangent plane to N} then (t, v) ∈ Ω if and only if (v, t) ∈ Ω.
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Proof: If {s = a, t = b} is one point of bi-tangency and {u = c, v = d} is the other in

the (s, t) and (u, v) parameter spaces, then F1(b, d) = (s(b, d), b) = (u(d, b), b) =

F2(d, b) using proposition 4.3.3. Similarly F2(b, d) = (u(b, d), d) = (s(d, b), d) =

F1(d, b). Hence (b, d) ∈ Ω implies (d, b) ∈ Ω. We now repeat the above starting

with the point (d, b) and the result follows. ¤

We can verify that the pre-BPC has a smooth branch through the origin by:

Proposition 4.3.8 There is a smooth branch of γ = 0 tangent to t + v = 0.

Proof: Substituting x = v − t in the expression for γ above we obtain γ = λx3 (2t +

x) + h.o.t. where λ is a non-zero constant. We now blow up the origin by means of

the substitution x = ut. The blowing-down map (t, u) 7→ (t, ut) = (t, x) is a local

diffeomorphism away from the ‘exceptional divisor’ t = 0 (where (0, u) 7→ (0, 0) for

all u). The curve γ = 0 now exists in a new surface on which we can take local

coordinates t, u. The exceptional divisor in this coordinate system is the line t = 0

and different lines through the origin are now separated (or blown up) to different

points on the exceptional divisor. Doing the substitution we obtain

γ = λu3 t4 (2 + u) + terms in t, u all divisible by t5.

If we now cancel t4 (the highest power of t to be a factor of the whole of γ) to form

the proper transform of γ, i.e.

γ1 = λu3 (2 + u) + terms in t, u all divisible by t

then ∂γ1/∂u evaluated at {t = 0, u = −2} is −8λ 6= 0, so by the implicit function

theorem there is a smooth branch of γ1 = 0 tangent to the line u = −2. Under the

blow-down map this goes to a smooth branch of γ = 0 tangent to 2t + x = 0, or in

the original coordinates, γ = 0 has a smooth branch tangent to t + v = 0. ¤

We now have a form for all four of our special curves on N with the y-component

as v and the x-component beginning with a quadratic term in v with a coefficient

involving only b2 and c4. Hence all of these curves are tangent to the asymptotic

direction (i.e. the y–axis in our setup) at the cusp of Gauss. In deciding how these
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curves relate to each other on N we need to determine the relative signs and magni-

tudes of these quadratic coefficients which, using our earlier convention, we will call

CPC(2), CFC(2), CPTBC(2) and CBPC(2). Now, since b2 > 0 the BPC lies locally in

the upper or lower y half plane depending on the sign of c4 and we can ignore the

effect of the denominators in determining the signs of CPC(2), CFC(2), CPTBC(2) and

CBPC(2). Some rudimentary inequality calculations lead to the following:

* CPC(2) > CFC(2),

* CPC(2) > CPTBC(2) when the c.o.G is hyperbolic,

* CPC(2) < CPTBC(2) when the c.o.G is elliptic,

* CFC(2) > CPTBC(2) when the c.o.G is hyperbolic and c4/b2
2 < −1/32, and

* CFC(2) < CPTBC(2) when the c.o.G is elliptic and c4/b2
2 > −1/32.

From these inequalities we find that, regarding the relative signs of CPC(2), CFC(2),

CPTBC(2) and CBPC(2), there are only three distinct cases depending on the value of

the quotient c4/b2
2 as follows:

Case 1: c4/b2
2 < − 1

12
. Here the PC and PTBC are always on the same side of

the y–axis. Within this region the BPC lies on the same side of the y–axis as the

PC but the FC always lies on the opposite side of the y–axis from the PC, e.g.

g(x, y) = x2 + xy2 − y4 where the PTBC and BPC lie in the hyperbolic region.

C a s e  1
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Case 2: − 1
12

< c4/b2
2 < 1

6
. Here the PC and PTBC are always on opposite sides of

the y–axis. Within this region the FC and BPC could lie on either side of the y–axis,

e.g. g(x, y) = x2 + 4xy2 + y4 where the PTBC and BPC lie in the hyperbolic region.

C a s e  2

Case 3: 1
6

< c4/b2
2. Here the PC and PTBC are always on the same side of the

y–axis. Within this region the FC and BPC both lie on the same side of the y–axis

as the PC, e.g. g(x, y) = x2 + xy2 + y4 where the PTBC and BPC lie in the elliptic

region.

C a s e  3
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4.4 Chapter Summary

In this chapter we looked at properties of maps linking pairs of surface points with

parallel tangent planes. Using local parameterisations (e.g. writing our surfaces as

graphs) we denoted these parallel pairs as p = (s, t, f(s, t)) and q = (u, v, g(u, v)) and

the set of all such (non-trivial) pairs as Π = {(p, q) : Tp ‖Tq and p 6= q}. The main

objective was to find ways of parameterising Π and we approached this problem from

two distinct standpoints: (i) p and q lie on disjoint surfaces, whence the “diagonal”

pairs (p, p) = (q, q) cannot exist in Π, and (ii) p and q lie local to, and either side of,

the parabolic curve of a single surface piece. Here diagonal pairs do exist in Π in the

limit as p and q come into coincidence on the parabolic curve.

For the disjoint case we showed in proposition 4.2.2 that Π is smooth unless both p

and q are parabolic and their unique asymptotic directions are parallel. We showed

in proposition 4.2.3 that the map h : (u, v) 7→ (s, t) is a local diffeomorphism when

both p and q are non-parabolic, and in proposition 4.2.6 that h is (i) a fold map when

one of the points is non-parabolic and the other is ordinary parabolic, and (ii) a cusp

map when one of the points is non-parabolic and the other is a cusp of Gauss. In

proposition 4.2.8 we found conditions for h to be a lips or beaks map. Finally in

proposition 4.2.9 we showed that even when when both p and q are parabolic we can

still parameterise Π using one parameter from each of the points (excluding three

special cases of the relative asymptotic directions at p and q).

For the local case we showed in proposition 4.3.2 that h is a local diffeomorphism when

p and q are not local to a cusp of Gauss. When p and q are local to an ordinary cusp of

Gauss we showed in proposition 4.3.5 that we can parameterise Π using one parameter

from each of the points and that F1 : (t, v) 7→ (s, t) and F2 : (t, v) 7→ (u, v) are fold

maps. The fold lines of F1 and F2 projected onto the surface mark the boundary of

the region on the surface for which points have parallel “partners”. We called this

boundary the Parallel Tangents Boundary Curve (PTBC). Finally we showed how the

value of the ratio c4/b2
2 affects the relative arrangement of the PTBC, the parabolic

curve, the flecnodal curve and the bi-tangent plane curve about a cusp of Gauss.



Chapter 5

The Affine Equidistants

5.1 Introduction

We now consider the equidistants of a surface (or surfaces). These are formed by

points at a some fixed proportion along chords joining surface points with parallel

tangent planes. Since the essential structure of the equidistants depends purely on

parallelism they are affine invariants of a surface. If the points of parallel tangency

are at p and q then the corresponding equidistant point is given by

Eλ(p, q) = (1− λ) p + λ q

where λ ∈ [0, 1] is the fixed proportion along the chord. Note that λ and 1 − λ give

rise to the same equidistant (since p and q can be interchanged) so that when λ = 1
2

the equidistant has a special symmetry. We call this particular equidistant (which

is the 3D analogue of the MPTL discussed in section 2.6) the Mid-Parallel Tangents

Surface (MPTS). Its properties will feature heavily throughout this and subsequent

chapters.

Note: the 3D equidistants are one of the few affinely invariant symmetry construc-

tions to surfaces that can be computed efficiently. However for the 2D case several

other options have been studied, e.g. the Affine Distance Symmetry Set (ADSS), the

Affine Envelope Symmetry Set (AESS) and the Affine Area Symmetry Set (AASS).

A general review of these constructions is provided in a paper by Giblin [7].

82
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5.2 Disjoint Surfaces

If one of the points of parallel tangency is at (s, t, k + f(s, t)) on M and the other is

at (u , v, g(u, v)) on N then the equidistant map Eλ : R4 → R3 is as follows

Eλ(s, t, u, v) =

(
((1− λ) s + λu, (1− λ) t + λ v, (1− λ) (k + f(s, t)) + λ g(u, v)

)

with λ ∈ R fixed. When λ = 1
2

we have the MPTS and we use the notation X ≡ E 1
2
.

First we prove an analogous result to proposition 2.6.3 for curves:

Proposition 5.2.1 The tangent plane at any smooth point of Eλ is parallel to the

tangent planes on M and N which gave rise to that point. Thus Eλ is formed as

an envelope of planes parallel to and at a fixed proportion between pairs of parallel

tangent planes on M and N .

Proof: Recall the map π of equation (4.2) and let ρ = (α, β, γ, δ) be a non-zero kernel

vector of Jπ, the Jacobian matrix of π given in equation (4.3). The tangent to Eλ is

the image of ρ under the linear map JX , i.e.

JEλ
ρ =




1− λ 0 λ 0

0 1− λ 0 λ

(1− λ)fs (1− λ)ft λgu λgv







α

β

γ

δ




=

(
(1− λ)α + λγ, (1− λ)β + λδ, (1− λ)αfs + (1− λ)βft + λγgu + λδgv

)
.

However in the set of pairs of points with parallel tangent planes (i.e. Π) we have

fs = gu and ft = gv so this vector can be written as

((1− λ)α + λγ)(1, 0, fs) + ((1− λ)β + λδ)(0, 1, ft), or

((1− λ)α + λγ)(1, 0, gu) + ((1− λ)β + λδ)(0, 1, gv).

The first vector is clearly parallel to the tangent plane to M at (s, t, f(s, t)) whilst

the second is parallel to the tangent plane to N at (u, v, g(u, v)). Hence the tangent

to Eλ is parallel to the tangent planes at the two points which generated it, and since

any smooth surface is the envelope of its tangent planes the result follows. ¤
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Singular Points

We now go on to consider conditions under which Eλ is singular. If we assume that

π : R4 → R2 is a submersion (so that Π is smooth) then Eλ fails to be smooth when

the 5× 4 matrix formed as JX stacked on top of Jπ fails to have maximal rank, i.e.

rank




1− λ 0 λ 0

0 1− λ 0 λ

(1− λ)fs (1− λ)ft λgu λgv

fss fst −guu −guv

fst ftt −guv −gvv




< 4.

Since fs − gu = 0 and ft − gv = 0 we can subtract gu times row 1 from row 3 and gv

times row 2 from row 3 whence row 3 is rendered all zero and can be discarded. We

now add column 3 to column 1 and column 4 to column 2 to obtain the following



1 0 λ 0

0 1 0 λ

fss − guu fst − guv −guu −guv

fst − guv ftt − gvv −guv −gvv




This 4× 4 matrix is singular if and only if
(

λfss + (1− λ)guu

)(
λftt + (1− λ)gvv

)
−

(
λfst + (1− λ)guv

)2

= 0.

If Hf is the Hessian matrix of f and Hg is the Hessian matrix of g then we have:

Proposition 5.2.2 The equidistant Eλ is smooth at a point ℘ when

det [ λHf + ( 1− λ ) Hg ] 6= 0

where Hf and Hg are evaluated at the end points of the chord which formed ℘.

Example 5.2.3 We will chose simple forms for f and g, enabling us to write down

exact expressions for s, t and X as functions of u and v. So we take f(s, t) =

−s2 − t2, k = 3 and g(u, v) = u2 + 2v2 + u3, so M and N are elliptic at (0, 0, 3) and

(0, 0, 0) respectively. The MPTS is singular at (0, 0, 3/2) since

(Hf + Hg)(0) =


 0 0

0 4



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M P T S

N

M

Figure 5.1: The singular MPTS of example 5.2.3.

Calculations give

s = −u− 3u2

2
, t = −2v and X =

(
−3u2

4
, −v

2
,

3

2
− v2 − u3 − 9u4

8

)

whence it is clear that the MPTS is singular at (0, 0, 3/2) since Xu = (0, 0, 0) here.

Figure 5.1 shows the two generating surface pieces with the MPTS in-between clearly

singular.

Relationship between the MPTS and the CSS

We mentioned the CSS in the introduction to this chapter. Since it is formed as the

envelope of chords joining points with parallel tangent planes it is clear that when

the envelope point on a given chord is mid-way along the chord then the CSS and

MPTS have a common point. Giblin and Zakalyukin [11] give the following method

for constructing the CSS:

Let p ∈ M and q ∈ N be points with parallel tangent planes, then r = λp + µq is on

the CSS if and only if µF + λG is a degenerate quadratic form. Here F if the matrix

of the second fundamental form of M at p, G is the matrix of second fundamental of

N at q, and λ + µ = 1. An easy consequence of this is the following:
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Figure 5.2: Relationship between the MPTS and the CSS from example 5.2.5.

Proposition 5.2.4 The MPTS and CSS share a point when the MPTS is singular.

Proof: We can assume without loss of generality that µ 6= 0. Hence |µF + λG| = 0 if

and only if |F + (λ/µ)G| = 0. This condition is the same as that of proposition 5.2.2

when λ = 1
2
. ¤

Example 5.2.5 We take the same f, g and k as example 5.2.3 so that the CSS,

B : R2 → R3, can be determined exactly as

B(u, v) =

(
3u2

2(2 + 3u)
,

(3u− 1)v

2 + 3u
,

4u3 + 3u4 − 8v2 + 12 + 24v2u

4(2 + 3u)

)
.

We observe that B(0, 0) = (0, 0, 3/2), which is a point on the MPTS in this example.

Figure 5.2 gives two views of the MPTS (the dark surface) and CSS (the light surface)

in a small region around (0, 0, 3/2). It shows how the CSS contacts the MPTS along

its singular edge.

Discriminants and Unfoldings

We have shown that the MPTS can be thought of as the envelope of a certain family

of planes related to the two disjoint surface pieces. With this in mind we now regard

the MPTS as a discriminant and perform some unfolding calculations to ascertain

the nature of its singular points. The close relationship between the MPTS and the

CSS means that minor changes to the details in Giblin and Zakalyukin [11] yields the

following as a generating function for the MPTS as a discriminant

F (s, t, u, v, p, q ; x, y, z) = f(s, t) + g(u, v) + k − 2z + (s + u− 2x) p + (t + v − 2y) q.
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Here (p, q, 1) is an arbitrary direction vector in R3. Now

DF = {(x, y, z) : F = Fs = Ft = Fu = Fv = Fp = Fq = 0 for some s, t, u, v, p, q}.

We have Fs = p + fs and Ft = q + ft so that F = Fs = Ft = 0 gives (p, q, 1) =

(−fs,−ft, 1), i.e. (p, q, 1) is normal to M . Similarly F = Fu = Fv = 0 gives (p, q, 1) =

(−gu,−gv, 1), i.e. (p, q, 1) is normal to N . Thus the tangent planes at (s, t, f(s, t)+k)

and (u, v, g(u, v)) are parallel. Finally, Fp = s + u − 2x and Fq = t + v − 2y so

F = Fp = Fq = 0 gives (x, y, z) = (1
2
(s + u), 1

2
(t + v), 1

2
(k + f(s, t) + g(u, v))), i.e. the

midpoint of the chord joining (s, t, k + f(s, t)) to (u, v, g(u, v)). Hence DF is exactly

the MPTS.

We now establish conditions for F−1(0) to be smooth at (0, 0, 0, 0, 0, 0, 0, 0, k/2) in R9.

This is important since if we establish smoothness here then a singularity of the MPTS

at (0, 0, k/2) will arise only as a result of the projection of F−1(0) to R3. Hence we

ask; when does J∗ = J(F, Fs, Ft, Fu, Fv, Fp, Fq) evaluated at (0, 0, 0, 0, 0, 0, 0, 0, k/2),

have maximal rank?

J∗ =




0 0 0 0 0 0 0 0 −2

fss fst 0 0 1 0 0 0 0

fst ftt 0 0 0 1 0 0 0

0 0 guu guv 1 0 0 0 0

0 0 guv gvv 0 1 0 0 0

1 0 1 0 0 0 −2 0 0

0 1 0 1 0 0 0 −2 0




.

Successive row and column operations together with deletion of any row or column

with a single non-zero entry (thereby reducing the rank by one) leads to the following

reduced matrix 
 fss fst −guu −guv

fst ftt −guv −gvv


 .

We know by proposition 4.2.2 that this matrix has rank 2 unless both points are

parabolic with the same asymptotic direction and so we have:
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Proposition 5.2.6 F−1(0) is smooth at (0, 0, 0, 0, 0, 0, 0, 0, k/2) in R9 provided (i)

Either M or N is non-parabolic, or (ii) Both M and N are parabolic but with distinct

asymptotic directions.

Giblin and Zakalyukin [11] give an ingenious method for reducing the number of

variables in the generating function F from 6 to 2 (which greatly simplifies the subse-

quent unfolding calculations). We take, w1 = 1
2
(s + u)− x, w2 = 1

2
(t + v)− y, r1 =

s− u and r2 = t− v. Now, solving for s, t, u and v we obtain, s = w1 + 1
2
r1 + x, t =

w2 + 1
2
r2 + y, u = w1 − 1

2
r1 + x, and v = w2 − 1

2
r2 + y. If we now substitute these

into the generating function F we obtain F∗(r, w, x, p, q) =

f(w1 +
1

2
r1 +x, w2 +

1

2
r2 + y)+ g(w1− 1

2
r1 +x, w2− 1

2
r2 + y)−2z +k +2w1p+2w2q.

If we now take

H∗(r, w, x) = f(w1 +
1

2
r1 +x, w2 +

1

2
r2 + y)+ g(w1− 1

2
r1 +x, w2− 1

2
r2 + y)− 2z +k

then F∗(r, w, x, p, q)−H∗(r, 0, x) = 0 when w1 = w2 = 0 so, by Hadamard’s lemma,

F∗(r, w, x, p, q)−H∗(r, 0, x) = w1(2p + Φ1(r, w, x)) + w2(2q + Φ2(r, w, x))

for some smooth functions Φ1 and Φ2. Now if H(r, x) = H∗(r, 0, x), p′ = 2p +

Φ1(r, w, x) and q′ = 2q + Φ2(r, w, x) then

F∗(r, w, x, p, q) = H(r, x) + w1 p′ + w2 q′.

Finally, w1 p′+w2 q′ is a non-degenerate quadratic form when w1 = w2 = p′ = q′ = 0,

so the discriminants of F∗ and H are diffeomorphic. Hence for the MPTS we can use

H, a three parameter family of functions of two variables, to determine conditions for

singular points, and to determine if these are versally unfolded by the family H.

Note: Since the direct calculations which we now describe are very involved we will

restrict our investigation to A2 and A3 singular points of the MPTS. Later in the

chapter, when we consider the local case, we will have access to normal forms (i.e.

simplest possible versal families) for a number of singularity types, but at the time

of writing such normal forms had not been determined in the disjoint surfaces case.
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The A2 Singularity

We have the family of functions, H(r, x) = f(1
2
r1 +x, 1

2
r2 + y)+ g(−1

2
r1 +x, −1

2
r2 +

y) − 2z + k, and are interested in a singular member of this family when (x, y, z) =

(0, 0, k/2), i.e. h(r1, r2) = f(1
2
r1,

1
2
r2)+ g(−1

2
r1, −1

2
r2). To simplify matters and also

avoid the use of subscripts we will use the change of variables r = r1/2 and s = r2/2

in the equation for H. Thus

H(r, s, x, y, z) = f(r + x, s + y) + g(−r + x, −s + y)− 2z + k

and h(r, s) = f(r, s) + g(−r,−s). If we take a general Monge form for the parallel

tangency point on N then

g(x, y) = (g20 x2 + g11 xy + g02 y2) + (g30 x3 + g21 x2y + g12 xy2 + g03 y3) + h.o.t.

and rotate in the z–axis so that the principal directions at the parallel tangency point

on M align with the x and y axes then

f(x, y) = (a x2 + b y2) + (f30 x3 + f21 x2y + f12 xy2 + f03 y3) + h.o.t.

Thus (after the change of variables x 7→ r, y 7→ s) we have

h(r, s) = (a + g20) r2 + g11 rs + (b + g02) s2 + (f30 − g30) r3 + (f21 − g21) r2s + ...

Now h is A≥2 singular if and only if its quadratic terms are a perfect square, i.e.

ζ = g11
2 − 4(a + g20)(b + g02) = 0.

We may assume without loss of generality that a + g20 6= 0 (otherwise b + g02 6= 0

and we use the change of variables x 7→ y, y 7→ x) so that we can apply a change of

variables (r, s) 7→ (r′, s) where r′ = r + g11s/(2(a + g20)) giving

h(r′, s) = (a + g20)r
′2 + h.o.t.

The singularity will be exactly A2 provided r′ does not divide the cubic terms of

h(r′, s), i.e. the coefficient of s3 in the expansion of h(r′, s) is non-zero. Calculations

show this coefficient to be

η = (f03 − g03)−
(

f12 − g12

2 (a + g20)

)
g11 +

(
f21 − g21

4 (a + g20)
2

)
g11

2 −
(

f30 − g30

8 (a + g20)
3

)
g11

3.

Hence the function h has an A2 singularity if and only if ζ = 0 and η 6= 0. Note: we

do not know of any geometrical significance of this expression for η.
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Figure 5.3: The MPTS of example 5.2.7.

Example 5.2.7 If we take k = 3, f(x, y) = −x2 − y2 and g(x, y) = −x2 + y2 + x3 +

xy2 + y3 then ζ = 0 and η = −1. Hence we expect the MPTS in this example to

have an A2 singularity at (0, 0, 3/2). The left half of figure 5.3 shows the two surface

pieces M and N with the MPTS in-between. The right half shows two views of the

MPTS in a small region around (0, 0, 3/2) displaying what looks like a cuspidal edge.

An unfolding calculation will be required to verify if this is the case.

We now seek to determine if the family H versally unfolds an A2 singularity of h

when r = s = 0. This will be the case provided the quotient, E2/Jh, is spanned as

a real vector space by the ‘initial velocities’: Hx, Hy and Hz evaluated at (0, 0, k/2).

Here E2 is the ring of all smooth function germs in two variables vanishing at the

origin and Jh is the Jacobian ideal of h over E2, i.e. Jh = {fh′ : f ∈ E2}. We can

use the general result that an An singularity is (n + 1)–determined. This means that

we can work in Ln
2 , the vector space of (n + 1)–jets of members of E2, rather than E2

itself. Hence, if Jh = {fhr + ghs : f, g ∈ Ln
2} together with linear combinations of

(the 2-jets of) Hx, Hy and Hz evaluated at (0, 0, k/2) give us all monomials in r and

s up to degree three, then H is versal.

Immediately we note that Hz | (0,0,k/2) = −2, so we have the constant term and can now

discount it from further considerations. We seek a 9× 9 matrix Γ with non-zero de-

terminant whose columns represent the monomials r, s, r2, rs, s2, r3, r2s, rs2 and s3

and whose rows represent linear combinations of members of Jh together with Hx and

Hy evaluated at (0, 0, k/2). The matrix entries represent the coefficients of the various
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monomials in each linear combination. If we take hr, Hy | (0,0,k/2), rhr, shr, hs, r2hr,

rshr, s2hr and shs as the nine row entries then Γ =




2(a + g20) g11 3(f30 − g30) 2(f21 − g21) f12 − g12 4(f40 + g40) 3(f31 + g31) 2(f22 + g22) f13 + g13

−g11 2(b− g02) f21 + g21 2(f12 + g12) 3(f03 + g03) f31 − g31 2(f22 − g22) 3(f13 − g13) 4(f04 + g04)

0 0 2(a + g20) g11 0 3(f30 − g30) 2(f21 − g21) f12 − g12 0

0 0 0 2(a + g20) g11 0 3(f30 − g30) 2(f21 − g21) f12 − g12

g11 2(b + g02) f21 − g21 2(f12 − g12) 3(f03 − g03) f31 + g31 2(f22 + g22) 3(f13 + g13) 4(f04 + gf04)

0 0 0 0 0 2a + 2g20 g11 0 0

0 0 0 0 0 0 2(a + g20) g11 0

0 0 0 0 0 0 0 2(a + g20) g11

0 0 0 g11 2(b + g02) 0 f21 − g21 2(f12 − g12) 3(f03 − g03)




Since a + g20 6= 0 we can use ζ = 0 to write g02 = −b + g11
2/(4(a + g20) whence

det(Γ) = 2304 b η2 (a + g20)
6. We can assume, without loss of generality, that M is

non-parabolic so that a 6= 0 and b 6= 0. If h is exactly A2 then η 6= 0 so det(Γ) 6= 0

and we state:

Proposition 5.2.8 For generic surface pieces M and N then H versally unfolds an

A2 singularity of h when at least one of the points of parallel tangency is non-parabolic.

Consequently when also ζ = 0 and η 6= 0 (as given above) the MPTS is diffeomorphic

to a cuspidal edge.

Example 5.2.9 Returning to example 5.2.7 we have g20 = −1, a = b = −1 and

η = −1 so that det(Γ) = −147456 6= 0 and we confirm that the MPTS of this

example has a cuspidal edge through the point (0, 0, k/2).

The A3 Singularity

The function h has an A≥3 singular point when η = 0 so that (r′)2, the repeated

linear term which forms the quadratic part of h, divides the cubic part. If a+ g20 6= 0

we can carry out another change of variables, (r′, s) 7→ (r′′, s), to absorb the cubic

terms into the quadratic. We take r′′ = r′ + (θ0 (r′)3 + θ1 (r′)2s + θ3 r′s3)/2 where the

θi’s are expressions in the coefficients of the Taylor expansions of f and g, whence

h(r′′, s) = (a + g20) (r′′)2
+ {terms of degree ≥ 4}.
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Figure 5.4: The MPTS of example 5.2.10.

The singularity will be exactly A3 provided r′′ does not divide the quartic terms of

h(r′′, s), i.e. the coefficient of s4 in the expansion of h(r′′, s) is non-zero.

Calculations show this coefficient to be ξ =

(4 (g40 + f40)(a + g20)− 9 (f30 − g30)2) g11
4

64 (a + g20)5
+

(3 (f21 − g21)(f30 − g30)− (g31 + f31)(a + g20)) g11
3

8 (a + g20)4

+
(−2 (f21 − g21)2 − 3 (f30 − g30)(f12 − g12) + 2 (g22 + f22)(a + g20)) g11

2

8 (a + g20)3

(−(f12 − g12)(f21 − g21) + (g13 + f13)(a + g20)) g11

2 (a + g20)2
+
−(f12 − g12)2 + 4 (g04 + f04)(a + g20)

4 (a + g20)

and when a+g20 6= 0 the function h has an A3 singularity if and only if ζ = η = 0 and

ξ 6= 0. Note: As with the expression for η above we do not know of any geometrical

significance of this expression.

Example 5.2.10 If we take k = 3, f(x, y) = −x2 − y2 + x3 and g(x, y) = −x2 +

y2 + x3 − xy2 then ζ = η = 0 and ξ = 1/8 6= 0. Hence we expect the MPTS in this

example to have an A3 singularity at (0, 0, 3/2). The left half of figure 5.4 shows the

two surface pieces M and N with the MPTS in-between. The right half shows two

views of the MPTS in a small region around (0, 0, 3/2) displaying what looks like a

swallowtail. Again, unfolding calculations will be required to verify if this is the case.

The unfolding calculation here is more complicated since we must consider mono-

mials up to and including degree four. As before Hz | (0,0,k/2) gives us the constant

term and we seek a 14 × 14 matrix ∆ with non-zero determinant whose columns
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represent the monomials r, s, r2, rs, s2, r3, r2s, rs2, s3, r4, r3s, r2s2, rs3 and s4 and

whose rows represent linear combinations of members of Jh together with Hx and Hy

evaluated at (0, 0, k/2). We start with a 14 × 18 matrix whose rows are made up

by: Hx, Hy, hr, hs − g11hr/(2(a + g20)), rhr, rhs − g11rhr/(2(a + g20)), shr, shs −
g11shr/(2(a + g20)), r2hr, r2hs − g11r

2hr/(2(a + g20)), rshr, rshs − g11rshr/(2(a +

g20)), s2hr, s2hs− g11s
2hr/(2(a + g20)), r3hr, r2shr, rs2hr and s3hr. We now impose

the conditions ζ = η = 0 and perform separate Gaussian eliminations for the cases (i)

g11 6= 0 and (ii) g11 = 0. In either case we are left with an 18×14 matrix the first four-

teen rows of which are upper diagonal with the last four rows being all zero. We take ∆

as these first fourteen rows and find that for case (i) det(∆) = g11 ξ2 σ1/(2 (a + g20)
8)

where

σ1 = {a f21} g11
3 + 2 {3 b (a g30 − f30 g20)− 2 a f12 (a + g20)} g11

2+

4 (a + g20){3 a f03(a + g20)− 2 b (a g21 + f21 g20)} g11 + 8 b(a + g20)
2{a g12 + f12 g20}

whilst for case (ii) det(∆) = −8 b ξ2 σ2/(a + g20)
5 where σ2 = a g12 + f12 g20. We can

assume, without loss of generality, that M is non-parabolic so that a 6= 0 and b 6= 0.

If h is exactly A3 then ξ 6= 0 so det(∆) 6= 0 when σ1,2 6= 0 and we state:

Proposition 5.2.11 For generic surface pieces M and N then H versally unfolds an

A3 singularity of h when at least one of the points of parallel tangency is non-parabolic

and (i) σ1 6= 0 when g11 6= 0 or (ii) σ2 6= 0 when g11 = 0. Consequently when also

ζ = η = 0 and ξ 6= 0 (as given above) the MPTS is diffeomorphic to an ordinary

swallowtail.

Example 5.2.12 Returning to example 5.2.10 we have g11 = 0, b = −1, ξ = 1/8 and

σ2 = 1 so that det(∆) = − 1
256

6= 0 and we confirm that the MPTS of this example

has a swallowtail at the point (0, 0, k/2).

Both points Parabolic

We have seen that both the A2 and A3 versal unfolding criteria require at least one

of the surface pieces to be non-parabolic. However, if both M and N are parabolic

then we know by proposition 4.2.9 that, in general, we can write t and u as smooth
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Figure 5.5: Geometrical setup for bi-tangent plane case.

functions of s and v and that the map h : (s, v) 7→ (t, u) is a fold. Calculating the

components of the MPTS in this case we obtain

X : (s, v) 7→
(

s

2
+ O(2),

v − as

2
+ O(2),

k

2
+ O(3)

)

whence it is clear that JX has maximal rank when s = v = 0 and we state:

Proposition 5.2.13 If both M and N are parabolic and certain conditions are sat-

isfied (as stated in proposition 4.2.9) then the MPTS is always smooth.

Bi-tangent Planes and Ruled Surfaces

We now consider the possibility that the points of parallel tangency on M and N

can share the same tangent plane. For a standard geometry here we translate and

rotate so that the point of interest on N lies at the origin with the xy–plane tangent

here. We then rotate about the z–axis and re-scale in the x-direction so that the

point of interest on M lies at the point (1, 0, 0). Clearly the tangent plane to M at

(1, 0, 0) is the same as that to N at the origin and f and g will both have the general

Monge form of equation (4.6). We have M : (s, t) 7→ (s + 1, t, f(s, t)) and N :

(u, v) 7→ (u, v, g(u, v)) with fs = ft = 0 when s = t = 0 and gu = gv = 0 when

u = v = 0. The geometry is shown schematically in figure 5.5. The map π relating

pairs of points on M and N with parallel tangent planes is as before whilst the MPTS

map is, X : (s, t, u, v) 7→ (
1
2
(s + 1 + u), 1

2
(t + v), 1

2
(f(s, t) + g(u, v))

)
. Minor changes
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to the generating function F described above gives

F = f(s, t) + g(u, v)− 2z + (s + 1 + u− 2x) p + (t + v − 2y) q (5.1)

for which DF is exactly the MPTS. Also, we can reduce from 6 variables to 2 by

taking w1 = 1
2
(s+1+u)−x, w2 = 1

2
(t+v)−y, r1 = s−u and r2 = t−v. This leaves

us, up to diffeomorphism, with the same function h(r1, r2) = f(r1, r2) + g(−r1,−r2)

so that the A2 and A3 conditions are exactly the same as before. However, our main

aim here is to study the relationship between a certain ruled surface (i.e. a surface

swept out by a line moving in space) and the MPTS. The ruled surface in question,

which we will call R, is formed by chords of contact of points with the same tangent

plane on M and N (Note: in this section we will, rather loosely, use R and X to

refer to both a map and its image in R3). To formulate R we need pairs of points

p = (s + 1, t, f(s, t)) on M and q = (u, v, g(u, v)) on N with parallel tangent planes

but with the additional condition that (p− q) ·N = 0, where N is any normal vector

at p or q. If we write s and t as functions of u and v in the usual manner then the

condition (p− q) ·N = 0 gives us a relationship between u and v. Solving this for u

as a function of v, say u = u∗(v), then we can parameterise R as follows

R : (v, w) 7→ {1− w} (u∗, v, g∗) + {w} (s∗ + 1, t∗, f ∗)

where g∗ = g(u∗, v), s∗ = s(u∗, v), t∗ = t(u∗, v) and f ∗ = f(s∗, t∗). The parameter w

ranges over R with w = 1 giving the point p and w = 0 giving the point q. In what

follows we will be interested in the structure of both X and R at the point (1
2
, 0, 0).

On R this corresponds to v = 0, w = 1
2

and if we evaluate the Jacobian of R here we

obtain

JR =




1 ∗
0 4 f20 g20 (f02+g02)−g20 f11

2−f20 g11
2

2 g20 (4 f02 f20−f11
2

0 0




where ∗ is some expression in the coefficients fij, gij. So JR has maximal rank and R

is smooth at (1
2
, 0, 0) when

g20 f11
2 + f20 g11

2 6= 4 f20 g20 (f02 + g02).
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( i )  X  s i n g u l a r ,  R  s m o o t h ( i i )  X  s m o o t h ,  R  s i n g u l a r ( i i i )  X  s i n g u l a r ,  R  s i n g u l a r
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Figure 5.6: In each case the lighter surface is the mid-parallel tangents surface X,

whilst the darker surface is the ruled-surface R.

A similar calculation shows that JX has maximal rank when

(f11 + g11)
2 6= 4 (f20 + g20) (f02 + g02).

So we can clearly find examples where X is singular and R is smooth (and vice-versa)

or where both are singular:

Example 5.2.14 (a) With f = s2 + 1
8
t2, g = u2 +u v +u2 v we have X singular and

R smooth. See figure 5.6(i). (b) With f = −s2+t2, g = 1
2
u2+2 u v+v2+u3+u v2+v3

we have X is smooth and R singular. See figure 5.6(ii) (c) With f = −s2 − t2, g =

−u2 + v2 + u3 + u v2 + v3 we have X and R both singular. See figure 5.6(iii).

The above example is interesting in that the ruled surface appears (like the MPTS)

to have cuspidal edges, and so we are motivated to find a generating function for it.

Giblin and Zakalyukin [11] looked at bi-tangent chords in relation to the CSS and some

minor modifications of their generating family yields G(s, t, u, v, w,m, n ; x, y, z) =

wf + (1− w)g − z + {(s + 1)w + (1− w)u− x}m + {wt + (1− w)v − y}n (5.2)

where (m, n, 1) is an arbitrary direction vector in R3. Simple calculations show that

(i) G = ∂G/∂s = ∂G/∂t = 0 and G = ∂G/∂u = ∂G/∂v = 0 imply that the tangent

planes at p and q are parallel, (ii) G = ∂G/∂m = ∂G/∂n = 0 implies that (x, y, z)

is somewhere on the line through p and q (dependent on the value of w) and (iii)

G = ∂G/∂w = 0 implies that (s + 1− u, t− v, f − g) · (m,n, 1) = 0. Hence we have:
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Proposition 5.2.15 The discriminant DG of the family of functions G is exactly the

ruled surface described by R.

Note: This holds only when we keep away from the end points of the chords since

here DG includes the surface itself. However the existence of this generating function

shows that R can be regarded as a discriminant and that we can expect to see wave-

front type singularities away from the end points of chords. As before a change of

variables enables us to extract a non-degenerate quadratic form, simplifying G as

follows

G̃ = wf(x+w− 1

2
+{1−w}u, y +{1−w}u)+{1−w}g(x+w− 1

2
−wu, y−wu)− z.

Thus for R we could use the generating function G̃ of three parameters (x, y and z)

and three variables (u, v and w) to determine conditions for A2 and A3 singularities

and find versal unfolding criteria.

Common Tangent Line to X and R

In figure 5.6(iii) it looks like the respective cuspidal edges of R and X have the same

limiting tangent direction at (1
2
, 0, 0). To investigate this we need some machinery

which we now describe in a more general setting: Let F : R3 × Rk 7→ Rk+1 be such

that F(x, y, z ; u1, u2, ..., uk) = (F, Fu1 , Fu2 , ..., Fuk
). Here x, y and z are the three

unfolding parameters whilst u1 to uk are variables.

Let π be the projection map from Rk+3 to R3. If we assume that F−1(0) is a smooth

surface M⊂ Rk+3, with Σπ|M smooth and π|Σπ an immersion (since we are looking

at cuspidal edges), then the critical locus of π(M) will be smooth. This critical set

is found by stacking JF and Jπ to give a k + 4 by k + 3 matrix, say A, where
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A =




Fx Fy Fz Fu1 · · · Fuk

Fu1x Fu1y Fu1z Fu1u1 · · · Fu1uk

...
...

...
...

...
...

...
...

...
...

...
...

Fukx Fuky Fukz Fuku1 · · · Fukuk

1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 0 1 0 · · · 0




.

To find det(A) we can simplify considerably since the last k entries on the top row are

all zero (as we are in F−1(0)) and we can use the bottom 3 rows to render everything

in columns 1 to 3 to zero for rows 1 to k + 1. Hence we can discard the top row to

leave the following k + 3× k + 3 matrix




0 0 0 Fu1u1 · · · Fu1uk

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 Fuku1 · · · Fukuk

1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 0 1 0 · · · 0




.

The determinant of this matrix (= det(A)) is just the determinant of the sub-matrix

marked in bold, i.e. the hessian of F with respect to the variables u1 to uk. If

∆ = det(A) then we can now state:

Proposition 5.2.16 The critical set of π(M) is given by F̃−1(0) where F̃ : x,u 7→
F , ∆. Moreover, if JF̃ has maximal rank then a non-zero kernel vector, after projec-

tion to R3, will be tangent to the cuspidal edge.

If we apply this proposition to the MPTS, so that k = 6 and F is given by equation

(5.1), then the kernel of JF̃ after projection to R3 (i.e. discard all but the first three

components) is the tangent to the cuspidal edge given by

( g11
2 + f11 g11 − 4 g02 (f20 + g20), 2 (f20 g11 − g20 f11), 0 )
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as a direction vector. Applying the proposition to the ruled surface, so that k = 7

and F = G as given by equation (5.2), then the kernel of JG̃ after projection to R3 is

the tangent to the cuspidal edge given by (P , 0, 0 ) as a direction vector1.

Example 5.2.17 Returning to example 5.2.14(c) where f = −s2− t2 and g = −u2 +

v2 +u3 +u v2 + v3 then f20 g11 = g20 f11 = 0 and P 6= 0 so the tangent to the cuspidal

edge on both the MPTS and the ruled surface at (1
2
, 0, 0) is in the direction (1, 0, 0),

as anticipated.

We might wonder what an example looks like with different tangent directions to the

cuspidal edges, however, if we simultaneously solve the two singularity conditions for

X and R at the point (1
2
, 0, 0), i.e.

R singular ⇔ g20 f11
2 + f20 g11

2 = 4 f20 g20 (f02 + g02)

X singular ⇔ (f11 + g11)
2 = 4 (f20 + g20) (f02 + g02)

we find that both are singular ⇔ g20 f11 − f20 g11 = 0. This is a factor of the second

component of the tangent vector to X hence we confirm:

Proposition 5.2.18 When X and R both have a cuspidal edge at a point in R3 then

their respective tangent directions are parallel here.

Aside: Further Singularities of the Ruled Surface

When N has a parabolic point at 0 then R is singular at the base point on M , i.e.

(1, 0, 0). Since we are at an extreme of the chord we do not expect wave front type

singularities and in fact what we see is a surface with self intersection terminating at

a point on a cuspidal edge (see figure 5.7). In this case it is interesting to ask about

the relationship of the three space curves on R which are: (i) its cuspidal edge, (ii) its

curve of self-intersection and (iii) its locus of contact with the non-parabolic surface

piece M .

1Here P is a polynomial in the coefficients of the 3-jets of f and g whose form is not important

for our purposes.
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Figure 5.7: The ruled surface R when N is parabolic at 0.

To investigate this we will take f(s, t) = s2 + ε t2 and g(u, v) = (au + by)2 + g30 u3 +

g21 u2v + g12 uv2 + g03 v3 where ε = 1 for an elliptic point at M and ε = −1 for a

hyperbolic point at M . We find the three space curves as follows: (i) The cuspidal

edge is the locus of points on R at which the normal vanishes. In the λ v - plane this

locus is

λCE = 1− 3 (g30 b3 − g21 a b2 + g12 a2 b− g03 a3)

ε a3
v + h.o.t.

(ii) For the self intersection we take two parameterisations for R, say R(λ, v) and

R(λ1, v1), and find their common points. We then eliminate λ1 and v1. The locus of

this in the λ v - plane is

λSI = 1− g30 b3 − g21 a b2 + g12 a2 b− g03 a3

a3
v3 + h.o.t.

(iii) The locus of contact between R and the surface M is given by λCP = 1, i.e. the

end of the chord as it meets M tangentially.

Example 5.2.19 Taking f = s2 + t2 and g = u2 + v3 (so the point on M is elliptic

and that on N is not a cusp of Gauss) we obtain λCE = 1 + 3 v + 9 v3 + ..., λSI =

1 + v3 − 3 v6 + ... and λCP = 1. We can now plot the three curves in the λ v -

parameter plane to see how they interact around the point (0, 1), which is mapped

to the terminal point of self-intersection on R in the following manner:
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v

l
l C E

l S I

l C P
1

0

6
1

2

3
4

5

The (λ v)–plane is divided into six distinct regions by the three curves, as shown. If

we now map these curves and regions onto the ruled surface we find that λSI maps

onto R as a space curve which is smooth everywhere except the terminal point of

self-intersection, where it stops and goes back along its path. λCE maps to a space

curve which is smooth everywhere whilst λCP maps to a space curve with an ordinary

cusp at the terminal point of self-intersection.

1

2

3

4

5
6

R

l C P

l S I

l C E

Regions 1, 2 and 3 lie on one sheet of R whilst 4, 5 and 6 lie on the other. From

the graphs of the three curves in the λ v - plane it is clear that λCP crosses both λCE

and λSI so that the two branches of the ordinary cusp map to different sheets of R.

Hence, the calculations confirm what we expect intuitively, i.e. that the surface piece

M nestles into the corner created by the intersecting sheets R as follows:

R
M

l C P
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5.3 The Local Case

We now return to the local case, taking pairs of points with parallel tangent planes

close to a parabolic point of a smooth surface. Our approach this time will be dif-

ferent in that we will introduce a table of normal forms whose discriminants give

diffeomorphic versions of the equidistants in the various cases of interest. These nor-

mal forms represent the simplest possible generating family in each case. We will use

them to deduce some general properties, e.g. the existence of swallowtail points on

equidistants. However, since the resulting equidistants are only correct up to local

diffeomorphism we also work with the full pre-normal form, which for this case is

G = −h + λ f(s + µ z) + µ f(s− λ z) (5.3)

with s = (s1, s2) and z = (z1, z2) in the surface case, and λ + µ = 1 (see Lemma

2.5 of Giblin et al. [10] for a proof). To further clarify some points we consider the

analogous curve case and some of the examples here may even proceed directly from

the surface definition.

Equidistants close to an Ordinary Parabolic Point

In section 4.3 we showed that the parallel tangency map, π : (s, t, u, v) 7→ (fx(s, t)−
fx(u, v), fy(s, t)− fy(u, v)) is a local diffeomorphism provided the parabolic point at

the origin is not a cusp of Gauss. So we can find s and t as functions of u and v

and the MPTS is parameterised in the usual manner as X : (u, v) 7→ 1
2
(s(u, v) +

u, t(u, v) + v, f(s(u, v), t(u, v)) + f(u, v)).

Example 5.3.1 With f = x2 + y3 + y4 the MPTS is shown in figure 5.8. It appears

as a smooth surface with a boundary along the parabolic curve of the original surface.

To establish if this represents generic behaviour of the MPTS in a neighbourhood of

an ordinary parabolic point we take f = x2 + b0 x3 + b1 x2 y + b2 x y2 + b3 y3 + h.o.t.

and look for a curve lying in the MPTS (close to the origin) at all points of which

the 3 × 2 matrix JX drops below maximal rank. Taking the determinant of any of

the three minors of JX we arrive at the same expression in u and v. This expression

describes the singular locus of the MPTS in the (u, v)–plane.
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P a r a b o l i c  C u r v e

M P T S

Figure 5.8: MPTS to the surface z = x2 + y3 + y4 showing boundary along the

parabolic curve.

Now, assuming b3 6= 0 (i.e. the origin is not a cusp of Gauss) then we can write v

(say) as a series in u as follows

v = − b2

3 b3

u− 9 c2 b3
2 + 6 b2

2c4 − 9 b1
2b3

2 + 6 b2
2b1 b3 − b2

4 − 9 b2 c3 b3

27 b3
3 u2 + h.o.t.

If we now calculate P = fxx fyy − fxy
2 as a series in x and y and then solve for y as a

series in x we obtain the same series to any given order. This strongly suggests that

away from the parabolic curve of the surface the MPTS is smooth.

We can gain further insight by considering the other equidistants, i.e. those for which

λ 6= 0, 1
2

or 1. These have general equation Eλ(p, q) = p + λ (q − p) and all represent

surfaces which have inflexional contact2 with the original surface along the parabolic

curve then turn back, forming a cuspidal edge, before cutting the surface again away

from the parabolic curve (see figure 5.9). To determine if the singular locus on these

equidistants is indeed a cuspidal edge we need the following:

2Note: We say that two surfaces have Inflexional Contact at a point p if they are tangential here

and moreover that their curves of intersection, in a plane through p transverse to both surfaces, have

3–point contact at p.
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Figure 5.9: Equidistant for the surface z = x2+y3+y4 with λ = 1
4
, showing inflexional

contact and cuspidal edge.

Proposition 5.3.2 The equidistant formed using the family G of equation (5.3) fails

to be smooth if and only if

∂2G

∂z2
1

∂2G

∂z2
2

− ∂2G

∂z1∂z2

= 0. (5.4)

Proof: We simplify notation by using α = (s1 + µz1, s2 + µz2) and β = (s1 −
λz1, s2 − λz2) to denote the two points of parallel tangency in the (s1, s2)–parameter

plane. We also use the familiar subscript notation for differentiation. Hence G =

−h + λ f(α) + µ f(β), Gz1 = λµ (fz1(α) − fz1(β)) and Gz2 = λµ (fz2(α) − fz2(β)).

Consider the map F : (s1, s2, z1, z2) 7→ (fz1(α)− fz1(β), fz2(α)− fz2(β)) the zero set

of which we project to R3 using the map Eλ : (s1, s2, z1, z2) 7→ (s1, s2, h) to form the

equidistant. We now stack the Jacobian matrices of these two maps and ask when

the resulting 5× 4 matrix has maximal rank (i.e. rank 4). This matrix is




fz1z1(α)− fz1z1(β) fz1z2(α)− fz1z2(β) µfz1z1(α) + λfz1z1(β) µfz1z2(α) + λfz1z2(β)

fz1z2(α)− fz1z2(β) fz2z2(α)− fz2z2(β) µfz1z2(α) + λfz1z2(β) µfz2z2(α) + λfz2z2(β)

λfs1(α) + µfs1(β) λfs2(α) + µfs2(β) 0 (= Gz1) 0 (= Gz2)

1 0 0 0

0 1 0 0




.

Operations using rows 4 and 5 can eliminate the entries in the upper left 3 × 2 sub-

matrix whence it is clear that the matrix has maximal rank if and only if the upper

right 2× 2 sub-matrix has non-zero determinant. The result follows. ¤
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Equation (5.4) is a single condition on the parallel tangent points α and β so we

expect the solution to be a space curve in R3. Also, when z1 = z2 = 0 we have

α = β = (s1, s2) and using λ+µ = 1 in equation (5.4) gives fz1z1 fz2z2−fz1z2

2 = 0, i.e.

we are on the parabolic curve (since Gz1 = Gz2 = 0 is automatic). Hence the parabolic

curve is a space curve along which the two pieces of {G = Gz1 = Gz2 = 0} meet (i.e.

the original surface and the equidistant), which again confirms our observations with

real examples. Note: any intersections of the two pieces of {G = Gz1 = Gz2 = 0} will

appear (along with the singular locus on the equidistant) as solutions to equation (5.4)

but in practice we factor out the original surface in our calculations as we described

above.

Example 5.3.3 In order to show that the equidistant is locally a cuspidal edge we

need to work in a neighbourhood of a point where equation (5.4) is satisfied. We will

do this using the surface z = f(x, y) where f(x, y) = x2 + x y2 + y3 + y4 and λ 6= 0, 1
2

or 1. The equidistant can be parameterised by s2 and z2 as follows

Eλ =

(
−3s2 +

3(λ− µ)

2
z2 + h.o.t, s2, 9s2

2 − 9(λ− µ)s2z2 +
9(λ− µ)2

4
z2

2 + h.o.t.

)
.

The singular locus on the equidistant is given as the solutions of equation (5.4) after

substituting s1 = s1(s2, z2) and z1 = z1(s2, z2). Calculation shows this to be

z2 [ (6λ2 − 4λµ + 6µ2) z2 − 3(λ− µ)(3s2 + 1) ] = 0.

We know that z2 = 0 will correspond to intersections of the original surface and the

equidistant so the term in the square brackets is the one of interest. We can solve

this for s2 as a function of z2 when λ 6= µ (i.e. λ 6= 1
2
) and using λ + µ = 1 we have

s2 =
(6− 16 λ + 16 λ2) z2 + (3− 6 λ)

9 (2 λ− 1)
.

If we substitute this s2 into the parameterisation of Eλ and differentiate with respect

to z2 we can obtain the tangent direction to Eλ along its singular locus. Doing

this we obtain ( ∗, (6 − 16 λ + 16 λ2)/(18 λ − 9), ∗ ) so that the middle component

is always non-zero. Hence, planes s2 = constant will always be transverse to the

singular locus of Eλ. We can now intersect Eλ with such a plane, s2 = s2
∗ say, and

find a parameterisation of the resulting curve γ lying in this plane. We parameterise
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about the singular point on γ using say z2 = y + z2
∗, where z2

∗ is the value of z2

corresponding to s2 = s2
∗ and y is the parameter on γ. Doing this we obtain

γ(y) = (a0, b0) + (a2 y2, b2 y2 + b3 y3 + b4 y4)

where the ai’s and bi’s are functions of λ and s2
∗. Now a2 = (−3 + 8 λ − 8 λ2)/2

which is non-zero for all λ, whilst b3 = 64 λ (2 λ− 1) (λ− 1) (2 a2)
3 (1 + 3 s2

∗) which

is non-zero provided s2
∗ 6= −1

3
. Using a local diffeomorphism of the form (X, Y ) 7→

(X, Y − (b2/a2) X) it is clear that the singular point on γ at (a0, b0) is an ordinary

cusp. By extension the singular locus on Eλ is a cuspidal edge as expected.

So equidistants with λ 6= 0, 1
2

or 1 cut meet the original surface with inflexional con-

tact along the parabolic curve then turn back forming a cuspidal edge. When λ = 1
2

we have a limiting case for which the equidistant stops along the parabolic curve

before retracing its path forming a double covered smooth surface. We will now fur-

ther substantiate these observations with some calculations, initially in the analogous

curve case.

The Curve Case

We take the host curve as a generalised cubic with inflexion at the origin f = x3 +

f4 x4+f5 x5+h.o.t. The equidistants to f for a fixed λ can be found as the discriminant

of the family G of equation (5.3) with now just s in place of (s1, s2) and z in place

of (z1, z2). Since we are interested in those equidistants ‘close’ to the MPTL we will

substitute λ = 1
2

+ ε giving a family G(h, s, ε, z) = −h +
(

1
2

+ ε
)

f
(
s +

(
1
2
− ε

)
z
)

+

(1
2
− ε) f(s− (1

2
+ ε) z) whence Eε = {(s, h) : ∃z with G = ∂G/∂z = 0} with ε fixed

and small. Calculation gives

Eε =

{
(s, h) : s = ε z − f4

6
z2 + h.o.t, h =

ε

4
z3 − f4

16
z4 + h.o.t.

}

whence it is clear that Eε is inflexional at the origin for all ε 6= 0. Now, Eε is clearly

singular when ∂s
∂z

= ∂h
∂z

= 0 but we claim

Lemma 5.3.4 For the equidistant Eε described above we have

∂s

∂z
= 0 ⇒ ∂h

∂z
= 0.
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O r i g i n a l  c u r v e
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s

Figure 5.10: Equidistants to a curve with ordinary inflexion at the origin (bold solid).

The equidistant with λ = 1
2

terminates at the origin (bold dash). All other equidis-

tants pass through the origin inflexionally and turn back in an ordinary cusp.

Proof: We have ∂G
∂z

=
(

1
4
− ε2

) (
f ′

(
s +

(
1
2
− ε

)
z
)− f ′

(
s− (

1
2

+ ε
)

z
))

thus ∂G
∂z

= 0

when z = 0 for all s and ε. Hence by Hadamard’s lemma ∂G
∂z

= z G1(s, ε, z) for

some smooth function G1. Substituting z = 0 into G = 0 just gives h = f(s, ε)

so that Eε = (s, f(s)), i.e. the original curve. Hence the solution of interest is

obtained from G1 = 0 and calculation shows G1 = 6s + h.o.t. Solving G1 = 0 for

s = S(ε, z) substituting into h = H(ε, z) and differentiating with respect to z we

obtain ∂H
∂z

= (1
2
+ε) f ′(S +(1

2
−ε) z) (∂S

∂z
+ 1

2
−ε)+(1

2
−ε) f ′(S− (1

2
+ε) z) (∂S

∂z
− 1

2
−ε).

Thus ∂S
∂z

= 0 implies

∂H

∂z
=

(
1

4
+ ε2

) {
f ′

(
S +

(
1

2
+ ε

)
z

)
− f ′

(
S −

(
1

2
+ ε

)
z

)}
.

This is the same expression as that for ∂G
∂z

above but with s = S. However s = S(ε, z)

solves G1 = 0 and thus solves ∂G
∂z

= 0. Hence ∂S
∂z

= 0 implies ∂H
∂z

= 0 as required. ¤

So by the lemma we only to need solve ∂s
∂z

= 0 to find the singular points of Eε. Doing

this we obtain z∗ = 3 ε/f4−9 (8 f4
3−20 f4 f5 +9 f6) ε4 +h.o.t. Substituting z = z∗+ζ

into Eε we can obtain a parameterisation for Eε about the singular point thus

Eε
∗ =

(
a0 + a2 ζ2 + a3 ζ3 + h.o.t, b0 + b2 ζ2 + b3 ζ3 + h.o.t.

)
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where the ai’s and bi’s are infinite series in ε and fi (i = 1...4). The singular point at

ζ = 0 is an ordinary cusp when d2E∗
ε/ζ

2(0) and d3E∗
ε/dζ3(0) are linearly independent

and calculations show that

det


 a2 b2

a3 b3


 = ε

(
f4

12
+ ...

)
.

This is clearly non-zero for small non-zero ε when f4 6= 0. So the singular point at

(a0, b0) is indeed an ordinary cusp. In this case the MPTL is of the form (Az2 +

..., B z4 + ...) for non-zero constants A and B, a curve with a single smooth branch

terminating at the origin. See figure 5.10.

The analysis above requires f4 6= 0 so we look at the case where f4 = 0 separately by

taking f = x3 + f5 x5 + f6
3

3
x6+h.o.t (the coefficient of x6 here is chosen to simplify

the resulting expressions). In this case we have

Eε =

(
ε3 z − f6

3

32
z4 + h.o.t. ,

ε3

4
z3 − f6

3

64
z6 + h.o.t.

)

so again Eε is inflexional at the origin for all ε 6= 0. In this case z∗ has three solutions

of which the real one is z∗ = 2ε/f6 +10f5/(3f6
3) ε3+h.o.t, and substituting z = z∗+ζ

into the components of Eε we obtain

Eε
∗ =

(
c0 + c2 ζ2 + c3 ζ3 + h.o.t, d0 + d2 ζ2 + d3 ζ3 + h.o.t.

)

where

det


 c2 d2

c3 d3


 = ε5

(
9f6

8
+ ...

)
.

With f6 6= 0 this is clearly non-zero when for all small non-zero ε and so the singular

point is an ordinary cusp. The MPTL here is of the form (C z4 + ..., D z6 + ...) for

non-zero constants C and D. This is a curve with a higher degree of contact with

the host curve at the origin, but is again a single smooth branch terminating at the

origin.
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Equidistants as Discriminants in R3

How do we describe equidistants as discriminants for the local case in R3, and what

can we use as a valid generating function? In trying to answer these questions we are

faced with the familiar problem that our two points of parallel tangency can come

into coincidence. If we include such solutions of the parallel tangency equations then

it is clear that any family of functions we choose will include the original surface as

part of its discriminant. Hence we need to find a way of excluding them.

We start with the same reduced family that we used for the curve case but now

f(x, y) = x2 + b0 x3 + b1 x2 y + b2 x y2 + b3 y3 + h.o.t.

with s = (s1, s2) and z = (z1, z2) giving a generating family

G(s1, s2, h; z1, z2) = −h + λ f(s1 + µ z1, s2 + µ z2) + µ f(s1 − λ z1, s2 − λ z2) (5.5)

where λ + µ = 1. This is a three parameter (s1, s2 and h) family of functions of

two variables (z1 and z2) with DG = {(s1, s2, h) : G = ∂G/∂z1 = ∂G/∂z2 = 0} the

discriminant of G. With the host surface given by f as above we have ∂G/∂z1 =

2 λµ z1+ h.o.t. So provided λµ 6= 0 (i.e. we are not at the ends of the chords)

then we can certainly solve ∂G/∂z1 = 0 for z1 as a function of s1, s2 and z2, say

z1 = w(s1, s2, z2). We now claim the following:

Proposition 5.3.5 The function w has a factor z2.

Proof: ∂2G/∂z1
2 6= 0 when s = z = 0 so ∂G/∂z1(s1, s2, z1, 0) = 0 has a unique

solution for z1 as a function of s1 and s2 by the implicit function theorem. However,

∂G/∂z1(s1, s2, 0, 0) = fx(s1 +0, s2 +0)− fx(s1− 0, s2− 0) = 0 for all s1 and s2 so this

unique solution must be z1 = 0. We know that ∂G/∂z1(s1, s2, w(s1, s2, 0), 0) = 0 for

all s1 and s2 close to 0 so w(s1, s2, 0) ≡ 0 and hence z2 is a factor of w by Hadamard’s

lemma. ¤

Thus z1 = z2 w̄(s1, s2, z2) and we can now substitute this into ∂G/∂z2 = 0 to get

an expression in s1, s2 and z2 only, say H(s1, s2, z2) = ∂G/∂z2(s1, s2, z2 w̄, z2). Now

H(s1, s2, z2) = fy(s1 + z2 w̄, s2 + z2)− fy(s1− z2 w̄, s2− z2) so clearly H(s1, s2, 0) ≡ 0.
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Figure 5.11: A surface diffeomorphic to the MPTS of the surface z = x2+x y2+y3+y4.

Hence z2 is also a factor of H by Hadamard’s lemma, say H(s1, s2, z2) = z2 K(s1, s2, z2).

Putting z2 = 0 in our original family G, knowing that z2 is a factor of z1 = w(s1, s2, z2),

we get h = f(s1, s2), i.e. just the original surface. Hence the function K(s1, s2, z2) = 0

(together with G = 0) gives us the part of the discriminant we are interested in and

represents a surface which is diffeomorphic to an equidistant (for fixed λ) of the

original surface z = f(x, y). Calculation shows that

K(s1, s2, z2) = λµ (2 b2 s1 + 6 b3 s2 + 3 b3 (µ− λ) z2) + h.o.t. (5.6)

So provided b2 6= 0 we can write s1 as a unique function of s2 and z2. In the event

that b2 = 0 but b3 6= 0 then we can write s2 as a unique function of s1 and z2. Finally,

if b3 6= 0 and λ 6= µ (i.e. all proper equidistants except the MPTS) then we can write

z2 as a unique function of s1 and s2.

Example 5.3.6 Taking f = x2 + x y2 + y3 + y4 and λ = 1
2

we have G = −2 h +

4 z1 s2 z2 +2 z2
4 +2 s2

4 +12 s2
2z2

2 +6 s2 z2
2 +2 s2

3 +2 s1 s2
2 +2 s1 z2

2 +2 s1
2 +2 z1

2 so

that ∂G/∂z1 = 4 (z1 +s2 z2) and ∂G/∂z2 = 4 s1 z2 +4 z1 s2 +12 s2 z2 +24 s2
2z2 +8 z2

3.

Now ∂G/∂z1 = 0 implies that z1 = −s2 z2, so z2 is a factor of z1 = w(s1, s2, z2).

Substituting this into ∂G/∂z2 = 0 we obtain z2 (4 s1 + 20 s2
2 + 12 s2 + 8 z2

2) = 0, so

z2 is also a factor of H(s1, s2, z2). We now discount the solution z2 = 0 and use the

second term to write s1 as a function of s2 and z2. Finally we use G = 0 to find h as

a function of s2 and z2 thus

h = z2
4 + s2

4 + 5 s2
2z2

2 + 3 s2 z2
2 + s2

3 + s1 s2
2 + s1 z2

2 + s1
2.
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A surface diffeomorphic to the MPTS of the original surface is now given by E 1
2

=

(s1(s2, z2), s2, h(s2, z2)). It has the familiar form of a smooth sheet terminating along

the parabolic curve as shown in figure 5.11.

Normal Forms for Equidistants

In [11] Giblin and Zakalyukin determine normal forms whose discriminants give dif-

feomorphic versions of the CSS in the neighbourhood of various special surface points.

A subsequent paper by Giblin et al. [10] employs very similar methods but using a

different equivalence group, namely the group of s–equivalences, to find normal forms

for equidistants. The definition of s–equivalence can be found in Chapter 6 which

contains further details and some alternative arguments for the proofs of the theo-

rems given in [10] (including those for smooth curves). Here we content ourselves

with listing the relevant normal forms for the surface cases:

Table 5.1: Normal forms for Equidistants to Surfaces.

Case λ0 = Normal Form (H =) Comments

A2 1/2 −h + ty2 + εy3 + y4 Half parabola × line.

A∗
2 1/2 −h + ty2 + εy3 + sy4 + y6 Half cuspidal edge.

A2/A
∗
2 0 or 1 −h + ε(ty2 + y3) Lies in surface when ε = 0.

A2/A
∗
2 Otherwise −h + ty2 + y3 Cubic × line.

A3 1/2 −h + sy2 + εty3 + y4 Same as A2 when ε = 0.

A3 λ∗ −h + sy2 + ty3 + (ε + t)y4 + y5 Proj. of open swallowtail.

A3 0 or 1 −h + ε(sy2 + ty3 + y4) Lies in surface when ε = 0.

A3 Otherwise −h + sy2 + ty3 + y4 Folded Whitney umbrella.

Armed with these results we are now able to prove:

Proposition 5.3.7 In the neighbourhood of an A2 point of a smooth surface piece N

all equidistants with λ0 6= 0, 1
2

or 1 meet N with inflexional contact along the parabolic

curve.

Proof: From the table the correct normal form is H = −h + t y2 + y3 where the pa-

rameters are s and t and the variables are x and y. The equidistants are given as the
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envelope of this family, Eλ = {(s, t, h) : H = ∂H/∂y = 0} (since x does not appear

in the expression for H). Now, ∂H/∂y = y (2t + 3y) = 0 so either (i) y = 0 with

H = 0 giving h = 0 and s and t arbitrary, i.e. the (s, t)–plane in (s, t, h)–space. This

represents the host surface in the diffeomorphic model, or (ii) t = −3y/2 with H = 0

giving h = −y3/2 and s arbitrary. This surface (the product of a cubic curve and an

interval) has inflexional contact at all points of the t–axis, which in the diffeomorphic

model represents the parabolic curve. ¤

Remarks:

(i) For the MPTS in the neighbourhood of an A2 point the correct normal form is

H = −h + t y2 + y4 (ε = 0) whence the components of the discriminant are the

(s, t)–plane (i.e. the host surface) and the surface E 1
2

= {(s, −2 y2, −y4) : y, s ∈ R}.
This is a parabolic cylinder with boundary along the t–axis (the parabolic curve) in

line with our earlier observations with real examples.

(ii) The generating family for equidistants with λ 6= 0, 1
2

or 1 results in a surface

which is smooth everywhere so that the cuspidal edge that we expect to see is not

represented. The reason for this is that the cuspidal edge is not part of the local

structure of these equidistants. The position of the cuspidal edge depends entirely on

λ with the cuspidal edge moving further away from the parabolic curve as λ moves

away from the value 1
2

(much as the cusp on the equidistant in the curve case moves

further away from the inflexion on the original curve in fig 5.10).

Equidistants close to an A2
∗ point

So far the MPTS in the neighbourhood of a parabolic point has always been a smooth

surface with boundary along the parabolic curve. However the MPTS can be singular

away from the parabolic curve as we shall now demonstrate. First a definition:

Definition 5.3.8 Consider a surface piece in Monge form given as z = f(x, y) with

ordinary parabolic point at the origin, i.e. f(x, y) = x2 + b0x
3 + b1x

2y + b2xy2 + b3y
3 +

c0x
4 + c1x

3y + c2x
2y2 + c3xy3 + c4y

4 + h.o.t. and b3 6= 0. We call the origin an A2
∗

point of the surface if the degree 4 terms of f vanish when x = 0, that is c4 = 0.
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H a l f  C u s p  E d g e

P a r a b o l i c  C u r v e

P a r a b o l i c  C u r v e

H a l f  C u s p  E d g e

T h i s  v i e w  i n c l u d e s  t h e  h o s t  
s u r f a c e ,  w h i c h  i n  t h e  d i f f e o m o r p h i c  
m o d e l  i s  r e d u c e d  t o  a  p l a n e  
( s h o w n  t r a n s l u c e n t  b l u e ) .

Figure 5.12: The MPTS in a neighbourhood of an A2
∗ point.

From table 5.1 the correct normal form to use with λ = 1
2

and in the neighbourhood

of an A2
∗ point is H = −h+ ty2 +εy3 +sy4 +y6. So Eε = {(s, t, h) : H = ∂H/∂y = 0}

for small fixed ε gives a diffeomorphic picture of the equidistant corresponding to

ε = λ− 1
2

and the MPTS is given by ε = 0. Now, solving H = ∂H/∂y = 0 for h and

s as functions of y and t we obtain the following parameterisation of the MPTS

X(s, y) =
(
s, −y2(2s + 3y2), −y4(s + 2y2)

)
.

From this we can show that the Jacobian matrix of X fails to have maximal rank when

y = 0 or s+3y2 = 0. In the model the line y = 0 represents the parabolic curve and so

we have a second space curve lying in the MPTS, along which the MPTS is singular.

If we substitute s = −3y2 into the first two components of the MPTS we obtain

(−3y2, 3y4) so the singular locus is doubly covered in the (s, t)–plane, terminates at

the origin and meets the parabolic line tangentially. Figure 5.12 shows three views

of the MPTS with the double covered singular locus marked in red. It represents a

half cuspidal edge which terminates at the origin. The parabolic curve is marked in

green and shows a boundary on the MPTS in the usual manner.
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Example 5.3.9 We now show the MPTS for a real A2
∗ example by taking f(x, y) =

x2 + x2y + y3 + xy3. The origin is an ordinary parabolic point and clearly the degree

4 part of f vanishes when x = 0 and so the origin is an A2
∗ point. The following is a

view of the MPTS close to the origin:

As above the red space curve indicates a half cuspidal edge, whilst the green space

curve shows a boundary along the parabolic curve. The first two components of the

red space curve are (−3v2/4+h.o.t, −v4/16+h.o.t. ). Hence the projection of the red

space curve onto the (s, t)–plane is a half parabola, doubly covered and terminating

at the origin. We see from table 5.1 that the normal form for equidistants with

λ 6= 0, 1
2

or 1 is the same for A2
∗ as for the ordinary A2 and so we would expect such

equidistants to meet the original surface with inflexional contact at all points of the

parabolic curve. With λ = 49/100 the resulting equidistant is as follows:

D e t a i l

We see what looks like a cuspidal edge in the foreground and (as revealed in the

blown up detail) a swallowtail away from the parabolic curve. To verify that we are
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T w o  v i e w s  u n d e r n e a t h  
t h e  s w a l l o w t a i l  p o i n t  
s h o w i n g  t h e  l o c u s  o f  s e l f
i n t e r s e c t i o n .

e  =  0 e  =  1 / 1 0 0 e  =  1 / 5 0
( M P T S )

Figure 5.13: Transition from MPTS to ordinary equidistant at an A2
∗ point.

really seeing cuspidal edges and swallowtails in these examples we use the appropriate

normal form from table 5.1, i.e. H = −h+ ty2 + εy3 + sy4 + y6. This can be regarded

as a 3-parameter unfolding of a function of the single variable y. For a given y the

function H = 0 is a plane in (s, t, h)–space and the envelope, DH , of these planes is

the equidistant. For an A3 of the equidistant we require H = ∂H/∂y = ∂2H/∂y2 =

∂3H/∂y3 = 0 and ∂4H/∂y4 6= 0 at y = y0 (say) with (h, s, t) ∈ DH . Solving these

equations simultaneously we obtain y0 = (ε/16)1/3 and ∂4H/∂y4 6= 0 when y = y0 so

the A3 is always non-degenerate. To determine if H is a versal unfolding of this A3

we calculate the 2-jets with constant of ∂H/∂h = −1, ∂H/∂s = y4 and ∂H/∂t = y2

at y = y0, i.e. fi(y0) + ηf ′i(y0) + 1
2!
η2f ′′i (y0) where fi is the function of y that is each

of these partial derivatives. The matrix of coefficients of these 2-jets is


−1 y0

4 y0
2

0 4y3
0 2y0

0 6y0
2 1


 .

This has maximal rank if and only if y0 6= 0 but y0 = 0 is part of the redundant

component of DH (i.e. the original surface) and so the unfolding is always versal.
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We conclude that the equidistant at y = y0 is locally diffeomorphic to a standard

swallowtail. For A2 points we require H = ∂H/∂y = ∂2H/∂y2 = 0 and ∂3H/∂y3 6= 0.

Thus we have a locus of points on the equidistant
(

3(ε + 8y3)

8y
,

3y(−ε + 4y3)

4
,

y3(−ε + 8y3)

8

)

which are all A2 for y 6= (ε/16)1/3. The unfolding matrix here is just the first two

rows of that above and this is also maximal if and only if y0 6= 0. So for fixed small

ε the singular locus with y 6= (ε/16)1/3 is locally diffeomorphic to a cuspidal edge.

Using the diffeomorphic model and taking small values of ε increasing from zero we

can see how the MPTS transitions to an ‘ordinary’ equidistant in this case3. As

figure 5.13 shows, the half cuspidal edge splits apart forming three cuspidal edges two

of which (in blue) come together to form a swallowtail. Of the three cuspidal edges

two (the red and one of the blue) tend towards the parabolic curve (shown in green).

Equidistants close to an Ordinary Cusp of Gauss

If our host surface has the standard Taylor expansion

z = x2 +b0 x3 +b1 x2 y+b2 x y2 +b3 y3 +c0 x4 +c1 x3 y+c2 x2 y2 +c3 x y3 +c4 y4 +h.o.t.

then we recall that the origin is a cusp of Gauss when b3 = 0. If b2
2 6= 4 c4 it is non-

degenerate, whilst if additionally b2 6= 0 then the cusp of Gauss is termed ordinary.

First we consider how the MPTS appears in the neighbourhood of a cusp of Gauss

by referring back to the notation and argument following proposition 5.3.5 above. In

this case we have ∂G/∂z1 = 4 z1 + ... so we can write z1 uniquely as a function of s1,

s2 and z2 whether or not the origin is a cusp of Gauss. Equation (5.6) gives

K(s1, s2, z2) = 4 b2 s1− 8 b1 b2 s1 s2 + 4
(
6 c4 − b2

2
)
s2

2 + 4
(
c2 − b1

2
)
s1

2 + 8 c4 z2
2 + ...

so we can write s1 uniquely as a function of s2 and z2 when b2 6= 0. With b3 = 0 and

b2 6= 0 the MPTS remains a smooth surface with boundary along the parabolic curve,

e.g. If we take f = x2 + xy2 + y4 (so b3 = 0 and b2 = 1) then the MPTS appears as

follows:
3Note: these are simply observations made from the pictures, we make no claim that these

statements have been substantiated algebraically.



CHAPTER 5. THE AFFINE EQUIDISTANTS 117

It forms a smooth ‘pocket’ over the surface to one side of and with boundary along

the parabolic curve, which is always smooth through an ordinary cusp of Gauss. Re-

mark: The normal form for λ = 1/2 and A3 is the same as that for λ = 1/2 and A2

when ε = 0.

For equidistants where λ 6= 0, λ∗, 1
2

or 1 we see from table 5.1 that the correct normal

form is H = −h+sy2 + ty3 +y4. The discriminant of this family, shown in figure 5.14,

is A–equivalent to the standard folded Whitney umbrella (i.e. (u, v) 7→ (u, v2, uv3)).

In this figure the host surface is shown as the blue plane and the parabolic curve as

the green line. The red and blue space curves indicate cuspidal edges while the self

intersection terminates at the cusp of Gauss itself. Elsewhere on the parabolic curve

the equidistant cuts meets the original surface with inflexional contact and then forms

a cuspidal edge in the familiar manner.

Figure 5.14: Equidistant with λ 6= 0, λ∗, 1
2

or 1 in a neighbourhood of a cusp of Gauss.
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Contact between the Equidistant and Host Surface at a Cusp of Gauss

Clearly the contact between the equidistant and the host surface is greater at the

A3 than at other parabolic points. To ascertain this we take the general form for a

surface with ordinary cusp of Gauss at the origin, i.e.

f(x, y) = x2 + b0x
3 + b1x

2y + b2xy2 + h.o.t.

So b2 6= 0, b3 = 0 and we have shown previously that we can parameterise the

equidistant using t and v where the pairs of parallel tangent points are given by

(s(t, v), t) and (u(t, v), v) in the parallel tangent set Π. We now cut a plane through

the cusp of Gauss which is transverse to both the equidistant and the host surface.

The most obvious choice for such a plane is y = 0 which for the equidistant implies

that v = (λ− 1) t/λ (from equating the y–component of the parameterisation of the

equidistant to zero). Note: for general f this plane will not contain the space curve

of self intersection on the equidistant, although in the diffeomorphic model using

H = −h + sy2 + ty3 + y4 this is in fact the case. Now, substituting v = (λ − 1) t/λ

into the x and z components of the equidistant we obtain a parameterisation for

the plane curve of intersection, say γ, lying in the plane y = 0. This has the form

γ(t) = (α2t
2 + α3t

3 + h.o.t, β4t
4 + β5t

5 + h.o.t.) where

α2 =
4(b2

2 − 3c4)λ
2 − 4(b2

2 − 3c4)λ + (b2
2 − 4c4)

2b2λ2
, β4 =

(b2
2 − 4c4)(3λ

2 − 3λ + 1) α2

2b2λ2

and all coefficients αi, βj with i ≥ 3, j ≥ 5 have a factor 1 − 2λ and precede odd

powered terms in t. Hence all the odd powered terms of γ vanish when λ = 1
2
, a

result which follows trivially from proposition 4.3.3 after substituting v = −t. Now

α2 = 0 if and only if λ = λ∗ where

λ∗ =
1

2
± 1

2

√
c4

b2
2 − 3c4

. (5.7)

These two values of λ (symmetric about λ = 1
2
) have a special significance for the

equidistant and require a different generating family, as indicated in table 5.1. We

will return to these special cases later. Hence when λ 6= λ∗ then α2 6= 0 but also

β4 6= 0 since b2
2 − 4c4 6= 0 at a non-degenerate cusp of Gauss and the factor which

is quadratic in λ has no real roots. We now use the change of variables (X, Y ) 7→
(X/α2, Y − β4(X/α2)

2) to reduce γ to γ̄ = (t2 + h.o.t, β̄5t
5 + β̄6t

6 + h.o.t.) where
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a  =  - 2 a  =  - 1 a  =  0 a  =  2a  =  1

Figure 5.15: Transition about λ = 1
2

for curve in cutting plane.

β̄5 =
(1− λ)(1− 2λ)

4b2λ4

[
(4b1b2

3 − 2c3b2
2 − 24b1c4b2 − 8d5b2 + 24c3c4)λ(λ− 1) +

(b1b2
3 − 8b1c4b2 − 4d5b2 + 8c3c4)

]
.

Clearly β̄5 is generically non-zero. When λ = 1
2

then β̄5 does vanish but

β̄6 =
16c4

2b2c2 − 8b2
2d4c4 − 32b0c4

3 − 16b2b1
2c4

2 + 8b2
2c3b1c4 − b2

3c3
2

4b2
3 ,

which again is generically non-zero. When λ = λ∗ then α2 vanishes but

α3 =
5Φ3η

√
c4η

2b2(η +
√

c4η)3

where η = b2
2−3c4 and Φ3 = c3b2

3−2b1c4b2
2−4d5b2

2+8c4d5. Clearly Φ3 is generically

non-zero and c4 6= 0 else λ∗ = 1
2

from equation (5.7). Hence α3 6= 0 when η 6= 0 and

by equation (5.7) this must hold for finite λ∗. Since α2 = 0 then β4 = 0 but

β5 =
3b2η(b2

2 − 4c4) α3

(η +
√

c3η)2

which is clearly non-zero when α3 6= 0. Finally a change of variables of the form

(X, Y ) 7→ (X,Y/βi) will reduce the parameterisations in these three cases to: (i)

λ 6= 0, λ∗, 1
2

or 1 implies γ ' (t2 + h.o.t, t5 + h.o.t.). (ii) λ = 1
2

implies γ '
(t2 +h.o.t, t6 +h.o.t.). (iii) λ = λ∗ implies γ ' (t3 +h.o.t, t5 +h.o.t.). It is instructive

to examine the transitions of γ about λ = 1
2

and λ = λ∗. We can model the transition

about λ = 1
2

using γ(t, a) = (t2, at5 + t6). Here γ(t, 0) gives the λ = 1
2

moment and

the transition is as shown in figure 5.15. The figure underlines the already established
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a  =  - 2 a  =  - 1 a  =  0 a  =  1 a  =  2

Figure 5.16: Transition about λ = λ∗ for curve in cutting plane.

fact that the MPTS is a limiting case of a double covered equidistant with boundary.

For the transition about λ = λ∗ we can use γ(t, a) = (at2 + t3, t5). The transition is

as shown in figure 5.16. When a = 0 the curve looks deceptively smooth at the A3

point, but of course γ′(0) = γ′′(0) = 0 here.

The λ = λ∗ Case

When λ = λ∗ the correct normal form from table 5.1 is

H = −h + sy2 + ty3 + (ε + t) y4 + y5

with ε = 0 giving the λ = λ∗ moment. The resulting equidistant, shown in figure 5.17,

looks very different from the folded Whitney umbrella we obtain when λ 6= 0, λ∗, 1
2

or 1. The host surface is shown as a blue plane and the parabolic curve as a green

line. At ordinary parabolic points the equidistant meets the original surface with

inflexional contact in the usual manner. The red and blue space curves again show a

cuspidal edge but, unlike the folded Whitney umbrella, this now has a singular point

at the origin. The parameterisation of the equidistant, obtained as the discriminant

of H (with ε = 0) is

Eλ∗ =

(
−1

2
y (3t + 4yt + 5y2), t, −1

2
y3 (t + 2ty + 3y2)

)
.

The self-intersection is now absent which we can demonstrate algebraically as follows:

Using Ω = Eλ∗(y1, t)−Eλ∗(y2, t) = 0 we obtain two equations in the three unknowns

t, y1 and y2. The x–component of Ω yields

(y1 − y2)(5y1
2 + 4y1t + 5y2y1 + 3t + 4y2t + 5y2

2) = 0.



CHAPTER 5. THE AFFINE EQUIDISTANTS 121

Figure 5.17: A surface diffeomorphic to the equidistant with λ = λ∗ in a neighbour-

hood of a cusp of Gauss.

Clearly we are not interested in solutions where y1 = y2 whilst the second bracket

yields

t =
−5(y1

2 + y2y1 + y2
2)

3 + 4y1 + 4y2

.

This expression is certainly valid for small y1, y2 and substituting this t into the

expression obtained from the z–component of Ω we obtain

(y1 − y2)
2 (2y1

3 + 8y2y1
2 + 4y1

2 + 8y2
2y1 + 7y2y1 + 2y2

3 + 4y2
2)

3 + 4y1 + 4y2

= 0.

If we ignore the first term in the numerator and solve the second for y1 as a series

in y2 (or vice-versa since the expression is symmetric) we obtain a series whose first

term has a complex coefficient and so the only real solution is y1 = y2 = 0, i.e. the

A3 point at the origin. So the self-intersection is no longer local to the origin when

λ = λ∗. Taking values of ε increasing from zero figure 5.18 shows the transition in

this case. We see that one of the cuspidal edges (blue) persists whilst the other (red)

cuts through the equidistant to create the self-intersection. A new cuspidal edge (also

red) is created on the opposite side of the plane y = 0 as the transition progresses4.

4Note: these are simply observations made from the pictures, we make no claim that these

statements have been substantiated algebraically.
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e  =  0 e  =  0 . 1 e  =  0 . 5 e  =  0 . 7

Figure 5.18: Transition from λ = λ∗ to ordinary equidistant at an A3. The top and

bottom rows show a sequence of ‘front’ and ‘back’ views respectively.

It is clear from equation (5.7) that for real λ∗ to exist we require c4 6= 0 and b2
2 −

3c4 6= 0 and moreover that these two quantities have the same sign. We know that

b2
2 − 4c4 6= 0 at a non-degenerate cusp of Gauss so we have four cases to consider:

1. c4 > 0 and b2
2 > 4c4. These inequalities imply that b2

2 − 3c4 > c4 > 0 so

0 < c4/(b2
2 − 3c4) < 1. Hence, real λ∗ exist and all lie in the interval (0, 1).

2. c4 > 0 and b2
2 < 4c4. Here we have two sub-cases depending as b2

2 < 3c4 or

3c4 < b2
2 < 4c4. In the former case there are no real λ∗ whilst in the latter,

where 1/4 < c4/b2
2 < 1/3, real λ∗ exist and all lie outside the interval (0, 1).

3. c4 < 0 and b2
2 > 4c4. Clearly 3c4 < 0 so b2

2 − 3c4 > 0. Hence c4 and b2
2 − 3c4

have opposite sign and no real λ∗ exist.

4. c4 < 0 and b2
2 < 4c4. This case is impossible since b2

2 > 0.
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We can express all these results using the important ratio c4/b2
2. For case 1 we

have 0 < c4/b2
2 < 1/4, for case 2a we have 1/3 < c4/b2

2, for case 2b we have

1/4 < c4/b2
2 < 1/3 and for case 3 we have c4/b2

2 < 0. We can display the results on

the real line as follows:

c 4

0 1 / 4 1 / 3

l *  r e a l  a n d  i n  
t h e  i n t e r v a l  ( 0 , 1 )

l *  r e a l  a n d  o u t s i d e  
t h e  i n t e r v a l  ( 0 , 1 )N o  r e a l  l * N o  r e a l  l *

b 2
2

Whence it is clear that for real λ∗ to exist we require c4 to be strictly positive and

the ratio c4/b2
2 to lie in the open interval (0, 1

3
).

Aside: The Open Swallowtail

In Arnold [2] the ordinary swallowtail is defined as “the surface in R3, consisting of

all polynomials x4 +a x2 + b x+ c, having multiple roots”, whilst the open swallowtail

is “the surface in R4, consisting of all polynomials x5 +Ax3 +B x2 +C x+D, having

roots of multiplicity ≥ 3”. In this paper he also states that “For the open swallowtail

the cuspidal edge is preserved, and the self-intersection disappears”. If we take the

projection (A, B, C, D) 7→ (A,B, D) of the open swallowtail from R4 into R3 we obtain

a surface which looks identical to that of figure 5.17, i.e. the equidistant for λ = λ∗

in the neighbourhood of a cusp of Gauss. The parameterisation of this projection is

(x, A) 7→ (A, −10 x3 − 3 A x, −6 x5 − Ax3)

which is essentially the same as that of Eλ∗ given above after reordering and the

removal of some lower order terms. Similar calculations to those above confirm the

presence of a cuspidal edge5 and the absence of a self intersection. We have not

obtained explicit diffeomorphisms taking Eλ∗ to the projection given above but it

seems highly likely that the two surfaces are in fact diffeomorphic.

5As a space curve the cuspidal edge has parameterisation (−10x2, 20x3, 4x5) which is singular at

the origin.
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Equidistants when λ → 0 (or 1)

Finally in this section we will describe the transition of the equidistant as λ → 0 (or

1). We know that when λ = 0 (or 1) the equidistant is coincident with the host surface

and figure 5.19 shows this transition using the diffeomorphic model (the host surface

being represented by the translucent plane y = 0). During the transition the red and

blue cuspidal edges move towards the green parabolic line and vanish when λ = 0.

The two intersecting sheets of the equidistant come closer and closer together as the

equidistant approaches the host surface. In the limit the locus of self intersection

vanishes as the equidistant and surface coincide. Looking at figure 5.19 it is easy

to imagine that when λ = 0 the boundary of the equidistant is coincident with the

parabolic curve and that (local to the cusp of Gauss) the equidistant lies in a purely

elliptic or hyperbolic region of the surface. In fact this is not the case as we will now

demonstrate. We take f(x, y) = x2 + b0 x3 + b1 x2y + b2 xy2 +h.o.t. and assume b2 > 0

(else apply the transformation x 7→ −x). With the points of parallel tangency in the

parameter plane of the surface denoted (s, t) and (u, v), we can parameterise Π (the

parallel tangents set) using t and v whence the equidistant Eλ can be parameterised

as Eλ(t, v) = ( E1(t, v), E2(t, v), E3(t, v) ). We now ask when the first minor of the

Jacobian matrix of this mapping is zero, i.e.

∂E1

∂t

∂E2

∂v
− ∂E1

∂v

∂E2

∂t
= 0.

Writing this as a series in t and v and then setting λ = 0 we find that it is linear in both

t and v provided b2
2 6= 4c4 (which holds since the cusp of Gauss is non-degenerate).

Solving for t as a series in v and substituting this into the parameterisation for Eλ=0

gives us a space curve representing the boundary of the equidistant lying in the

surface. The locus of this curve in the parameter plane of Eλ=0 is
( −12c4 − b2

2

2b2

v2 + h.o.t, −2v + h.o.t.

)

and using a change of co-ordinates to write this in the form (X(Y ), Y ) we obtain
( −12c4 − b2

2

8b2

Y 2 + h.o.t, Y

)
.

This is the Parallel Tangents Boundary Curve (PTBC) we encountered earlier in our

discussion of special curves passing through a cusp of Gauss. The parameterisation
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l  =  0l  =  1 / 1 0 0

l  =  1 / 1 0l  =  1 / 3

Figure 5.19: Transition of the equidistant at an A3 as λ → 0.

of the parabolic curve in this form is
(

b2
2 − 6c4

b2

Y 2 + h.o.t, Y

)
.

So, local to the cusp of Gauss, the PTBC lies in the elliptic region of the surface if

and only if
−12c4 − b2

2

8b2

>
b2
2 − 6c4

b2

which equates to c4/b2
2 > 1

4
, i.e. the cusp of Gauss is elliptic. Conversely, local to

the cusp of Gauss, the PTBC lies in the hyperbolic region of the surface if and only

if the cusp of Gauss is hyperbolic. However parallel tangent partner points must lie

either side and arbitrarily close to the parabolic curve so in the limit the equidistant

always lies on both sides of the parabolic curve.

The orientation of the equidistant thus depends on whether the origin is an elliptic

or hyperbolic cusp of Gauss as we show in the following example:

Example 5.3.10 First we take f = x2 + 2xy2 + 1
2
y4. So c4/b2

2 = 1
8

< 1
4

and the

origin is a hyperbolic cusp of Gauss. Local to the origin the parabolic curve and

PTBC lie on opposite sides of the y–axis whilst the equidistant lies in both elliptic

and hyperbolic regions as follows:
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y

x

H

E

P C

P T B C

E q u i d i s t a n t  l i e s
i n  s h a d e d  r e g i o n

For the other possibility we take f = x2 +xy2 + 1
2
y4. So c4/b2

2 = 1
2

> 1
4

and the origin

is an elliptic cusp of Gauss. Local to the origin the parabolic curve and PTBC lie on

the same side of the y–axis whilst the equidistant lies in both elliptic and hyperbolic

regions as follows:

x

y
E

E q u i d i s t a n t  l i e s
i n  s h a d e d  r e g i o n

H

P C

P T B C
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5.4 Chapter Summary

In this chapter we studied the local structure of the affine equidistants and some of

their singularities. Again, due to parameterisation issues associated with the diagonal

subset {(p, p)} of Π (i.e. the set of all parallel tangent pairs), we separated the cases

where the points p and q with parallel tangents lie on disjoint surfaces or on the same

surface piece local to a parabolic point.

For disjoint surfaces proposition 5.2.1 states that the tangent plane to an equidis-

tant at any point is parallel to the tangent planes at the two surface points which

generated that point, whilst proposition 5.2.2 gives the condition for the equidistant

to be smooth here. Proposition 5.2.4 deals with the relationship between the MPTS

and the Centre Symmetry Set and shows that the singularities of the former sweep

out the latter (analogous to the singularities of parallels to a plane curve sweeping

out its evolute). We found a three parameter family of functions of three variables

whose discriminant gave us a model of the MPTS and determined conditions for this

family to versally unfold cuspidal edge (proposition 5.2.8) and swallowtail (proposi-

tion 5.2.11) points on the MPTS. We looked at the special case where the tangent

plane at the two points generating a point on the MPTS is actually the same plane.

The ruled surface R swept out by chords joining such points was studied in its own

right and a condition for it to be smooth was determined. We showed in proposition

5.2.18 that when R shares a singular point with the MPTS then both surfaces have

the same limiting tangent direction here.

For the local case we had access to normal forms. These represent the simplest possi-

ble versal families whose discriminants give diffeomorphic versions of the equidistants

for the various cases of interest. Proofs of the validity of these normal forms are given

in the next chapter but here we used them to determine general properties of the

equidistants and the types of singular behaviour that they can have. In proposition

5.3.7 we showed that all proper equidistants except the MPTS meet the parabolic

curve of the surface inflexionally. We showed that local to ordinary parabolic points

the MPTS is a smooth surface with boundary along the parabolic curve. Local to
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special parabolic points, designated A∗
2, the MPTS has a half cuspidal edge away

from the parabolic curve and terminating at the A∗
2 point itself. We went on to show

that this cuspidal edge splits into three cuspidal edges (two of which meet to form a

swallowtail point) as we move away from λ = 1
2
. Local to a cusp of Gauss we showed

that the MPTS is smooth with boundary along the parabolic curve (although the

contact between the MPTS and the surface is higher at the cusp of Gauss itself). For

certain special values of λ, designated λ∗ (which only exist when 0 < c4/b2
2 < 1

3
),

the equidistant has the structure of an “opened out” cuspidal Whitney umbrella (i.e.

it has a cuspidal edge with singular point but no self intersection). All other proper

equidistants are diffeomorphic to the standard cuspidal Whitney umbrella. Finally

we looked at the situation of an equidistant local to a cusp of Gauss as λ → 0 and

showed that in the limit the equidistant coincides with the surface, lying entirely to

one side of the PTBC but to both sides of the parabolic curve.



Chapter 6

Normal Forms for Equidistants

6.1 Introduction

In this chapter we provide further details and some alternative arguments for the

proofs of the theorems given in Giblin et al. [10]. These involve the determination

of normal forms for affine equidistants local to: (i) an ordinary inflexion of a smooth

curve in the plane and (ii) a generic parabolic point of a smooth surface in R3. Such

points are of particular interest as we can have pairs of points arbitrarily close to

the inflexion (or parabolic point) which have parallel tangent lines (or planes). We

consider all surface cases where we impose up to 2 extra conditions beyond:

{ordinary parabolic point, general value of λ},

e.g. we consider equidistants for special values of λ local to an ordinary cusp of

Gauss (2 extra conditions) but not local to degenerate cusps of Gauss, A4 or D4

points (all 3 extra conditions) etc. The methods used are essentially the same as

those used by Giblin and Zakalyukin [11] to determine generating families for the

CSS but crucially a different family of equivalences is used. Here we use the so called

time-space-contact–equivalence, or s–equivalence for short:

Definition 6.1.1 The germs of families of functions G1(z, q, ε) and G2(z, q, ε), with

variables z ∈ Rk and parameters q, ε ∈ Rn × R, are said to be s–equivalent if

there exists a non-zero function P (z, q, ε) and a local diffeomorphism of the form

θ : (z, q, ε) 7→ (Z(z, q, ε), Q(q, ε), E(ε)) such that P G1 = G2 ◦ θ.

129



CHAPTER 6. NORMAL FORMS FOR EQUIDISTANTS 130

We showed in section 5.3 that an equidistant can be formed, for fixed ε0, as the dis-

criminant DG of a certain generating family G. If z = (z1, ... , zk) and q = (q1, ... , qn)

then

DG =

{
(q1, ... , qn) : G =

∂G

∂z1

= ... =
∂G

∂zk

= 0

}

ε=ε0

.

The manifold formed in Rn+1 as the set of all such equidistants is the big discrimi-

nant set of G, denoted W (G). Since s–equivalence allows us to change ε using local

diffeomorphisms of ε only, slices of W (G) by hyperplanes ε = constant are diffeo-

morphically preserved. This is why s–equivalence is so important to this application.

The generating family we need, by Lemma 2.5 of Giblin et al. [10], is

G(z, s, h, λ) = −h + λ f(s + µz) + µ f(s− λz) (6.1)

where λ+µ = 1. The function f describes the host curve (or surface) as a graph, with

G = z = 0 giving h = f(s) which is this host curve (or surface). The discriminant

of this family DG = {(s, h) : G = ∂G/∂z = 0} is the equidistant for fixed λ as stated

above.

With regard to the definition of s–equivalence given above the variable(s) are z ∈ R in

the curve case (or z = (x, y) in the surface case) whilst the parameters are q = (s, h)

and ε in the curve case (or q = (s, t, h) and ε in the surface case). The parameter ε

is usually referred to as affine time and its role here is played by ε = λ − λ0, where

λ0 is some fixed value.

Some Technical Prerequisites

To demonstrate the s–equivalence of two families G1 and G2 we use the standard

Moser homotopy method [17] by introducing a parameter τ to the family G1 say,

creating a new family Gτ . We do this in such a way that

Gτ =





G1 when τ = 1

G2 when τ = 0

We now seek a family of non-zero functions Pτ (z, q, ε) and a family of diffeomorphisms

of the form Θτ : (z, q, ε) 7→ ( Zτ (z, q, ε), Sτ (q, ε), Hτ (q, ε), Eτ (ε) ) such that

Pτ ·Gτ ◦Θτ = G2
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for any τ ∈ [0, 1]. Differentiating this expression with respect to τ we obtain1

−∂Gτ

∂τ
=

1

Pτ

∂Pτ

∂τ
Gτ +

∂Gτ

∂z

∂Zτ

∂τ
+

∂Gτ

∂s

∂Sτ

∂τ
+

∂Gτ

∂h

∂Hτ

∂τ
+

∂Gτ

∂ε

∂Eτ

∂τ

(
+

∂Gτ

∂t

∂Tτ

∂τ

)

with all partial derivatives of Gτ taken at the point Θτ (z, s, h, ε). This is the so called

homological equation and it tells us that for a given LHS function ∂Gτ

∂τ
we need a

decomposition in the form of the RHS for some smooth functions ∂Zτ

∂τ
, ∂Sτ

∂τ
, (∂Tτ

∂τ
), ∂Hτ

∂τ

and ∂Eτ

∂τ
in their respective variables. If we have such a decomposition then it will

describe a vector field in (z, q, ε)–space which can be integrated to obtain the family

of diffeomorphisms Θτ , with the term 1
Pτ

∂Pτ

∂τ
Gτ enabling us to retrieve the family Pτ .

By this means we can establish the s–equivalence of G1 and G2. So essentially the

method consists in showing that the tangent space

TGτQ =

{
−∂Gτ

∂τ

}

at Gτ to the space Q of all families of functions in z, q and ε regarded as an Oz,q,ε–

module2, is contained in the tangent space

TOs(Gτ ) =

{
P̃ Gτ + Z̃

∂Gτ

∂z
+ S̃

∂Gτ

∂s
+ H̃

∂Gτ

∂h
+ Ẽ

∂Gτ

∂ε

(
+T̃

∂Gτ

∂t

)}

to the orbit of the group of s–equivalences through Gτ . With P̃ (z, q, τ, ε),

Z̃(z, q, τ, ε), S̃(q, τ, ε), H̃(q, τ, ε), Ẽ(τ, ε) (and T̃ (q, τ, ε)) being arbitrary germs in their

respective variables.

The Malgrange Preparation Theorem is central to proving all but one of the results

in this chapter and so we will state it here in full (see [14] for a proof):

Theorem 6.1.2 Let Ox be the algebra of germs at the origin of smooth functions in

x ∈ Rm, M be a finitely generated Ox–module and f : x, 0 7→ y(x), 0 be the germ of

a C∞ map from Rm to Rn. If If is the ideal in Ox generated by the components of f

and the quotient algebra M /If ·M is isomorphic to some finitely generated real vector

space, with generators say [g1(x)], ... , [gk(x)], then M regarded as an Oy(x)–module3

is generated by g1, ... , gk.

1The final term here, shown in round brackets, only applies in the surface case.
2Oz,q,ε is an R-module of monomials in z, q and ε with multiplication over the ring R.
3Oy(x) is the algebra of smooth function germs at the origin composed with the components of

the map f , i.e. Oy(x) = {h(y1(x), ...,ym(x))} with h an arbitrary smooth germ.
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6.2 Equidistants to Curves

Here we are concerned with equidistants to a smooth plane curve C with ordinary

inflexion at the origin. So z, s ∈ R and C is given as the graph of the function

f(s) = s3+c4s
4+c5s

5+h.o.t (following an affine transformation to make the coefficient

of s3 equal to 1). We also assume that C satisfies the generic condition c4 6= 0. Note:

in the surface case we meet special parabolic points, denoted A2
∗, where a condition

analogous to c4 = 0 occurs generically. Now, the relevant theorem from [10] is

Theorem 6.2.1 Given a smooth curve C with ordinary inflexion at the origin, then

the germ of the family G(z, s, λ0 + ε) (at the origin) is s–equivalent to the germ of a

family H (at the origin) where

(i) λ0 6= 0, 1
2

or 1 implies H = −h̃ + sz2 + z3,

(ii) λ0 = 0 or 1 implies H = −h̃ + ε(sz2 + z3), and

(iii) λ0 = 1
2

implies H = −h̃ + sz2 + εz3 + z4.

Proof: (i) We start by substituting f(ζ) = ζ3 + c4ζ
4 + c5ζ

5 + ... into the family G of

equation (6.1) with ζ = s± λz. Writing G as a series in z we obtain

G(z, s, h̃, λ, µ) = −h + f(s) + λµ

{
z2 ( 3s + 6c4s

2 + 10c5s
3 + ... ) +

(µ− λ) z3 ( 1 + 4c4s + 10c5s
2 + ... ) + O(z4)

}

where ‘...’ means terms of higher degree in s. Using the s–equivalent change of

parameter 3s+6c4s+ ... 7→ s (i.e. the coefficient of z2 above) followed by appropriate

rescalings of s and z we can write G in the form G = −h̃+sz2 +z3 ( 1+A(z, s, ε) ) for

some smooth function A where A(0) = 0, h̃ = h−f(s) and ε = λ−λ0. We now apply

Moser’s method to show that G is s–equivalent to the normal form H = −h̃+sz2 +z3

by taking a homotopy

Gτ = −h̃ + sz2 + z3 ( 1 + τ A(z, s, ε) ), τ ∈ [0, 1] (6.2)

joining H (τ = 0) and G (τ = 1). In the introduction we gave the general method

of establishing s–infinitesimal stability but in this case we can simplify greatly by
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showing that TGτQ is contained in a much smaller subspace of TOs(Gτ ), namely

T∗ = Oz,s,h̃,ε

{
z

∂Gτ

∂z

}
+Os,h̃,ε

{
∂Gτ

∂s

}
.

Here ∂Gτ

∂τ
= z3 A(z, s, ε) but we will in fact show that every element of Oz,s,h̃,ε which is

divisible by z2 lies in the tangent space to the orbit of s–equivalences through Gτ . To

do this we use the Malgrange preparation theorem with M = Oz,s,h̃,ε,τ{z2}, i.e. germs

of functions in (z, s, h̃, ε, τ)–space at (0, 0, 0, 0, τ0) which are divisible by z2, and the

map f to be f : x = (z, s, h̃, ε, τ) 7→ y = (z ∂Gτ

∂z
, s, h̃, ε, τ − τ0). Note: ∂Gτ

∂τ
∈ M for all

τ . Now

z
∂Gτ

∂z
= s

(
2z2

)
+ z3

(
3(1 + τA) + zτ

∂A

∂z

)
.

The first term on the RHS has a factor s and the second is z3 times a function which

is invertible in Ox. Hence If =
〈
z ∂Gτ

∂z
, s, h̃, ε, τ − τ0

〉
=

〈
z3, s, h̃, ε, τ − τ0

〉
and

L = M/(If ·M) = Ox{z2} / 〈z3, s, h̃, ε, τ − τ0〉 · Ox{z2} ∼= R {z2, z3, z4}.

Using [f ] to denote the class of a function f in the quotient space L then for any f

we have [f ] = a2[z
2] + a3[z

3] + a4[z
4] for some ai ∈ R. Hence

[
z

∂Gτ

∂z

]
= 3[z3] + a0[z

4] and

[
z2 ∂Gτ

∂z

]
= 3[z4]

for some a0 ∈ R. Also

∂Gτ

∂s
= z2 + z3 τ

∂A

∂s
so

[
∂Gτ

∂s

]
= [z2] + b0[z

3] + b1[z
4]

for some b0, b1 ∈ R. Clearly [z2], [z3] and [z4] can be obtained as linear combinations

of [∂Gτ

∂s
], [ z∂Gτ

∂z
] and [z2 ∂Gτ

∂z
]. Hence by the Malgrange preparation theorem

M = Oy(x)

{
∂Gτ

∂s
, z

∂Gτ

∂z
, z2∂Gτ

∂z

}
.

Thus, for any m ∈ M we can write

m = R1 · ∂Gτ

∂s
+ R2 · z∂Gτ

∂z
+ R3 · z2∂Gτ

∂z

for some smooth functions Ri ∈ Oy(x). Finally, we can decompose the function R1

using Hadamard’s lemma by writing R1 = R1(0, s, h̃, ε) + R4 · z ∂Gτ

∂z
whence we can

write any element m ∈ M as

m = f1 · ∂Gτ

∂s
+ f2 · z∂Gτ

∂z
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for some functions f1 ∈ Os,h̃,ε and f2 ∈ Oz,s,h̃,ε. Thus M ⊂ T∗ ⊂ TOs(Gτ ) and

s–infinitesimal stability is proven. ¤

Proof: (ii) This case proceeds along the same lines as part (i) but with λ0 = 0 (or

1) so that ε = λ (or µ). Similar transformations and re-scaling to the above give the

following homotopy

Ḡτ = −h̄ + εsz2 + εz3 ( 1 + τ Ā(z, s, ε) )

with τ ∈ [0, 1] and Ā(0) = 0. So in this case ∂Ḡτ

∂τ
= εz3 Ā(z, s, ε) and it is sufficient to

show that all function germs divisible by εz2 lie in TOs(Ḡτ ). In part (i) we showed

that

Oz,s,h̃,ε

{
z2

}
= Oz,s,h̃,ε

{
z
∂Gτ

∂z

}
+Os,h̃,ε

{
∂Gτ

∂s

}
.

Multiplying both sides of this equivalence of sets by ε we obtain

Oz,s,h̃,ε

{
εz2

}
= Oz,s,h̃,ε

{
z
∂Ḡτ

∂z

}
+Os,h̃,ε

{
∂Ḡτ

∂s

}
.

Thus Oz,s,h̃,ε {εz2} ⊂ TOs(Ḡτ ) and s-infinitesimal stability is proven. ¤

Proof: (iii) For the proof of this part we make use of the fact that the family G is

invariant under the action of the map

σ : (z, λ, µ) 7→ (−z, µ, λ)

since clearly σ ◦G = −h + µ f(s−λz) + λ f(s + µz) = G. Consequently we will work

in Oσ
x, the subspace of Ox containing germs which are invariant under the action of

the map σ. Throughout the proof we will use the fact that every member of Oσ
x is

a function of the basic σ invariant functions z2, zε, ε2 and q = (s, h̃) by lemma 6.2.2

(stated and proved at the end of this section).

We now proceed in a similar fashion to parts (i) and (ii) but with λ0 = 1
2

so that

ε = λ− 1
2

= 1
2
−µ = 1

2
(λ−µ). Again similar transformations and re-scalings to cases

(i) and (ii) give the following homotopy

Ĝτ = −ĥ + sz2 ( 1 + τ Âσ(s, ε2) ) + εz3 ( 1 + τ B̂σ(s, ε2) ) + z4 ( 1 + τ Ĉσ(z, s, ε) )
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with τ ∈ [0, 1] and Âσ(0) = B̂σ(0) = Ĉσ(0) = 0. For this case ∂Ĝτ

∂τ
= z2 D̂σ(z, s, ε) for

some σ–invariant function D̂σ, and it is enough to demonstrate that all σ–invariant

function germs divisible by z2 lie in TOs(Ĝτ ). We apply Poénaru’s preparation the-

orem with M = Oσ
x{z2} and f : x = (z, q, τ, ε) 7→ y = (z ∂Ĝτ

∂z
, Ĝτ , q, τ − τ0, ε2).

Now

z
∂Ĝτ

∂z
= s

(
2 z2 (1 + τ Âσ)

)
+ εz3

(
3 + 3 τ B̂σ

)
+ z4

(
4 + 4 τĈσ + z τ

∂Ĉσ

∂z

)

We can write z ∂Ĝτ

∂z
= 3εz3 + z4φσ

1 + α and Ĝτ = εz3 + z4φσ
2 + β, where φσ

1 and φσ
2 are

σ–invariant functions which are non-zero at the origin and α, β ∈ If . So that

z
∂Ĝτ

∂z
− 3Ĝτ − (α + 3β) = z4(φ1 − 3φ2) ∈ If .

Now (φ1 − 3φ2)(0) = 1 6= 0 so φ1 − 3φ2 is invertible and z4 ∈ If . Similarly

z
∂Ĝτ

∂z
− φσ

1

φσ
2

Ĝτ −
(

α +
φσ

1

φσ
2

β

)
= εz3

(
3− φσ

1

φσ
2

)
∈ If .

since φ2(0) 6= 0. Now (3 − φσ
1

φσ
2
)(0) = −1 6= 0 so 3 − φσ

1

φσ
2

is invertible and εz3 ∈ If .

Hence

M / If ·M ∼= R{z2, εz3, z4}

since z3 6∈ Oσ
x. So every element m ∈ M can be written in the form m = z2 f1 +

εz3 f2 + z4 f3 for some functions fi ∈ Oσ
y(x). Now

∂Ĝτ

∂s
= z2

(
1 + τ Âσ + s τ

∂Âσ

∂s

)
+ εz3 τ

∂B̂σ

∂s
+ z4 τ

∂Ĉσ

∂s
.

Taking the second and third terms on the RHS over to the LHS and multiplying both

sides by the inverse of the function multiplying z2 (a σ–invariant function in ε2 and

q only) we obtain

z2 =
∂Ĝτ

∂s
Hσ(ε2, q, τ) + εz3 Jσ(z, q, τ) + z4 Kσ(z, q, τ)

for some σ–invariant functions H, J and K. We have already shown that εz3 and z4

can be written in terms of z ∂Ĝτ

∂z
and Ĝτ so

z2 =
∂Ĝτ

∂s
Hσ(ε2, q, τ) + z

∂Ĝτ

∂z
Ĵσ(z, q, τ) + Ĝτ K̂σ(z, q, τ).
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Multiplying both sides by f1 and decomposing the factor of ∂Ĝτ

∂s
using Hadamard’s

lemma (i.e. removing those parts involving z ∂Ĝτ

∂z
and Ĝτ and pulling them in to the

z ∂Ĝτ

∂z
and Ĝτ terms) we obtain

z2 f1 + εz3 f2 + z4 f3 =
∂Ĝτ

∂s
P σ(ε2, q, τ) + z

∂Ĝτ

∂z
Qσ(z, q, τ) + Ĝτ Rσ(z, q, τ)

for some σ–invariant functions P σ, Qσ and Rσ. It follows that Oσ
x{z2} ⊂ TOs(Ĝτ )

and s-infinitesimal stability is proven. ¤

Lemma 6.2.2 Every member of the space Oσ
x is a function of the basic σ invariant

functions z2, zε, ε2 and q = (s, h̃).

Proof: We use Poénaru’s version of the preparation theorem for symmetric functions

[19] with f : (z, ε, q) 7→ (z2, zε, ε2, q) and M = Oσ
x. Hence the quotient space

M / If · M is generated by [1], [z] and [ε], and these elements generate M as an

Oy(x)–module via f , i.e. every element m ∈ M can be written

m(z, ε) = R1(z
2, zε, ε2) + z R2(z

2, zε, ε2) + εR3(z
2, zε, ε2)

for smooth germs Ri ∈ Oy(x). However, m(z, ε) = m(−z, −ε) since m is σ–invariant,

thus R1+z R2+εR3 = R1−z R2−εR3 which implies that z R2+εR3 = 0 for all small

z and ε. This can only hold if R2 ≡ 0 and R3 ≡ 0 so that m(z, ε) = R1(z
2, zε, ε2) as

required. ¤
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6.3 Equidistants to Surfaces

This time we are concerned with equidistants to a smooth surface piece S with

parabolic curve passing through the origin. Hence we now have two variables x

and y (in place of z) and an additional parameter t (so that h = f(s, t) in the family

G). The surface S is given in special Monge form as

f(x, y) = x2 + a30 x3 + a21 x2 y + a12 x y2 + a03 y3 + h.o.t (6.3)

where aij is the coefficient of xiyj. Points along the parabolic curve for which the

family of height functions on S is A2 singular are called ordinary parabolic points (or

just A2 points for brevity). Generically there can also be isolated points for which the

family of height functions is A3 singular, called cusps of Gauss (or just A3 points).

We will deal with these two cases separately:

A2 Cases

By using a linear change of variable y 7→ a12 x/(3 a03) + y/ 3
√

a03 when a03 6= 0 (i.e.

the origin is an ordinary parabolic point) we can reduce the 3–jet of f to the form

f(x, y) = x2 + a30 x3 + a21 x2y + y3 + h.o.t.

Note: the aij here are not the same as those of equation (6.3). After this normalisation

there may be isolated points for which the 4th order terms vanish when x = 0. We

call such points A∗
2 points of S and show below that the equidistants have a special

structure local to such points. When the 4th order terms do not vanish with x = 0

we use the usual notation A2. Now, using this normalised form for f and substituting

into equation (6.1) with z = (x, y) and s = (s, t) we obtain

G(x, y, s, t, h̃, λ) = −h̃ + λµ
(
x2 + (µ− λ)(a30x

3 + a21x
2y + y3) + h.o.t.

)

h̃ = h−G|x=y=0. We can now state the relevant theorem from [10] regarding normal

forms for equidistants local to A2 and A∗
2 points at the origin on S:

Theorem 6.3.1 Given a smooth surface piece S with an A2 or A∗
2 of the family of

height functions at the origin, then the germ of the family G(x, y, s, t, λ0 + ε) (at the

origin) is s–equivalent to the germ of a family H (at the origin) where
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(i) S is A2 (or A∗
2) and λ0 6= 0, 1

2
or 1 implies H = −h̃ + ty2 + y3,

(ii) S is A2 (or A∗
2) and λ0 = 0 or 1 implies H = −h̃ + ε(ty2 + y3),

(iii) S is A2 and λ0 = 1
2

implies H = −h̃ + ty2 + εy3 + y4, and

(iv) S is A∗
2 and λ0 = 1

2
implies H = −h̃ + ty2 + εy3 + sy4 + y6, provided a05 6= 0,

a14 6= a21a13 and a13
2 6= 4a06.

In proving these statements we start by observing that ∂G/∂x = 2λµx + h.o.t. So

provided λ 6= 0 or 1 (i.e. the equidistant does not lie in the surface) we can solve

∂G/∂x = 0 for x and substitute back into the family G giving us a family

Ĝ(x, y, s, t, h̃, λ) = −h̃ + λµ
(
(µ− λ) y3 + (µ2 + λ2 − λµ) a04 y4 + 3t y2 + h.o.t.

)
.

This is essentially the same family as used in the curve cases above since simple

rescalings will lead to equivalent homotopies. Hence the proofs of (i), (ii) and (iii)

here follow in an identical fashion.

Proof: (iv) For the proof of this part we note that the family Ĝ is invariant under the

action of the map σ : (x, y, λ, µ) 7→ (−x,−y, µ, λ). We set a04 = 0 (so S is A∗
2 at the

origin) and λ = 1
2

+ ε (µ = 1
2
− ε) in the family Ĝ to give

Ĝ(x, y, s, t, h̃, λ) = −h̃ + λµ

{
y2

(
3

4
t + ...

)
+ εy3

(
− 1

2
+ ...

)
+

y4

(
a14 − a21a13

16
s+

5a05

16
t+...

)
+εy5

(
− a05

4
+...

)
+y6

(
4a06 − a2

13

256
+...

)
+O(y7)

}
.

We can use an s–equivalent change of t to reduce the coefficient of y2 to just t, and

provided a14 − a21 a13 6= 0 we can make an s–equivalent change of s to reduce the

coefficient of y4 to just s. Provided a05 6= 0 and 4a06 − a2
13 6= 0 we can re-scale y and

all parameters so that the constants in the coefficients of εy3, εy5 and y6 are set to 1.

After these changes we will achieve the following homotopy

Ĝτ = −h̃+ty2+εy3 (1+τAσ(s, t, ε))+sy4+εy5 (1+τBσ(s, t, ε))+y6 (1+τCσ(y, s, t, ε))

with τ ∈ [0, 1]. Hence ∂Ĝτ

∂τ
= y2 (εyAσ + εy3Bσ + y4Cσ) ∈ Oσ

x{y2} for all τ , and

y
∂Ĝτ

∂y
= 2ty2 + 4sy4 + 3εy3(1 + τAσ + 5y2(1 + τBσ)) + y6(6 + 6τCσ + τCσ

y ),
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∂Ĝτ

∂s
= y4 + εy3(τAσ

s + y2τBσ
s ) + y6τCσ

s ,
∂Ĝτ

∂t
= y2 + εy3(τAσ

t + y2τBσ
t ) + y6τCσ

t .

We now apply Poénaru’s preparation theorem with M = Oσ
x{y2} and

f : (y, s, t, h̃, τ, ε) 7→
(

y
∂Ĝτ

∂y
, Ĝτ , s, t, h̃, τ − τ0, ε2

)
.

We can write y ∂Ĝτ

∂y
= εy3 + y6φσ

1 + α and Ĝτ = εy3 + y6φσ
2 + β, where φσ

1 and φσ
2 are

σ–invariant functions which are non-zero at the origin and α, β ∈ If . So that

y
∂Ĝτ

∂y
− Ĝτ − (α + 3β) = y6(φ1 − φ2) ∈ If .

Now (φ1 − φ2)(0) = 3 6= 0 so φ1 − 3φ2 is invertible and y6 ∈ If . Similarly

y
∂Ĝτ

∂y
− φ1

φ2

Ĝτ −
(

α +
φ1

φ2

β

)
= εy3

(
3− φ1

φ2

)
∈ If .

since φ2(0) 6= 0. Now (3− φ1

φ2
)(0) = −3 6= 0 so 3− φ1

φ2
is invertible and εy3 ∈ If . Hence

M/If ·M ∼= R {y2, εy3, y4, y6}

since y3, εy2, εy4, y5, εy6, y7 6∈ M and εy5, εy7 ∈ If ·M . We can write εy3 and y6 in

terms of y ∂Ĝτ

∂y
and Ĝτ whilst y2 and y4 can be written as linear combinations of these

with ∂Ĝτ

∂t
and ∂Ĝτ

∂s
respectively. So by Poénaru’s preparation theorem

m = y
∂Ĝτ

∂y
R1 + Ĝτ R2 +

∂Ĝτ

∂s
R3 +

∂Ĝτ

∂t
R4

for all m ∈ M with the Ri being smooth functions of y ∂Ĝτ

∂y
, Ĝτ , s, t, h̃, τ − τ0 and

ε2. Decomposing R3 and R4 to pull the parts containing Ĝτ and y ∂Ĝτ

∂y
away from ∂Ĝτ

∂s

and ∂Ĝτ

∂t
we see that Oσ

x{y2} ⊂ TOs(Ĝτ ) and s-infinitesimal stability is proven. ¤

A3 Cases

Along the parabolic curve there are special isolated points, called cusps of Gauss, for

which the family of height functions to the surface has an A3 singularity. With regard

to equation (6.3) the condition on the coefficients of the Taylor series of f for such

points is a03 = 0. If also a2
12 6= 4a04 then the cusp of Gauss is non-degenerate (i.e. the

singularity of the family of height functions is exactly A3). If also a12 6= 0 we call the
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cusp of Gauss ordinary, and in such cases the parabolic curve is smooth through the

cusp of Gauss. If we assume a12 > 0 (else perform the transformation x 7→ −x) then

a linear change of variable −a21 x/(2 a12) + y/
√

a12 7→ y reduces the 3–jet of f to

f(x, y) = x2 + a30 x3 + xy2 + h.o.t.

Substituting this normalised form for f into equation (6.1) we again find that ∂G/∂x =

2x + h.o.t. So solving ∂G/∂x = 0 for x and substituting back in to G we obtain the

following

Ĝ(x, y, s, t, h̃, λ) = −h̃ + λµ

{
y2

(
s + ...

)
+ (µ− λ) y3

(
a13s + (4a04 − 1) t + ...

)
+

y4

({
4a04(µ

2−λµ+λ2)− (µ− λ)2}+
{
(µ− λ)2(3a30−4a22)+4a14(µ

2−λµ+λ2)
}

s+

{
5(µ− λ)2(a13 − 2a05)− 3µλa13

}
t + ...

)
+

(µ− λ) y5

({
a13 (λ2 − λµ + µ2)− 2a05(µ

2 + λ2)
}

+ ...

)
+ O(y6)

}

where ‘...’ denotes terms of order 2 and higher in s and t. We see that the constant

term in the coefficient of y4 here can vanish for certain special values of λ. There are

two such values, which we denote λ∗, symmetric about 1
2

and given by

λ∗ =
1

2
± 1

2

√
a04

1− 3a04

.

The normal form and resulting equidistants are quite different when λ0 = λ∗ as we

have shown in section 5.3. We now state the relevant theorem from [10] regarding

normal forms for equidistants local to an ordinary cusp of Gauss at the origin on S:

Theorem 6.3.2 Given a smooth surface piece S with an A3 of the family of height

functions at the origin, then the germ of the family G(x, y, s, t, λ0 + ε) (at the origin)

is s–equivalent to the germ of a family H (at the origin) where

(i) λ0 6= 0, 1
2
, λ∗ or 1 implies H = −h̃ + sy2 + ty3 + y4, provided a04 6= 0

(ii) λ0 = 0 or 1 implies H = −h̃ + ε(sy2 + ty3 + y4), provided a04 6= 0

(iii) λ0 = 1
2

implies H = −h̃ + sy2 + εty3 + y4, provided a04 6= 0 or 1
4
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(iv) λ0 = λ∗ implies H = −h̃ + sy2 + ty3 + (ε + t)y4 + y5, provided a04 6= 0, 1
4

or 1
3
,

a13 6= 5a05 − 6a13a04 and a13 6= 4a05(1− 2a04).

Proof: (i) Here λ = λ0 + ε with λ0 6= 0, 1
2
, λ∗ or 1. By inspection of Ĝ above we

can make s–equivalent changes to s, t and re-scale s, t and y to give the following

homotopy4

Ĝτ = −h̃ + sy2 + ty3 + y4 ( 1 + τA(y, s, t, ε) )

with τ ∈ [0, 1] and A(0) = 0. Now ∂Ĝτ

∂τ
= y4A whilst

y
∂Ĝτ

∂y
= 2sy2 + 3ty3 + y4 (4 + 4τA + yτAy).

We now apply the Malgrange preparation theorem with M = Ox{y4} and

f : (y, s, t, h̃, τ, ε) 7→
(

y
∂Ĝτ

∂y
, s, t, h̃, τ − τ0, ε

)
.

In If we have {y ∂Ĝτ

∂y
} = {y4} so that

M/If ·M ∼= R{y4, y5, y6, y7}.

Now {y2 ∂Ĝτ

∂y
} = {y5}, {y3 ∂Ĝτ

∂y
} = {y6} and {y4 ∂Ĝτ

∂y
} = {y7} so by the theorem

m = y
∂Ĝτ

∂y

(
R1 + y R2 + y2 R3 + y3 R4

)

for all m ∈ M with the Ri being smooth functions of y ∂Ĝτ

∂y
, s, t, h̃, τ − τ0 and ε.

Clearly Ox{y4} ⊂ TOs(Ĝτ ) and s-infinitesimal stability is proven. ¤

Proof: (ii) We take λ0 = 0 and after substituting λ = ε into the expression for Ĝ

above the same s–equivalent changes to s, t and y that we used in (i) give the following

homotopy

Ḡτ = −h̃ + εsy2 + εty3 + εy4 ( 1 + τĀ(y, s, t, ε) )

with τ ∈ [0, 1] and Ā(0) = 0. We showed in part (i) that

Ox{y4} = y
∂Ĝτ

∂y
Oy(x){1, y, y2, y3}.

4Provided a04 6= 1
4 and 4a04(µ2 − µλ + λ2) 6= (µ− λ)2. Both of these conditions hold since the

cusp of Gauss at the origin on S is ordinary and λ 6= λ∗.
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Multiplying both sides of this expression by ε we obtain

Ox{εy4} = y
∂Ḡτ

∂y
Oy(x){1, y, y2, y3}.

So Ox{εy4} ⊂ TOs(Ḡτ ) and s-infinitesimal stability is proven. ¤

Proof: (iii) Again we restrict to the space Oσ
x of smooth germs at the origin which

are invariant under the action of the map σ : (y, ε) 7→ (−y,−ε). We take λ = 1
2

+ ε

and substitute into the expression for Ĝ above to give

Ĝ = −h̃+λµ

{
y2

(
1

4
s+...

)
+εy3

(
1− 4a04

2
t− a13

2
s+...

)
+y4

(
a04

16
+...

)
+O(y5)

}
.

We can now make s–equivalent changes to s, t and y in Ĝ to give the following

homotopy5

Ĝτ = −h̃ + sy2 + εty3 + y4 ( 1 + τAσ(y, s, t, ε) )

with τ ∈ [0, 1] and Aσ(0) = 0. Now ∂Ĝτ

∂τ
= y4Aσ whilst

y
∂Ĝτ

∂y
= 2sy2 + 3εty3 + y4 (4 + 4τAσ + yτAσ

y ).

We now apply Poénaru’s preparation theorem with M = Oσ
x{y4} and

f : (y, s, t, h̃, τ, ε) 7→
(

y
∂Ĝτ

∂y
, s, t, h̃, τ − τ0, ε

2

)
.

In If we have {y ∂Ĝτ

∂y
} = {y4} so that

M/If ·M ∼= R{y4, εy5, y6, εy7}

since it is clear that εy4, y5, εy6, y7 6∈ M . Now {εy2 ∂Ĝτ

∂y
} = {εy5}, {y3 ∂Ĝτ

∂y
} = {y6}

and {εy4 ∂Ĝτ

∂y
} = {εy7} so by Poénaru’s theorem we have

m = y
∂Ĝτ

∂y

(
R1 + εy R2 + y2 R3 + εy3 R4

)

for all m ∈ M with the Ri being smooth functions of y ∂Ĝτ

∂y
, s, t, h̃, τ − τ0 and ε2.

Clearly Oσ
x{y4} ⊂ TOs(Ĝτ ) and s-infinitesimal stability is proven. ¤

5Provided a04 6= 0 or 1
4 which holds since the cusp of Gauss at the origin on S is ordinary.
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Proof: (iv) For this case there is no obvious application of the Malgrange preparation

theorem and so the proof is necessarily more labourious. We take λ = λ∗ + ε and

substitute into the expression for Ĝ above to give

Ĝ = −h̃ + λµ

{
y2

(
4a04 − 1

4(3a04 − 1)
s + ...

)
+ y3

( −a13(4a04 − 1)
√

a04(1− 3a04)

4(3a04 − 1)2 s−

(4a04 − 1)2
√

a04(1− 3a04)

4(3a04 − 1)2 t + ...

)
+ y4

(
(4a04 − 1)(3a04 − 1)

√
a04(1− 3a04)

4(3a04 − 1)2 ε+

(4a04 − 1)(6a13a04 − 5a05 + a13)

16(3a04 − 1)2 t +
(4a04 − 1)(4a22a04 − 3a30a04 − a05)

16(3a04 − 1)2 s + ...

)
+

y5

(
(4a04 − 1)(4a05 − 8a05a04 − a13)

√
a04(1− 3a04)

32(3a04 − 1)3 + ...

)
+ O(y6)

}
.

Now provided a04 6= 0, 1
3

or 1
4

we can make s–equivalent changes to make the coefficient

of y2 the new s and the coefficient of y3 the new t. For the coefficient of y4 we re-scale

ε to give it a unit coefficient and provided 6a13a04 − 5a05 + a13 6= 0 we can do the

same with t. We now re-scale y and s to re-establish unit coefficients for sy2 and ty3.

Finally, provided 4a05 − 8a05a04 − a13 6= 0 we can multiply through by the inverse of

the constant term in the coefficient of y5 and final re-scalings of all variables leads to

the following homotopy

Gτ = −h̃ + sy2 + ty3 + y4 ( ε + t + τA(s, t, ε) ) + y5 ( 1 + τB(y, s, t, ε) )

with τ ∈ [0, 1] and A(0) = B(0) = 0. However, before going on to apply Moser’s

method we seek a further simplification of Gτ using some standard singularity theory.

Since the family Gτ is a deformation of the function germ y5 it can be induced from

the standard versal unfolding of Z5 at 0, namely

H = Z5 + α3 Z3 + α2 Z2 + α1 Z.

To say that Gτ can be induced from H means that we can write

Gτ (y, p) = H(Z, α1, α2, α3)

where now Z = Z(y, p) and αi = αi(p) with p = (s, t, h̃, ε). The family H is an

unfolding of Z5 at 0 so we must have αi(0) = 0 and by setting p = 0 we can show

that Z(y, 0) = y (1 + τ B)
1
5 . However it does not necessarily follow that Z(0, p) = 0

and we will need this in what follows. Hence we prove the following easy lemma:
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Lemma 6.3.3 Any unfolding of the germ y5 at y = 0 can be induced from the un-

folding L = T 5 + A′ T 4 + B′ T 3 + C ′ T 2 + D′ T + E ′ in such a way that the origin

is fixed, i.e. y = 0 implies T = 0. (This states that L is a versal unfolding of the

boundary singularity y5 at y = 0.)

Proof: We start with the versal unfolding theorem which states that every unfolding

of y5 can be induced from the standard versal unfolding K(t, P ) = t5+A t3+B t2+C t

where P = (A, B, C) is the parameter set. Hence given any unfolding of y5, F (y, p)

say, we can write

F (y, p) = K(t(y, p), A(p), B(p), C(p))

with A(0) = B(0) = C(0) = 0. Now we can certainly write t in the form

t(y, p) = T (y, p) + Q(p)

where T (0, p) = 0 for all p, i.e. Q is that part of t which is independent of y.

Substituting t = T + Q into K we obtain a new family

L(T, P ′) = T 5 + A′ T 4 + B′ T 3 + C ′ T 2 + D′ T + E ′

with the required property that y = 0 implies T = 0, and furthermore

F (y, p) = L(T (y, p), A′(p), B′(p), C ′(p), D′(p), E ′(p))

with A′(0) = B′(0) = C ′(0) = D′(0) = E ′(0) = 0. Hence F can be induced from L

in the required way. Thus we have shown that allowing only changes of coordinates

which take 0 to 0, the functions T 5, T 4, ..., T and 1 form a basis for a versal unfold-

ing of the boundary singularity y5 at 0. (Note: Clearly the same argument can be

trivially generalised to the case yk at y = 0.) ¤

We can now induce Gτ from a family of the same form as L in the lemma, thus

Gτ (y, p) = T 5 + β4 T 4 + β3 T 3 + β2 T 2 + β1 T + β0

where T = T (y, p), βi = βi(p) and βi(0) = 0. Setting y = 0 in this equation we

obtain β0 = −h̃. Differentiating once with respect to y and setting y = 0 we obtain

β1 = 0. Differentiating twice with respect to y and once with respect to s and setting
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y = 0 we can show that β2 = s + h.o.t. Similarly, differentiating three times with

respect to y and once with respect to t we can show that β3 = t + h.o.t. Finally, if

we differentiate four times with respect to y and once with respect to ε (or t) we can

show that β4 = ε + t + h.o.t. Thus the family Gτ has an equivalent representation of

the form

Gτ (y, s, t, ε) = −h̃ + (s + h.o.t.) T 2 + (t + h.o.t.) T 3 + (ε + t + h.o.t.) T 4 + T 5

where ‘h.o.t.’ means terms of degree two and higher in s, t and ε. Hence (after some

obvious s–equivalent changes of parameter) we obtain the following homotopy

Ĝτ (y, s, t, ε) = −h + sy2 + ty3 + ( ε + t + τÂ(s, t, ε) ) y4 + y5.

We will now apply Moser’s method to the family Ĝτ . First we note that

y
∂Ĝτ

∂y
= 2sy2 + 3ty3 + 4y4 ( ε + t + τÂ(s, t, ε) ) + 5y5. (6.4)

The function on the RHS here is 5-regular so by the general division theorem (e.g.

Martinet [15] Ch.9) any such function, f(y, p) say, can be written in the form

f(y, p) = Q(y, p)

(
y
∂Ĝτ

∂y

)
+ γ2(p) y2 + γ3(p) y3 + γ4(p) y4

for some smooth function Q and smooth functions γi in parameters only. We have

∂Ĝτ

∂τ
⊂ Oy,p{y2}.

If N is the space Oy,p{y2} quotiented by Oy,p{y ∂Ĝτ

∂y
} then the division theorem state-

ment above is equivalent to

N = Oy,p{y2} /Oy,p

{
y
∂Ĝτ

∂y

}
∼= Op{y2, y3, y4}.

If [ f ] denotes the class of a function f in N then [ f ] = γ2(p)y2 + γ3(p)y3 + γ4(p)y4.

Now ∂Ĝτ

∂s
= y2 + τ ∂Â

∂s
y4 and ∂Ĝτ

∂t
= y3 +

(
1 + τ ∂Â

∂s

)
y4 so that

[ f ] = γ2

(
∂Ĝτ

∂s
− τ

∂Â

∂s
y4

)
+ γ3

(
∂Ĝτ

∂t
−

(
1 + τ

∂Â

∂t

)
y4

)
+ γ4y

4

= γ2
∂Ĝτ

∂s
+ γ3

∂Ĝτ

∂t
+ γ5y

4
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for some smooth functions γi in parameters. If M is the space N quotiented by

Op{∂Ĝτ

∂s
, ∂Ĝτ

∂t
} then it follows that

M = N /Op

{
∂Ĝτ

∂s
,
∂Ĝτ

∂t

}
∼= Op{y4}.

So it is sufficient to show that any function of the form f(y, p) = y4 k(p) lies in

the factor space of the tangent space to the orbit of s–equivalences through Ĝτ . To

this end we consider a number of germs from the tangent space TOS(Ĝτ ). Clearly

Ĝτ + h ∈ TOS(Ĝτ ) and

Ĝτ + h = sy2 + ty3 + (ε + t + τÂ)y4 =
1

5

(
y
∂gτ

∂y
− (ε + t + τÂ)y4 − ty3 − sy2

)

using equation (6.4). If [[ f ]] is the class of a function f in M then we have

[[ Ĝτ + h ]] =
1

5
(ε + t + Φ1) [[ y4 ]]

where Φ1 ∈M2
p. Now consider the germ

y2 Ĝτ = −hy2 + sy4 + ty5 + y6 [ ε + t + τÂ(s, t, ε) ] + y7.

Multiplying equation (6.4) by powers of y and using back substitution we can write

the RHS here in terms of powers of y up to degree 4 only. Doing this we find

[[ y2 Ĝτ ]] =
3

5
(s + Φ2) [[ y4 ]]

where Φ2 ∈M2
p. Using the same method with the germ y4 Ĝτ we obtain

[[ y4 gτ ]] = (−h + Φ3) [[ y4 ]]

where Φ3 ∈M2
p. Finally consider the germ

ε
∂Ĝτ

∂ε
= ε

(
1 + τ

∂Â

∂ε

)
y4 so that

[[
ε

∂gτ

∂ε

]]
= (ε + Φ4) [[y4]]

where Φ4 ∈ M2
p. We now make s–equivalent changes of variable, 3

5
(s + Φ2) 7→ s̃,

1
5
(ε+t+Φ1) 7→ t̃ and −h+Φ3 7→ h̃. If we write Φ4 in the form Φ4 = Φ5(ε)+Φ6(s̃, t̃, ε)

with Φ6(0, 0, ε) = 0 for all ε, we can make a final s–equivalent change of variable,

ε + Φ5(ε) 7→ ε̃ and kill the term Φ6 using s̃, t̃ and h̃. Now we can obtain s̃ [[ y4 ]],
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t̃ [[ y4 ]], ε̃ [[ y4 ]] and h̃ [[ y4 ]] using linear combinations of the germs Ĝτ + h, y2Ĝτ ,

y4Ĝτ and ε ∂Ĝτ

∂ε
. Hence any function of the form f(y, p) = y4 k(p) can be written as a

linear combination of germs from the tangent space TOS(Ĝτ ). We can now make the

final statement of the proof: Any function g ∈ O{y,p}{y2} can be written in the form

g(y, p) = Q(y, p)

{
y
∂Ĝτ

∂y

}
+ γ1(p)

{
∂Ĝτ

∂s

}
+ γ2(p)

{
∂Ĝτ

∂t

}
+

γ3(p)
{

Ĝτ + h
}

+ γ4(p)
{

y2 Ĝτ

}
+ γ5(p)

{
y4 Ĝτ

}
+ C0

{
ε

∂Ĝτ

∂ε

}

for smooth functions Q and γi in their respective variables and some C0 ∈ R. This is

the required s–infinitesimal stability statement and the proof is complete. ¤

6.4 Chapter Summary

In this chapter we proved theorems giving normal forms for equidistants, appropriate

to all λ ∈ [0, 1], local to (i) an ordinary inflexion of a plane curve (theorem 6.2.1) and

(ii) ordinary parabolic points (theorem 6.3.1) and cusps of Gauss (theorem 6.3.2) on

a single smooth surface piece. These normal forms represent the simplest possible

versal families whose discriminants give diffeomorphic versions of the equidistants in

each case.



Chapter 7

Experimental Work for Further

Study

7.1 Introduction

The bulk of this chapter concerns itself with the behaviour of equidistants in the

neighbourhood of points of a smooth surface which occur in 1 and 2 parameter fam-

ilies. In particular we consider:

(i) Non-versal A3 points,

(ii) A4 points, and

(iii) D4 (or flat umbilic) points.

All of these points are unstable in the sense that a small perturbation of the surface

will remove them. They do however occur generically as transition ‘moments’ in

families of surfaces and for the equidistants we will be interested in their structure

at such special points and either side of such points in the transition. At the time

of writing normal forms had not been determined for these cases as they present

a number of new difficulties, and in fact unique normal forms may not even exist

for these cases. Hence most of this material is of a more experimental nature. We

conclude the chapter with an investigation into the birth of A∗
2 points.

148
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7.2 Non-versal A3 Points

Referring once again to the notation and argument following proposition 5.3.5 above,

then for the cusp of Gauss case when b2 = 0 we have from equation 5.6

K = 24 c4 s2
2 + 4

(
c2 − b1

2
)
s1

2 + 8 c4 z2
2 + h.o.t.

If c4 and c2− b1
2 have the same sign then K = 0 is locally a point in (s1, s2, z2)-space,

whilst if they have opposite sign it is locally a cone. We know from above that when

b2 = b3 = 0 the parabolic curve is singular and (as the zero set of a Morse function)

this singularity will be locally an isolated point or a node (i.e. two branches crossing

transversely) at the origin. Such points are described as non-versal A3 points of the

surface. Our aim is to describe the structure of the equidistants about these isolated

points and nodes of the parabolic curve and how they transition either side of such

points. First we recall some basic theory:

In a 1-parameter family of surfaces, with b2 passing through zero, the generic be-

haviour of the parabolic curve is that of the standard Morse transitions. If z =

f(x, y, t), using t as the transition parameter b2, then the parabolic curve is given

by the zero set of P (x, y, t) = fxx fyy − fxy
2. If P has a Morse singularity (i.e. an

isolated point or a node) at x = y = t = 0 then the condition for the family f to

give a standard Morse transition is given by the Morse Lemma with parameters (see

‘Curves and Singularities’ [6] p.95 for a sketch of the proof). In this lemma we use a

local diffeomorphism ψ : (x, y) 7→ (ψ1(x, y, t), ψ2(x, y, t)) of the source space of P so

that we can write

P (ψ1(x, y, t), ψ2(x, y, t), t) = ε1 x2 + ε2y
2 + h(t) (7.1)

where ε1 = ±1 and ε2 = ±1. The lemma states that the family f gives a stan-

dard Morse transition if and only if h′(0) 6= 0, i.e. h changes sign at the origin.

Differentiating equation (7.1) with respect to t gives

∂P

∂x

∂ψ1

∂t
+

∂P

∂y

∂ψ2

∂t
+

∂P

∂t
= h′(t).

Now when x = y = t = 0 then ∂P/∂x = ∂P/∂y = 0, so the first two terms on the

LHS vanish leaving ∂P/∂t | (0,0,0) = h′(0). This gives us an easy way to determine if

the lemma is satisfied for a given family f .
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Example 7.2.1 Bruce et al. [5] provide a detailed study of the evolution of parabolic

curves from which we take the following family f(x, y, t) = x2 + t y2 + ε1 x2 y2 + ε2 y4.

For this family ∂P/∂t | (0,0,0) = 4 so the Morse lemma with parameters applies.

Moreover this family contains all four of the possible Morse transitions of P cor-

responding to the following choices of ε1, ε2: (i) ε1 = ε2 = −1 (ii) ε1 = ε2 = 1 (iii)

ε1 = 1, ε2 = −1, and (iv) ε1 = −1, ε2 = 1. Cases (i) and (ii) represent an elliptic

(or hyperbolic) region enclosed by the parabolic curve which shrinks to a point and

vanishes, leaving a fully hyperbolic (or elliptic) region. In both of these cases the

MPTS is a smooth surface with boundary along the parabolic curve and lying above

the enclosed region. During the transition it shrinks to a point and vanishes along

with the parabolic curve, e.g. with ε1 = ε2 = −1 and t = 1 the MPTS is as follows.

Cases (iii) and (iv) both represent transitions either side of a node on the parabolic

curve. In both cases the MPTS clings to the parabolic curve throughout, lying over

an elliptic region in one case and over a hyperbolic region in the other, e.g. with

ε1 = −1, ε2 = 1 and t = −0.1, 0 and 0.1 the MPTS is as follows.

t = - 0.1
 t = 0
 t = 0.1


Remark: Convincing pictures for equidistants other than the MPTS are hard to

produce in this case. However we know from our earlier work in diffeomorphic settings

that they all have the structure of a cuspidal Whitney umbrella at the cusp(s) of Gauss

and inflexional contact with the host surface elsewhere along the parabolic curve.
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Figure 7.1: The critical locus of the map G.

Movement of Partner Points about a Node of the Parabolic Curve

For the node transition it is instructive to take points close to a node of the parabolic

curve and ask where, if anywhere, other partner points lie (i.e. other points which

have a parallel tangent plane). Any such partner points will of course generate points

of an equidistant. To study the behaviour of partner points about a node we take the

usual generalised form for f as follows

f(x, y) = x2 + b0x
3 + b1x

2y + txy2 + h.o.t.

with t = 0 giving a node on the parabolic curve at the origin. Now consider the map

G : (x, y) 7→ (fx, fy) which is A–equivalent to the standard Gauss map. This map

determines the parallel tangent set Π for a given surface since points with parallel

normals also have parallel tangent planes. By studying the number of pre-images of

points in the target space of G we can say something about the existence of partner

points in the parameter plane of the surface. Now, using a series of affine changes

of coordinate we can reduce G to the form (x, ±x2y + y3 + h.o.t.) and standard

classification results for maps from the plane to the plane (e.g. Rieger [21]) tell us

that this map is 3–A–determined. Hence we arrive at a final form of A–equivalent

Gauss map as follows (retaining G for simplicity of notation)

G : (x, y) 7→ (u, v) where u = x and v = ±x2y + y3.

Now ΣG = {(x, y) : ±x2 + 3y2 = 0} which implies x = y = 0 or x = ±y
√

3. The

image of this set of points under G is {(±y
√

3, −2y3) : y ∈ R}. This represents two

cubic curves both of which are inflexional and intersect at the origin. Thus the target
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Figure 7.2: Non-versal A3: Location of partner points.

space of G is separated into regions A, B, C and D by its critical locus, as shown

in figure 7.1. We can now ask: how many pre-images do points lying in the various

regions of figure 7.1 have?

1. Starting with a point on the v–axis (other than 0) this is equivalent to asking

for a given v1 (u1 = 0) how many points in the parameter space of the surface

map to (0, v1) under G? Since u1 = 0 then v1 = y3 (from the second component

of G) so for a given v1 there is a unique point (0, y) in the parameter space

of the surface mapping to (0, v1). We conclude that every point in regions B

and D of figure 7.1 has a single pre-image under G, and so points mapping into

these regions do not generate equidistant points.

2. Repeating the exercise for the u–axis we have x = u1 so±u1
2y+y3 = 0 (from the

second component of G) and choosing the ‘–’ sign we have y = 0 or y = ±u1

(Note: choosing the ‘+’ sign just yields u1 = y = 0). Hence every point in

regions A and C of figure 7.1 has three pre-images under G and points mapping

into these regions do generate equidistant points.

3. Points on the critical locus itself are the images of points on the parabolic curve

of the surface. These arise in the limit as distinct points with parallel tangent

planes come into coincidence on the parabolic curve, creating a boundary on

the MPTS (or inflexional contact in the case of other equidistants).

We now look at what is going on in the domain space of G, i.e. the parameter plane

of the surface. The pre-image of the critical locus of G is given by those x and y



CHAPTER 7. EXPERIMENTAL WORK FOR FURTHER STUDY 153

such that (x, −x2y + y3) = (±v
√

3, −2v3). So from the first components x = ±v
√

3,

and substituting in the second components we have y3 + 2v3 − 3v2y = 0. Factorising

we have (y − v)2(y + 2v) = 0 so that y = v or y = −2v and the pre-images of the

critical locus are P = {(±y
√

3, y)} and P ′ = {(±y
√

3, −2y)}. The set P is shown

as the solid lines through the origin in figure 7.2. It represents the parabolic curve

of the surface (after the diffeomorphism to reduce the map G) projected onto the

parameter plane. The set P ′ is another pre-image of the image of the parabolic curve

under G and it plays an important role since it separates the parameter plane of the

surface into four regions as shown in figure 7.2. Points in regions 2 and 4 have no

partner points and hence cannot generate equidistant points (e.g. the marked red

crosses). However, all points in regions 1 and 3 have two partner points generating

equidistant points (e.g. the marked black circles). This model can provide more

qualitative information about the relative movement of partner points and hence the

structure of equidistants about a non-versal A3. We use the following simple rules

concerning the critical locus of G:

• Partner points always move in a continuous fashion (except for the possibility

of them coming together on P ).

• The only folds of the map G are on P .

• Partner points can only hit G−1(G(P )) simultaneously (since P ∪ P ′ is the

complete inverse image of the critical locus of G).

Now consider a pair of partner points previously coincident on the ‘upper’ branch of

the parabolic curve in region 1 of figure 7.2 and now close to and either side of this

line. The points are drawn red and yellow and their initial positions are indicated

by a and a∗ in figure 7.3. By using the three rules we can conclude the following as

these points move smoothly within region 1:

1. As the red point hits the ‘lower’ branch of P (position b) the yellow point

must hit the ‘upper’ branch of P ′ (position b∗). From here the red point moves

through P but the yellow point must turn back into region 1, since otherwise it

could not be a partner to the red point.
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Figure 7.3: Non-versal A3: Relative movement of partner points.

2. The red point continues on until it hits the ‘lower’ branch of P ′ (position c)

whence the yellow point reaches the ‘upper’ branch of P (position c∗). This

time the yellow point moves through P but the red point must turn back into

region 1 in order to remain a partner point.

3. Both points continue on and are shown at positions d and d∗ shortly before

coinciding on the ‘lower’ branch of P .

Since the map taking Π onto the equidistants is a local diffeomorphism then the above

argument tells us that points of region 1 of figure 7.2 generate an equidistant in one

continuous ‘sheet’. Points coming together on the parabolic curve create a boundary

on the MPTS and inflexional contact with the host surface for all other equidistants.

Clearly all of the above applies equally well to region 3 of figure 7.2. So equidistants

in this case always consist of two distinct and continuous sheets (though joined at 0).

7.3 A4 Points

With the surface described locally in Monge form as a graph z = f(x, y) with

f = x2 + b0x
3 + b1x

2y + b2xy2 + b3y
3 + c0x

4 + c1x
3y + c2x

2y2 + c3xy3 + c4y
4 + h.o.t.

then the origin is called an A4 point whenever b3 = 0, b2
2 = 4c4 and b1b2

2+4d5 6= 2b2c3.

Such points occur generically in 1-parameter families of functions and are identifiable,

for example, by the intersection of the surface with its tangent plane forming a rham-

phoid cusp. There are two types of transition about A4 points representing either the
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birth or death of two ordinary cusps of Gauss on the parabolic curve. The parabolic

curve itself remains smooth throughout these transitions (provided b2 6= 0) but its

image under the Gauss map undergoes a standard swallowtail transition thus:

All of this is documented in detail in Bruce et al. [5]. The MPTS in this case shows

the familiar behaviour of being a smooth surface with boundary along the parabolic

curve. The other equidistants show the typical singularities of a surface formed as an

envelope (i.e. cuspidal edges and swallowtail points).

Example 7.3.1 Taking f(x, y) = x2 + y5 + 2xy2 + y4 (so the origin is an A4 point)

the MPTS and equidistant with λ = 1
3

are as follows,

A 4  p o i n tA 4  p o i n t

l  =  1 / 2 l  =  1 / 3

In the latter case the host surface is not shown as it obscures the equidistant which

has a cuspidal edge through the A4 point (and also a swallowtail point away from the

A4). In both figures the singular locus is marked by the lighter coloured space curve.

Singular Parabolic Curve

Here we add a special case to proposition 3.5 of Bruce et al. [5] which was not

considered at the time. The proposition states that if the family of height functions,

H(x, y, t, a, b) = f(x, y, t)+ax+by, is a versal unfolding of an A4 then the sections t =

constant of the big bifurcation set of H (a swallowtail surface) are always generic. This

is always true when the parabolic curve remains smooth throughout the transition but
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in fact there is a further (co-dimension 2) case in which H is versal but the parabolic

curve is singular leading to non-generic t = constant sections of the swallowtail sur-

face. To show this we take f in the standard form, setting b2 = b3 = 0 (which implies

c4 = 0) and d5 6= 0 whence f(x, y) = x2+b0x
3+b1x

2y+c0x
4+c1x

3y+c2x
2y2+c3xy3+

h.o.t. If we write f1(x, y) = A0x
2+A1xy+A2y

2+B0x
3+B1x

2y+B2xy2+B3y
3+h.o.t.

then we can take

H(x, y, t, a, b) = f(x, y) + t f1(x, y) + ax + by

and use the usual matrix method to determine conditions for H to be a versal un-

folding. We need all monomials up to and including degree 3 so we construct a 9× 9

matrix whose column headers relate to the monomials x, y, x2, xy, y2, x3, x2y, xy2

and y3. We take the matrix entries to be the coefficients of these monomials in the

sequence of expressions Fa, Fb, Ft, fx, fy, xfx, yfx, xfy and yfy. This matrix is

Υ =




1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 A0 A1 A2 B0 B1 B2 B3

2 0 3b0 2b1 0 4c0 3c1 2c2 c3

0 0 b1 0 0 c1 2c2 3c3 0

0 0 2 0 0 3b0 2b1 0 0

0 0 0 2 0 0 3b0 2b1 0

0 0 0 0 0 b1 0 0 0

0 0 0 0 0 0 b1 0 0




and det(Υ) = −12(b1c3)
2A2. Hence the family F versally unfolds the A4 of f at the

origin if and only if b1 6= 0, c3 6= 0 and A2 6= 0.

Example 7.3.2 We take F (x, y, t, a, b) = ax + by + x2 + t y2 + x2y + xy3 + y5 so

b1 = c3 = A2 = 1 and d5 6= 0. Clearly f(x, y) = F (x, y, 0, 0, 0) has an A4 at the origin

and we know from above that F is a versal unfolding of this A4. The big bifurcation

set of F is given by B̃F = {(t, a, b) : Fx = Fy = FxxFyy − Fxy
2 = 0} and calculations

show that we can parameterise this using x and y as follows
(−31y4 − 12xy − 40y3 + 4x2

4(y + 1)
, −2x− 2xy − y3,

21y5 + 30y4 + 6xy2 − 6x2y − 2x2 − 6xy3

2(y + 1)

)
.
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The following figure gives a view of this surface close to the origin, showing the

familiar swallowtail shape.

I n t e r s e c t i o n  i n  t h e  p l a n e  t  =  0 . 0 5I n t e r s e c t i o n  i n  t h e  s w a l l o w t a i l  s u r f a c e

The red curves indicate the intersection of the swallowtail and the plane t = 0.05. In

examples such as these the t = constant surfaces in R3 have a tangent plane for t = 0

which contains the limiting tangent line to the cuspidal edge and self-intersection of

the swallowtail. Hence this family of sections is always non-generic.

7.4 D4 Points

At D4 points the quadratic part of f disappears completely forming what is termed

a ‘flat umbilic’, i.e.

f = b0x
3 + b1x

2y + b2xy2 + b3y
3 + h.o.t.

There are two types of D4 point depending on the number of real roots of the cubic

part of f : (i) elliptic D4 (or D4
−) when there are three real roots, and (ii) hyperbolic

D4 (or D4
+) when there is only one real root. Affine changes of variable allow us to

reduce these two types to z = x3 ± xy2 + h.o.t. with the ‘–’ sign for D−
4 and the ‘+’

sign for D+
4 . Alternatively for D+

4 we can reduce to z = x3 + y3 + h.o.t.
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The D4
− Case

The transition about a D4
− is similar to the two Morse transitions about an isolated

point on the parabolic curve but in this case the parabolic curve reappears after

shrinking to a point. An elliptic region reappears as an elliptic region (and hyperbolic

similarly) as follows:

E E

H H

For this case we can find examples where it is possible to extract the problematic

diagonal points and parameterise the parallel tangent set Π.

Example 7.4.1 We take F (x, y, σ) = x3 − xy2 + y4 + σ y2, a family which correctly

realises the D−
4 transition (see Bruce et al. [5] for details). By using the substitution

a = s − u, b = t − v, c = s + u, d = t + v we can extract the diagonal points (i.e.

a = b = 0) and so parameterise the equidistants. When σ = 0 we are at the D−
4

moment and the MPTS appears as a parabolic bowl, smooth everywhere except at

its single point of contact with the host surface (the D4
− point):



CHAPTER 7. EXPERIMENTAL WORK FOR FURTHER STUDY 159

With σ = 1/100 the parabolic curve opens out into an ellipse passing through the

origin and lying in the positive x–half plane. This is now a standard A2 situation so

MPTS is smooth everywhere except for a boundary along the parabolic curve (the

bowl sinks into the host surface without reappearing underneath!):

For the transition on the other side we take σ = −1/100 whence the parabolic curve

is an ellipse passing through the origin, this time lying in the negative x–half plane.

The MPTS is once again smooth with boundary close to the parabolic curve (left side

image), but it is no longer smooth everywhere. If we zoom out slightly we start to see

what appear to be cuspidal edges and swallowtails on the MPTS about the forming

parabolic bowl (right side image).
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All other equidistants are very singular, e.g. With σ = 0 and λ = 49/100 the result-

ing equidistant looks to have three swallowtail points and several self intersections,

although local to the D−
4 point the equidistant is actually smooth:

Through the transition it is difficult to produce convincing pictures of the non-halfway

equidistants. However from our previous findings we expect them all to meet the

original surface with inflexional contact along the parabolic curve before forming

cuspidal edges, whilst at the three cusps of Gauss around the parabolic curve they

will form cuspidal Whitney umbrellas.

Movement of partner points through the D−
4 transition

In an attempt to establish if this example is generic we will repeat the exercise carried

out for the non-versal A3 case by examining the existence and relative movement of

parallel tangent pairs close to a cusp of Gauss after a small perturbation from the

D4
− position. For this exercise we can use the simplest possible versal family

F (x, y, σ) = x3 − xy2 + σy2

as cusps and ordinary tangency are stable phenomena. Hence if G is theA−equivalent

Gauss map described above then we don’t expect to see significant changes in the

structure of G−1(G(P )) after adding some higher order terms to give a generic

example. For this case G = (fx, fy) = (3x2 − y2, 2σy − 2xy) and we will use

u and v as coordinates in the target space of G. The parabolic curve is given

by P = −12x2 + 12xσ − 4y2 = 0 which is an ellipse through the origin in the
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Figure 7.4: The critical locus of the A–equivalent Gauss map and its pre-images for

the surface z = x3 − xy2 + σy2, with σ fixed and small.

(x, y)–plane, shrinking to a point when σ = 0. Calculations reveal three hyper-

bolic cusps of Gauss around this ellipse corresponding to points with coordinates:

A = (σ/4, 3σ/4), B = (σ, 0) and C = (σ/4, −3σ/4). Under G the ellipse maps

to a three cusped curve which has two pre-images in the (x, y)–plane; the elliptical

parabolic curve P and another curve P ′ which also has three cusps and is tangent

to P at the three cusps of Gauss. If we look at how the cusp of Gauss at B, say,

is mapped under G then G(σ, 0) = (3σ2, 0). So fy = 2σy − 2xy = 0 which implies

that y = 0 or x = σ. Now y = 0 =⇒ x = ±σ and x = σ =⇒ y = 0 so

G(σ, 0) = G(−σ, 0) = (3σ2, 0). The point (−σ, 0) is marked as B′ in the left half of

figure 7.4 and we see that B and B′ map to the same cusp in the image of P (or P ′)

under G. In a similar manner we can find points A′ and C ′ so that A and A′ map

to the cusp at (−3σ2/8, 9σ2/8) and C and C ′ map to the cusp at (−3σ2/8, −9σ2/8).

All of this is shown in the left half of figure 7.4 with the parabolic curve in green and

the other pre-image of G shown in dotted blue.

The parabolic curve P represents the critical set of G and its image under G (called

Γ in the right half of figure 7.4) gives the critical locus of G. This locus separates

the (u, v)–plane into two distinct regions; the finite region within the curve and the
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Figure 7.5: Behaviour of the Gauss map close to a Cusp of Gauss.

infinite region without. We can trivially show that G is a fold at all points of P except

for the three points A, B and C where it is (by definition) a cusp map. The question

arises: how many pre-images do points within these two regions have? (i) Taking the

point (σ2, 0) inside Γ we have (σ2, 0) = (3x2 − y2, 2y(σ − x)) for which calculation

gives four points in the (x, y)–plane as follows: (±σ/
√

3, 0) and (σ, ±σ
√

2). The red

circles in the left half of figure 7.4 show how these points are arranged, with one point

in each of the regions enclosed by ABC, A′BC, AB′C and ABC ′. (ii) We now take

the point (−σ2, 0) outside Γ and obtain two points in the (x, y)−plane as follows:

(σ, ±2σ). Both of these are clearly outside of P ′ in the (x, y)–plane. Thus we con-

clude that all points within Γ have four pre-images (lying in four distinct regions of

the (x, y)−plane) whilst those outside have just two.

We now move a point α around one of the cusps of Gauss in the (x, y)−plane, say

B, and look at the corresponding movement of its image β under the map G: (i)

Starting with α outside of P ′ (marked as a in figure 7.5) we move around B before

meeting P ′ at the point b. In the (u, v)–plane this corresponds to β being initially

outside of Γ (marked as G(a) in figure 7.5) and meeting Γ at G(b). (ii) Since P ′ is not

part of the critical set of G (except at the three cusps of Gauss) as α moves into the

region enclosed by ABC ′ then β moves inside Γ. (iii) α now goes on to meet P at the

point c. This is a fold point of G so β must ‘bounce’ off Γ and back into its interior

as α moves into the region enclosed by the parabolic curve. (iv) α goes on to meet

P again at the point d. This is also a fold point of G so β must again ‘bounce’ back
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Figure 7.6: Movement of partner points either side of P .

into the interior of Γ as α moves into the region enclosed by A′BC. (v) α carries on

to meet P ′ again at the point e. P ′ is not part of the critical set of G so as α moves

into the exterior of P ′ its image β can finally escape from the interior of Γ. (vi) α

continues on to its starting point a as β does the same in the (u, v)–plane. All of this

is shown schematically in figure 7.5.

We now examine the relative movement of a pair of partner points p and q close to

and either side of the parabolic curve P , having previously been coincident on P .

The initial positions for p and q are a and a∗ with a∗ in the region enclosed by ABC ′

and a within P . From figure 7.6 we see that the setup is essentially the same as (one

half) of the non-versal A3 case. So again the equidistant, local to the parabolic curve,

is formed as a single continuous sheet. Pairs coming together on the parabolic curve

form a boundary on the MPTS and an inflexional contact on the other equidistants.

As σ → 0 the three cusps of Gauss around the parabolic curve approach each other

and in the limit coincide so that the parabolic curve vanishes to a point. The example

above shows that the equidistants do not similarly vanish. This is because, as shown

above, a point outside of P ′ in the parameter plane of the surface has a unique parallel

tangent partner. It is these that generate the equidistants we see about the D−
4 point

in our example.
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Figure 7.7: The critical locus of G = (x2 + y3, x3 + y2) and its pre-images.

The D4
+ Case

The transition about a D4
+ has similarities to the two Morse transitions about a node

on the parabolic curve but here the parabolic curve and arrangement of elliptic and

hyperbolic regions is the same either side of the D+
4 point as follows

E E E E

H H H H

As stated above we can make smooth changes of coordinate to reduce f to the form

f = x3 + y3 + φ(x, y) where φ contains all terms of degree 4 and higher. In this case

the parallel tangency equations fx(p) = fx(q), fy(p) = fy(q) where p = (s, t) and

q = (u, v) give s2 − u2 = φu − φs, t2 − v2 = φv − φt with φi ∈ M3. This time

we cannot always trivially eliminate two of the variables to give a parameterisation

of Π, the ability to do so depends on what we choose for φ. The A–equivalent Gauss

map here is G(x, y) = (x2 + φx, y2 + φy) and by an affine change of coordinates1

followed by an application of a result of du Plessis (Ex. 3.18 of [18]) we have that G

is A–equivalent to

G(x, y) = (x2 + y3, x3 + y2)

1Note: This change of coordinates requires (i) c1 6= 0 and c3 6= 0 if the 3-jet of f is x3 + y3, or

(ii) 2(c0 − c4) 6= ±(c1 − c3) if the 3-jet of f is x3 + xy2.
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Figure 7.8: Behaviour of the Gauss map close to a D+
4 point.

(again retaining G for simplicity of notation). The critical set of G is the parabolic

curve P , which is locally just the x and y axes. The other part of G−1(G(P )), des-

ignated P ′, consists of two cuspidal curves meeting at the origin. Omitting the full

details this time, we find that in a neighbourhood of the origin the parameter plane

of G is split into regions with either 0, 2 (the white circle or cross in figure 7.7) or

4 pre-images (the red circle in figure 7.7). Consequently the parameter plane of the

surface is split into regions where a given point has either a unique partner with

parallel tangent, or three partners (one in each quadrant).

Movement of partner points about a D+
4 point

Moving a point α around the D+
4 point in the (x, y)−plane we can look at the cor-

responding movement of its image β under G. Starting at a point a on the ‘east’

branch of the parabolic curve we move α anti-clockwise around the D+
4 point. Since

the green branches of G−1(G(P )) represent fold lines then each time α crosses one

in the xy–plane the point β must bounce back from the corresponding branch in the

uv–plane. Whenever α crosses a blue branch in the xy–plane, β may cross the corre-

sponding branch in the uv–plane. The resulting trajectory of β is shown in the right

half of figure 7.8. Using this diagram we can look at the relative movement of a pair

of partner points p and q close to and either side of a branch of the green parabolic

curve P , having previously been coincident on P . This time we find that it matters
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which branch of P we start either side of. First we take p = a and q = a∗ close to

and either side of the ‘south’ branch of P , marked red and yellow as follows:

x

y

a a *
b

b *

c
c *

d

d *

e

e *

f

We see that when q crosses the ‘east’ and ‘north’ branches of the parabolic curve (at

c∗ and d∗) then p must turn around in order to remain a partner to q (at c and d). For

example, p having reached c cannot continue on into the cusped region surrounding

the ‘west’ branch of P since otherwise q must also be in this region. However, at this

moment q is in the upper left quadrant outside of this cusped region. An identical

situation arises if we start close to and either side of the ‘west’ branch of P . Hence

this qualitative argument shows that we have a single continuous sheet of equidistant

with a boundary (MPTS) or inflexional contact (other equidistants) along the ‘west’

and ‘south’ branches of P . If we now start p = a and q = a∗ close to and either side

of the ‘north’ branch of P we generate a diagram as follows:

x

y

a a *

b b *

c

c *

d
d *
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We have essentially the same diagram if we start either side of the ‘east’ branch of P

so this time the equidistant is formed as a single continuous sheet with boundary (or

inflexional contact) along the ‘east’ and ‘north’ branches of P . In its entirety then,

the equidistant local to the parabolic curve is formed as two separate (though con-

nected via the origin) and continuous sheets with boundaries (or inflexional contacts)

along the ‘north’ and ‘east’ or ‘south’ and ‘west’ the branches of the parabolic curve

respectively.

Example 7.4.2 We take f = x3 + y3 + x3y + xy3 so that c1 = c3 = 1 and the Gauss

map is reducible to our 3–A–determined form G = (x2 + y3, x3 + y2). Hence the

above description applies to this example. As for example 7.4.1 above we can use

the substitution a = s − u, b = t − v, c = s + u, d = t + v to extract the diagonal

points and enable a parameterisation using a and b. However in order to avoid zero

denominators we form the equidistants as a family of space curves through the origin

using further substitutions a = λb and b = µa (i.e. parameterising along lines through

the origin in the (a, b)–plane). The resulting MPTS is as follows:

It is a smooth surface in two sheets, one on each side of the host surface. The sheet

above has a boundary along the ‘north’ and ‘east’ branches of the parabolic curve

(shown in yellow), whilst the sheet below has a boundary along the ‘south’ and ‘west’

branches of the parabolic curve.
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So example 7.4.2 shows the exact structure we predicted in the qualitative argument

above. However to illustrate how sensitive the equidistant structure is to the choice

of higher order terms we provide another example:

Example 7.4.3 We take f = x3 + y3 + x4 + y4 so that c1 = c3 = 0. Hence this

time we do not satisfy the conditions to be able to reduce the Gauss map to the 3–A–

determined form. The parallel tangency equations are: (s−u) (4s2+s+4su+u+4u2) =

0 and (t − v) (4t2 + t + 4tv + v + 4v2) = 0 and these can be solved exactly, yielding

three solution sets corresponding to (i) s = u and 4t2 + t + 4tv + v + 4v2 = 0 (ii)

t = v and 4s2 + s + 4su + u + 4u2 = 0 and (iii) 4s2 + s + 4su + u + 4u2 = 0 and

4t2 + t + 4tv + v + 4v2 = 0. The final option, s = u and t = v, just gives us the

diagonal points. The resulting MPTS is as follows:

The red piece comes from the solution to (i) and is a smooth sheet with boundary

along the ‘north’ and ‘south’ branches of the parabolic curve. The green piece comes

from the solution to (ii) and is a smooth sheet with boundary along the ‘east’ and

‘west’ branches of the parabolic curve. The red and green pieces have a self inter-

section terminating at the D+
4 point. Finally, the blue piece comes from the solution

to (iii) and is a smooth sheet with boundary along parabolic curves on the red and

green pieces. So it is in some sense an equidistant to the equidistant!
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Remark: We can strengthen this assertion slightly by looking at a close up of the

locus of contact between the blue and green pieces of the equidistant after moving

away from the MPTS by taking λ = 5
12

:

The blue piece meets the green piece with inflexional contact along the parabolic curve

before turning back in a cuspidal edge. This is the classic behaviour of a non-halfway

equidistant about the parabolic curve of a surface.

7.5 On the Birth of A∗
2 Points

We recall that the origin on a surface placed in Monge form is A∗
2 if it is ordinary

parabolic and the fourth order terms of its Taylor expansion vanish along the asymp-

totic direction at the origin, i.e. describing the surface as a graph z = f(x,y) with

j2f = x2 we have

f(x, y) = x2 + b0x
3 + b1x

2y + b2xy2 + b3y
3 + c0x

4 + c1x
3y + c2x

2y2 + c3xy3 + h.o.t.

and b3 6= 0. We have shown above how A∗
2 points give rise to special singular behaviour

on the MPTS, namely a half cuspidal edge terminating at the A∗
2 point itself. The

obvious question arises though; how are A∗
2 points born? An ellipsoid has no parabolic

points but some small perturbations can lead to both A2 and A∗
2 points. In this section

we eliminate a number of natural proposals for the birth of A∗
2 points2 and also provide

an example which clearly demonstrates the birth event.

2However, at the time of writing this remains an open question.
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Are A∗
2 points born during the ‘point’ Morse transition of the parabolic curve?

This is perhaps the most obvious candidate since A2 points are certainly born and we

know that two cusps of Gauss are also born during such transitions. Consequently

we might speculate that A∗
2 points are born in between these cusps of Gauss, i.e.

c . o . G
c . o . G

A 2
*

A 2
*

To check this we can use the family from Bruce et al. [5] which correctly models this

transition, i.e. f = x2+ηy2−x2y2−y4 with η small and negative meaning no parabolic

points close to the origin, and η small and positive giving a small ring of parabolic

points around the origin (Note: when η = 0 the origin is not an A∗
2 point). For this

case we can solve the parallel tangency equations exactly and remove the diagonal

points subset ∆ to enable a parameterisation of the parallel tangents set Π using t and

v (the points of parallel tangency being (s, t, f(s, t)) and (u, v, f(u, v))). Thus we can

parameterise the MPTS exactly in the form X(t, v) = (m1(t, v), m2(t, v), m3(t, v)).

Calculating the first minor of the Jacobian matrix of the MPTS with η small and

positive (say η = 1
9
) we obtain an expression of the form

∂m1

∂t

∂m2

∂v
− ∂m1

∂v

∂m2

∂t
=

(v − t) g(t, v)

h(t, v)

with h(t, v) 6= 0 for small t and v. Plotting g(t, v) = 0 in the (t, v)–plane gives:

v

t

This is the locus of points in the (t, v)–plane giving rise to singular points on the

MPTS other than those forming the boundary along the parabolic curve (which are
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given by the term v − t = 0 in the above expression). Now the expression for s as a

function of t, v and η is of the form

s(t, v) =
±(v2 − 1)

√
Ω(t, v, η)

k(t, v)

with k(t, v) 6= 0 for small t and v and

Ω(t, v, η) = (tv3 + t2v2 − 2tv + t3v − 1)(2t2 + 2tv + 2v2 − η).

So real s only occur when Ω > 0. If we plot Ω = 0 when η = 1
9

(in red) together with

the existing singular locus (in black) we obtain:

v

t

h  =  
1
9

The hatched regions show where Ω > 0 and it is clear that s is imaginary along the

critical locus surrounding the origin. Hence the MPTS has no singular points close

to the origin. If we now let η → 0 the hatched region around the origin shrinks to a

point and vanishes without ever crossing the singular locus:

v

t

h  =  0  

Hence we conclude that, at least generically, no A∗
2 points are formed around the

parabolic curve through this Morse transition.
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Are A∗
2 points born at special cusps of Gauss designated A∗

3?

Again we take a surface in Monge form with A∗
2 point at the origin. So z = f(x, y)

where f = x2 + b0x
3 + b1x

2y + b2xy2 + b3y
3 + c0x

4 + c1x
3y + c2x

2y2 + c3xy3 + h.o.t.

The parabolic curve in the parameter plane of the surface has the parameterisation

(
−b3

b2

y + h.o.t, y

)
.

As stated above the MPTS can be parameterised using t and v as

X(t, v) = (m1(t, v), m2(t, v), m3(t, v)).

Again we consider the first minor of JX . This always has a branch t = v in the (t, v)–

plane. If we extract this we can parameterise another branch through the origin as

follows

v∗ = −t +
3 b2 c2

3

2 (5 b2 d5 − b2
2 c3 + 3 b1 b3 c3 − 3 b3 d4)

t2 + h.o.t.

Substituting v∗ into the expression for s we obtain a locus of points in the parameter

plane of the surface giving rise to singular points of the MPTS other than the bound-

ary along the parabolic curve. We shall call this the S–curve and it has the following

parameterisation

( −9 b3 c2
3

4 (5 b2 d5 − b2
2 c3 + 3 b1 b3 c3 − 3 b3 d4)

t2 + h.o.t, t

)
.

So it is clear than when b3 6= 0 the parabolic curve and S–curve are never tangent at

the origin whilst with b3 = 0 they are always tangent here.

Definition 7.5.1 With a smooth surface given in Monge form as z = f(x, y) where

f = x2+b0x
3+b1x

2y+b2xy2+b3y
3+c0x

4+c1x
3y+c2x

2y2+c3xy3+c4y
4 + h.o.t then if

b3 = c4 = 0 the origin is a special cusp of Gauss, designated A∗
3. Note: At such points

the asymptotic line has 5–point contact with the surface, so we have a bi–flecnode at

a cusp of Gauss (or the case “ρ = 0” in the terminology of Uribe-Vargas [23]).

A small perturbation of the surface will move such a cusp of Gauss away from the

origin whence the parabolic and S–curves will have two intersections. Is this an A∗
2

birth event in the following sense?
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P
S

A 3
* b 3  =  0

PS

b 3  =  0

A 2
*

A 2
*

Clearly A∗
2 points can only occur when the S–curve crosses the parabolic curve, but

does the S–curve crossing the parabolic curve always designate an A∗
2 point? We can

answer this question by means of an example, taking

f(x, y) = x2 + xy2 + εy3 + 3xy3 + xy4 − y5.

With ε = 0 the origin is an A∗
3 whilst for all other values it is an A∗

2. Plotting the

parabolic and S–curves for ε small negative, zero, and small positive we obtain

e   <  0
e   >  0

PS
P

P
SS

A 2
*

A 3
* A 2

*

a a a

b b b
e   =  0

Pairs of points a = {s(t, v∗(t)), t)} and b = {u(t, v∗(t)), v∗(t)} on the S–curve are

marked by small circles. The mid-points of lines joining them gives a locus in the

parameter plane of the surface corresponding to the half cuspidal edge on the MPTS

(marked in red). When t = 0 the points a and b come together at the A∗
2 (or A∗

3) point

at the origin. As t passes through zero a and b flip either side of the x–axis. So for

no value of t do the points come together at the other crossing point of the parabolic

and S–curves. Hence only one A∗
2 exists throughout the transition. It moves along

P momentarily becoming an A∗
3 before carrying on along P as an A∗

2. Consequently

there is no birth event, but we have shown that the MPTS also has a half cuspidal

edge when the host surface has an A∗
3 point at the origin.
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Are A∗
2 points born at singular points of the S–curve?

We start with the familiar setup of a smooth surface in Monge form with A∗
2 point at

the origin. If we calculate JX in the manner described above and remove the factor

v−t from the expression for the determinant of its first minor we are left with a series

in t and v which describes the S–curve in the (t, v)–plane. It starts as follows

S(t, v) = −5 b2 d5 − b2
2 c3 + 3 b1 b3 c3 − 3 b3 d4

2 b2
2

(t + v) + h.o.t.

So there is a special value of d4 namely

d∗4 =
5 b2 d5 − b2

2 c3 + 3 b1 b3 c3

3 b3

for which the S–curve is singular at the origin. Depending on the sign of the discrim-

inant of the quadratic part of the S–curve when t = v = 0 this singularity will be

either a node or an isolated point. Is there an A∗
2 birth event in the d4 transition in

the following manner?

A 2
*

P

S

A 2
* P

S

A 2
*

A 2
*

P

A 2
*

P

S

A 2
*

N o d e  C a s e

P o i n t  C a s e

P

P

S

d 4  =  d 4
*

d 4  =  d 4
*d 4  =  d 4

*  -   e d 4  =  d 4
*  +   e

d 4  =  d 4
*  +   ed 4  =  d 4

*  -   e

The map (t, v) 7→ (s, t) is a local diffeomorphism in a neighbourhood of the origin

since { ∂s
∂v
}t=v=0 = −3

2
6= 0. Hence the singularities of the S–curve in the (t, v)-plane
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are A–equivalent to those of the S–curve in the (s, t)-plane. We take as a suitable

example

f(x, y) = x2 + x y2 + y3 + x y3 + d4 x y4 + η y5

with η = 1 giving d∗4 = 4
3

and the node singularity at the origin, and η = −1 giving

d∗4 = −2 and the isolated point singularity at the origin. If we plot the S–curve in the

(t, v)–plane we can still observe its interaction with the parabolic curve since this is

represented by the line t = v. For the node case we obtain the following:

t

v

t

v

t

v
[ P ]

[ S ]

[ P ] [ P ]

[ S ]
[ S ]

d 4  =  d 4 *d 4  =  d 4 *  -   e d 4  =  d 4 *  +  e

Whilst for the isolated point case we obtain:

t

v

t

v

t

v
[ P ]

[ S ]
[ P ] [ P ]

[ S ]

d 4  =  d 4 *d 4  =  d 4 *  -   e d 4  =  d 4 *  +  e

Using [S] and [P ] to represent the S and parabolic curves in the (t, v)–plane respec-

tively. It is clear from these pictures that there is no birth or death event in either

case. The transitions of [S] are similar to those of the parabolic curve in the D+
4 and

D−
4 cases in that the locus reappears either side of the transition. An examination of

the movement of parallel tangent partner points (as we did for case (ii) above) shows

that they only ever come together at the crossing of [S] and [P ] at the origin. So

once again there is only ever one A∗
2 point throughout, remaining fixed at the origin.
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x  =  ( u , v , w )
L :  ( x 0 + t u ,  y 0 + t v ,  z 0 + t w )

p  =  ( x 0 ,  y 0 ,  z 0 )

Figure 7.9: A∗
2 birth: Contact between the line L and the surface M.

An Example of A∗
2 Birth

We conclude this section with an example that clearly demonstrates the birth (and

death) of A∗
2 points. We start with the functions

f(x, y) = x2 + y2, g(x, y) = x2 + x2y + y3 + xy3.

Clearly z = f(x, y) is a surface which is elliptic everywhere and so has no A∗
2 points,

whilst z = g(x, y) has an A∗
2 point at the origin. Now consider the surface M given

by z = F (x, y, α) where

F (x, y, α) = α f(x, y) + (1− α) g(x, y).

So when α = 1 there are no A∗
2 points on M and when α = 0 there is certainly one

A∗
2 point on M, at the origin. Take a point p = (x0, y0, z0) on M and an arbitrary

line L passing through p with direction vector ξ = (u, v, w), as shown in figure 7.9.

Now consider the contact function

Cp,ξ(t) = F (x0 + tu, y0 + tv)− (z0 + tw) [ = C(t) say ]

between L and M. If C(0) = C ′(0) = 0 then L is tangent to M at p. If also C ′′(0) = 0

then L is an asymptotic line to M at p. We place no requirement on C ′′′ but if in

addition we have C(4)(0) = 0 then p is an A∗
2 point. Now

C(4)(0) = 24 (α− 1) u v2
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a 0

1

y 0

a

0- 0 . 9 5

Figure 7.10: A∗
2 birth: The graph of α as a function of y0.

so we require either u = 0 or v = 0 since with α = 1 we have no A∗
2 points. If we take

v = 0 then

C ′′(0) = −2 u2 (αy0 − y0 − 1)

so u = 0 (which implies ξ = 0, a contradiction) or y0 = 1
α−1

(which can be shown not

to lead to A∗
2 points on M). Taking u = 0 then C ′′(0) = 0 has the form

{(α− 1) (3y2
0 + 2 x0)±

√
θ} v

2(αy0 − y0 − 1)
= 0 (7.2)

where θ = 0 is the exact condition for p to be a parabolic point of M, i.e.

Fxx Fyy − Fxy
2 = 0.

This equation is quadratic in x so we can solve for x0 in terms of y0 (provided y0 6= 1
α−1

)

and substituting either solution into equation (7.2) we obtain

9 (α− 1) y3
0 − 6 (α− 1) y0 + 2 α = 0 [= φ(y0) say].

When α 6= 1 we have a cubic in y0 the solutions of which give the positions of A∗
2 points

on M. A birth event occurs when this cubic has a double root, i.e. φ = ∂φ/∂y0 = 0

and these yield a solution y0 = −√2/3 and α0 = 6
√

2 − 8. Back substitution gives

x0 = −1/3 and z0 = 5
√

2/9− 17/27. So when α = 6
√

2− 8 there is an A∗
2 birth event
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at the point p0 = (−1/3, −√2/3, 5
√

2/9− 17/27) on M. Solving φ(y0) = 0 for α as

a function of y0 gives

α =
3 y0 (3 y2

0 − 2)

3 y0 (3 y2
0 − 2) + 2

.

A plot of this function is shown in figure 7.10 where the dashed lines indicate horizon-

tal and vertical asymptotes to the graph. Taking α = α0 +ε with ε small and moving

through zero from positive to negative we have: ε > 0 there are no A∗
2 points close

to p0, ε = 0 an A∗
2 point is born at p0, and ε < 0 the A∗

2 point splits into two distinct

A∗
2’s which move away from p0 in opposite directions along the parabolic curve.

Remarks: (i) Substituting x = x0, y = y0, z = z0 and u = 0 in C and setting v = 1

(since ξ is merely a direction vector) we obtain C = 2(3−2
√

2) t3 so in fact C ′′′(0) 6= 0

at the birth point. (ii) Using our parameterisation of the parabolic curve and knowing

that ξ points in the unique asymptotic direction at p0 we can trivially show that ξ is

not tangent to the parabolic curve at p0. Both (i) and (ii) tell us that the A∗
2 birth

point in this example is certainly not a cusp of Gauss.

7.6 Chapter Summary

In this chapter we looked at equidistants local to special surface points that only

occur in 1 and 2 parameter families and also considered the issue of how A∗
2 points

are born on a surface. Normal forms were not available for the cases involving 1 and

2 parameter families so our approach was of a more experimental nature, utilising

carefully chosen examples and qualitative arguments to illustrate certain points. The

cases considered were as follows:

(i) The non-versal A3, which represents a cusp of Gauss at which the parabolic curve

is either a node or an isolated point. By using an example which is known to versally

unfold each of these types we showed that the equidistants vanish (along with the

parabolic curve) to one side of the transition in the isolated point case. For the node

case we used an illustrative example and also some qualitative arguments, based on

properties of the Gauss map, to show that the equidistants exist in two distinct and

continuous sheets, joined by a single point at the origin.
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(ii) Local to A4 points of a surface we gave an example that indicates that the MPTS

is a smooth surface with boundary along the parabolic curve, whilst other equidis-

tants have a cuspidal edge through the A4 point. We also looked at an interesting

special case where we have a family of height functions which versally unfolds an A4,

but whose big bifurcation set (a swallowtail surface) has non-generic sections.

(iii) Local to D−
4 points we again used qualitative arguments based on properties of

the Gauss map to say something about the structure of the equidistants. We found

that in the transition either side of the D−
4 moment the equidistants have essentially

the same structure as they do to one side of the non-versal A3 isolated point case, i.e.

a smooth surface with boundary (MPTS) or inflexional contact (other equidistants)

around the parabolic curve. However, unlike the non-versal A3 case, the equidistants

do not vanish at the singular moment, e.g. the MPTS is a surface which is smooth

everywhere except the point where it meets the host surface at the D−
4 point.

(iv) Local to D+
4 points the parabolic curve is nodal, much like the non-versal A3 node

case, although transitioning in an entirely different manner. We used qualitative ar-

guments based on properties of the Gauss map to show that the equidistants exist in

two continuous sheets. One having a boundary (MPTS) or inflexional contact (other

equidistants) along the “north” and “east” branches of the parabolic curve, and the

other similarly along the “south” and “west” branches. The branches meet at the D+
4

point itself and we gave an example where this marked the end point of a self intersec-

tion on the equidistant. Another example with slightly different fourth order terms

had no self intersection so the essential structure of the equidistants seems highly

sensitive to the choice of higher order terms. This perhaps supports that notion that

there is no unique model of the equidistants local to a D+
4 point.

We concluded this chapter by looking at three obvious mechanisms by which A∗
2 points

could be born on a surface. None of these turned out to lead to the birth of A∗
2 points

and at the time of writing this remains an open question, although we have devised

an example which clearly demonstrates the birth event.
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