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Abstract

Symmetry sets and medial axes of curves in the plane or of surfaces in three-

space have been extensively investigated and used in a wide variety of ap-

plications. There are different types of symmetry set and medial axis; this

thesis examines two of these. Firstly, planar affine-invariant symmetry sets

and medial axes are considered, in particular in relation to a query posed by

W. Thurston: do the existing affine-invariant symmetry sets preserve their ‘es-

sential structures’ under projective transformations? This question is answered

negatively in the case of two types of affine-invariant symmetry sets and me-

dial axes. Secondly, we consider the Euclidean medial axis in three-space. The

major part of the investigation is the derivation of conditions on the medial

axis, imposed by the requirement of a smooth boundary, for the various local

forms of the medial axis. Used in this derivation was Damon’s work on the

radial shape operator. Finally, we study transitions on a one-parameter family

of symmetry sets in three-space using methods of Bruce and Giblin and using

and verifying the work of Bogaevsky. We obtain conditions for realizing certain

of the expected transitions on the symmetry set and on the medial axis. This

is the beginning of a larger study of the conditions for realization of all the

possible transitions on one-parameter families of symmetry sets and of medial

axes in three-space and includes a procedure for deciding which abstract forms

occur in the considered geometrical setting.
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Chapter 1

Introduction

The medial axis of a curve in the plane or surface in 3-space has been the

subject of extensive investigation since it was introduced by Blum (see [Blu02])

to describe the symmetry of a plane curve. The medial axis is contained in

another set, the symmetry set of the curve or surface. Other types of symmetry

set have also been studied, such as the various affine-invariant ones. These

symmetry sets are used in a wide variety of applications, all coming under the

umbrella term of computer vision. For example, object recognition, stochastic

shape [M03], industrial design [CP89] and medical imaging [GreMil98], among

many others.

Now follows an introduction to the subject of symmetry sets.

1.1 Euclidean Symmetry Sets

Definition 1.1.1 ([BGG85]) The Euclidean symmetry set (SS) of a smooth,

simple, closed plane curve is the closure of the locus of centres of circles bitan-

gent to the curve.

Bitangent circles are circles tangent to a curve in at least two distinct points.

Alternatively, we have the following, which is equivalent to Definition 1.1.1.

5



Definition 1.1.2 The Euclidean symmetry set (SS) of a smooth, simple, closed

plane curve is the closure of the locus of points on at least two Euclidean nor-

mals and equidistant from the corresponding points on the curve.

The Euclidean symmetry set can be interpreted as follows. Consider two

smooth segments of curve, γ1, γ2. Let there be a circle tangent to these curve

segments respectively at γ1(t1), γ1(t2). Let m be the midpoint of the chord

joining γ1(t1), γ1(t2) and let p be the intersection of the tangent lines to γ1, γ2

at γ1(t1), γ1(t2). Then the line L through m and p is tangent to the Euclidean

symmetry set at the corresponding point. There exists a reflexion in L taking

γ1(t1) and its tangent line to γ2(t2) and its tangent line. Hence the Euclidean

symmetry set is a measurement of the local reflexional symmetry of a plane

curve. See Figure 1.1.

SS

g
2( )t2

g
1( )t1

g
1

g
2

pm
L

Figure 1.1: The line L, tangent to the SS, passes through the midpoint m of the line

which passes through the two points of contact γ1(t1), γ2(t2) with the circle. Hence

the line L is an infinitesimal axis of symmetry for γ1 ∪ γ2.

The Euclidean symmetry set is invariant under the Euclidean group of trans-

formations of R2, which preserve contact between curves and take centres of

circles to centres of circles.
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Definition 1.1.3 The Euclidean medial axis of a simple, smooth, closed plane

curve is the points of the corresponding Euclidean symmetry set for which the

radii of the bitangent circles are maximal. (A maximal circle is a circle whose

radius is equal to the least distance from its centre to the curve.)

Now we consider the analogous definitions of the Euclidean symmetry set

and Euclidean medial axis in R3.

Definition 1.1.4 The Euclidean symmetry set (SS) of a smooth, simple, closed

surface in R3 is the closure of the locus of centres of spheres bitangent to the

surface.

As in R2 there is an alternative definition for the Euclidean symmetry set

in R3, which is equivalent to Definition 1.1.4.

Definition 1.1.5 The Euclidean symmetry set (SS) of a smooth, simple, closed

surface in R3 is the closure of the locus of points on at least two Euclidean

normals and equidistant from the corresponding points on the surface.

Definition 1.1.6 The Euclidean medial axis of a simple, smooth, closed sur-

face in R3 is the points of the corresponding Euclidean symmetry set for which

the radii of the bitangent spheres are maximal. (A maximal sphere is a sphere

whose radius is equal to the least distance from its centre to the surface.)

Note. In Chapter 2, we respectively refer to the Euclidean symmetry set, Eu-

clidean medial axis as SS, MA. This is because we also consider some other

types of symmetry sets which have long names which require the use of abbre-

viations. In Chapters 3, 4 we refer to the symmetry set and medial axis.

1.2 Overview of Thesis

In Chapter 1 there is an introduction to symmetry sets (above) and then we

introduce some definitions and results about planar affine differential geometry

to be used in Chapter 2.

7



Chapter 2 is concerned with affine-invariant symmetry sets and medial axes

in the plane, namely the affine distance symmetry set (ADSS), affine distance

medial axis (ADMA) and affine envelope symmetry set (AESS), which are de-

fined here. The question posed by W. Thurston is investigated: do any of

the affine-invariant symmetry sets preserve their ‘essential structures’ under

projective transformations? We answer Thurston’s question negatively for the

ADSS and ADMA by example and also show that the ADMA cannot have

cusps. In order to answer Thurston’s question for the AESS we examine how

cusps and swallowtail points can occur on the AESS and the connection with

another affine-invariant set, the MPTL, at some of these cusps and swallowtail

points. Again the question is answered negatively, by showing that swallowtail

points can be created or destroyed on the AESS and on the MPTL by a family

of projective transformations.

Chapter 3 deals with the Euclidean medial axis in three-space and lists the

local forms it can take. We introduce some quantities defined on the medial

axis involving the associated radius function and also introduce Damon’s radial

shape operator [D03, D04, D05] and some results which connect the differential

geometry of a boundary surface and its medial axis. These results are then used

to obtain consistency conditions on the medial axis, imposed by the requirement

of a smooth boundary, in the major case of the local form of the medial axis

as three sheets meeting along a curve, called a triple junction. The limiting

forms of these conditions are then obtained in the two degenerate cases of a

triple junction. Also studied is the remaining local form, where two points of

tangency between a sphere and a surface coincide; we obtain conditions for

smoothness and connections between the geometry of the surface and of its

medial axis.

In Chapter 4 we examine transitions on a one-parameter family of symmetry

sets in three-space. Using the methods of [BG86] and using and verifying

some of the work by Bogaevsky [Bog02b] about the possible singularities on

the symmetry set, we obtain conditions for realizing certain of the expected

transitions on the symmetry set and on the medial axis. This is a beginning of

8



a larger study of the conditions for realization of all the possible transitions on

one-parameter families of symmetry sets and of medial axes in three-space and

includes a procedure for deciding which abstract forms occur in our geometrical

setting.

1.3 Affine Transformations and Planar Affine

Differential Geometry

For the following, see Chapter 1 of [Su83]. For x = (x1, x2)
⊤ a point in a

two-dimensional affine space, a non-singular affine transformation is

x 7→ Ax + b ,

where A is a non-singular (2 × 2) matrix and b is a (2 × 1) matrix. Non-

singular affine transformations with det(A) = 1 are area-preserving, and so are

called equi-affine transformations, and those with det(A) = d multiply areas

by d. Non-singular affine transformations preserve the degree of a curve, par-

allelness, contact between curves and ratios of Euclidean distance. In general

these transformations do not preserve Euclidean lengths, distances or angles

and do not map circles to circles. For example, an ellipse is the same as a circle

under an affine transformation. Contrast this with Euclidean transformations

– these are given by letting x ∈ R
2 and only allowing A to be an orthogonal

(2 × 2) matrix. These transformations preserve all of the properties that an

affine transformation does, but also preserve Euclidean lengths, distances and

angles and also map circles to circles. Considering these differences and sim-

ilarities, the analogue of Euclidean distance in an affine space will be based

on area, since Euclidean transformations preserve Euclidean distance, whereas

equi-affine transformations preserve areas (or multiply areas by a constant for

non-equi-affine transformations). Hence we introduce the ideas of affine ar-

clength and the affine distance from a fixed point to a point of a curve, which

are both based on area.

Now we introduce some definitions and results from Chapter 1 of [Su83]
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and [GS98, pp.241-244] about affine differential geometry in R2, to be used in

Chapter 2 of this thesis. For γ : [0, 1] → R2 a smooth planar curve parametrized

by t, and considering equi-affine transformations only, a simple affine-invariant

parametrization s is given by requiring that

[γ′(s), γ′′(s)] = 1 (1.1)

holds for every point γ(s), where [a,b] is the determinant of the 2 × 2 matrix

with a,b as its columns.

Convention. When considering the affine-invariant parametrization in this

section (§1.3) and in Chapter 2, we will denote differentiation with respect to

the affine-invariant parameter s by ′ (prime), and ˙ (dot) will denote differenti-

ation with respect to t.

Since (1.1) cannot hold at points of inflexion of γ, affine differential geometry

is not defined at inflexions. One can get round this problem by dividing γ

into segments, each of which has no inflexions (which are affinely invariant).

However, Chapter 2 will only deal with curves without inflexions, so we do not

need to carry out this segmentation of curves. From (1.1), it follows that for

an arbitrary parametrization t,

ds = [γ̇, γ̈]1/3dt . (1.2)

Differentiating (1.1) with respect to s gives [γ′, γ′′′] = 0 for all s. Hence

γ′′′ + µγ′ = 0 (1.3)

for some µ(s) ∈ R. This function µ is the affine curvature, and it is easy to see

that

µ = [γ′′, γ′′′] . (1.4)

Definition 1.3.1 The vector γ′(s) is called the affine tangent to γ at γ(s) and

the vector γ′′(s) is called the affine normal to γ at γ(s). It can be shown that

γ′ = k−1/3γ̇

and γ′′ = k−2/3γ̈ − 1

3
k̇k−5/3γ̇ ,

where k ≡ [γ̇, γ̈].
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Now we consider the idea of affine distance, from [IS98] and [GS98].

Definition 1.3.2 The affine distance function d(x, s) is

d(x, s) ≡ [x − γ(s), γ′(s)] , (1.5)

which is the affine distance between a point x ∈ R2 and a non-inflexional point

γ(s) of the strictly convex curve γ.

Note. In [GS98] it is noted that in order to be consistent with the Euclidean

case and the geometric interpretation of affine arclength, d(x, s) should be

defined as the 1/3 power of [x − γ(s), γ′(s)]. This is resisted in order to avoid

introducing further notation. In [IS98] the function d(x, s) is called the affine

distance-cubed function.

Lemma 1.3.3 ([GS98, from Proposition 1])

The curve γ is a conic and x its centre if and only if d(x, s) is constant.

Consider the case of γ as an ellipse:

γ(t) = (a cos t, b sin t) ,

where a, b are constants and so the centre x is the origin. Then using Def-

inition 1.3.1 and (1.5) it is easy to show that d(0, s) = −(ab)2/3, which is a

constant.
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Chapter 2

Affine-Invariant Symmetry Sets

and Projective Transformations

2.1 Introduction

As mentioned at the start of Chapter 1, one of the applications of symmetry sets

is in computer vision and there has been interest in symmetry sets or medial

axes which give affine-invariant information, for example the detection of affine

symmetry. However, the transformations actually occurring in computer vision

are projective, but a projective-invariant symmetry set would depend on very

high derivatives and so would be too sensitive for curves given by data sets.

Thus it would be useful to have an affine-invariant symmetry set, or better an

affine-invariant medial axis, which under projective transformations preserved

its ‘essential structure’. W. Thurston posed the question: do the existing affine-

invariant symmetry sets have this property?

2.1.1 Digression on Linear Fractional Transformations

An analogy with the question of whether the affine-invariant symmetry sets pre-

serve their structures under projective transformations is the Euclidean sym-

metry set (SS) and the Euclidean medial axis (MA) under linear fractional

transformations. The SS and MA were introduced in §1.1. The MA of a generic
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curve has two features: its endpoints and ‘Y-junctions’, or triple points.

Definition 2.1.1.1 A linear fractional transformation is given by

z 7→ nz + p

qz + r
, where nr − pq 6= 0, for z, n, p, q, r ∈ C . (2.1)

Its inverse is given by

w 7→ rw − p

−qw + n
, where nr − pq 6= 0, for w, n, p, q, r ∈ C . (2.2)

So, for a point on a curve given by (ℜ(x+ iy),ℑ(x+ iy)), the transformed

point of the curve is given by

M : R
2 → R

2

(x, y) 7→
(

ℜ
(

n(x+ iy) + p

q(x+ iy) + r

)

,ℑ
(

n(x+ iy) + p

q(x+ iy) + r

))

. (2.3)

The map M takes circles and lines to circles or lines and preserves contact

between curves. However, the centres of circles are not preserved by linear

fractional transformations.

Consider the part of the MA corresponding to maximal bitangent circles

which are completely inside the curve. Suppose this ‘interior’ MA is finite.

Can we guarantee that the interior MA of the image of the curve under a linear

fractional transformation is also finite? In other words, can any of the points

on the inner bitangent circles to the original curve be taken to infinity by a

linear fractional transformation? Consider the point z = α+ βeiθ lying on the

circle centre α, radius β. This point is taken to infinity if and only if

q(α + βeiθ) + r = 0

⇐⇒ 1

β

(−r
q

− α

)

= eiθ

⇐⇒
∣

∣

∣

∣

−r − αq

βq

∣

∣

∣

∣

= 1

⇐⇒
∣

∣

∣

∣

−r
q

− α

∣

∣

∣

∣

= β ,

that is if and only if z = −r/q lies on the circle centre α, radius β. A bitangent

circle might pass through z = −r/q if z = −r/q were inside the curve. Then this
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circle would pass through the point at infinity and so there would be a crossing

on the MA at infinity. If we ensure z = −r/q is outside the curve then z = −r/q
will not lie on any of the interior bitangent circles contributing to the MA.

Therefore the MA will not gain a self-crossing at infinity. Another possibility

is a point of the MA at infinity becoming finite. However, we assumed that the

MA of the original curve is finite so this cannot happen. Hence we have the

following.

Lemma 2.1.1.2 For a simple, smooth, closed curve γ with a finite MA, the

structure of the interior MA of the curve given by a linear fractional transfor-

mation of γ is unchanged if z = −r/q is outside the original curve.

Now follows the SS condition.

Lemma 2.1.1.3 For γ(t) : [0, 1] → R2 a smooth planar curve parametrized by

t, the necessary and sufficient condition for there to be a circle tangent to γ at

γ(t1) and at γ(t2) (for t1, t2 distinct) is

(γ(t1) − γ(t2)).(T (t1) − T (t2)) = 0 , (2.4)

where T (t1), T (t2) are respectively the unit tangents to γ at γ(t1), γ(t2).

(See [GB85, p.693].) So two distinct parameter values correspond to one

point of the SS.

Definition 2.1.1.4 The pre-SS is the set of parameter pairs (t1, t2) (t1, t2

distinct) which satisfy the SS condition (2.4) and the limit of such points. The

pre-MA is the set of parameter pairs (t1, t2) in the pre-SS which correspond to

maximal circles.

2.1.2 Example

Consider the curve given by

(x(t), y(t)) = ((e+ a sin t+ b cos 2t) cos t, (f + c sin t+ d cos t) sin t)

where a = −0.34, b = −0.15, c = −0.17, d = 0.2, e = 1.7, f = 1.

}

(2.5)
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Figure 2.1 has pictures of this curve and its SS and MA. The picture at the top

of the figure contains the pre-SS, the pre-MA, and the original curve and its SS

and MA. The pre-SS is the box on the far left of the picture at the top and the

pre-MA is the box to the right of the pre-SS box. The pre-SS is represented as

a curve on the torus, which means that the left and right edges of the pre-SS

box are identified, as are the edges at the top and the bottom.

Figure 2.2 is of the curve after a linear fractional transformation as in (2.1)

where n = 1, p = 1, q = 0.3, r = 1 (so nr − pq 6= 0). The criterion for the

MA of the transformed curve to be finite given that the original MA is finite

was for z = −r/q to be outside the original curve (see Lemma 2.1.1.2). For the

transformation in this example −r/q = −1 ÷ 0.3 = −31
3
, so the requirement

is that the point (−31
3
, 0) is outside the curve. It is easy to check that the

x-values of the curve are between −1.55 and 1.55, so the condition is satisfied.

By (2.3) a point (x(t), y(t)) on the curve is sent to (X(t), Y (t)), where

X(t) =
(x(t))2 + (y(t))2 + 1.3x(t) + 1

0.9((x(t))2 + (y(t))2) + 0.6x(t) + 1
,

Y (t) =
0.7y(t)

0.9((x(t))2 + (y(t))2) + 0.6x(t) + 1
.

As before, the picture at the top has the pre-SS and pre-MA of the transformed

curve and its SS and MA. The figures were drawn using the graphics package

LSMP (see [LSMP]).

As can be seen from Figures 2.1 and 2.2, the structure of the SS and of

the MA has remained the same. The pre-SS is the same in both figures, which

means the number of endpoints and branches of the SS is the same for both

curves. Also, the number of cusps of the SS is the same in both cases. The

pre-MA also is unaltered, so the number of endpoints and branches of the MA

is the same for both curves. There is only one triple point in the MA of each

figure. Triple points can be recognized on the pre-SS by there being four points

on the pre-SS which are corners of a rectangle, one of the points being on the

diagonal and the other three points being on the same side of the diagonal

(see Figure 2.3). Since the pre-SS and the pre-MA are unchanged by linear

fractional transformations, the rectangle of points on the original pre-SS will
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Figure 2.1: This figure and the following are concerned with linear fractional trans-

formations of plane curves and how this type of transformation preserves the SS and

the MA of the curve. This figure is of the curve given by (2.5) and its SS and MA.

Top: the curve, its pre-SS, its pre-MA, its SS and its MA are shown (see Defini-

tion 2.1.1.4) Bottom left: zoom on the picture at the top. Bottom right: zoomed

further and the MA has been shifted up so that the structure of the SS can be seen.
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Figure 2.2: This figure is of the curve resulting from a linear fractional transfor-

mation acting on (2.5) and the SS and MA of the new curve. Top: the new curve,

its pre-SS, its pre-MA, its SS and its MA are shown. Note the pre-SS and pre-MA

are unaltered by the transformation. Bottom left: zoom on the picture at the top.

Bottom right: zoomed further and the MA has been shifted up so that the structure

of the SS can be seen.
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Figure 2.3: The pre-SS in the case of a triple point on the SS, where three branches

of the SS intersect. (The pre-SS is represented as a curve on the torus, which means

that the left and right edges of the pre-SS box are identified, as are the edges at the

top and the bottom.) Hence there is a branch of the SS corresponding to parameter

values t1 and t2, and similarly for t1 and t3, and for t2 and t3. So we get two

rectangles of points on the pre-SS. The corners of the rectangles which lie on the

diagonal correspond to an endpoint of the SS. Given a rectangle of points on the

pre-SS it is not certain that it corresponds to a triple point on the SS, but searching

for such rectangles yields all of the triple points.

also be there on the pre-SS of the transformed curve.

2.1.3 The Affine-Invariant Symmetry Sets

The affine-invariant symmetry sets which we consider in this chapter are the

affine distance symmetry set (ADSS), affine distance medial axis (ADMA) and

affine envelope symmetry set (AESS). These will be defined in §2.2. In order

to answer Thurston’s question at the start of §2.1 for these affine-invariant

symmetry sets, we need to state what we mean by ‘essential structure’ in each

case. The essential structure for the ADSS is the number of cusps, smooth

branches, endpoints of branches, triple crossings and the pre-ADSS. For the

ADMA it refers to the number of smooth branches, endpoints of branches,

triple crossings and the pre-ADMA. For the AESS it means the number of

cusps, branches, endpoints of branches and the pre-AESS. Also, for each of
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these, the essential structure includes the graph defined by cusps, endpoints,

triple crossings as its vertices and smooth branches as its edges. The pre-

ADSS, pre-ADMA, pre-AESS contain respectively the parameter pairs which

contribute to the ADSS, ADMA, AESS – compare with Definition 2.1.1.4, the

definition of the pre-SS.

The aim of this chapter is to decide whether or not these affine-invariant

symmetry sets do have the property of preserving their structures under pro-

jective transformations. In order to decide whether or not the structure of an

affine-invariant symmetry set of a curve has changed, it has to be compared

with the corresponding affine-invariant symmetry set of the curve given after a

projective transformation has acted on the original curve.

Note: in this chapter the abbreviations SS and MA are used respectively for

the Euclidean symmetry set and medial axis. We do this because the affine-

invariant symmetry sets have very long names and so we refer to the ADSS,

ADMA and AESS. In Chapters 3 and 4, the abbreviations SS and MA are not

used respectively for the Euclidean symmetry set and medial axis; they are

written in full as ‘symmetry set’ and ‘medial axis’.

Here is a summary of what follows in this chapter.

§2.2: Preliminary Definitions and Results. This includes definitions of the

ADSS, ADMA, AESS; conditions for points to be in the ADSS, ADMA,

AESS; and a definition of a projective transformation.

§2.3: Affine Distance Symmetry Set and Affine Distance Medial Axis.

We show by an example that the structure of the ADSS and of the ADMA

can be altered by projective transformations. Also it is shown that cusps

of the ADSS cannot lie on the ADMA.

§2.4: Affine Envelope Symmetry Set. Proceeding by arbitrary example

as in §2.3 does not work in this case. Hence, using results about how

cusps arise in the AESS, we obtain a family of projective transforma-

tions which can make cusps arising in certain situations appear or dis-

appear. This approach involves another affine-invariant set, the MPTL
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(the mid-parallel-tangents locus, also called the anti-symmetry set), and

the conditions for cusps to appear in the MPTL. The obtained family

of projective transformations is illustrated by an example in which cusps

are destroyed in pairs in the AESS – a so-called swallowtail transition.

The method used is checked to ensure it yields the standard pictures of

the swallowtail transition.

§2.5: Further Research. This section considers the possibility of an affine

envelope medial axis.

2.2 Preliminary Definitions and Results

In this section we use the definitions about affine geometry from §1.3 to in-

troduce some affine-invariant symmetry sets (see [GS98, pp.241-244]). Note

that a natural definition of an affine-invariant symmetry set has not yet been

proposed, but rather there are a number of different ones. This is an area for

further research (see §2.5).

Definition 2.2.1 The affine distance symmetry set (ADSS) of a simple, smooth

plane curve is the closure of the locus of points x ∈ R2 on two affine normals

and affine-equidistant from the corresponding points on the curve.

As mentioned in §1.3, in this chapter we only consider curves without in-

flexions in the above definition. Compare this definition of the ADSS with the

definition of the SS in Definition 1.1.2.

Lemma 2.2.2 Given a simple, smooth curve γ(s), the necessary and sufficient

condition for distinct s1, s2 to give a point of the ADSS is

[γ(s1) − γ(s2), γ
′′(s1) − γ′′(s2)] = 0 . (2.6)

Therefore, the pre-ADSS is the parameter pairs (s1, s2) which are solutions of

(2.6) and the limit of such points. (Note : affine arclength parametrization is

assumed, so condition (1.1) holds).
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An alternative form of the ADSS condition involves the affine distance func-

tion, which was defined in Definition 1.3.2:

Lemma 2.2.3 A point x ∈ R2 is on the ADSS if and only if there are two

distinct points γ(s1), γ(s2) such that

d(x, s1) = d(x, s2) and d′(x, s1) = d′(x, s2) = 0

or if x is the limit of such points.

Then, given a pair of points γ(s1), γ(s2) which satisfy the ADSS condition

(2.6) (so s1, s2 are in the pre-ADSS), the corresponding ADSS point is given by

γ(s1) +
[γ(s1) − γ(s2), γ

′′(s1)]

[γ′′(s2), γ′′(s1)]
γ′′(s1) . (2.7)

Geometrically, x being on the ADSS is equivalent to x being at the common

centre of two distinct conics having 4-point contact with the curve and sharing

the same affine radius (defined to be 1/µ, where µ is given by (1.4)). Contrast

this with the Euclidean SS: a point of the SS is the centre of a single circle

which is tangent to the curve in two places. Then

Lemma 2.2.4 A point x on the ADSS is an ordinary cusp when one of the

conics has 5-point contact with γ. This is equivalent to there being a horizontal

or vertical tangent to the pre-ADSS at some s1, s2 pair.

Definition 2.2.5 The affine distance medial axis (ADMA) of a simple, smooth

plane curve is

{x ∈ R
2 : ∃ distinct s1, s2 :

d(x, s1) = d(x, s2) and d′(x, s1) = d′(x, s2) = 0

where d(x, s) has an absolute minimum at s1 (or s2)} .

In Definition 2.2.5, minimum could be replaced by maximum, since there is

no convincing argument yet for having minimum rather than maximum. The

ADMA is part of the ADSS, which is analogous to the MA being part of the

SS.

For the following definitions and results about the AESS see [GS00, pp.174,

180].
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Figure 2.4: The line L, tangent to the AESS, passes through the midpoint m of

the line which passes through the two points of contact γ1(s1), γ2(s2) with the conic

C. Hence an alternative to Definition 2.2.6 is that the AESS is the envelope of lines

halfway between points of a curve with at least 3-point contact with a conic. See

[GS00]. Compare this with Figure 1.1.

Definition 2.2.6 The affine envelope symmetry set (AESS) of a simple, closed,

smooth plane curve is the closure of the locus of centres of conics with (at least)

3-point contact with the curve in at least two distinct points.

Alternatively, the AESS can be interpreted as the envelope of infinitesimal

axes of affine reflexional symmetry of a curve. This is what will be used later

when finding examining swallowtail transitions on the AESS (see §2.4.7). The

AESS will be calculated as an envelope of ‘midlines’ since an infinitesimal axis

of affine reflexional symmetry of a curve is a line tangent to the AESS and which

passes through the midpoint of the chord which passes through the points of

contact between the curve and the corresponding conic (see Figure 2.4 and

compare with Figure 1.1).
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Lemma 2.2.7 There is a non-degenerate conic with (at least) 3-point contact

with γ at two distinct points γ(s1), γ(s2), neither of which is an inflexion, if

and only if

[γ(s1) − γ(s2), γ
′(s1) + γ′(s2)] = 0 . (2.8)

There is an alternative condition for when γ is not an oval, but since this

chapter does not deal with such curves, it has been omitted. Then, given a pair

of points γ(s1), γ(s2) which satisfy the AESS condition (2.8) (so s1, s2 are in

the pre-AESS), the corresponding AESS point is given by

1

2

(

γ1 + γ2 +
[γ1 − γ2, γ

′

1][γ
′

1, γ
′

2]

2[γ1 − γ2, γ′1] − [γ′1, γ
′

2]
2
(γ′2 − γ′1)

)

, (2.9)

writing γ1, γ2, γ
′

1, γ
′

2 for γ(s1) , γ(s2), γ
′(s1), γ

′(s2).

Definition 2.2.8 A non-singular projective transformation is a map φ from

the projective plane to the projective plane, such that

(x : y : z) 7→ φ(x : y : z)

= (Ax+By + Cz : Dx+ Ey + Fz : Gx+Hy +Kz) ,

where

∣

∣

∣

∣

∣

∣

∣

∣

A B C

D E F

G H K

∣

∣

∣

∣

∣

∣

∣

∣

6= 0 .

(See [Gibs98].) In our case we are dealing with the affine plane, so after

taking a projective transformation we specialize to the affine plane by letting

X = x/z, Y = y/z and then setting z = 1, so in the affine plane

(X, Y ) 7→
(

AX +BY + C

GX +HY +K
,
DX + EY + F

GX +HY +K

)

, (2.10)

and GX +HY +K = 0 is taken to the line at infinity.
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2.3 Affine Distance Symmetry Set and Affine

Distance Medial Axis

2.3.1 Altering the Structure of the ADSS and of the

ADMA by Projective Transformations

The ADSS differs from the SS in that a point x being on the ADSS is equiv-

alent to x being at the common centre of two distinct conics having 4-point

contact with the curve and sharing the same affine radius (see immediately

after Lemma 2.2.3), whereas a point of the SS is the centre of a single circle

which is tangent to the curve in two places.

An experimental approach was enough to decide whether the structure of

the ADSS and of the ADMA remained the same after a projective transforma-

tion. In the following example the graphics package LSMP was used to draw

the curve given by

(X, Y ) = ((e+ a sin t+ b cos 2t) cos t, (f + c sin t+ d cos t) sin t)

for a = −0.34, b = −0.15, c = −0.17, d = 0.2, e = 1.7, f = 1,

}

(2.11)

and also its pre-ADSS, pre-ADMA, its ADSS and its ADMA. Then LSMP was

used to draw the curve given by (2.10), that is after a projective transformation,

for chosen values of constants A, . . . , K with its pre-ADSS, its pre-ADMA,

ADSS and ADMA. Then the method was to compare the original ADSS with

the new ADSS to see whether or not the structure had changed. Taking A = 1,

B = 0, C = 0, D = 0, E = 1, F = 0, G = 0, K = 1, H close to 0 and then

increasing H in each example was enough to decide this. These values give a

non-singular projective transformation. Hence a point of the transformed curve

for a chosen value of H is
(

X

HY + 1
,

Y

HY + 1

)

, where (X, Y ) is given by (2.11). (2.12)

Figures 2.5 to 2.11 show how the ADSS and the ADMA of the transformed

curve change as we take various values for H , corresponding to taking a family

of projective transformations. As in the case of the pre-SS, the pre-ADSS is
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Figure 2.5: Figures 2.5 to 2.11 show the altering of the combinatorial structure of

the ADSS and of the ADMA by a family of projective transformations. In each of

these figures, the curve is drawn with its ADSS and ADMA. The pre-ADSS and

pre-ADMA are in boxes below the curve. Top: the curve given by (2.11), its ADSS

and ADMA are shown. Bottom: a closer look at its ADSS and ADMA.
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Figure 2.6: The curve given by (2.11) has now undergone a projective transformation

to give (2.12). This figure, and Figures 2.7 to 2.11, are of the transformed curve for

various values of H. This one is for H = 0.11. In this picture the structure of the

pre-ADSS is about to change in the top left corner of the pre-ADSS box; there is

going to be a crossing as H increases.
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Figure 2.7: Here H = 0.12. The crossing has now occurred in the pre-ADSS, so a

‘nib’ transition has happened on the ADSS (see Figure 2.12 for an explanation of a

nib transition). In this picture it is clear that one of the branches of the ADMA is

shorter than before.
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Figure 2.8: Now H = 0.2. There has been another crossing in the pre-ADSS, so

there has been another nib transition in the ADSS. The same branch of the ADMA

is shrinking and near to this branch there is a swallowtail of the ADSS which is

also shrinking. On the pre-ADMA this corresponds to the gap between two pieces

becoming smaller – see the second piece from the left which intersects with the

diagonal. (The diagonal is not drawn in the pre-ADMA.)
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Figure 2.9: This figure is for H = 0.54. The structure of the ADMA is about to

change, as the branch that is shrinking will disappear, as will the swallowtail of the

ADSS. Also, the third piece along the bottom side of the pre-ADSS box starting from

the right is about to have a vertical inflexion – this corresponds to the swallowtail

collapsing to a swallowtail point. Also it corresponds to two branches of the pre-

ADMA being joined up (the picture shows the two branches joined up, but this is

just a numerical error; there should be a tiny gap).
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Figure 2.10: Here H = 0.56. This is the moment of transition; the branch of

the ADMA is disappearing. The ADMA is changing from five branches, two triple

crossings to three branches, one triple crossing. Also the ADSS has a swallowtail

point and the pre-ADSS has a vertical inflexion at the corresponding (t1, t2) pair.
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Figure 2.11: Now H = 0.61: there is no longer an inflexion on the pre-ADSS. Now

there is a gap between an endpoint of the ADSS and a branch of the ADMA, and

two cusps of the ADSS in the swallowtail have disappeared. In the first figure there

were 16 cusps, now there are 14 cusps (one is off the bottom of the picture – see

previous figures to follow its progress).
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Figure 2.12: A nib transition: the cusps come into coincidence and then the branches

pair off differently from before.

represented as a curve in the torus, so the left and right edges of the pre-ADSS

boxes in the figures are identified, as are the top and bottom edges. The figures

do not show all of the ADSS; it is truncated to show the interesting features,

so not all of the endpoints of the ADSS are displayed in the pictures.

In this example it was possible to alter the pre-ADSS and the pre-ADMA

and so make nib transitions occur on the ADSS. This also meant that the

structure of the ADMA changed, as the ADMA of the original curve had five

smooth branches and two triple points (a triple point is a point at which three

smooth branches meet) and the final curve’s ADMA (when H = 0.61) had

three smooth branches and one triple point. Thus one branch of the ADMA

was destroyed and two branches joined to become one smooth branch.

When this transition occurred on the ADMA, a swallowtail transition hap-

pened on the ADSS – a swallowtail collapsed to a swallowtail point and after

this the ADSS became a smooth curve at this point. See Figure 2.13. When

there is a swallowtail point on the ADSS, there is an inflexion at the correspond-

ing point (t1, t2) on the pre-ADSS. Figures 2.9 to 2.11 show this transition: in

Figure 2.9 there are two vertical tangents to the pre-ADSS nearby, in Fig-

ure 2.10 at the inflexion there is one vertical tangent to the pre-ADSS, and in

Figure 2.11 there are no vertical tangents to the pre-ADSS. As this happened,

two branches of the pre-ADMA joined up at the exact moment of the inflexion

on the pre-ADSS. The affect on the ADMA was that two branches became

smoothly joined after another branch of the ADMA had disappeared.
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The result of all of this is that two cusps were destroyed, as there were

sixteen cusps in the ADSS of the original curve, but there were only fourteen

cusps in the ADSS of the final curve. Hence we have the following.

Proposition 2.3.1.1 A projective transformation can make self-crossings oc-

cur on the pre-ADSS. Also, the number of cusps of the ADSS and the number

of branches and triple points of the ADMA can be altered by a projective trans-

formation.

Remark 2.3.1.2 Projective transformations preserve contact between curves,

but they do not send centres of conics to centres. Since a point x being on

the ADSS is equivalent to x being at the common centre of two distinct conics

having 4-point contact with the curve and sharing the same affine radius (see

just after Lemma 2.2.3), it was not likely that the structure of the ADSS and

ADMA would remain the same after projective transformations. Triple points

of the MA can be detected on the pre-MA (see Figure 2.3), but a similar way

of detecting triple points of the pre-ADMA is not known.

The moment of transition of the ADMA when one branch disappears and

two others become one smooth branch corresponds to an A1A3 transition. The

A3 singularity means that the corresponding point of the curve is a sextactic

point, so the centre of affine curvature at a sextactic point in this case is also

the centre of an A1 conic with the same affine radius. It is interesting that this

can happen under a projective transformation.

2.3.2 Cusps and the ADMA

From Lemma 2.2.4 it is known how cusps arise on the ADSS, but can there

be cusps on the ADMA? For a cusp of the ADSS to be a cusp of the ADMA,

it would need to satisfy the conditions for it to be in the ADMA. In other

words, from Definition 2.2.5, the affine distance function from the ADSS point

to one of the corresponding points of the curve would need to have an absolute

minimum. In order to prove that this cannot happen, it will be necessary to

prove another result from which this automatically follows.
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Consider two curves γ and δ given by γ(t) = (t, f(t)) and δ(t) = (t, g(t)))

which are tangent to each other at t = 0, so f(0) = g(0) = 0 and ḟ(0) = ġ(0) =

0, and a point x = (a, b). Assume b 6= 0 so that x is not on the tangent to γ at

γ(0) = (0, 0), which is also the tangent to δ at δ(0) = (0, 0). Then, by taking

affine transformations, it can be assumed that x = (0, 1). We require (0, 0) not

to be an inflexion (so the affine tangent and affine normal exist), so we need

f̈(0) 6= 0, g̈(0) 6= 0. We shall establish a relationship between the number of

points of contact between γ and δ at (0, 0) and the vanishing of derivatives

of the affine distance function with respect to an arbitrary parameter (not

necessarily the affine arclength parameter).

The curves γ and δ have at least k-point contact at (0, 0) ⇐⇒ the (k−1)-

jets of f and g are equal at t = 0. Using (1.5), the affine distance from x to

(0, 0) on γ is

dγ(x, t) = [x − γ(t), γ′(t)]

= [x − γ(t), (kγ(t))
−1/3γ̇(t)] .

Here, kγ(t) is given by

kγ(t) = [γ̇(t), γ̈(t)] = f̈(t) .

So

dγ = (−tḟ + f − 1)(f̈)−1/3 ,

dropping the dependence on t. For the affine distance from x to (0, 0) on δ,

replace f by g in the above:

dδ = (−tġ + g − 1)(g̈)−1/3 .

Then

dγ(x, 0) = dδ(x, 0) ⇐⇒
(−(0)ḟ(0) + f(0) − 1)(f̈(0))−1/3 = (−(0)ġ(0) + g(0) − 1)(g̈(0))−1/3

⇐⇒ (−1)(f̈(0))−1/3 = (−1)(g̈(0))−1/3

⇐⇒ f̈(0) = g̈(0) .
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Now dγ and dδ can be regarded as functions of t and so for the purposes of

this section it will not be necessary to differentiate with respect to the affine

arclength parameter. Hence all the following derivatives are with respect to t.

So

ḋγ = −t(f̈ )2/3 −
...
f

(

1

3

)

(f̈)−4/3(f − tḟ − 1) ,

ḋδ = −t(g̈)2/3 − ...
g

(

1

3

)

(g̈)−4/3(g − tġ − 1) .

Then

ḋγ(x, 0) = ḋδ(x, 0)

⇐⇒ 0 −
...
f (0)

(

1

3

)

(f̈(0))−4/3(−1) = 0 − ...
g (0)

(

1

3

)

(g̈(0))−4/3(−1) ,

and if dγ(x, 0) = dδ(x, 0) is assumed, so f̈(0) = g̈(0), then

ḋγ(x, 0) = ḋδ(x, 0)

⇐⇒
...
f (0)

(

1

3

)

(f̈(0))−4/3(−1) =
...
g (0)

(

1

3

)

(f̈(0))−4/3(−1)

⇐⇒
...
f (0) =

...
g (0) ,

since f̈(0) 6= 0 .

These calculations point towards the following.

Lemma 2.3.2.1 Consider two curves γ and δ given respectively by γ(t) =

(t, f(t)) and δ(t) = (t, g(t)), where f(0) = g(0) = 0 and ḟ(0) = ġ(0) = 0. Then

the affine distance functions dγ, dδ of γ, δ satisfy

{

dγ
(i)(x, 0) = dδ

(i)(x, 0) for i = 0, . . . , n
}

⇐⇒
{

f (i+2)(0) = g(i+2)(0) for i = 0, . . . , n
}

.

Proof. This can be proved by induction. This relies on the fact that d
(i)
γ =

Ai +Bf (i+2), where Ai is in terms of t, f , ḟ , . . . , f (i+1), and

B =

(

1

3

)

(f̈)−4/3(tḟ + 1 − f) .
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Also, B(0) 6= 0 since B(0) = (1/3)(f̈(0))−4/3(1), and f̈(0) 6= 0 since (0, 0) is

not an inflexion (see the second paragraph of §2.3.2). Also d
(i)
δ = Ãi + B̃g(i+2),

where Ãi is Ai with f , ḟ , . . . , f (i+1) replaced respectively by g, ġ, . . . , g(i+1),

and B̃ is B with f , ḟ , f̈ replaced respectively by g, ġ, g̈. This means that

Ãi(0) = Ai(0) and B̃(0) = B(0). These can also be proved by induction. Then

at each step of the induction

dγ
(i)(x, 0) = dδ

(i)(x, 0)

⇐⇒ Ai(0) +B(0)f (i+2)(0) = Ãi(0) + B̃(0)g(i+2)(0)

⇐⇒ B(0)f (i+2) = B̃(0)g(i+2) ,

since Ãi(0) = Ai(0)

⇐⇒ f (i+2)(0) = g(i+2)(0) ,

since B̃(0) = B(0) 6= 0 .

Hence the result. �

Lemma 2.3.2.1 leads to the following.

Proposition 2.3.2.2 Given two curves γ and δ given by (t, f(t)) and (t, g(t))

which have at least 2-point contact with each other at γ(0) = δ(0) = (0, 0),

which is not an inflexion of γ or of δ, and a point x which does not lie on the

tangent to γ at (0, 0) (so x can be taken to be (0, 1) by affine transformations),

then γ and δ have k-point contact at (0, 0) if and only if

dγ
(i)(x, 0) = dδ

(i)(x, 0) for i = 0, . . . , k − 3

and dγ
(k−2)(x, 0) 6= dδ

(k−2)(x, 0) .

What relevance does this result have for deciding whether or not it is pos-

sible for cusps of the ADSS to be in the ADMA? By Lemma 2.2.4 a point of

the ADSS of a curve is an ordinary cusp when one of the corresponding conics

has exactly 5-point contact with the curve (recall that a point of the ADSS is

the centre of two conics having 4-point contact with the curve and sharing the
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same affine radius). Take δ to be a conic which has exactly 5-point contact with

a curve γ at (0, 0) and let x be its centre. Then, by Lemma 1.3.3, dδ(x, t) = c

(a constant) for all t and all derivatives of dδ(x, t) are zero. Then Proposition

2.3.2.2 implies that

dγ(x, 0) = dδ(x, 0) = c ,

ḋγ(x, 0) = ḋδ(x, 0) = 0 ,

d̈γ(x, 0) = d̈δ(x, 0) = 0 ,

and
...

dγ (x, 0) 6=
...

dδ (x, 0) = 0 .

This means that the affine distance from the centre of the conic δ to the point

of contact of the curve γ cannot be an absolute minimum; in fact it cannot

even be a maximum or a minimum. Therefore we have the following.

Proposition 2.3.2.3 Cusps of the ADSS are not in the ADMA.

Remark 2.3.2.4 A singularity of the ADSS worse than a cusp can lie on the

ADMA, for example when two cusps disappear at an A1A3 transition – see

Figures 2.5 to 2.11.

2.4 Affine Envelope Symmetry Set

2.4.1 Discussion of Features of the AESS

As shown in §2.3.1, the pre-ADSS and the pre-ADMA can be altered by pro-

jective transformations, since the number of horizontal or vertical tangents can

be changed and self-crossings can be caused. This is not true of the pre-AESS;

it will be unchanged by a projective transformation, since projective transfor-

mations preserve contact between curves. The reason for this is that the AESS

is obtained by finding points where the curve has (at least) 3-point contact

with a single conic. Contrast this with Remark 2.3.1.2. The AESS also differs

from the ADSS in that there does not appear to be a sensible definition of an

affine envelope medial axis (AEMA). This is because the AESS is not defined
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in terms of a distance function which can be maximized (or minimized). This

is an area of further research: is there such a definition of the AESS? (see §2.5).

Since the pre-AESS is unchanged by projective transformations, the num-

ber of branches and the number of endpoints will be unaltered by projective

transformations. Because of this, it seems less likely than for the ADSS that the

structure of the AESS of a given curve would be altered by arbitrary projective

transformations. Consider cusps on the AESS. These occur in two different

ways, one type arising when tangents to the curve are parallel at two points

contributing to the AESS, the other because of horizontal or vertical tangents

to the pre-AESS (see [GS00]). Since the pre-AESS is unaltered by projective

transformations, the latter type of cusp of the AESS cannot be destroyed or

created by projective transformations. The remaining possibility is whether the

former type of cusp can be destroyed or created by a projective transformation.

Here is a result about the existence of such cusps, which comes from [GS00,

pp.181, 182].

Lemma 2.4.1.1 As for the pre-ADSS, the pre-AESS is represented as a curve

in the torus and a component which is (m,n) winds m times round one way and

n times round the other. For a generic oval curve (that is one for which the

pre-AESS is non-singular) the pre-AESS has the following global properties:

(i) For any (1,1) component of the pre-AESS there is always at least one

point corresponding to a pair of parallel tangents of the curve. Hence there is

always at least one cusp along this branch belonging to the AESS.

(ii) There are no (1,-1) components and there is an odd number of (1,1)

components; hence at least one. (The only other possibility is a (0,0) compo-

nent).

So we know that there is at least one cusp in the AESS corresponding to

parallel tangents. These cusps connect the AESS and another affine-invariant

set called the MPTL, which is defined below:
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Figure 2.13: The standard swallowtail transition: a swallowtail (left) shrinks to a

swallowtail point (centre) and then the curve becomes smooth (right).

Definition 2.4.1.2 The MPTL (mid-parallel-tangents locus) of a smooth plane

curve γ is the locus of midpoints of chords joining points of contact of parallel

tangents to γ.

The MPTL is sometimes called the anti-symmetry set and can also be de-

fined as the envelope of lines halfway between points of γ with parallel tangents.

Cusps of the AESS corresponding to parallel tangents to the curve are also

part of the MPTL, in fact they are also cusps of the MPTL. And it is also

known that if a point of the AESS corresponding to a (t1, t2) pair coincides

with a point of the MPTL corresponding to the same (t1, t2) pair then they

meet in a dual beaks singularity at the cusps. Because of this it is necessary

to treat the AESS and the MPTL together.

Consider a point of the AESS which is a cusp corresponding to a pair of

parallel tangents and so is also a cusp of the MPTL. Is it possible to make this

a swallowtail point, which is a higher singularity, by a projective transforma-

tion? If so, we could take ‘nearby’ projective transformations, ones for which

A, . . . , K (as in Definition 2.2.8) differ slightly, to get a swallowtail transition.

A swallowtail transition is when a swallowtail gets smaller and smaller until

it becomes a swallowtail point and then becomes a smooth point, as in Fig-

ure 2.13. If it were possible to make this transition happen, the cusps of the

AESS and of the MPTL would be destroyed and the AESS and MPTL would

both be smooth.

This section shows that it is possible to make a swallowtail transition occur

simultaneously on the AESS and on the MPTL. Hence we must first obtain the

conditions for a swallowtail point to occur on the AESS and on the MPTL.
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2.4.2 Conditions for Cusps and for Swallowtail Points

on the AESS

The AESS is affine-invariant, so we can set up a local coordinate system as fol-

lows, without loss of generality. We take two arcs γ1, γ2 of a curve respectively

near the points t1 = 0, t2 = 0:

γ1(t1) = (t1, f(t1)) = (t1, c2t
2
1 + c3t

3
1 + c4t

4
1 + · · · ) ,

γ2(t2) = (t2, a+ g(t2)) = (t2, a + b1t2 + b2t
2
2 + b3t

3
2 + b4t

4
2 + · · · ) .

}

(2.13)

The pre-AESS, that is the set of parameter pairs (t1, t2) which contribute points

to the AESS, is given by the AESS condition (2.8) from Lemma 2.2.7. These

are then mapped to the AESS using (2.9). For the coordinate system given by

(2.13), the AESS condition becomes

[γ(t1) − γ(t2), γ
′(t1) + γ′(t2)] = 0

⇐⇒
∣

∣

∣

∣

∣

t1 − t2 (f̈(t1))
1/3 + (g̈(t2))

1/3

f(t1) − g(t2) (f̈(t1))
1/3ḟ(t1) + (g̈(t2))

1/3ġ(t2)

∣

∣

∣

∣

∣

= 0 . (2.14)

Hence t1 and t2 are in the pre-AESS if and only if this condition holds. It is

easy to show that (t1, t2) = (0, 0) is in the pre-AESS if and only if

a(b2 + c2) = 0 ⇐⇒ b2 + c2 = 0

(since a = 0 means the curve would be non-simple)

⇐⇒ κ1(0) + κ2(0) = 0 ,

where κi(ti) is the Euclidean curvature of the arc γi at ti. We consider ovals, so

there are no inflexions on the two arcs, so b2 6= 0, c2 6= 0. Now let b2 + c2 = 0,

so that (t1, t2) = (0, 0) is in the pre-AESS.

In order to obtain the pre-AESS, we express one of t1, t2 as a function of

the other and solve (2.14) for this function. Firstly, we need to examine which

is an appropriate parameter for the pre-AESS. By differentiating the left-hand

side of (2.14) with respect to t1 and to t2, we find the following.

• When (b1b2 + ab3) 6= 0 then t1 is a parameter.
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• When (b1c2 + ac3) 6= 0 then t2 is a parameter.

• When (b1b2 + ab3) = (b1c2 + ac3) = 0 then the pre-AESS is singular.

We are interested in cusps of the AESS, so we ignore the case of the pre-AESS

being singular. In each of the cases (b1b2 + ab3) 6= 0, (b1b2 + ab3) 6= 0 we can

map the pre-AESS to the AESS using (2.9). Then we get the following.

Proposition 2.4.2.1 There is an ordinary cusp on the AESS of a smooth

plane curve γ corresponding to γ(t1) and γ(t2), neither of which is an inflexion,

if and only if one of the following occurs.

1. The tangents to γ at γ(t1) and γ(t2) are parallel; the affine normals at

γ(t1) and γ(t2) are not parallel; and the tangent to the pre-AESS at (t1, t2)

is not parallel to the diagonal (t1 = t2), not horizontal and not vertical.

2. The tangent to the pre-AESS at (t1, t2) is horizontal, at which the pre-

AESS is not an inflexion, and the tangents to γ at γ(t1) and γ(t2) are

not parallel.

3. The tangent to the pre-AESS at (t1, t2) is vertical, at which the pre-AESS

is not an inflexion, and the tangents to γ at γ(t1) and γ(t2) are not

parallel.

There is a swallowtail point on the AESS of a smooth plane curve γ corre-

sponding to γ(t1) and γ(t2), neither of which is an inflexion, if and only if one

of the following occurs.

1. The tangents to γ at γ(t1) and γ(t2) are parallel, the affine normals at

γ(t1) and γ(t2) are parallel and the affine curvatures of γ at γ(t1) and

γ(t2) are not equal.

2. The tangents to γ at γ(t1) and γ(t2) are parallel and the tangent to the

pre-AESS is horizontal at (t1, t2), at which the pre-AESS does not have

an inflexion.
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3. The tangents to γ at γ(t1) and γ(t2) are parallel and the tangent to the

pre-AESS is vertical at (t1, t2), at which the pre-AESS does not have an

inflexion.

4. The tangent to the pre-AESS is horizontal at (t1, t2), at which the pre-

AESS has an inflexion, but not a vertex, and the tangents to γ at γ(t1)

and γ(t2) are not parallel.

5. The tangent to the pre-AESS is vertical at (t1, t2), at which the pre-AESS

has an inflexion, but not a vertex, and the tangents to γ at γ(t1) and γ(t2)

are not parallel.

Proof. For the AESS at t1 = t2 = 0 to be an ordinary cusp, we need that

the first derivative of the parametrization of the AESS is the zero vector at

t1 = t2 = 0 and that the second and third derivatives are independent. Recall

that b2 + c2 = 0, which means that (t1, t2) = (0, 0) is on the pre-AESS and that

b2 6= 0, c2 6= 0, so γ1(0), γ2(0) are not inflexions.

Consider firstly the case when t1 is a parameter, that is when (b1b2+ab3) 6= 0.

Then the pre-AESS is given by

t2 = −(b1c2 + ac3)

(b1b2 + ab3)
t1 + · · ·

and so the pre-AESS does not have a vertical tangent at t1 = t2 = 0. Then,

the AESS is non-regular at t1 = t2 = 0 if and only if

ab1(b1c2 + ac3) = 0 .

We ignore the case of a = 0, since the two arcs γ1, γ2 would cross if a = 0.

Hence there are two cases that could possibly mean there were cusps on the

AESS. The condition b1 = 0 is the same as the two arcs γ1, γ2 having parallel

tangents at t1 = t2 = 0 and the condition (b1c2 + ac3) = 0 is the same as the

pre-AESS having a horizontal tangent at t1 = t2 = 0.

When b1 = 0 the second and third derivatives of the parametrization of the
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AESS at t1 = t2 = 0 are independent if and only if c3(b3 − c3)(b3 + c3) 6= 0.

When b1 = 0, c3 6= 0 ⇐⇒ dt2
dt1

(0) 6= 0 ,

(b3 + c3) 6= 0 ⇐⇒ dt2
dt1

(0) 6= 1 .

Hence, when b1 = (b2−c2) = 0, then c3(b3+c3) 6= 0 if and only if the tangent to

the pre-AESS is not horizontal and not parallel to the diagonal t1 = t2. When

b1 = 0 the affine normals γ′′1 (0), γ′′2 (0) are as follows, using Definition 1.3.1:

γ′′1 (0) =
(

−2c3(2c2)
−5/3, (2c2)

1/3
)

, γ′′2 (0) =
(

−2b3(2b2)
−5/3, (2b2)

1/3
)

.

Hence, when b1 = (b2 − c2) = 0 then (b3 − c3) 6= 0 if and only if the affine

normals at t1 = t2 = 0 are not parallel.

When (b1c2 +ac3) = 0, the second and third derivatives of the parametriza-

tion of the AESS at t1 = t2 = 0 are independent if and only if b1(ac
2
2 + b21 −

a2c4) 6= 0. When (b1c2 + ac3) = 0 the pre-AESS has a horizontal tangent at

t1 = t2 = 0 and becomes

t2 = −2(a2c4 − ac22 − b21c2)

a(b1b2 + ab3)
t21 + · · · .

Hence, when (b1c2 + ac3) = (b2 − c2) = 0, then b1(ac
2
2 + b21 − a2c4) 6= 0 if and

only if the tangents to the two arcs γ1, γ2 at t1 = t2 = 0 are not parallel and

the pre-AESS does not have a horizontal inflexion.

In summary, when a point of the pre-AESS does not have a vertical tangent,

the corresponding point of the AESS is a cusp if and only if

• the two arcs γ1, γ2 have parallel tangents and the tangent to the pre-AESS

is not horizontal and not parallel to the diagonal t1 = t2

or

• the point of the pre-AESS has a horizontal tangent, but is not an inflexion,

and the two arcs γ1, γ2 do not have parallel tangents.

Similarly, in the case when t2 is a parameter, that is when a point of the pre-

AESS does not have a horizontal tangent, the corresponding point of the AESS

is a cusp if and only if
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• the two arcs γ1, γ2 have parallel tangents and the tangent to the pre-AESS

is not vertical and not parallel to the diagonal t1 = t2

or

• the point of the pre-AESS has a vertical tangent, but is not an inflexion,

and the two arcs γ1, γ2 do not have parallel tangents.

We assumed that the pre-AESS does not have both a horizontal and a

vertical tangent at the same point, since otherwise it would be singular. Hence

there are only three ways in which there is a cusp on the AESS, as described

in the result.

Now we consider the condition for the AESS at t1 = t2 = 0 to be a swal-

lowtail point. The canonical form for an ordinary cusp is (t2, t3) and from this

are obtained the criteria for a curve to have an ordinary cusp. Similarly, the

canonical form for a swallowtail point is (t3, t4) and so the criteria for a swal-

lowtail point are that the first two derivatives of a curve are the zero vector

and that the third and fourth derivatives are independent.

Again we consider firstly the case when t1 is a parameter (b1b2 + ab3 6= 0),

so that the pre-AESS does not have a horizontal tangent. Again ignoring the

case a = 0, the first two derivatives of the parametrization of the AESS are the

zero vector at t1 = t2 = 0 if and only if one of the following cases occurs:

b1 = c3 = 0 ,

or b1 = b3 − c3 = 0 ,

or ac3 + b1c2 = a2c4 − ac22 − b21c2 = 0 .

When b1 = c3 = 0, the third and fourth derivatives of the parametrization of

the AESS are independent if and only if (ac4 − c22) 6= 0. When b1 = c3 = 0 the

pre-AESS has a horizontal tangent at t1 = t2 = 0 and becomes

t2 = −2(ac4 − c22)

ab3
t21 + · · · .

Hence, when b1 = c3 = 0, then (ac4 − c22) 6= 0 if and only if the pre-AESS does

not have a horizontal inflexion. When b1 = b3 − c3 = 0, the third and fourth
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derivatives of the parametrization of the AESS are independent if and only if

(b4 + c4) 6= 0. Using Definition 1.3.1 and (1.4), we get formulae for the affine

curvatures µ1, µ2 of the arcs γ1, γ2 at t1 = 0, t2 = 0:

µ1(0) = (2c2)
1/3

(

2c4
c22

− 5c23
2c32

)

, µ2(0) = (2b2)
1/3

(

2b4
b22

− 5b23
2b32

)

.

Hence, when b2 = −c2, b1 = b3−c3 = 0, then the affine curvatures at t1 = t2 = 0

are not equal if and only if (b4 + c4) 6= 0. When (ac3 + b1c2) = (a2c4 −
ac22 − b21c2) = 0, the third and fourth derivatives of the parametrization of

the AESS are independent if and only if b1(a
3c5 + 3ab1c

2
2 + b31c2) 6= 0. When

(ac3 + b1c2) = (a2c4 − ac22 − b21c2) = 0, the pre-AESS is given by

t2 = −10(a3c5 + 3ab1c
2
2 + b1c2)

3a2(ab3 − b1c2)
t31 + · · · .

Hence, when (ac3+b1c2) = (a2c4−ac22−b21c2) = 0, then b1(a
3c5+3ab1c

2
2+b

3
1c2) 6=

0 if and only if the tangents to the two arcs γ1, γ2 at t1 = t2 = 0 are not parallel

and the pre-AESS does not have a horizontal vertex.

In summary, we have shown the possibilities 1., 2. and 4. for a swallowtail

point on the AESS when the pre-AESS does not have a vertical tangent. When

the pre-AESS does not have a horizontal tangent we get the remaining cases

3. and 5. Hence the result. �

This result gives us a candidate for a type of swallowtail point which could

be created or destroyed on the AESS by a family of projective transformations,

namely case 1. An interesting question is what happens on the MPTL when

there is a swallowtail point on the AESS? The next section deals with this

matter.

2.4.3 Conditions for Cusps and for Swallowtail Points

on the MPTL

The MPTL is affine-invariant, so we can use the coordinate system (2.13), but

with b1 = 0 so that the two arcs γ1 and γ2 are parallel at t1 = t2 = 0. The
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pre-MPTL is the parameter pairs (t1, t2) such that df/dt1 = dg/dt2 for all t1, t2

near t1 = t2 = 0. As for the pre-AESS, we obtain the pre-MPTL by expressing

one of t1, t2 as a function of the other and solving df/dt1 = dg/dt2 for this

function. Differentiating (df/dt1 − dg/dt2) with respect to t1 and to t2, we find

the following.

• When b2 6= 0 then t1 is a parameter.

• When c2 6= 0 then t2 is a parameter.

• When b2 = c2 = 0 then the pre-MPTL is singular.

We are interested in cusps of the MPTL, so we ignore the case of the pre-MPTL

being singular. By Definition 2.4.1.2 the parametrization of the MPTL is

1

2
(t1 + t2, a+ f(t1) + g(t2)) .

We have the following.

Proposition 2.4.3.1 A point of the MPTL of a smooth plane curve γ corre-

sponding to γ(t1) and γ(t2), neither of which is an inflexion, is an ordinary

cusp if and only if it is also on the AESS and the affine normals of γ at γ(t1)

and at γ(t2) are not parallel. The point of the MPTL is a swallowtail point if

and only if it is also on the AESS, the affine normals at γ(t1) and at γ(t2) are

parallel, and the affine curvatures of γ at γ(t1) and γ(t2) are not equal.

Proof. Solving df/dt1 = dg/dt2 for t2 in terms of t1 gives the following

parametrization M(t1) of the MPTL near t1 = 0:

M(t1) =

((

b2 + c2
2b2

)

t1 + · · · , a
2

+
c2(b2 + c2)

2b2
t21 · · ·

)

.

Note that this assumes b2 6= 0. Hence the MPTL is non-regular at t1 = 0 if

and only if b2 + c2 = 0, and so we require that b2 = −c2 6= 0. (We ignore the

case b2 = c2 = 0, since in this case the pre-MPTL is singular.) When b2 = −c2,
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it can be shown that

d2M

dt21
(0) =

(

3(c3 − b3)

2b2
, 0

)

,

d3M

dt31
(0) =

(

3(9b3(c3 − b3) + 4b2(b4 + c4)

2b22
, 6(b3 − c3)

)

.

These are linearly independent if and only if b3 6= c3. Hence, there is an ordinary

cusp on the MPTL at t1 = t2 = 0 if and only if b2 = −c2 6= 0 and b3 6= c3. Now

consider when the first two derivatives of M(t1) are zero. This is happens if

and only if (b2 + c2) = (b3 − c3) = 0. Then

d3M

dt31
(0) =

(

6(b4 + c4)

b2
, 0

)

,

d4M

dt41
(0) =

(

6(12(b4 + c4) + 5b2(c5 − b5)

b22
,−36(b4 + c4)

)

.

These are linearly independent if and only if b4 + c4 6= 0. Hence, there is a

swallowtail point on the MPTL at t1 = t2 = 0 if and only if b2 = −c2 6= 0,

b3 = c3 and b4 6= c4. The proof of Proposition 2.4.2.1 gives the interpretations

of these conditions, and so we get the required result. �

2.4.4 A Projective Transformation which Creates a Swal-

lowtail Point on the AESS

From Propositions 2.4.2.1, 2.4.3.1 we know that a swallowtail point occurs on

the AESS and on the MPTL when the tangents to the curves at the contributing

points are parallel, the affine normals are parallel and the affine curvatures are

not equal. The question is, can such a swallowtail point be created on the AESS

and on the MPTL by a family of projective transformations? This section gives

an example of such a transition. We start with a cusp of the AESS given by

parallel tangents to the two arcs and then take a projective transformation

on the two arcs so the corresponding point of the AESS becomes a swallowtail

point given by parallel tangents and parallel affine normals at the corresponding

47



points of the transformed arcs. Hence, the local coordinate system of such a

situation is given by (2.13), but with b2 = −c2:

γ1(t1) = (t1, f(t1)) = (t1, c2t
2
1 + c3t

3
1 + c4t

4
1 + · · · ) ,

γ2(t2) = (t2, a+ g(t2)) = (t2, a− c2t
2
2 + b3t

3
2 + b4t

4
2 + · · · ) .

}

(2.15)

So the tangents are parallel at the points γ1(0) and γ2(0), which, because

b2 = −c2, contribute to the AESS (see the start of §2.4.2). Then, by Proposi-

tions 2.4.2.1, 2.4.3.1, the point (0, a/2) is a cusp of the AESS and of the MPTL.

We assume that b3 6= c3, since this means that the affine normals γ′′1 (0), γ′′2 (0)

are not parallel, and so, again by Propositions 2.4.2.1, 2.4.3.1, the point (0, a/2)

is neither a swallowtail point of the AESS nor of the MPTL.

It can be shown that an example of a projective transformation which keeps

the tangents parallel at the points to which γ1(0) and γ2(0) are taken, while

making parallel the affine normals at these transformed points is

(x : y : z) 7→ (Ax+By + Cz : Dx+ Ey + Fz : Gx+Hy +Kz) ,

where G = 0, H =
K(c3 − b3)

ab3
.

So there is some freedom of choice for the other constants in the projective

transformation. If one chooses A = 1, B = C = D = 0, E 6= 0, F = 0, K = 1

then the result is a non-singular projective transformation. It can be shown

that this transformation keeps the tangents to the curve parallel at γ1(0) and

at γ2(0), so the swallowtail point can be easily identified in pictures of the

example to follow in §2.4.5. A point of the transformed curve is given by

(x, y) 7→
(

x

Hy + 1
,

Ey

Hy + 1

)

, where H =
c3 − b3
ab3

.

If we also want the point (0, a) to be sent to (0, a) then

(0, a) 7→
(

0,
Ea

Ha+ 1

)

= (0, a) ⇐⇒ E = Ha+ 1 ,

and so a point of the transformed curve is given by
(

x

Hy + 1
,
(Ha+ 1)y

Hy + 1

)

, where H =
c3 − b3
ab3

. (2.16)
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Hence, the points of the transformed arcs are given by

γ1(t1) 7→
(

ab3t1
(c3 − b3)(c2t21 + · · · ) + ab3

,
ac3(c2t

2
1 + · · · )

(c3 − b3)(c2t21 + · · · ) + ab3

)

,

γ2(t2) 7→
(

ab3t2
(c3 − b3)(a− c2t22 + · · · ) + ab3

,
ac3(a− c2t

2
2 + · · · )

(c3 − b3)(a− c2t22 + · · · ) + ab3

)

.

From Propositions 2.4.2.1, 2.4.3.1, the condition to ensure that no worse

than a swallowtail point occurs on the AESS and on the MPTL of the trans-

formed curve is that the affine curvatures of the transformed arcs at t1 = t2 = 0

are not equal. Calculation shows that this is true for the projectively trans-

formed curve given by (2.16) if and only if

c22(c
2
3 − b23) + a(b4c

2
3 + c4b

2
3) 6= 0 . (2.17)

2.4.5 Example of Creating a Swallowtail Transition on

the AESS and on the MPTL

Taking projective transformations near to the one which creates a swallowtail

point on the MPTL and on the AESS at the point corresponding to t1 = t2 = 0,

a swallowtail transition can be created on the MPTL and on the AESS. The

following example shows this. The standard swallowtail transition is as in

Figure 2.13, which we want to happen on the MPTL and on the AESS for the

following choice of arcs. The local coordinate system of the original two arcs is

as in (2.15), with

a = 4, b2 = −0.2, b3 = 0.2, b4 = −0.25, c2 = 0.2, c3 = 0.3, c4 = 0.35

and all of the higher order coefficients zero, so that the arcs of (2.15) become

the following:

γ1(t1) = (t1, f(t1)) = (t1, 0.2t
2
1 + 0.3t31 + 0.35t41) ,

γ2(t2) = (t2, a+ g(t2)) = (t2, 4 − 0.2t22 + 0.2t32 − 0.25t42) .

}

(2.18)

Note that b3 − c3 = −0.1 6= 0, which ensures there is not a swallowtail point

on the AESS and on the MPTL of the two arcs γ1, γ2 near to t1 = t2 = 0.
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Finally we need the condition (2.17) to be satisfied for there to be a swallowtail

point and no worse created on the AESS and on the MPTL. This condition is

satisfied, since

c22(c
2
3 − b23) + a(b4c

2
3 + c4b

2
3) = −0.032 6= 0 .

Then the projective transformation as in Definition 2.2.8 making the point of

the AESS and the point of the MPTL corresponding to t1 = t2 = 0 a swallowtail

point of the AESS and of the MPTL has

A = 1, B = C = D = 0, F = 0, G = 0, K = 1,

H =
K(c3 − b3)

(ab3)
= 0.125, so E = Ha+ 1 = 1.5.

If we take these values for A, . . . , K, but treat H as a parameter, we get a

family of transformed arcs:

(

t1
H(0.2t21 + 0.3t31 + 0.35t41) + 1

,
1.5(0.2t21 + 0.3t31 + 0.35t41)

H(0.2t21 + 0.3t31 + 0.35t41) + 1

)

, (2.19)

(

t2
H(4 − 0.2t22 + 0.2t32 − 0.25t42) + 1

,
1.5(4 − 0.2t22 + 0.2t32 − 0.25t42)

H(4 − 0.2t22 + 0.2t32 − 0.25t42) + 1

)

. (2.20)

Figures 2.14 and 2.15 are of the original arcs before any projective transfor-

mation, that is γ1 and γ2 as in (2.18). Figures 2.16 to 2.19 are of arcs given by

taking projective transformations on the arcs (2.18), which result in the arcs

given by (2.19), (2.20), for different values of H . In this way we observe a

swallowtail transition on the AESS and on the MPTL. It is hard to see what

is happening in the pictures, as what we are interested in takes place in a very

small neighbourhood of a point of the MPTL and AESS. The transition is

clearer in Figure 2.20, which is a ‘cartoon’ of the transition, showing the main

features of Figures 2.16 to 2.19. This example shows that the combinatorial

structure of the AESS (and of the MPTL) can be altered by a family of projec-

tive transformations, since two swallowtails (the piece of curve with two cusps

as in Figure 2.13, right) are created and then made smooth, one on the AESS

and one on the MPTL.
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Figure 2.14: Top: the two arcs given by (2.18) are drawn with the MPTL (thick

curve) and AESS (thin curve) corresponding to points of contact between a conic

and a point on each of the two arcs. The pre-MPTL is in a box on the left of the

picture, with the pre-AESS in a box on the right of the picture. Bottom: a closer

look at the AESS and MPTL.
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Figure 2.15: Top: the same view as for Figure 2.14, but with the MPTL shifted

down. There are two swallowtails on the AESS, but two of the cusps result from

vertical tangents to the pre-AESS (see Figure 2.14). Bottom left: zoom on the right-

hand cusp of the MPTL. We are only interested in what happens near here since the

MPTL has a horizontal tangent at the cusp. Bottom right: same view as for bottom

left but with the MPTL shifted up.
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Figure 2.16: The sequence of Figures 2.16 to 2.19 are of arcs given by taking projec-

tive transformations on those of Figure 2.14, which result in the arcs given by (2.19),

(2.20), for different values of H. This figure is for H = 0.093. We concentrate on the

neighbourhood of the points of the AESS and MPTL with horizontal tangents, since

it has been shown in §§2.4.4, 2.4.5 that when H = 0.125 a swallowtail point will be

created here on the AESS and on the MPTL. Bottom: the MPTL is shifted down in

the same view as in the picture at the top. Each of the MPTL and the AESS has

acquired a swallowtail.
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Figure 2.17: This figure is for H = 0.1. Again the picture at the bottom is of

the same view as in the picture at the top, but with the MPTL shifted up. The

two swallowtails have got smaller and they will continue to shrink until they become

swallowtail points.
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Figure 2.18: Here H = 0.125, so the MPTL and the AESS have a swallowtail point.

Top: the transformed arcs, MPTL, AESS, pre-MPTL, and pre-AESS. Note the pre-

AESS has not changed, as expected. Bottom left: a closer look at the area near the

swallowtail point (recognized by the MPTL having a horizontal tangent), bottom

right: same view as for bottom left, but with the MPTL shifted up.
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Figure 2.19: Now H = 0.14, and the picture at the bottom has the MPTL shifted

up in the same view as in the picture at the top. This figure shows the area near

where the swallowtail point was – now the AESS and the MPTL are smooth curves

at the point where the tangent to the MPTL and to the AESS is horizontal.
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AESS

H=0.093

MPTL MPTL

AESS

H=0.1

MPTL

AESS

H=0.125

MPTL

AESS

H=0.14

Figure 2.20: Cartoon of the example of creating a swallowtail transition by a family

of projective transformations, as in Figures 2.16 to 2.19. The two swallowtails shrink

until they become coincident swallowtail points and then these points become smooth

points of the MPTL and AESS.
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2.4.6 Examining the Direction in which Cusps Face on

the MPTL and AESS

Figures 2.16 to 2.19 show a swallowtail transition in which a cusp of the swal-

lowtail on the AESS faced in the same direction as a cusp of the swallowtail on

the MPTL. In other examples cusps of the MPTL have been observed to face

the coincident cusps of the AESS. Hence an interesting question is whether or

not coincident cusps of the AESS and of the MPTL face in the same direc-

tion or the opposite direction ‘near’ to a swallowtail point arising because of

tangents being parallel and affine normals being parallel at two points of the

curve contributing to the AESS? If so, a swallowtail transition such as that of

Figure 2.21 might be possible on the AESS and one the MPTL. ‘Near’ means

curves which can be perturbed slightly to give a swallowtail point on the MPTL

and on the AESS. One would suspect that the cusps do face the same way near

to such a swallowtail point, since the MPTL and the AESS both have swallow-

tails in which each cusp of the MPTL coincides with a cusp of the AESS. The

following shows this is true.

If we go back to the local coordinate system with two arcs parallel to the

x-axis and a cusp on the MPTL at the point corresponding to t1 = t2 = 0,

so this point is a cusp of the AESS, then the two arcs γ1, γ2 are given by

(2.15). The corresponding parametrization of the MPTL as used in the proof

of Proposition 2.4.3.1 is given by:
(

3

4

(b3 − c3)

c2
t21 + · · · , a

2
+ (b3 − c3)t

3
1 + · · ·

)

.

The sign of ǫ1 = (b3−c3)
c2

determines which side of the y-axis the MPTL lies on:

if ǫ1 =
(b3 − c3)

c2
> 0 , the cusp is to the right of the y-axis,

ǫ1 =
(b3 − c3)

c2
< 0 , the cusp is to the left of the y-axis.

The proof of Proposition 2.4.2.1 also used a parametrization of the AESS of

the arcs γ1, γ2 given by (2.15):
(

3

4

c3
b3

(b3 − c3)

c2
t21 + · · · , a

2
+

1

2

c3(b3 − c3)(b3 + c3)

b23
t31 + · · ·

)

.
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The sign of ǫ2 = c3
b3

(b3−c3)
c2

determines which side of the y-axis the AESS lies on:

if ǫ2 =
c3
b3

(b3 − c3)

c2
> 0 , the cusp is to the right of the y-axis,

ǫ2 =
c3
b3

(b3 − c3)

c2
< 0 , the cusp is to the left of the y-axis.

MPTL

AESS AESS

MPTL

AESS AESS

MPTL

AESS

Figure 2.21: From Proposition 2.4.6.1 for curves close to a swallowtail point given

by parallel affine tangents and parallel affine normals, coincident cusps on the AESS

and on the MPTL face in the same direction. Hence, in this case, the swallowtail

transition as pictured cannot happen.

For the two cusps to face each other then ǫ1 and ǫ2 must have opposite signs,

but ǫ2 = ǫ1c3/b3, so we need c3/b3 to be negative. However,we are interested in

cusps that are part of a swallowtail of the AESS of curves ‘near to’ a curve with

a swallowtail point given by parallel affine tangents and parallel affine normals

at points which contribute to the AESS, and this means that b3 is close to

c3. So c3/b3 cannot be negative for curves near to one with such a swallowtail

point. Hence

Proposition 2.4.6.1 For curves close to a curve with a swallowtail point aris-

ing because of parallel tangents and parallel affine normals at points contributing

to the AESS, a cusp that is part of the swallowtail of the MPTL faces in the

same direction as the corresponding cusp of the AESS.

This means that the swallowtail transition as in Figure 2.21 cannot occur

for a swallowtail point arising in this way. The swallowtail transition which

does happen is as in the last three pictures of Figure 2.20.
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2.4.7 Conditions for the Standard Swallowtail Transi-

tion

Figures 2.14 to 2.19 show swallowtail transitions on the AESS and on the

MPTL, but it would be good to check that these are the standard pictures of

a swallowtail transition. We shall do this by regarding each as an envelope of

lines: from Definition 2.4.1.2 it can be shown that the MPTL can also be defined

as the envelope of lines halfway between points of γ with parallel tangents, and

it can also be shown that the AESS is the envelope of lines halfway between

points of γ with at least 3-point contact with a conic (see [GS00]).

Consider a family of lines in the plane given by

F (t, x, y) ≡ y +m(t)x+ c(t) = 0 . (2.21)

The envelope is obtained by solving (2.21) with

∂F

∂t
= ṁ(t)x+ ċ(t) = 0 ,

where ˙ (dot) denotes differentiation with respect to t. Now consider a family

of these envelopes:

G(t, u, x, y) ≡ y +m(t, u)x+ c(t, u) = 0,

where G0(t) = G(t, u0, x0, y0) for u0, x0, y0 constants.

}

(2.22)

For u = u0 the situation is the same as in (2.21). Consider the set

E =

{

(u, x, y) ∈ R
3 : G =

∂G

∂t
= 0 at (t, u, x, y) for some t

}

. (2.23)

For u = u0 this is an envelope of lines and as u0 varies the envelopes of various

families of lines are obtained. The envelopes form a surface E in (u, x, y)-space.

The conditions for the sections as u0 is changed to give the standard swallowtail

transition as in Figure 2.13 are:

(i) we need G0 to have a singularity of type A3 at t = 0,

(ii) we need G to be a versal unfolding of the A3 singularity,

(iii) we require a generic family of sections of the surface E.

Compare this with [BG86, pp.179-187].
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(i)

From [BG92, p.51], the condition for G0 to have an A3 singularity at t = 0 is

that

dG0

dt
(0) =

d2G0

dt2
(0) =

d3G0

dt3
(0) = 0 and

d4G0

dt4
(0) 6= 0 .

We also need G0(0) = 0 from (2.22). Hence we require

y0 +m(0, u0)x0 + c(0, u0) = 0 ,

mt(0, u0)x0 + ct(0, u0) = 0 ,

mtt(0, u0)x0 + ctt(0, u0) = 0 ,

mttt(0, u0)x0 + cttt(0, u0) = 0 ,

and mtttt(0, u0)x0 + ctttt(0, u0) 6= 0 ,



































(2.24)

where suffices denote differentiation.

If mt(0, u0) = 0 then t does not give a unique point of the envelope when

u = u0. As an example, consider the tangents to y = x3. The tangent through

the point (t, t3) is given by

(y − t3) =
3t2

1
(x− t)

so y = x(3t2) − 2t3 .

The envelope of tangents is then given by F = ∂F/∂t = 0, where F = y −
x(3t2) + 2t3. So the envelope is given by

y − x(3t2) + 2t3 = 0

and − x(6t) + 6t2 = 0 .

For t = 0 this gives the whole of the x-axis, y = 0, so t = 0 does not give a

unique point of the envelope. Hence, going back to our case of a swallowtail

transition, we also require that mt 6= 0 at (0, u0) and therefore nearby.

We can solve the first two equations of (2.24) for x0 and y0 and so, for G0
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to have type A3 at t = 0, we require

x0 = − ct(0,u0)
mt(0,u0)

,

y0 = m(0, u0)
ct(0,u0)
mt(0,u0)

− c(0, u0) ,

−mtt(0, u0)
ct(0,u0)
mt(0,u0)

+ ctt(0, u0) = 0 ,

−mttt(0, u0)
ct(0,u0)
mt(0,u0)

+ cttt(0, u0) = 0 ,

−mtttt(0, u0)
ct(0,u0)
mt(0,u0)

+ ctttt(0, u0) 6= 0 .



































(2.25)

(ii)

The second condition is that G must be a versal unfolding of the A3 singularity.

From [BG92, pp.134-140], we consider the 2-jets with constant at t = 0 of

∂G/∂u, ∂G/∂x, ∂G/∂y, all evaluated at (t, u0, x0, y0):

∂G

∂u
(t, u0, x0, y0) = (mu(0, u0)x0 + cu(0, u0))

+ (mtu(0, u0)x0 + ctu(0, u0)) t

+
1

2!
(mttu(0, u0)x0 + cttu(0, u0)) t

2 + · · · ,
∂G

∂x
(t, u0, x0, y0) = (m(0, u0)) + (mt(0, u0))t+

1

2!
(mtt(0, u0))t

2 + · · · ,
∂G

∂x
(t, u0, x0, y0) = 1 .

Then, we have versality if and only if the rank of the matrix of coefficients is 3

⇐⇒

∣

∣

∣

∣

∣

∣

∣

∣

mu(0, u0)x0 + cu(0, u0) m(0, u0) 1

mtu(0, u0)x0 + ctu(0, u0) mt(0, u0) 0

mttu(0, u0)x0 + cttu(0, u0) mtt(0, u0) 0

∣

∣

∣

∣

∣

∣

∣

∣

6= 0

⇐⇒ mt(0, u0)(mttu(0, u0)x0 + cttu(0, u0))

6= mtt(0, u0)(mtu(0, u0)x0 + ctu(0, u0)) .

}

(2.26)

(iii)

To ensure that the family of sections u = u0 of the surface E from (2.23) gives

the standard pictures, we require that the plane u = u0 does not contain the

limit of any tangents to any of the strata passing through the (A3) swallowtail
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point. For the standard swallowtail surface, the limiting tangents to the A2

and A1A1 strata are the same line, and this line is contained in the limiting

tangent planes to the A1 strata at points tending to the A3 point. So in our

case, we need only check that the limiting tangent to the A2 stratum does not

lie in the plane u = u0. Hence for our surface E we need to verify that the

limiting tangent to the cuspidal edge (A2 stratum) does not lie in the plane

u = u0.

The cuspidal edge of E is the set (a curve in (u, x, y)-space)

Σ =

{

(u, x, y) ∈ R
3 : G =

∂G

∂t
=
∂2G

∂t2
= 0 at (t, u, x, y) for some t

}

.

A tangent vector to this is obtained in the usual way:

R4 G̃−→ R3

(t, u, x, y) 7−→
(

G, ∂G
∂t
, ∂

2G
∂t2

)

π




y

R3

(u, x, y)

The cuspidal edge is given by π(G̃(0, 0, 0)), and a tangent vector to the A2

stratum is (θ, ξ, η), where (τ, θ, ξ, η) is a non-zero kernel vector of the Jacobian

matrix of G̃. So, what is required is that the limit of these tangent vectors

at smooth points (u, x, y) tending to the swallowtail point does not lie in the

plane u = u0, that is the limit of u-coordinates of these vectors (θ above) is not

zero.

The Jacobian matrix of G̃ is








Gt Gu Gx Gy

Gtt Gtu Gtx Gty

Gttt Gttu Gttx Gtty









.

At a point of the cuspidal edge which is not the swallowtail point, G = Gt =

Gtt = 0 and Gttt 6= 0, so kernel vectors of the Jacobian matrix evaluated at this
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point of the cuspidal edge are given by









0 mux+ cu m 1

0 mtux+ ctu mt 0

Gttt mttux+ cttu mtt 0





















τ

θ

ξ

η













=









0

0

0









.

This gives an equation to determine η:

(mux+ cu)θ +mξ + η = 0 , (2.27)

an equation to determine τ :

Gtttτ + (mttux+ cttu)θ +mttξ = 0 , (2.28)

and another equation to get ξ in terms of θ:

(mtux+ ctu)θ +mtξ = 0 . (2.29)

We start with a non-zero tangent vector (θ, ξ, η) to the A2 stratum in

(u, x, y)-space where (τ, θ, ξ, η) is a non-zero kernel vector of the Jacobian of

G. Then we let this tangent vector tend towards a non-zero tangent vector

at the A3 point. Now consider when θ = 0, then by (2.29) ξ must also be

zero as mt(0, u0) 6= 0 is assumed. Then, by (2.27) η must also be zero, which

gives (τ, θ, ξ, η) = 0. Hence no non-zero tangent vector to the cuspidal edge

in (u, x, y)-space exists with the first component θ = 0. Therefore the limiting

tangent to the cuspidal edge cannot lie in the plane u = u0.

In summary, the sections of u = u0 and E as u0 varies form the standard

swallowtail transition if and only if the point (t, u, x, y) = (0, u0, x0, y0) is an A3

singularity (and so satisfies (2.25)), and u, x, y are versal unfolding parameters

(so (2.26) is satisfied at (0, u0, x0, y0)).

2.4.8 Verification of Conditions for the Swallowtail Tran-

sitions on the AESS and on the MPTL

The conditions (2.25) and (2.26) for a family of envelopes of lines to give the

standard swallowtail transition need to be checked for the swallowtail transi-

tions of the AESS and MPTL from §2.4.4 and §2.4.5. The two arcs γ1, γ2 as
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in (2.15) that were projectively transformed so that a swallowtail point was

created on the AESS and on the MPTL were given by (2.16):

γ1(t1) 7→
(

ab3t1
(c3 − b3)(c2t21 + · · · ) + ab3

,
ac3(c2t

2
1 + · · · )

(c3 − b3)(c2t21 + · · · ) + ab3

)

,

γ2(t2) 7→
(

ab3t2
(c3 − b3)(a− c2t22 + · · · ) + ab3

,
ac3(a− c2t

2
2 + · · · )

(c3 − b3)(a− c2t22 + · · · ) + ab3

)

.

Using the same method as in the proof of Proposition 2.4.2.1, we can express

t2 in terms of t1 such that the points of the transformed curve corresponding to

t1, t2 contribute to the AESS. Then the family of midlines (that is infinitesimal

axes of affine reflexional symmetry of a curve) whose envelope is the AESS is

given by

G1(t1, x, y) ≡M1(t1, t2(t1))x+ y + C1(t1, t2(t1)) ,

where M1, and C1 are known functions of t1. If we now assume H is a function

of u, so H = q0+q1u+q2u
2+q3u

3+· · · , then M1 = M1(t1, u) and C1 = C1(t1, u)

so we have the same situation as in (2.22). Hence, increasing u from positive

to negative values gives a transition. We want u = 0 to correspond to the A3

point, so we let q0 = (c3 − b3)/ab3.

The conditions for t1 = 0 to give an A3 singularity are given by replacing m,

c by M1, C1 in (2.25) and (2.26). The first two conditions of (2.25) give x0 and

y0 in terms of the original arcs and it can be shown that the third and fourth

conditions of (2.25) are automatically satisfied. Also, from (2.25) we require

∂M1

∂t1
(0, 0) 6= 0 ⇐⇒ c2c3 6= 0 .

Then, the last condition of (2.25) is satisfied if and only if

c3
(

ac4b
2
3 + ab4c

2
3 + c22(c

2
3 − b23)

)

6= 0 . (2.30)

Given that the A3 conditions are satisfied, the versality condition (2.26) is

satisfied if and only if c3c2aq1 6= 0, so let q1 = 1, so that H(u) = (c3 −
b3)/(ab3) + u+ · · · . Then the versality condition is that

ac2c3 6= 0 . (2.31)
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The condition (2.30) is the same as (2.17), which is the condition to ensure

that no worse than a swallowtail point occurs on the AESS and on the MPTL

of the transformed curve, given at least an A3 singularity. This is the same as

the affine curvatures of the transformed arcs at t1 = t2 = 0 being not equal.

The same method can be carried out for the MPTL, which is the envelope

of the family of lines halfway between points of a curve with parallel tangents.

This gives rise to the same conditions (2.30) and (2.31) for the transition on

the MPTL to be a swallowtail transition. Hence we can check (2.30) and (2.31)

for both the AESS and the MPTL.

In the example of §2.4.5, the values taken for the arcs of (2.15) were

a = 4, b2 = −0.2, b3 = 0.2, b4 = −0.25, c2 = 0.2, c3 = 0.3, c4 = 0.35

and all coefficients of higher order terms zero (that is bi = cj = 0 for i ≥ 5,

j ≥ 5). Since the conditions (2.30), (2.31) do not involve the coefficients of

H(u) = (c3− b3)/(ab3)+u+ q2u
2 + q3u

3 + · · · , we can let H = (c3− b3)/ab3 +u,

so H(0) = q0 = 0.125. The values of H giving the transition were H = 0.1,

H = 0.125, and H = 0.14. Then the values of u corresponding to these values

of H are u = −0.025, u = 0, and u = 0.15. These values of the parameter

values satisfy both (2.30) and (2.31). Therefore the transition in the example

of §2.4.5 is the standard swallowtail transition on the AESS and on the MPTL.

2.4.9 Altering the Structure of the AESS and of the

MPTL by Projective Transformations

In §2.4.4 we showed that a projective transformation can simultaneously cre-

ate a swallowtail point on the AESS and on the MPTL. Then §2.4.5 gave an

example of a family of projective transformations which seemed to cause a

swallowtail transition on the AESS and on the MPTL. In §§2.4.7, 2.4.8 we ob-

tained and verified the conditions for the transition observed to be a genuine

swallowtail transition. Hence we have the following.

Proposition 2.4.9.1 A family of projective transformations can destroy or

create cusps in pairs on the AESS and on the MPTL by causing a swallowtail
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transition to occur on the AESS and on the MPTL. Hence the combinatorial

structure of the AESS can be altered by a projective transformation.

2.5 Further Research

There is a natural restriction of the ADSS by requiring that the affine distance

function d(x, s) has an absolute minimum at one of s1, s2 in the pre-ADSS. By

doing this the ADMA is obtained. This is because the ADSS is part of the

bifurcation set of the family of affine distance functions on γ. An analogous

definition of the AESS is not known, since the AESS is defined in terms of

contact between curves and conics or by an envelope of lines, and so the AESS

is not part of a bifurcation set. Can the AESS be defined using a distance

function? If this could be done then an AEMA could be found by minimizing

this distance function. Then the question is whether or not the combinatorial

structure of this medial axis is unchanged by projective transformations. This

topic is still to be investigated.

Also, as noted in §2.2, as yet there is no natural definition for one affine-

invariant symmetry set. Hence this is a problem to be decided.
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Chapter 3

The Euclidean Medial Axis in

Three Dimensions

3.1 Introduction

The Euclidean symmetry set and medial axis were introduced in §1.1. In R2, the

medial axis of a generic curve consists of smooth branches with endpoints, the

branches meeting in threes at special points (see for example [GK99]). Given a

smooth branch γ and a radius function r of arclength s satisfying |dr/ds| < 1

we can reconstruct, at any rate locally, the two corresponding parts γ+ and γ−

of the outer boundary as an envelope of circles, centred on the smooth branch

and of radius r. (See for example [GK03]; there will be other conditions which

are needed for the circles to be maximal.)

However, given a connected set of smooth branches with endpoints and

triple junctions it is far from obvious that this can be the medial axis of a

shape with a smooth boundary. Even considering the local situation, it is not

clear that from an arbitrary triple junction furnished with three radius func-

tions (agreeing at the junction point) we can expect to recover a smooth shape.

Nor is it clear that an arbitrary smooth curve with an endpoint, furnished with

a radius function satisfying r′ = ±1 at the endpoint, can be the medial axis of

a smooth curve with a curvature extremum. In fact these two questions were
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examined in detail in [GK03], where it was shown that at the triple junction

there are constraints on the geometry of the three branches and on the ‘dynam-

ics’, that is the derivatives of the three radius functions. Two of the simplest

of these constraints are

cos(φ2 + φ3) = − cosφ1 = dr1
ds1

,
κ1

sinφ1
+ κ2

sinφ2
+ κ3

sinφ3
= 0 ,

}

(3.1)

where φi is the angle between the tangent to the medial curve γi and the line

joining the point of contact and the centre of the tritangent circle. The first of

these is a constraint on the velocities of the medial curves near to an A3
1 point.

It comes from the fact that the φi add to π. Also, κi is the curvature of the

medial curve γi. (See also [S99, SSG99] for work on the relationship between

the curvatures of the medial axis and the boundary.)

Constraints such as those above have an important application in the study

of stochastic shape. For work on this by D. Mumford, see [M03]. The con-

straints arise because close to a triple junction there are two ways to use the

medial axis to construct each piece of the shape boundary. Given two smooth

medial axis branches γ1, γ2, close to a triple junction, and choosing orientations

suitably, we reconstruct γ±1 and γ±2 . Then γ+
1 must agree with γ−2 at the point

where they meet. (See Figure 3.1.)

On the other hand in [GK03] it is shown that there is no constraint on

the medial axis and radius function at an endpoint, beyond the fact that r′′

should be non-zero at the endpoint – in fact if arclength is measured towards

the endpoint then r′′ should be > 0 to ensure a minimum of radius. An explicit

formula is given for the curvature κ of the medial axis at its endpoint, in terms

of the curvature k say of the boundary curve of the shape at the corresponding

point, an extremum of curvature:

κ = −3

5

k3k′′′

(k′′)2
, (3.2)

where ′ (‘prime’) means differentiation with respect to arclength on the bound-

ary of the shape. Notice that this formula does not make any reference to the

radius function.
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Figure 3.1: The A3
1 case in 2D, where three smooth medial branches meet at an A3

1

point. At this point the medial axis must satisfy certain conditions, such as (3.1),

in order for the boundary to be smoothly reconstructed by an envelope of circles

centred on the medial axis.

In this chapter we take the step from R2 into R3. In R3, the medial axis M

of a generic surface S, referred to as the boundary surface, has one of the local

forms given in Figure 3.2. We shall refer to these by their standard names from

singularity theory, where Ak means that the contact between S and a sphere

has this singularity type. Thus A1 means that the centre c of the sphere lies

on the normal line to S at a point p, making ‘ordinary tangency’ between the

sphere and S at p; A2 means that c is a centre of principal curvature of S at

p; and A3 that in addition p is a ‘ridge point’ (see for example [HGYGM99]).

Juxtaposition indicates more than one contact point; thus A1A1 = A2
1 indicates

a sphere ordinarily tangent at two points.

This chapter examines in greater detail research that has already appeared

[PGK04] and in a form [PGK05] intended for submission to in a journal. It

examines connections between the geometry of the medial axis and dynamics

of the associated radius functions at points of these local forms of the medial

axis. The following cases are examined.

• The A3
1 case: when three smooth sheets of the medial axis intersect in

a curve, called the A3
1 curve. Points of this curve are called A3

1 points.

Alternatively they are referred to as ‘Y-junction curves, points’.
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B o u n d a r y  e d g e

A2
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1 A3 A4
1 A1A3 SS A1A3 MA

Figure 3.2: The local forms of the medial axis in R
3 in the generic case. Thus A2

1 is

a smooth sheet, A3
1 is a Y-junction curve, A3 is a boundary edge of a smooth sheet,

A4
1 is a point where four A3

1 curves lying on six sheets meet. Finally the ‘A1A3 SS’

picture shows the ‘symmetry set’, consisting of a swallowtail surface and a smooth

sheet with boundary; this is truncated as shown in the A1A3 medial axis picture.

The point where the boundary (A3) edge and the Y-junction (A3
1) curve end is the

A1A3 point, also called a ‘fin point’.

• The A3 case: where the two points of contact on the boundary surface

of a single medial axis sheet come into coincidence. This corresponds to

the medial axis being locally a surface with boundary – this boundary is

the A3 curve, referred to as the ‘edge’ of the medial axis, whose points

are A3 points.

• The A4
1 case: the point at which six smooth sheets of the medial axis

intersect, called an A4
1 point, or ‘6-junction point’. At this point, four A3

1

curves intersect, corresponding to a sphere tangent to the boundary in

four points.

• The A1A3 case: where an A3
1 curve and an A3 curve meet and end, also

called a ‘fin point’, since the medial axis looks locally like a fin emerging

from another surface.

Here is a brief summary of the sections of this chapter.

§3.2: A Coordinate System for the Medial Axis in Three Dimensions.

This introduces the geometry and dynamics of the medial axis and gives

formulae to be used in the rest of the chapter.
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§3.3: Radial Shape Operator. We review the definitions of Damon’s radial

shape operator [D03, D04, D05] and formulae connecting the differential

shape operator of the boundary and radial shape operator. We choose

a basis for our case of a two-dimensional medial axis and obtain a con-

nection between the trace, determinant of the corresponding radial shape

operator matrix. Also we obtain an expression for the principal directions

on the boundary to be used in the A3
1 case in §3.4.

§3.4: The A3
1 Case. We obtain constraints on the geometry and dynamics of

the three medial sheets analogous to those discovered in the case of the

medial axis in two dimensions. We equate normals of the corresponding

boundary surfaces to discover first order information about the medial

axis. Then we use §3.3 to equate principal curvatures and principal di-

rections on the boundaries to discover second order information about

the medial axis.

§3.5: First Example of the A3
1 Case. We take three general cylinders as

the medial axis near to an A3
1 curve, where the radius functions r1, r2, r3

are unknown. Then we see what information we can obtain from the A3
1

constraints of §3.4 about the radius functions.

§3.6: Second Example of the A3
1 Case. We take a parabolic gutter and a

plane as the boundary near to an A3
1 curve, so all of the terms in the

A3
1 constraints of §3.4 can be calculated. Hence we can check that these

constraints are satisfied in this example.

§3.7: The A4
1 Case. Consistency conditions on the medial axis are obtained

at A4
1 points, using the constraints of §3.4.

§3.8: The A3 Case. We discover a restriction on the radius function at an A3

point similar to that in two dimensions. Also we find a limiting value for

the Gauss curvature of the medial axis in terms of the geometry of the

boundary at an A3 point.
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§3.9: The A1A3 Case. We obtain the limiting form of the constraints in the

A3
1 case as two of the points of contact come into coincidence. We revisit

the second A3
1 example from §3.6 to illustrate the A1A3 case.

3.2 A Coordinate System for the Medial Axis

in Three Dimensions

In order to obtain results analogous to (3.1) in R3 we shall need to describe

carefully the construction of the boundary surface S from its medial axis M and

the radius function r. We begin with some definitions and formulae concerning

the geometry of the medial axis in R
3, quoted from [GK04]. Consider Figure 3.3,

where there is a smooth (A2
1) medial axis sheet γ and its corresponding local

boundary surfaces γ+ and γ−. Thus spheres of radius r and centred on γ are

tangent to the γ±. We have

γ± = γ − rN± , (3.3)

where N± is the unit normal to the boundary surface γ±, oriented towards the

centre of the bitangent sphere. We shall assume that near a point of interest

on γ the gradient of r is non-zero and use the coordinate system given by the

lines r = constant, parametrized by t, say and referred to as ‘t-curves’, and

the gradient lines of r, parametrized by r and referred to as ‘r-curves’. We can

fix the (r, t) coordinate system close to (r0, 0) say, by taking t to be arclength

along the t-curve r = r0. Arclength along the r-curves will be denoted by s.

Partial derivatives will be denoted by suffices in what follows.

The unit vector T is defined to be parallel to γr, with N a unit normal

vector to the medial axis and taking U = N × T makes an orthonormal triad

T , U , N . The velocity v is defined by

γr = vT , γt = wU , (3.4)

for w a function which satisfies w(r0, t) = 1 for all t. The velocity v is ds/dr

along the r-curves and when the medial axis is a locally a smooth (A2
1) sheet we
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Figure 3.3: The A2
1 case in R

3: there is a sphere of contact between the boundary at

γ±. At the centre of the sphere of contact the unit vectors T and U lie in the tangent

plane to γ and the vector N is the unit normal to γ. Also, N+ is the unit normal to

the boundary surface at γ+ and T+ is in the tangent plane to the boundary surface

at γ+. Similarly for N− and T− at γ−. The angle φ is the angle between the line

joining one of the contact points and the centre of the bitangent sphere. On the left

φ is obtuse, on the right φ is acute. The cases where φ = 0, π/2, π are limiting cases.

can choose v > 0, that is T to be in the direction of ∇r (that is grad(r)), and

so T = ∇r/‖∇r‖. This corresponds to the picture on the left of Figure 3.3. In

the (A3
1) case of the medial axis being locally three intersecting sheets there are

three such velocities vi, for i =1, 2, 3, but it is not possible to choose each vi to

be positive (see §3.4.1). Even so, in this case each vi is taken to be non-zero.

The convention of taking the boundary point γ+ to be on the ‘+N ’ side of

T and denoting φ to be the angle (0 < φ < π) turned anti-clockwise from T to

−N+, in the plane oriented by T,N , means that

N± = − cosφT ∓ sin φN ,

T± = ∓ sinφT + cosφN .

}

(3.5)

Here the unit vector T± is tangent to γ± and parallel to U ×N±. We have the

important equation

cos φ = −1

v
, (3.6)
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so that T± and N± can also be expressed in terms of v as follows:

N± =
1

v
T ∓

√

1 − 1

v2
N ,

T± = ∓
√

1 − 1

v2
T − 1

v
N .

These formulae for N±, T± hold for all points of γ.

Three ‘accelerations’ are important and are defined by:

radial : a = vr ; transverse : at = vt ; mixed : a∗ = wr .

Then, at γ(r0, 0), we have

γrr = aT + v2grU + v2κrN ,

γrt = −vgrT + vgtU + fN , (where f = vτ r = −vτ t) ,
γtt = −gtT + κtN .















(3.7)

Here gr, κr, τ r are the geodesic curvature, normal curvature, geodesic torsion

of the r-curve at (r0, 0). Similarly, gt, κt, τ t are the geodesic curvature, normal

curvature, geodesic torsion of the t-curve at (r0, 0). Some of the terms in the

above can be expressed in terms of the above accelerations. We have

−vgr = at and vgt = a∗ . (3.8)

Now consider the medial axis as an arbitrary local parametrization γ(x, y)

with an associated radius function r(x, y). Then the envelope of spheres centred

on γ is

{

x : there exist x, y with Fd =
∂Fd
∂x

=
∂Fd
∂y

= 0

}

,

where Fd = (x − γ(x, y)) · (x − γ(x, y)) − (r(x, y))2 .

(This function is labelled Fd since it is similar to the distance-squared function.)

Let us calculate the envelope. Let (x − γ(x, y)) = λγx + µγy + ηN for some

λ, µ, η, where suffices denote differentiation and N is the unit normal to γ at
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(x, y). So

Fd = ‖x − γ‖2 − r2 = λ2E + 2λµF + µ2G+ η2 = 0 ,

∂Fd
∂x

= −2γx · (x − γ) − 2rrx = −2(λE + µF ) − 2rrx = 0 ,

∂Fd
∂y

= −2γy · (x − γ) − 2rry = −2(λF + µGF ) − 2rry = 0 ,

where E = γx · γx, F = γx · γy, G = γy · γy. Solving the these equations for λ,

µ, η gives

λ =
r(Fry −Grx)

EG− F 2
, µ =

r(Frx − Ery)

EG− F 2
, η = r

√

1 −
Er2

y − 2Frxry + Gr2
x

EG− F 2
.

Hence, relabelling x as γ± and using (3.3), we have

γ± = γ +
r (γx(Fry −Grx) + γy(Frx − Ery))

EG− F 2

±r
√

1 −
(

Er2
y − 2Frxry +Gr2

x

EG− F 2

)

N . (3.9)

Comparison with (3.4), (3.3), (3.5) gives

sin φ =

√

1 −
(

Er2
y − 2Frxry +Gr2

x

EG− F 2

)

, (3.10)

cos2 φ =
1

v2
=
Er2

y − 2Frxry +Gr2
x

EG− F 2
, (3.11)

γr =
γx(Grx − Fry) + γy(Ery − Frx)

Er2
y − 2Frxry +Gr2

x

. (3.12)

3.3 Radial Shape Operator

This section contains results connecting the geometry and dynamics of a medial

axis sheet with the two corresponding boundary surfaces in three-space. These

are Lemmas 3.3.1.4, 3.3.2.1, 3.3.2.2 and 3.3.3.2, and will enable us to obtain

expressions for the principal curvatures and principal directions on the bound-

ary in terms of information about the medial axis and radius function. This

has most importance in the A3
1 case, in §3.4. In order to obtain these lemmas

we consider the radial shape operator from [D03, D04, D05], introduced below.
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3.3.1 Introducing the Radial Shape Operator

We consider from [D04, D05] a smooth n-dimensional boundary B ⊂ Rn+1 with

its n-dimensional medial axis M ⊂ R
n+1 and the multivalued vector field R

on M such that B = {x+R(x) : x ∈M, all values of R}. The pair (M,R) is

referred to as the skeletal structure. (In [D03] Damon considers a more general

M , that is an n-dimensional skeletal set, a special type of Whitney stratified

set, of which a medial axis is a special case.) We have R = rR1, where R1 is a

unit vector field and r is the radius function. Defined below is the radial shape

operator Srad of the skeletal structure (M,R). (In [D03, D04, D05] U is used

for our R, but for us U is already in use.)

Definition 3.3.1.1 ([D04, §1]) In a neighbourhood of a point x0 ∈ M with

a single smooth choice of value for R, let ψt(x) = x + tR(x) be a local repre-

sentation of the radial flow from M to B, and let the radial map be given by

ψ1(x) = x+R(x). (The radial map is the time one map of the radial flow.)

See Figure 3.4, left for a picture of the radial flow.

Definition 3.3.1.2 ([D04, §1]) At a non-edge point x0 of M with a smooth

value of R, let

Srad(v) = −projR

(

∂R1

∂v

)

,

for v ∈ Tx0
M . Here projR denotes projection onto Tx0

M along R. Also,

∂R1/∂v is the covariant derivative of R1 in the direction of v. The principal

radial curvatures κri are the eigenvalues of Srad. The corresponding eigenvectors

are the principal radial directions.

In the above, the boundary points of M are called edge points so as not to

be confused with points of B. See Figure 3.4, right for a picture of the radial

shape operator.

We choose a basis v = {v1, . . . , vn} for Tx0
M and let Sv denote the matrix

representation of Srad with respect to this basis. Then ∂R1/∂vi is represented

77



y=

t

tx0’

M

x
0( )

{ B

B

R

x0

S

R

rad
( )v

dR1

d
-

v

dR1

dv
-( )proj

R

M

Tx M
0

x
0

Figure 3.4: Left: the local representation of the radial flow from the medial axis

M to the associated boundary B in R
2, where R is a multivalued vector field from

points of M to B. Right: the projection for defining the radial shape operator Srad;

this picture is in R
3.

for each i by
∂R1

∂vi
= ai · R1 −

n
∑

j=1

sjivj . (3.13)

Using this, we can write

∂R1

∂v
= Av · R1 − ST

v
· v ,

where ∂R1/∂v is a column vector with vector entries ∂R1/∂vi, and AvR1 is the

column vector with entries aiR1. Also, v denotes the column vector with i-th

entry vi (allowing an abuse of notation). The derivative of the radial flow can

be written as
∂ψt
∂vi

= vi + t

(

∂r

∂vi
·R1 + r · ∂R1

∂vi

)

. (3.14)

Let dψt(vi) = ∂ψt/∂vi and dr(vi) = ∂r/∂vi.

In [D04] Damon proves the following.

Lemma 3.3.1.3 ([D04, Lemma 3.1]) Suppose (M,R) is a skeletal structure

and that x0 ∈ M is a non-edge point. Let R be a smooth value (on a non-

edge local manifold component MB of x0) for which 1/r is not an eigenvalue

78



of Srad at x0. Then, the corresponding ‘compatibility 1-form’ ηR, given by

ηR(v) = v.R1 + dr(v), vanishes at x0 if and only if R(x0) is orthogonal to

the associated boundary at ψ1(x0).

Lemma 3.3.1.4 ([D04, Theorem 3.2]) Suppose (M,R) is a skeletal struc-

ture such that, for a choice of smooth value of R, the associated compatibility

1-form ηR vanishes identically on a neighbourhood of a smooth point x0 of M ,

and 1/r is not an eigenvalue of Srad at x0. Let x′0 = ψ1(x0), and v′ be the

image of v for a basis {v1, . . . , vn}.

1. The differential geometric shape operator SB of B at x′0 has a matrix

representation with respect to v′ given by

SBv′ = (I − r · Sv)−1Sv . (3.15)

2. Hence, there is a bijection between the principal curvatures κi of B at x′0

and the principal radial curvatures κri of M at x0 (counted with multi-

plicities) given by

κi =
κri

1 − rκri
or equivalently κri =

κi
1 + rκi

. (3.16)

3. Also, the principal radial directions corresponding to κri are mapped by

dψ1 to the principal directions corresponding to κi.

The above definitions and results about the radial shape operator are for

a medial axis M ⊂ R
n+1. Now we will specialize to consider a smooth two-

dimensional medial axisM of a smooth boundary B and a radius function r > 0

in three-space. We will choose a basis v = {v1, v2} for Tx0
M and obtain the

matrix representation of the radial shape operator with respect to this basis.

The matrix Sv will be expressed in terms of the geometry and dynamics of

the medial axis and, using Lemma 3.3.1.4, we will obtain an expression for the

principal curvatures and principal directions on the boundary.

Before Lemma 3.3.1.4 can be used, we need to check that its conditions

are satisfied in our situation of a medial axis in three dimensions. Firstly, we
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require that for a choice of smooth value of R, the associated compatibility 1-

form ηR vanishes identically on a neighbourhood of a smooth point x0 of M . In

our situation of smooth medial axis with smooth boundary we only consider R1

orthogonal to the boundary B. By Lemma 3.3.1.3 this means the compatibility

1-form ηR vanishes for all points of the medial axis. Hence

ηR(v) = v · R1 + dr(v) = 0

⇒ dr(v) = −v ·R1 ,

for all v ∈ Tx0
M , taking −N+ or −N− as R1 (see (3.5)). Secondly, we need

1/r not to be an eigenvalue of Srad at x0. Since the boundary B is assumed to

be smooth, by Lemma 4.1 of [D05] we have that

r < min

{

1

κri

}

for all positive principal radial curvatures κri

and for κri < 0 we have 1− rκri > 0. Therefore 1/r cannot be an eigenvalue of

Srad at any point of M . Hence the conditions of Lemma 3.3.1.4 are satisfied,

so we can apply its results.

3.3.2 A Matrix Representation of Srad in Three Dimen-

sions

Now we shall calculate the radial shape operator of γ with respect to a chosen

basis {T, U}, where T , U are the vectors as defined in §3.2 at the point γ(r =

r0, t = 0). Also, as in §3.2, the medial axis will be labelled γ, and the two

boundary sheets are γ±. The derivatives ∂R1/∂vi, for i = 1, 2, are needed

for the radial shape operator. Note that R is assumed to be pointing from

points of the medial axis to points of the boundary, whereas N± points in the

opposite direction, from points of the boundary to points of the medial axis.

Therefore we shall take R1 as −N± in what follows. Let S±

v
denote the matrix

representation of the radial shape operator of γ corresponding to boundary γ±

with respect to the basis v = {T, U} at γ(r0, 0). Then we can write

S±

v
=

(

s±11 s±12

s±21 s±22

)

.
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By (3.13), we need ∂N±/∂T , ∂N±/∂U in order to calculate the s±ij at

γ(r0, 0). At a point of the medial axis T is tangent to the curve t = constant,

that is the ‘r-curve’ parametrized by r. So the covariant derivative ∂N±/∂T

is the same as ∂N±/∂s, where s is arclength along the r-curve. Similarly, U

is tangent to the curve r = constant, that is the ‘t-curve’ parametrized by t,

which is arclength along this t-curve. Hence ∂N±/∂U is the same as ∂N±/∂t.

Since the following calculations will be used for the A3
1 case, we do not assume

that v = ds/dr is positive along the r-curves, which can be done when the

medial axis is locally a smooth A2
1 sheet (see §§3.2, 3.4.1). Then, using suffices

to denote differentiation, (3.13) for the chosen basis becomes

N±

s = a±1 N
± + s±11T + s±21U ,

N±

t = a±2 N
± + s±12T + s±22U .

}

(3.17)

Now consider N±

s and N±

t . By (3.5) we have

N±

s = φs (sinφT ∓ cos φN) − cosφTs ∓ sin φNs ,

N±

t = φt (sinφT ∓ cos φN) − cos φTt ∓ sinφNt .

By definition, at γ(r0, 0) we can write the derivatives of T , U , N in the

schematic form

∂

∂s









T

U

N









=









0 gr κr

−gr 0 τ r

−κr −τ r 0

















T

U

N









,

and
∂

∂t









U

−T
N









=









0 gt κt

−gt 0 τ t

−κt −τ t 0

















U

−T
N









.

Hence N±

s , N±

t become

N±

s = (φs ± κr) sinφT + (−gr cos φ± τ r sin φ)U + (∓φs − κr) cosφN ,

N±

t = (φt ∓ τ t) sinφT + (−gt cosφ± κt sinφ)U + (∓φt + τ t) cosφN .

We can simplify these expressions further by differentiating (3.6) with respect

to arclength along the t-curve, that is set r = r0 and differentiate with respect
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to t. (This is allowed since (3.6) holds for all points of γ.) Then we can set

t = 0 to evaluate the derivative with respect to t at the point γ(r0, 0). This

gives

φt = −vt
1

v2 sinφ
= − at

v2 sinφ
,

since at = vt by definition. Then differentiate (3.6) with respect to arclength

along the r-curve, that is set t = 0 and differentiate with respect to s. Then we

can set r = r0 to evaluate the derivative with respect to s at the point γ(r0, 0).

This gives

φs = − 1

v2 sinφ

(

vr
dr

ds

)

= − a

v3 sinφ
,

since we know ds/dr is v along the r-curve. Also, from (3.7) and (3.8) we have

τ r = −τ t, gr = −at/v, and gt = a∗/v. Then, using (3.5), we get the following:

N±

s =

(

± a

v3 sinφ
− κr

)

T± +

(

at cosφ

v
∓ τ t sinφ

)

U , (3.18)

N±

t =

(

± at

v2 sinφ
+ τ t

)

T± +

(

−a
∗ cosφ

v
± κt sinφ

)

U . (3.19)

In order to calculate the radial shape operator, we must deduce a±1 , a±2 ,

s±11, s
±

12, s
±

21, s
±

22 from (3.17), using (3.18) and (3.19). This gives two vector

equations to be solved, the first of which (from (3.17) and (3.18)) is as follows:

a±1 (− cosφT ∓ sin φN) + s±11T + s±21U

=

(

− a

v3 sin φ
± κr

)

(sinφT ∓ cosφN) +

(

at cosφ

v
∓ τ t sin φ

)

U

⇐⇒ 0 =
(

−a±1 cosφ+ s±11 +
a

v3
∓ κr sin φ

)

T

+

(

s±21 −
at cosφ

v
± τ t sinφ

)

U

+

(

∓a±1 sinφ∓ a cosφ

v3 sinφ
+ κr cosφ

)

N .

By definition, T , U , N form an orthonormal triad, so the above holds if and

only if the coefficients of T , U , N are zero. Solving the coefficients of T , U ,
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N equal to zero and using the fact that cosφ = −1/v from (3.6) gives the

following:

a±1 =

( −a
v3 sin2 φ

± κr

sinφ

)

cosφ ,

s±11 =
−a

v3 sin2 φ
± κr

sin φ
,

s±21 = −at

v2
∓ τ t sinφ .

The second vector equation to be solved (from (3.17) and (3.19)) is as follows:

a±2 (− cos φT ∓ sinφN) + s±12T + s±22U

=

(

− at

v2 sinφ
∓ τ t

)

(sinφT ∓ cosφN) +

(

−a
∗ cosφ

v
± κt sinφ

)

U

⇐⇒ 0 =

(

−a±2 cos φ+ s±12 +
at

v2
± τ t sinφ

)

T

+

(

s±22 +
a∗ cosφ

v
∓ κt sinφ

)

U

+

(

∓a±2 sinφ∓ at cosφ

v3 sin φ
− τ t cosφ

)

N .

Again, this holds if and only if the coefficients of T , U , N are zero in the

above. Solving the coefficients of T , U , N equal to zero and using the fact that

cosφ = −1/v from (3.6) gives the following:

a±2 =

( −at
v2 sin2 φ

∓ τ r

sinφ

)

cosφ ,

s±12 =
−at

v2 sin2 φ
∓ τ r

sin φ
,

s±22 =
a∗

v2
± κt sin φ .

Hence we have the following.

Lemma 3.3.2.1 The radial shape operator S±

v
with respect to −N± and the

basis {T, U} at γ(r0, 0) is as below:

S±

v
=

(

s±11 s±12

s±21 s±22

)

=





− a
v3 sin2 φ

± κr

sinφ

(

− at

v2
∓ τ t sinφ

)

1
sin2 φ

− at

v2
∓ τ t sin φ a∗

v2
± κt sinφ



 . (3.20)
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Let trace±, det± denote trace(S±

v
), determinant(S±

v
). Then

trace± = − a

v3 sin2 φ
+
a∗

v2
±
(

κr

sin φ
+ κt sinφ

)

,

det± = − a∗a

v5 sin2 φ
+ κrκt − (at)2

v4 sin2 φ
− (τ t)2

±
(

a∗κrv − aκt − 2atτ tv

v3 sinφ

)

.

So we have the following.

Lemma 3.3.2.2 The trace and determinant of S±

v
satisfy

1

2
(trace+ − trace−) =

κr

sin φ
+ κt sinφ , (3.21)

1

2
(det+ − det−) =

a∗κrv − aκt − 2atτ tv

v3 sin φ
. (3.22)

3.3.3 Principal Directions on the Boundary

The principal directions on the boundary can be expressed in terms of the

geometry of the medial axis by using (3.14) and Lemma 3.3.1.4. Let κ±ri be one

of the principal radial curvatures, that is an eigenvalue of S±

v
given by (3.20).

The corresponding principal radial direction is given by

V ±

1 = s±12T + (κ±ri − s±11)U , (3.23)

or, alternatively,

V ±

2 = (κ±ri − s±22)T + s±21U .
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The expression for the principal direction on the boundary using (3.23) is

dψ±

1 (V ±

1 ) = s±12T + (κ±ri − s±11)U +
∂r

∂V1

(−N±) + r

(−∂N±

∂V1

)

= s±12T + (κ±ri − s±11)U − (V ±

1 · (−N±))(−N±)

+r

(

−s±12
∂N±

∂s
− (κ±ri − s±11)

∂N±

∂t

)

= s±12T + (κ±ri − s±11)U + s±12 cosφN±

+rs±12
(

−a±1 N± − s±11T − s±21U
)

+r(κ±ri − s±11)
(

−a±2 N± − s±12T − s±22U
)

= s±12T + (κ±ri − s±11)U + s±12 cosφ(− cosφT ∓ sinφN)

+rs±12
(

−a±1 (− cos φT ∓ sinφN) − s±11T − s±21U
)

+r(κ±ri − s±11)
(

−a±2 (− cosφT ∓ sinφN) − s±12T − s±22U
)

.

After substitution for s±ij and a±1,2 we get

dψ±

1 (V ±

1 ) =

(

−at

v2
∓ τ t sin φ

)

(1 − rκ±ri)T

+(κ±ri − s±11 + r(det± − s±22κ
±

ri))U

∓
(

−at

v2
∓ τ t sinφ

)

cosφ

sinφ
(1 − rκ±ri)N ,

which is the same as

dψ±

1 (V ±

1 ) = s±12 sin2 φ(1 − rκ±ri)T + (κ±ri − s±11 + r(det± − s±22κ
±

ri))U

∓s±12 cosφ sinφ(1 − rκ±ri)N .
(3.24)

This is not the end, since by the following lemma we can further simplify the

right-hand side of (3.24).

Lemma 3.3.3.1 The principal radial curvatures κ±ri and the principal curva-

tures κ±j on the boundary γ± at γ±(r0, 0) satisfy

κ±j (1 − rtrace± + r2det±) = κ±ri − rdet±, (3.25)

for i = 1, 2, j = 1, 2.
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Proof. Since the boundary sheet γ± is smooth, we know that 1/r is not

an eigenvalue of S±

v
and, using (3.15) from Lemma 3.3.1.4, we have a matrix

representation Sγ±v′ of Sγ± , the differential geometric shape operator of γ± at

ψ±

1 (γ(r0, 0)) with respect to v′, as follows:

Sγ±v′ = (I − r · S±

v
)−1S±

v
.

It is easy to show from this that

trace(Sγ±v′) =
trace± − 2rdet±

1 − rtrace± + r2det±
,

det(Sγ±v′) =
det±

1 − rtrace± + r2det±
,

and (trace(Sγ±v′))2 − 4det(Sγ±v′) =
(trace±)2 − 4det±

(1 − rtrace± + r2det±)2
,

so the eigenvalues κ±j of Sγ±v′ are

trace± − 2rdet± ± η
√

(trace±)2 − 4det±

2(1 − rtrace± + r2det±)
,

where η = sign(1 − rtrace± + r2det±). So

κ±j (1 − rtrace± + r2det±) =
trace± ± η

√

(trace±)2 − 4det±

2
− rdet±

= κ±ri − rdet±,

where i = 1, 2, j = 1, 2, as required. �

We can use Lemma 3.3.3.1 to simplify the expression for a principal direction

on the boundary from (3.24) as follows. Since we have a smooth boundary we

know that 1 − rκ±ri 6= 0 and so

dψ±

1 (V ±

1 )

1 − rκ±ri
= s±12 sin2 φT +

(κ±ri − s±11 + r(det± − s±22κ
±

ri))

1 − rκ±ri
U

∓s±12 cosφ sinφN .
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Using (3.16) from Lemma 3.3.1.4, the coefficient of U in the above becomes

κ±ri
1 − rκ±ri

(1 − rs±22) +
rdet± − s±11

1 − rκ±ri
= κ±i (1 − rs±22) + (1 + rκ±i )(rdet± − s±11) ,

since
1

1 − rκ±ri
= 1 + rκ±i

= κ±i (1 − rtrace± + r2det±) + rdet± − s±11

= κ±rj − s±11, using Lemma 3.3.3.1.

Hence we have the following.

Lemma 3.3.3.2 The principal directions on γ± at γ±(r0, 0) are given by

s±12 sin2 φT + (κ±ri − s±11)U ∓ s±12 cosφ sinφN , (3.26)

for i = 1, 2 and where s±11, s
±

12, s
±

21, s
±

22 are given in (3.20).

The results connecting trace+, trace− and det+, det−, and the expressions

for the principal directions on the boundary will be used in the following section

in the A3
1 case.

3.4 The A3
1 Case

The A3
1 case of the medial axis in R3 is that of points which are the centres

of spheres tangent to a surface in three points. In this case the medial axis is

locally three sheets intersecting transversally along a curve, called the A3
1 curve

or Y-junction curve. Points of this curve are called A3
1 points or Y-junction

points and are centres of tritangent spheres, that is the spheres tangent to the

boundary in three points. The A4
1 case corresponds to the centre of a sphere

with tangency with a surface in four points; it is a point where four A3
1 curves

meet. An A1A3 point is an A3
1 point where two of the points of contact have

come into coincidence. Hence the A3
1 case is the major case to consider, since

A4
1 and A1A3 points are limits of A3

1 points.
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Let the medial sheets intersecting along an A3
1 curve be labelled γ1, γ2,

γ3. Associated to each γi are two boundary surfaces γ±i and so there are

six associated boundary surfaces, but each coincides with one, and only one,

of the others, so there are three distinct surfaces. Let the identifications be

γ+
i = γ−i+1, where we evaluate (i + 1) modulo 3 when (i + 1) > 3. Hence we

have γ+
1 = γ−2 , γ+

2 = γ−3 , γ+
3 = γ−1 . This is analogous to the A3

1 case in R2 –

see Figure 3.1. In R2 the identifications γ+
i = γ−i+1 had consequences for the

geometry and dynamics of the medial curves in the form of constraints such

as (3.1). Similarly, in R3 the identifications γ+
i = γ−i+1 give rise to conditions

which must be satisfied by the medial axis. These conditions are obtained in

this section.

Here is a brief summary of what is to come in this section. The coordi-

nate systems used in the A3
1 case are described and summarized in Table 3.1.

Using this the consequences of making the identifications γ+
i = γ−i+1 at first

order derivatives are examined, which result in Theorem 3.4.2.1. Then, us-

ing the first coordinate system, we go to the next order of derivatives and

obtain Theorem 3.4.3.2, which contains consistency conditions on the medial

axis. However, this does not obtain all of the information given by making the

identifications γ+
i = γ−i+1 up to second order derivatives and so, to extract all

of this information, the second coordinate system is used. This means that

we can reduce the number of variables involved in the conditions and so we

obtain Theorem 3.4.5.2. Alternative forms of the consistency conditions from

Theorem 3.4.5.2 are contained in Theorems 3.4.5.3, 3.4.5.4.

3.4.1 Coordinate Systems for the A3
1 Case

The consistency conditions of this section are expressed in terms of two co-

ordinate systems, the first of which is based on the ‘(r, t)’ coordinate system

defined in §3.2 for a single A2
1 sheet. For the A3

1 case we define the same

quantities on each medial sheet γi meeting along the A3
1 curve at an A3

1 point

γi(ri = r0, ti = 0) for r0 constant. See Table 3.1 for a summary of the notation

used in this system.
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Figure 3.5: The medial sheets γ1, γ2, and γ3 intersecting along an A3
1 curve in R

3

and the corresponding points of contact on the boundaries. Left: the vectors T ,

T1, W1, U1 are all in the tangent plane to γ1; N1 is the unit normal to γ1 and N

is the principal normal to the A3
1 curve. Each Ti points into γi, but depending on

whether αi is obtuse or not Ui might point out of the medial axis. Right: the angle

φ between T and −N±

i , where φ is chosen to be obtuse and so T is in the direction

of r increasing (r is the radius of the tritangent sphere).

The other coordinate system used is specially suited to the A3
1 case. We

consider the generic case of the medial axis, which means that the curvature

of the A3
1 curve is never zero. In this case we can set up a local Frenet frame

[T,N,B] at a point of the A3
1 curve, so T is the unit tangent to the A3

1 curve.

Then αi is defined as the angle between Ti and T (see Figure 3.5, left), and

ψi is defined as the angle between N and Ni. Let the ψi be such that 0 ≤
ψ1 < ψ2 < ψ3 < 2π (see Figure 3.6). The angle between Ni+1 and Ni+2 is

important when obtaining the consistency conditions, so let θi = ψi+2 − ψi+1

and ǫi = sign(cos θi). Let r be the radius of tritangent spheres centred on the

A3
1 curve. Then φ is defined to be the angle between T and the line joining one

of the points of contact with the centre of a tritangent sphere (see Figure 3.5,

right). Take r to be increasing along the A3
1-curve so T is in the direction of r

increasing, and so φ is obtuse. Let the tangents Ti for i = 1, 2, 3 point into γi.

Now consider the circle passing through the points of contact, looking along
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the direction of −T . The normal Ni to the medial axis sheet γi is given by

rotating by π/2 coherently with this circle the projection of Ti into the plane

of contact points perpendicular to T , as in Figure 3.7. This gives the required

identifications γ+
i = γ−i+1. Then Ti is determined by the relation

proj(Ti) = Ni × T ,

since we know that Ti is parallel to the direction of ∇ri.

N
2

B

3

1

N

N

N

y

3

2

1

y

y

Figure 3.6: This is in the plane of N and B, which are respectively the principal

normal and the binormal to the A3
1 curve. The unit normals Ni to the medial sheets

γi and the angles ψi between N and Ni are shown. The ψi are chosen so that

0 ≤ ψ1 < ψ2 < ψ3 < 2π.

These conventions mean we cannot assume each Ti is in the direction of

∇ri. In the case of the medial axis being locally one A2
1 sheet we could choose

the velocity v to be positive (see §3.2). For example, from Figure 3.7, left we

have T2 = −∇r2/‖∇r2‖ and in Figure 3.7, right we have T2 = +∇r2/‖∇r2‖.
Hence, for si arclength on the ri-curve, we let vi = dsi/dri be non-zero along

the ri-curves and so Ti = ±∇ri/‖∇ri‖. Then φi might be acute or obtuse and

so we allow vi to be positive or negative, but not zero.

The vectors Ti, Ui, and Ni can be expressed in terms of ψi and αi for all
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Figure 3.7: The two possibilities for the points of contact in the A3
1 case. The view

of the points of contact looking along the direction of −T : on the left the points of

contact are in a semicircle, on the right they are not.

points of the A3
1 curve, as follows:

Ni = cosψiN + sinψiB ,

Ti = cosαiT + pN + qB ,

Ui = Ni × Ti

= (q cosψi − p sinψi)T + sinψi cosαiN − cosψi cosαiB ,

where p, q are to be determined. From Figure 3.5 we have that

T · Ui = cos
(π

2
+ αi

)

= − sinαi

= (q cosψi − p sinψi) ,

from the above expression for Ui. We also have Ti · Ni = 0 by definition, and

so p cosψi + q sinψi = 0. Hence we can solve for p and q and we get

p = sinαi sinψi , q = − sinαi cosψi .

Hence we get the following formulae, which are valid at all points of the A3
1

curve:
Ti = cosαiT + sinαi sinψiN − sinαi cosψiB ,

Ui = − sinαiT + cosαi sinψiN − cosαi cosψiB ,

Ni = cosψiN + sinψiB .















(3.27)
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Alternatively, we can obtain T , N , B in terms of Ti, Ui, Ni:

T = cosαiTi − sinαiUi ,

N = sinαi sinψiTi + cosαi sinψiUi + cosψiNi ,

B = − sinαi cosψiTi − cosαi cosψiUi + sinψiNi .















(3.28)

An important direction is the one perpendicular to T in the tangent plane to

γi, which will be called Wi = Ni×T . Using (3.27) we get the following formula

for Wi, valid at points of the A3
1 curve:

Wi = sinψiN − cosψiB . (3.29)

The first order notation for the coordinate system based on the A3
1 curve has

been covered, so now for the second order information. Let κ, τ be respectively

the curvature, torsion of the A3
1 curve, where, as before, κ is assumed to be

non-zero for all points of the A3
1 curve. Also, let κWi be the normal curvature

of γi in the direction of Wi. Differentiation with respect to arclength along the

A3
1 curve is denoted by ′ (‘prime’) and differentiation with respect to arclength

along a curve lying on γi passing through the point γi(r0, 0) on the A3
1 curve

with tangentWi is denoted by˙(‘dot’). Table 3.1 contains all of the new symbols

and their meanings.

3.4.2 Equating Normals of the Boundaries at A3
1 Points

A point of the A3
1 curve is a point of each γi, so the identifications γ+

i = γ−i+1

and (3.3) mean that, for r = r(s) the radius of a tritangent sphere centred at

a point γ1(s) = γ2(s) = γ3(s) of the A3
1 curve, where s is arclength along the

A3
1 curve, we have

γi − rN+
i = γi+1 − rN−

i+1

⇐⇒ N+
i = N−

i+1

⇐⇒ − cosφiTi − sin φiNi = − cosφi+1Ti+1 + sinφi+1Ni+1 ,

using (3.5). Adding the three equations given by N+
i = N−

i+1 gives

sin φ1N1 + sin φ2N2 + sinφ3N3 = 0 . (3.30)
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The ‘(ri, ti)’ Coordinate System

Symbol Explanation of Notation

γi, ri A sheet of the medial axis near to an A3
1 curve (i = 1, 2, 3)

with associated radius function ri

ri-curves Gradient lines of ri, parametrized by ri

ti-curves Lines ri = constant, parametrized by ti

γi(r0, 0) Point on the A3
1 curve, where ri = r0 (constant) and ti = 0

Ti, Ni, Ui Unit tangent to the ri-curve, unit normal to γi,

Ui = Ni × Ti

γ±i The two boundary surfaces corresponding to γi

N±

i Unit normal to γ±i

φi, vi Angle from Ti to −N±

i , velocity vi = −1/ cosφi

ai, a
t
i, a

∗

i Accelerations on γi (see (3.7) for a single medial sheet γ)

κri Normal curvature of γi in the direction of the ri-curve

κti Normal curvature of γi in the direction of the ti-curve

τ ti Geodesic torsion of γi in the direction of the ti-curve

The ‘A3
1 Curve’ Coordinate System

Symbol Explanation of Notation

T , N , B Unit tangent, principal normal, binormal of the A3
1 curve

κ, τ Curvature, torsion of the A3
1 curve

αi Angle from T to Ti

ψi Angle from N to Ni, chosen so that 0 ≤ ψ1 < ψ2 < ψ3 < 2π

θi θi = (ψi+2 − ψi+1), the angle between Ni+1 and Ni+2

ǫi The sign of cos θi

φ Angle between T and −N±

i , chosen to be obtuse

κWi Normal curvature of γi in the direction of Wi = Ni × T
′ (prime) Differentiation with respect to arclength along the A3

1 curve

˙ (dot) Differentiation with respect to arclength along

a curve tangent to Wi

Table 3.1: Table of notation for the A3
1 case.
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Using (3.5), (3.27) we have the following formula for N±

i in terms of φi, αi, and

ψi:

N±

i = − cosφi (cosαiT + sinαi sinψiN − sinαi cosψiB)

∓ sinφi (cosψiN + sinψiB) .
(3.31)

We want to set N+
i = N−

i+1 at points of the A3
1 curve. From the formula

above for N±

i , the T components of N+
i and of N−

i+1 are equal. This gives

cosφ1 cosα1 = cosφ2 cosα2 = cosφ3 cosα3. Then we have

cosφ = cosφi cosαi , (3.32)

since cosφ = −N±

i · T by the definition of φ. Let N̂±

i be the normalized

component of N±

i in the N , B plane. Then we have the following:

N̂±

i =
cos φi sinαi

sinφ
(sinψiN − cosψiB)

±sinφi
sinφ

(cosψiN + sinψiB) ,

so N±

i = − cosφT − sinφN̂±

i . (3.33)

Using (3.33) we have

N+
i −N−

i = − sinφ(N̂+
i − N̂−

i ) = − sinφ(N̂−

i+1 − N̂−

i ) .

From (3.5) we have

N+
i −N−

i = − cosφiTi − sinφNi − (− cosφiTi + sinφNi) = −2 sin φiNi .

Hence N+
i = N−

i+1 implies the following vector equation:

sin φ(N̂−

i+1 − N̂−

i ) = 2 sinφiNi . (3.34)

Let us introduce auxiliary variables in order to solve (3.34). Set

N̂+
i = N̂−

i+1 = cosβi,i+1N + sin βi,i+1B (3.35)
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for i = 1, 2, 3 at points of the A3
1 curve, and where (i+1), (i+2) are evaluated

modulo 3 when (i+ 1), (i+ 2) are respectively greater than 3. And so

N̂−

i+1 − N̂−

i = (cosβi,i+1N + sin βi,i+1B) − (cosβi−1,iN + sin βi−1,iB)

= 2 sin

(

βi,i+1 + βi−1,i

2

)

sin

(

βi−1,i − βi,i+1

2

)

N

+2 sin

(

βi,i+1 − βi−1,i

2

)

cos

(

βi,i+1 + βi−1,i

2

)

B .

Hence

N̂−

i+1 − N̂−

i

2
=

sin

(

βi−1,i − βi,i+1

2

)(

sin

(

βi,i+1 + βi−1,i

2

)

N − cos

(

βi,i+1 + βi−1,i

2

)

B

)

.

Using this, (3.34) becomes the following:

sin φi(cosψiN + sinψiB) =

sin φ sin

(

βi−1,i − βi,i+1

2

)(

sin

(

βi,i+1 + βi−1,i

2

)

N − cos

(

βi,i+1 + βi−1,i

2

)

B

)

.

This equation is of the form µP1 = λQ1 where P1, Q1 are unit vectors, and so

gives the following two cases:

1. sinφi = sinφ sin

(

βi−1,i − βi,i+1

2

)

,

(cosψi, sinψi) =

(

sin

(

βi,i+1 + βi−1,i

2

)

,− cos

(

βi,i+1 + βi−1,i

2

))

;

2. sinφi = − sinφ sin

(

βi−1,i − βi,i+1

2

)

,

(cosψi, sinψi) = −
(

sin

(

βi,i+1 + βi−1,i

2

)

,− cos

(

βi,i+1 + βi−1,i

2

))

.

We can rule out case 2 given the conventions taken earlier, as follows. We
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have

(cosψi, sinψi) =

(

− sin

(

βi,i+1 + βi−1,i

2

)

, cos

(

βi,i+1 + βi−1,i

2

))

=

(

cos

(−βi,i+1 − βi−1,i

2
− π

2

)

,− sin

(

βi,i+1 + βi−1,i

2
− π

2

))

=

(

cos

(

βi,i+1 + βi−1,i + π

2

)

,− sin

(

βi,i+1 + βi−1,i + π

2
− π

))

=

(

cos

(

βi,i+1 + βi−1,i + π

2

)

, sin

(

βi,i+1 + βi−1,i + π

2

))

.

Therefore we have

ψi =
βi,i+1 + βi−1,i + π

2
, which gives

βi,i+1 = ψi + ψi+1 − ψi+2 −
π

2
,

so βi−1,i = βi+2,i since i− 1 ≡ i+ 2 mod 3

= ψi+2 + ψi − ψi+1 −
π

2
,

hence sin φi = − sinφ sin

(

βi−1,i − βi,i+1

2

)

= sinφ sin(ψi+1 − ψi+2) ,

so sinφ1 = sinφ sin(ψ2 − ψ3) ,

sinφ2 = sinφ sin(ψ3 − ψ1) ,

sinφ3 = sinφ sin(ψ1 − ψ2) .

We know that N1, N2, and N3 cannot lie in an angle of π for γ1, γ2, and γ3 to

be the medial axis near to an A3
1 curve. This means that, since

0 ≤ ψ1 < ψ2 < ψ3 < 2π , we must have

0 < ψ2 − ψ1 < π , 0 < ψ3 − ψ2 < π , π < ψ3 − ψ1 < 2π

⇒ sin(ψ1 − ψ2) < 0 , sin(ψ2 − ψ3) < 0 , sin(ψ3 − ψ1) < 0 .

Since sin φ > 0 and sin φi > 0 this means that sin φi = sinφ sin(ψi+1 − ψi+2)

cannot be true. Therefore, we get a contradiction and so case 2 cannot be true.
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The remaining possibility is case 1. We have

(cosψi, sinψi) =

(

sin

(

βi,i+1 + βi−1,i

2

)

,− cos

(

βi,i+1 + βi−1,i

2

))

=

(

cos

(

βi,i+1 + βi−1,i

2
− π

2

)

, sin

(

βi,i+1 + βi−1,i

2
− π

2

))

.

Hence we have

ψi =
βi,i+1 + βi−1,i

2
− π

2
,

which gives βi,i+1 = ψi + ψi+1 − ψi+2 +
π

2
,

so βi−1,i = βi+2,i since i− 1 ≡ i+ 2 mod 3

= ψi+2 + ψi − ψi+1 +
π

2
,

hence sinφi = sinφ sin

(

βi−1,i − βi,i+1

2

)

= sinφ sin(ψi+2 − ψi+1) ,

and so sin φ1 = sinφ sin(ψ3 − ψ2) ,

sin φ2 = sinφ sin(ψ1 − ψ3) ,

sin φ3 = sinφ sin(ψ2 − ψ1) .

These solutions for sin φi are consistent with the conventions, since sin(ψ2−ψ1),

sin(ψ3 − ψ2), sin(ψ1 − ψ3), sinφ, and sinφi are all greater than zero.

Lemma 3.4.1 Setting N+
i = N−

i+1 implies sin φi = sinφ sin(ψi+2 − ψi+1).

We can substitute for βi,i+1 in (3.35) to get more information about φi, αi.

We get

N̂+
i (= N̂−

i+1) = cosβi,i+1N + sin βi,i+1B ⇐⇒
cosφi sinαi

sin φ
(sinψiN − cosψiB) +

sin φi
sin φ

(cosψiN + sinψiB)

= cos
(

ψi + ψi+1 − ψi+2 +
π

2

)

N + sin
(

ψi + ψi+1 − ψi+2 +
π

2

)

B

= − sin(ψi + ψi+1 − ψi+2)N + cos(ψi + ψi+1 − ψi+2)B .
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Equating the components of N and the components of B of the above vector

equation gives the following:

cosφi sinαi sinψi + sin φi cosψi = − sinφ sin(ψi + ψi+1 − ψi+2) ,

− cosφi sinαi cosψi + sin φi sinψi = sinφ cos(ψi + ψi+1 − ψi+2) .

Then, sinψi× first − cosψi× second gives the following:

cosφi sinαi

= − sin φ(cos(ψi + ψi+1 − ψi+2) cosψi + sin(ψi + ψi+1 − ψi+2) sinψi)

⇐⇒ cosφi sinαi = − sinφ cos(ψi+2 − ψi+1)

⇐⇒ cosφi = −sinφ cos(ψi+2 − ψi+1)

sinαi
. (3.36)

Assume cosφ 6= 0 which, by (3.32), means cosφi 6= 0 and cosαi 6= 0. Then

we have

cosαi =
cosφ

cosφi
= − cosφ sinαi

sin φ cos(ψi+2 − ψi+1)
. (3.37)

We can now solve for sinαi in terms of φ, ψi by using cos2 αi + sin2 αi = 1:

cos2 αi + sin2 αi = 1 ⇐⇒

sin2 αi

(

cos2 φ

sin2 φ cos2(ψi+2 − ψi+1)
+ 1

)

= 1

and so sinαi =

√

tan2 φ cos2(ψi+2 − ψi+1)

1 + tan2 φ cos2(ψi+2 − ψi+1)
, since sinαi > 0

=
− tanφ| cos(ψi+2 − ψi+1)|

√

1 + tan2 φ cos2(ψi+2 − ψi+1)
,

since we took φ to be obtuse. Then from (3.37) we have

cosαi =
− cosφ sinαi

sinφ cos(ψi+2 − ψi+1)
=

sign(cos(ψi+2 − ψi+1))
√

1 + tan2 φ cos2(ψi+2 − ψi+1)
.

Also from (3.36) we have

cosφi = −sin φ cos(ψi+2 − ψi+1)

sinαi

= sign(cos(ψi+2 − ψi+1)) cosφ
√

1 + tan2 φ cos2(ψi+2 − ψi+1) .
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Now let us substitute the solutions for φi, αi into the expression (3.31) for

N±

i . We get

N±

i = − cos φi (cosαiT + sinαi sinψiN − sinαi cosψiB)

∓ sin φi (cosψiN + sinψiB)

= − cos φT

+ sinφ (sinψi cos(ψi+2 − ψi+1) ∓ cosψi sin(ψi+2 − ψi+1))N

+ sinφ (− cosψi cos(ψi+2 − ψi+1) ∓ sinψi sin(ψi+2 − ψi+1))B

= − cos φT + sin φ sin(ψi ∓ (ψi+2 − ψi+1))N

− sin φ cos(ψi ∓ (ψi+2 − ψi+1))B .

Hence we have

N−

i+1 = − cosφT + sinφ sin(ψi+1 + ψi − ψi+2)N

− sinφ cos(ψi+1 + ψi − ψi+2)B

= N+
i .

Hence the solutions for cosφi, sinφi, cosαi, sinαi imply N+
i = N−

i+1 and so at

all points of the A3
1 curve, N+

i = N−

i+1 for i = 1, 2, 3 if and only if the solutions

for cosφi, sinφi, cosαi, sinαi hold. Hence we have the following.

Theorem 3.4.2.1 The angles φi, αi are uniquely determined at all points of

the A3
1 curve by the following:

cosφi = −ǫi
√

cos2 φ+ sin2 φ cos2 θi , (3.38)

sinφi = sinφ sin θi , (3.39)

cosαi =
−ǫi cosφ

√

cos2 φ+ sin2 φ cos2 θi
, (3.40)

sinαi =
sinφ| cos θi|

√

cos2 φ+ sin2 φ cos2 θi
, (3.41)

where θi = ψi+2 − ψi+1 and ǫi = sign(cos(ψi+2 − ψi+1)). There are no other

conditions on the medial axis along the A3
1 curve at the level of first order

derivatives. (See Table 3.1 for a summary of the notation used.)
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Remark 3.4.2.2 The equations (3.38), (3.39), (3.40), and (3.41) uniquely de-

termine αi, φi, in terms of φ, ψi, and so the normals N±

i to the boundaries

are uniquely determined by φ, ψi. Hence Theorem 3.4.2.1 gives the complete

first order information about the boundaries γ±i at points corresponding to the

A3
1 curve. Now θ3 = ψ2 − ψ1 = −θ1 − θ2, and so cosφi, sinφi, cosαi, sinαi

can be expressed in terms of three variables φ, θ1, and θ2. In the case when

cos θi = 0 for some i the formulae of Theorem 3.4.2.1 are still valid, but we

must interpret −ǫi as the sign of cosφi. Note that for any φ, ψ1, ψ2, ψ3 we

have sign(cosφi) = −ǫi, since φ is obtuse. Then, from (3.6), we have that

sign(vi) = ǫi.

3.4.3 Equating Principal Curvatures, Directions of the

Boundaries at A3
1 Points

The normal to a surface determines the surface up to first order; it determines

the tangent plane to the surface. Then, in addition, the principal curvatures

and principal directions determine the surface up to second order. Setting

N+
i = N−

i+1 gave first order information about the three medial sheets. Now

we want to gain second order information about the three medial sheets, so

we need to equate the principal curvatures and principal directions of γ+
i and

γ−i+1 at a point γi(ri = r0, ti = 0) of the A3
1 curve. Let S±

vi
denote the matrix

representation of the radial shape operator of γi corresponding to boundary γ±i

with respect to the basis vi = {Ti, Ui} at γi(r0, 0). Then let trace±i , det±i be

the trace, determinant of S±

vi
. From (3.20) and using the notation of Table 3.1

we have

S±

vi
=

(

(s±11)i (s±12)i

(s±21)i (s±22)i

)

=





− ai

v3
i

sin2 φi
± κr

i

sinφi

(

− at
i

v2
i

∓ τ ti sinφi

)

1
sin2 φi

− at
i

v2
i

∓ τ ti sinφi
a∗i
v2

i

± κti sinφi



 .



























(3.42)

We have the following.
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Lemma 3.4.3.1 Equating principal curvatures on γ+
i , γ−i+1 at (r0, 0) is the

same as setting trace+
i = trace−i+1 and det+

i = det−i+1.

Proof. Let η be a principal radial curvature of γi corresponding to boundary

γ+
i . Similarly, let ν be a principal radial curvature of γi+1 corresponding to

boundary γ−i+1. Then, using (3.16) from Lemma 3.3.1.4, equating principal

curvatures on γ+
i , γ−i+1 is the same as setting

η

1 − riη
=

ν

1 − ri+1ν

⇐⇒ η(1 − riν) = ν(1 − riη) , since ri+1 = ri at points of the A3
1 curve

⇐⇒ η = ν .

So equating principal curvatures on γ+
i , γ−i+1 is the same as setting the princi-

pal radial curvatures of γi corresponding to boundary γ+
i equal to the principal

radial curvatures of γi+1 corresponding to boundary γ−i+1. Then, equating eigen-

values of two matrices is the same as equating the traces of the two matrices

and equating the determinants of the two matrices. Hence the result. �

Equating principal curvatures on γ+
i , γ−i+1 gives the following.

Theorem 3.4.3.2 (Consistency Conditions at A3
1 Points) The following

is satisfied at γi(r0, 0) on the A3
1 curve lying on γi for i =1, 2, 3:

3
∑

i=1

(

κti sinφi +
κri

sinφi

)

= 0 , (3.43)

and
3
∑

i=1

(

a∗iκ
r
ivi − aiκ

t
i − 2atiτ

t
i vi

v3
i sinφi

)

= 0 . (3.44)

(See Table 3.1 for a summary of the notation used.)

Proof. By Lemma 3.4.3.1 we need to set trace+
i = trace−i+1 and det+

i = det−i+1

for i = 1, 2, 3 in order to equate the principal curvatures on γ+
i , γ−i+1. Then, by
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equation (3.21) from Lemma 3.3.2.2, we have

1

2
(trace+

i − trace−i ) =
κri

sin φi
+ κti sinφi ,

so
1

2

3
∑

i=1

(trace+
i − trace−i ) =

3
∑

i=1

(

κti sinφi +
κri

sinφi

)

.

But the left-hand side is zero, since trace+
i = trace−i+1. Hence equation (3.43).

Similarly, equation (3.22) from Lemma 3.3.2.2 gives

1

2
(det+

i − det−i ) =
a∗iκ

r
ivi − aiκ

t
i − 2atiτ

t
i vi

v3
i sin φi

,

so
1

2

3
∑

i=1

(det+
i − det−i ) =

3
∑

i=1

(

a∗iκ
r
ivi − aiκ

t
i − 2atiτ

t
i vi

v3
i sinφi

)

.

Again the left-hand side is zero, hence equation (3.44). �

Now to equate principal directions on γ+
i , γ−i+1 at the A3

1 point γi(r0, 0)

using (3.26) from Lemma 3.3.3.2. The method for this is as follows. Consider

principal directions {P1, P2} on γ+
i and principal directions {Q1, Q2} on γ−i+1, all

evaluated at (r0, 0). If we say P1 is in the same direction as Q1 and P2 is in the

same direction as Q2 on γ+
i = γ−i+1, this is the same as saying P1 ·Q2 = 0. This

is because, given that the principal curvatures on γ+
i are equal to those on γ−i+1

at (r0, 0), it is only one extra condition to say the principal directions are equal.

Therefore, for another constraint, we want to identify the non-corresponding

principal directions on γ+
i and on γ−i+1 and set their dot product equal to zero.

We assume γ+
i (r0, 0) = γ−i+1(r0, 0) is not an umbilic. Let (κ±r1)i, (κ±r2)i be

the two principal radial curvatures of γi corresponding to γ±i . Given that

the principal curvatures on γ+
i , γ−i+1 are equal at γ+

i (r0, 0) = γ−i+1(r0, 0), from

Lemma 3.4.3.1 we have that {(κ+
r1)i, (κ

+
r2)i} is the same as {(κ−r1)i+1, (κ

−

r2)i+1}.
Let

(κ±r1)i =
1

2

(

trace±i +
√

(trace±i )2 − 4det±i

)

,

(κ±r2)i =
1

2

(

trace±i −
√

(trace±i )2 − 4det±i

)

.
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Then we must have (κ+
r1)i = (κ−r1)i+1, (κ+

r2)i = (κ−r2)i+1 when γ+
i (r0, 0) =

γ−i+1(r0, 0) is a non-umbilic, since trace+
i = trace−i+1, det+

i = det−i+1 at (r0, 0).

We introduce a shortened notation:

(κ+
r1)i = (κ−r1)i+1 =

(tr)i,i+1 + Di,i+1

2
,

(κ+
r2)i = (κ−r2)i+1 =

(tr)i,i+1 − Di,i+1

2
,

where (tr)i,i+1 = trace+
i = trace−i+1 ,

and Di,i+1 =
√

(trace+
i )2 − 4det+

i =
√

(trace−i+1)
2 − 4det−i+1 .

Using (3.26) from Lemma 3.3.3.2, the principal directions on γ±i are

(

(s±12)iTi + ((κ±r1)i − (s±11)i)Ui + (s±12)i cosφiN
±

i

)

and
(

(s±12)iTi + ((κ±r2)i − (s±11)i)Ui + (s±12)i cosφiN
±

i

)

.

The dot product of perpendicular principal directions on γ+
i = γ−i+1 at

γ+
i (r0, 0) = γ−i+1(r0, 0) on the A3

1 curve is zero, so

(

(s−12)i+1Ti+1 + ((κ−r2)i+1 − (s−11)i+1)Ui+1 + (s−12)i+1 cos φi+1N
−

i+1

)

·
(

(s+
12)iTi + ((κ+

r1)i − (s+
11)i)Ui + (s+

12)i cosφiN
+
i

)

= 0 .
(3.45)

Since N+
i (r0, 0) = N−

i+1(r0, 0), we have

Ui⊥N−

i+1, Ui+1⊥N+
i ,

Ti ·N−

i+1 = Ti ·N+
i = − cosφi ,

and Ti+1 ·N+
i = Ti+1 ·N−

i+1 = − cos φi+1 .

So (3.45) becomes

(

(s+
12)i(s

−

12)i+1

)

Ti · Ti+1

+
((

(tr)i,i+1
+Di,i+1

2
− (s+

11)i

)

(s−12)i+1

)

Ui · Ti+1

+
((

(tr)i,i+1−Di,i+1

2
− (s−11)i+1

)

(s+
12)i

)

Ti · Ui+1

+
((

(tr)i,i+1
+Di,i+1

2
− (s+

11)i

)(

(tr)i,i+1
−Di,i+1

2
− (s−11)i+1

))

Ui · Ui+1

= (s+
12)i(s

−

12)i+1 cosφi cos φi+1 .

(3.46)
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Similarly, the two principal directions corresponding to (κ+
r2)i and (κ−r1)i+1 are

perpendicular, so

(

(s−12)i+1Ti+1 + ((κ−r1)i+1 − (s−11)i+1)Ui+1 + (s−12)i+1 cosφi+1N
−

i+1

)

·
(

(s+
12)iTi + ((κ+

r2)i − (s+
11)i)Ui + (s+

12)i cos φiN
+
i

)

= 0 .

Similarly, this simplifies to become

(

(s+
12)i(s

−

12)i+1

)

Ti · Ti+1

+
((

(tr)i,i+1−Di,i+1

2
− (s+

11)i

)

(s−12)i+1

)

Ui · Ti+1

+
((

(tr)i,i+1
+Di,i+1

2
− (s−11)i+1

)

(s+
12)i

)

Ti · Ui+1

+
((

(tr)i,i+1
−Di,i+1

2
− (s+

11)i

)(

(tr)i,i+1
+Di,i+1

2
− (s−11)i+1

))

Ui · Ui+1

= (s+
12)i(s

−

12)i+1 cosφi cos φi+1 .

(3.47)

Then (3.46) − (3.47) is the same as

0 = Di,i+1

(

(s−12)i+1Ti+1 · Ui − (s+
12)iTi · Ui+1

+ ((s+
11)i − (s−11)i+1)Ui · Ui+1

)

.
(3.48)

and (3.46) + (3.47) is the same as

2(s+
12)i(s

−

12)i+1Ti · Ti+1 + (s−12)i+1((tr)i,i+1 − 2(s+
11)i)Ti+1 · Ui

+(s+
12)i((tr)i,i+1 − 2(s−11)i+1)Ti · Ui+1

(

1

2

(

((tr)i,i+1)
2 − (Di,i+1)

2
)

−(tr)i,i+1((s
+
11)i) + (s−11)i+1) + 2(s+

11)i(s
−

11)i+1

)

Ui · Ui+1

= (s+
12)i(s

−

12)i+1 cosφi cos φi+1 .

This simplifies (using the definitions of (tr)i,i+1, Di,i+1, trace±i , and det±i ) to

become

2(s+
12)i(s

−

12)i+1(Ti · Ti+1 − cosφi cos φi+1)

+(s−12)i+1

(

(s+
22)i − (s+

11)i
)

Ti+1 · Ui
+(s+

12)i
(

(s−22)i+1 − (s−11)i+1

)

Ti · Ui+1 (3.49)

+
((

(s+
11)i − (s−11)i+1

) (

(s+
22)i − (s−22)i+1

)

−(s+
12)i(s

+
21)i − (s−12)i+1(s

−

21)i+1

)

Ui · Ui+1 = 0 .
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Hence we have shown that {(3.46), (3.47)} is the same as {(3.48), (3.49)}
and so equating principal directions on γ+

i , γ−i+1 is the same as {(3.48), (3.49)}
being true at γi(r0, 0). But we know that Di,i+1 6= 0 since we assumed that the

principal radial curvatures are distinct. Therefore we can cancel Di,i+1 from

(3.48). We can also use (3.27) to substitute for Ti · Ti+1, Ti+1 ·Ui, Ti ·Ui+1, and

Ui · Ui+1. We get

Ti · Ti+1 = cosαi cosαi+1 + sinαi sinαi+1 cos θi+2 ,

Ti · Ui+1 = − cosαi sinαi+1 + sinαi cosαi+1 cos θi+2 ,

Ti+1 · Ui = − sinαi cosαi+1 + cosαi sinαi+1 cos θi+2 ,

Ui · Ui+1 = sinαi sinαi+1 + cosαi cosαi+1 cos θi+2 .

Then, using Theorem 3.4.2.1, we get

Ti · Ti+1ǫiǫi+1

√

1 + tan2 φ cos2 θi
√

1 + tan2 φ cos2 θi+1

= 1 +
sin2 φ

cos2 φ
cos θi cos θi+1 cos θi+2 ,

Ti · Ui+1ǫiǫi+1

√

1 + tan2 φ cos2 θi
√

1 + tan2 φ cos2 θi+1

=
sin φ

cosφ
(cos θi+1 − cos θi cos θi+2) ,

Ti+1 · Uiǫiǫi+1

√

1 + tan2 φ cos2 θi
√

1 + tan2 φ cos2 θi+1

=
sin φ

cosφ
(cos θi − cos θi+1 cos θi+2) ,

Ui · Ui+1ǫiǫi+1

√

1 + tan2 φ cos2 θi
√

1 + tan2 φ cos2 θi+1

=
sin2 φ

cos2 φ
cos θi cos θi+1 + cos θi+2 .

Using these, and substituting for (s+
12)i, (s−12)i+1, (s+

11)i, and (s−11)i+1 into (3.48)

and (3.49), we get the following.

Proposition 3.4.3.3 (Constraint on Curvatures) Given that the princi-

pal curvatures on γ+
i , γ−i+1 are equal, the principal directions on γ+

i , γ−i+1 are

equal at a non-umbilic point γ+
i (r0, 0) = γ−i+1(r0, 0) corresponding to γi(r0, 0)
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on the A3
1 curve if and only if the following equations hold:

0 =

(

ati
v2
i

+ τ ti sinφi

)

(cos θi+1 − cos θi cos θi+2)

cosφ sinφ sin2 θi

+

(

−a
t
i+1

v2
i+1

+ τ ti+1 sinφi+1

)

(cos θi − cos θi+1 cos θi+2)

cosφ sinφ sin2 θi+1

(3.50)

+

(

− ai
v3
i sin2 φi

+
κri

sin φi

)(

sin2 φ

cos2 φ
cos θi cos θi+1 + cos θi+2

)

+

(

ai+1

v3
i+1 sin2 φi+1

+
κri+1

sin φi+1

)(

sin2 φ

cos2 φ
cos θi cos θi+1 + cos θi+2

)

and

0 = (s−12)i+1

(

(s+
22)i − (s+

11)i
)

sinφ
cos φ

(cos θi − cos θi+1 cos θi+2)

+(s+
12)i

(

(s−22)i+1 − (s−11)i+1

)

sinφ
cosφ

(cos θi+1 − cos θi cos θi+2)

+2(s+
12)i(s

−

12)i+1

(

1 + sin2 φ
cos2 φ

cos θi cos θi+1 cos θi+2 − cos2 φi cos2 φi+1

cos2 φ

)

+
[(

(s+
11)i − (s−11)i+1

) (

(s+
22)i − (s−22)i+1

)

−(s+
12)i(s

+
21)i − (s−12)i+1(s

−

21)i+1

]

(

sin2 φ
cos2 φ

cos θi cos θi+1 + cos θi+2

)

(3.51)

where (s±11)i, (s±12)i, (s±21)i, (s±22)i are given by (3.42) and cosφi = −1/vi, sin φi

are given by Theorem 3.4.2.1. (See Table 3.1 for a summary of the notation

used.)

3.4.4 Reducing the Number of Variables

Setting equal the principal curvatures on γ+
i = γ−i+1 at (r0, 0) implies (3.43)

and (3.44) from Theorem 3.4.3.2, but we want all of the information about

the medial axis given by equating principal curvatures and principal directions.

We want to reduce the number of variables involved in the principal curvatures

and principal directions, which can be done by involving the geometry of the

A3
1 curve. Consider the following lemma.
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Figure 3.8: Two sets {e1, e2}, {ê1, ê2} of perpendicular tangent directions in relation

to the principal directions e1, e2 on the surface S. These directions are used to obtain

formulae (3.56), (3.57), (3.58) for the normal curvatures and geodesic torsions of S

in the directions ê1, ê2 in terms of the normal curvatures of and geodesic torsions of

S in the directions {e1, e2} and the angle (θ̂ − θ).

Lemma 3.4.4.1 (Euler Formula) Let the principal curvatures on a surface

S at a point p be k1, k2 with corresponding principal directions e1, e2. Then

the normal curvature kn of S in the direction of V = e1 cos θ + e2 sin θ (where

θ is the angle from e1 to V ) is

kn = k1 cos2 θ + k2 sin2 θ .

This equation is called the Euler formula. Also, the geodesic torsion tg of S in

the direction V is

tg = (k2 − k1) cos θ sin θ .

Assume we are given k1, k2 and e1, e2. Then assume we are given the normal

curvatures κn1, κn2 respectively in two perpendicular directions e1, e2, where

the angle from e1 to e1 is θ, and the geodesic torsion τ g1 in the direction of e1.

Now consider an unknown set of ‘geometries’ κ̂n1, κ̂n2, τ̂g1, which are defined

similarly as follows. We define κ̂n1, κ̂n2 as the normal curvatures of S at p in

the corresponding perpendicular directions ê1, ê2 where the angle from e1 to

ê1 is θ̂. Also, let τ̂g1 be the geodesic torsion of S at p in the direction of ê1.

We want to obtain formulae for {κ̂n1, κ̂n2, τ̂g1} in terms of {κn1, κn2, τ g1}. See

Figure 3.8.
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By Lemma 3.4.4.1 we have

κn1 = k1 cos2 θ + k2 sin2 θ , κn2 = k1 sin2 θ + k2 cos2 θ ,

τ g1 = (k2 − k1) cos θ sin θ .

Solving these for k1, k2 in terms of κn1, κn2 gives the following:

k1 =
κn1 cos2 θ − κn2 sin2 θ

cos(2θ)
, k2 =

−κn1 sin2 θ + κn2 cos2 θ

cos(2θ)
(3.52)

⇒ k2 − k1 =
(κn2 − κn1)

cos(2θ)
⇒ τ g1 =

(κn2 − κn1) sin 2θ

2 cos(2θ)
. (3.53)

Also by Lemma 3.4.4.1 we have

κ̂n1 = k1 cos2 θ̂ + k2 sin2 θ̂ , κ̂n2 = k1 sin2 θ̂ + k2 cos2 θ̂ , (3.54)

τ̂g1 = (k2 − k1) cos θ̂ sin θ̂ . (3.55)

Hence, using (3.52), (3.54),

κ̂n1 cos 2θ = κn1

(

cos2 θ̂ cos2 θ − sin2 θ̂ sin2 θ
)

+κn2

(

sin2 θ̂ cos2 θ − cos2 θ̂ sin2 θ
)

= κn1 cos(θ̂ − θ) cos(θ̂ + θ) + κn2 sin(θ̂ − θ) sin(θ̂ + θ)

= κn1 cos(θ̂ − θ)
(

cos(θ̂ − θ) cos(2θ) − sin(θ̂ − θ) sin(2θ)
)

+κn2 sin(θ̂ − θ)
(

sin(θ̂ − θ) cos(2θ) + cos(θ̂ − θ) sin(2θ)
)

⇐⇒ κ̂n1 = κn1 cos2(θ̂ − θ) + κn2 sin2(θ̂ − θ)

+(κn2 − κn1)
sin(2(θ̂ − θ))

2

sin(2θ)

cos(2θ)

⇐⇒ κ̂n1 = κn1 cos2(θ̂ − θ) + κn2 sin2(θ̂ − θ) + τ g1 sin(2(θ̂ − θ)) , (3.56)

(using (3.53)).
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Similarly, from (3.52), (3.54)

κ̂n2 cos 2θ = κn1

(

sin2 θ̂ cos2 θ − cos2 θ̂ sin2 θ
)

+κn2

(

cos2 θ̂ cos2 θ − sin2 θ̂ sin2 θ
)

= κn1 sin(θ̂ − θ) sin(θ̂ + θ) + κn2 cos(θ̂ − θ) cos(θ̂ + θ)

= κn1 sin(θ̂ − θ)
(

sin(θ̂ − θ) cos(2θ) + cos(θ̂ − θ) sin(2θ)
)

+κn2 cos(θ̂ − θ)
(

cos(θ̂ − θ) cos(2θ) − sin(θ̂ − θ) sin(2θ)
)

⇐⇒ κ̂n2 = κn1 sin2(θ̂ − θ) + κn2 cos2(θ̂ − θ)

−(κn2 − κn1)
sin(2(θ̂ − θ))

2

sin(2θ)

cos(2θ)

⇐⇒ κ̂n2 = κn1 sin2(θ̂ − θ) + κn2 cos2(θ̂ − θ) − τ g1 sin(2(θ̂ − θ)) , (3.57)

(using (3.53)).

Then, using (3.53), (3.55)

τ̂g1 =
(κn2 − κn1) sin 2θ̂

2 cos(2θ)

=
(κn2 − κn1)

2 cos(2θ)

(

sin(2(θ̂ − θ)) cos(2θ) + cos(2(θ̂ − θ)) sin(2θ)
)

=
1

2
(κn2 − κn1) sin(2(θ̂ − θ))

+
1

2
cos(2(θ̂ − θ))(κn2 − κn1)

sin(2θ)

cos(2θ)

⇐⇒ τ̂g1 =
1

2
(κn2 − κn1) sin(2(θ̂ − θ)) + τ g1 cos(2(θ̂ − θ)) , (3.58)

(using (3.53)).

The equations (3.56), (3.57), (3.58) give formulae for κ̂n1, κ̂n2, τ̂g1 in terms

of κn1, κn2, τ g1, and (θ̂ − θ), which is the angle from e1 to ê1. Now consider

these quantities on the medial sheet γi at γi(r0, 0) on the A3
1 curve and let T ,

Wi = Ni × T , κTi , κWi , τTgi be respectively e1, e2, κn1, κn2, τ g1. Also let Ti, Ui

be respectively ê1, ê2. Then, by definition, κri , κ
t
i, τ

r
i are respectively κ̂n1, κ̂n2,

τ̂g1. Then (θ̂ − θ) = αi by definition of αi. Compare Figures 3.5, left and 3.8.

We can then substitute into (3.56), (3.57), (3.58) to get new formulae for κri ,

κti, τ
t
i = −τ ri , and we get the following.
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Lemma 3.4.4.2 The following formulae hold at γi(r0, 0) on the A3
1 curve:

κri = κTi cos2 αi + κWi sin2 αi + τTgi sin(2αi) ,

κti = κTi sin2 αi + κWi cos2 αi − τTgi sin(2αi) ,

τ ti = −τ ri =
1

2
(κTi − κWi ) sin(2αi) − τTgi cos(2αi) ,

where κTi , τ
T
gi are respectively the normal curvature, geodesic torsion of γi in

the direction of T at γi(r0, 0) and the rest of the notation used is contained in

Table 3.1.

Introducing the Geometry of the A3
1 Curve

Now we shall find expressions for κTi , τTgi in terms of κ, τ , respectively the

curvature and torsion of the A3
1 curve (see Table 3.1). We have the expression

(3.29) for Wi, valid along the A3
1 curve. Then we have the following, at γi(r0, 0):









T ′

N ′

B′









=









0 κ 0

−κ 0 τ

0 −τ 0

















T

N

B









,

where ′ (‘prime’) is differentiation with respect to arclength along the A3
1 curve.

Also, at γi(r0, 0) we have









T ′

W ′

i

N ′

i









=









0 κTgi κTi

−κTgi 0 τTgi

−κTi −τTgi 0

















T

Wi

Ni









,

where κTgi is the geodesic curvature of the A3
1 curve on γi at γi(r0, 0). Using

(3.27) and comparing coefficients we can obtain formulae for κTgi, κ
T
i , and τTgi

in terms of κ, τ , ψ′

i, and ψi:

κTgi = κ sinψi , κTi = κ cosψi , τTgi = τ + ψ′

i . (3.59)

Substitution of these expressions for κTi , τTgi into the expressions for κri , κ
t
i, τ

t
i

from Lemma 3.4.4.2 and using Theorem 3.4.2.1, we get the following.
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Lemma 3.4.4.3 The following formulae hold at γi(r0, 0) on the A3
1 curve:

κri =
κ cosψi cos2 φ+ κWi sin2 φ cos2 θi − (τ + ψ′

i) sin(2φ) cos θi
cos2 φi

, (3.60)

κti =
κ cosψi sin

2 φ cos2 θi + κWi cos2 φ+ (τ + ψ′

i) sin(2φ) cos θi
cos2 φi

, (3.61)

τ ti =
1
2
(κWi − κ cosψi) sin(2φ) cos θi + (τ + ψ′

i)(sin
2 φ cos2 θi − cos2 φ)

cos2 φi
, (3.62)

where cos2 φi = cos2 φ+ sin2 φ cos2 θi, by (3.38). Note that

κriκ
t
i − (τ ti )

2 = κκWi cosψi − (τ + ψ′

i)
2 ,

κri + κti = κ cosψi + κWi .

}

(3.63)

The notation used is contained in Table 3.1.

New Formulae for ai, a
t
i, a

∗

i

Let the A3
1 curve be parametrized by r1 = r2 = r3 = r, that is let it be

γi(r, ti(r)) (same for each i). Then, for s = arclength along the A3
1 curve, we

have γi(r, ti(r)) = γi(s(r)) for any r. Differentiating this with respect to r, we

get the following:

T
ds

dr
=

∂γi
∂ri

+
∂γi
∂ti

dti
dr

= vi(cosαiT + sinαi sinψiN − sinαi cosψiB)

+
dti
dr
wi(r, ti(r))(− sinαiT + cosαi sinψiN − cosαi cosψiB) ,

using (3.27) and where s is arclength along theA3
1 curve. Comparing coefficients

gives

ds

dr
= − 1

cos φ
for any s (3.64)

⇒ d2s

dr2
= −dφ

dr

sinφ

cos2 φ
= φ′

sinφ

cos3 φ
for any s ,

dti
dr

=
sinαi
cosφ

at (ri = r0, ti = 0), since wi(r0, 0) = 1 .
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Then

d

dr

(

T
ds

dr
=
∂γi
∂ri

+
∂γi
∂ti

dti
dr

)

at ri = r0, ti = 0 is the same as

κN

(

ds

dr

)2

+ T
d2s

dr2
=
∂2γi
∂r2

i

+ 2
∂2γi
∂ri∂ti

dti
dr

+
∂2γi
∂t2i

(

dti
dr

)2

+
∂γi
∂ti

d2ti
dr2

=
(

aiTi − ativiUi + κriv
2
iNi

)

+ 2
sinαi
cosφ

(

atiTi + a∗iUi − τ ti viNi

)

+
sin2 αi
cos2 φ

(

−a
∗

i

vi
Ti + κtiNi

)

+
d2ti
dr2

Ui

using (3.7) and (3.8). Then by equating components it can be shown that this

gives the following and nothing else at ri = r0, ti = 0:

d2ti
dr2

= − ati
cos φi

− 2
a∗i sinαi
cosφ

+
κ cosαi sinψi

cos2 φ
− φ′ sin φ sinαi

cos3 φ
,

ai cos3 φ = −2ati sinαi cos2 φ− a∗i sin2 αi cosφi cosφ

+κ sinαi sinψi cosφ+ φ′ sin φ cosαi .

}

(3.65)

(This can be checked by substituting for κri , κ
t
i, τ

t
i from Lemma 3.4.4.3.)

From (3.28) we have T = cosαiTi − sinαiUi for any A3
1 point, and so this

can be differentiated with respect to r:

dT

ds

ds

dr
= −α′

i

ds

dr
(sinαiTi + cosαiUi) + cosαi

(

∂Ti
∂ri

+
∂Ti
∂ti

dti
dr

)

− sinαi

(

∂Ui
∂ri

+
∂Ui
∂ti

dti
dr

)

,

which, at ri = r0, ti = 0, is the same as

− κN

cos φ
=

α′

i

cosφ
(sinαiTi + cosαiUi)

+ cosαi

(

−atiUi −
κri

cosφi
Ni +

sinαi
cosφ

(

−a∗i cosφiUi − τ tiNi

)

)

− sinαi

(

atiTi −
τ ti

cosφi
Ni +

sinαi
cosφ

(

a∗i cosφiTi + κtiNi

)

)

.

Equating components of the above gives the following and nothing else:

ati cosφ+ a∗i cosφi sinαi = α′

i + κ sinψi . (3.66)
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The equations (3.28), (3.27) hold at all points of the A3
1 curve, and so they

can be differentiated with respect to arclength along the A3
1 curve. It can be

shown that the equations this gives are the same as (3.60), (3.61), (3.62), (3.65),

and (3.66). Then, using (3.38), (3.39), (3.40), (3.41) from Theorem 3.4.2.1, we

get the following.

Lemma 3.4.4.4 The following formulae hold at γi(r0, 0) on the A3
1 curve:

a∗i sinφ cos θi = ati cosφ− κ sinψi −
θ′i cosφ sinφ sin θi

cos2 φi
+
φ′ cos θi
cos2 φi

, (3.67)

ai cos3 φi
sin2 φ sin2 θi

=
ati cos θi cos2 φi

cosφ sinφ sin2 θi
+

φ′

sinφ
+

θ′i cos θi
cosφ sin θi

, (3.68)

where cosφi is given by (3.38) and the notation used is contained in Table 3.1.

3.4.5 Obtaining the Complete Set of Consistency Con-

ditions

From (3.42) we can get an expression for trace±i , the trace of S±

vi
, which is

the matrix representation of the radial shape operator of γi corresponding to

boundary γ±i with respect to the basis vi = {Ti, Ui} at γi(r0, 0):

trace±i = − ai
v3
i sin2 φi

+
a∗i
v2
i

±
(

κri
sinφi

+ κti sinφi

)

.

Then, using Lemmas 3.4.4.3 and 3.4.4.4, we get the following.

Lemma 3.4.5.1 The trace of S±

vi
is as follows:

trace±i =
ati cos4 φi

cosφ sinφ cos θi sin
2 θi

− κ sinψi cos2 φi
sin φ cos θi

+
2φ′

sinφ
+

θ′iAi
cosφ cos θi sin θi

(3.69)

±
(

κ cosψiBi + κWi sin2 φ− (τ + ψ′

i) sin(2φ) cos θi
)

sinφ sin θi
,

where Ai = cos2 θi − cos2 φ sin2 θi, Bi = cos2 φ+ sin2 φ sin2 θi.

Using this expression we get the following.
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Theorem 3.4.5.2 (Consistency Condition at A3
1 Points) The normal

curvatures κWi at γi(r0, 0) on the A3
1 curve, for i =1, 2, 3, are uniquely deter-

mined by the following:

κWi

i sinφ

sin θi
=

(ati+1 cos4 φi+1 + θ′i+1Ai+1 sinφ sin θi+1)

cosφ sinφ cos θi+1 sin2 θi+1

−(ati+2 cos4 φi+2 + θ′i+2Ai+2 sin φ sin θi+2)

cosφ sinφ cos θi+2 sin2 θi+2

(3.70)

+
κ

sinφ

(

sinψi+2 cos2 φi+2

cos θi+2
− sinψi+1 cos2 φi+1

cos θi+1
− Bi cosψi

sin θi

)

+
2(τ + ψ′

i) cosφ cos θi
sin θi

.

Here Ai = cos2 θi − cos2 φ sin2 θi, Bi = cos2 φ + sin2 φ sin2 θi. The equation

(3.70), together with Theorem 3.4.2.1 at (r0, 0), gives the complete set of con-

sistency conditions on the medial axis at the A3
1 point γi(r0, 0) up to second

order. From (3.70) we get

3
∑

i=1

(

κWi sin2 φ− 2(τ + ψ′

i) cosφ sinφ cos θi + κ cos2 φ cosψi
sin θi

)

= 0 , (3.71)

which is the same as (3.43), but expressed in terms of the coordinate system

based on the A3
1 curve. (See Table 3.1 for a summary of the notation used.)

Proof. By Lemma 3.4.3.1 we have trace−i = trace−i+1 for i = 1, 2, 3. Then it is

easy to show

(trace+
i = trace−i+1) − (trace+

i+1 = trace−i+2) + (trace+
i+2 = trace−i )

is the same as (3.70). Conversely, substitution of κWi , κWi+1 into trace+
i , trace−i+1

implies that trace+
i = trace−i+1 for each i. Hence (3.70) for i =1, 2, 3 is the

complete solution of trace+
i = trace−i+1 for each i. By Lemma 3.4.3.1, in order to

equate principal curvatures on γ+
i , γ−i+1 at γi(r0, 0) we also need to set det+

i =

det−i+1 for i =1, 2, 3. Using (3.42) and Lemmas 3.4.4.3 and 3.4.4.4 we can

obtain an expression for det±i (the determinant of S±

vi
at γi(r0, 0)). Then we can

substitute for κW1 , κW2 , κW3 and, using Maple, it can be shown that det+
i = det−i+1
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is satisfied for i = 1, 2, 3. Finally, in addition to the principal curvatures of γ+
i ,

γ−i+1 at (r0, 0) being equal, the surfaces γ+
i , γ−i+1 are equal at (r0, 0) if and only

if the principal directions at (r0, 0) are equal. From Proposition 3.4.3.3 this

is the same as (3.50) and (3.51) being true. Then, using Lemmas 3.4.4.3 and

3.4.4.4, we can substitute for κW1 , κW2 , κW3 in (3.50), (3.51) and it can be shown

using Maple that (3.50), (3.51) are satisfied for i =1, 2, 3. Hence principal

curvatures and principal directions of γ+
i , γ−i+1 for i =1, 2, 3 are equal at (r0, 0)

if and only if (3.70) is true for i =1, 2, 3. Hence the first part of the result.

Finally, it is easy to show using the definition of θi from Theorem 3.4.2.1 that

taking the sum of (3.70) from i =1 to 3, we get (3.71). �

Alternative Versions of the Constraint

Using (3.67) we can express ati in terms of a∗i and so we get an alternative form

of (3.70) from Theorem 3.4.5.2, as below.

Theorem 3.4.5.3 (Consistency Condition at A3
1 Points) The normal

curvatures κWi at γi(r0, 0) on the A3
1 curve, for i =1, 2, 3, are uniquely deter-

mined by the following:

κWi sinφ

sin θi
=

2

cosφ

(

θ′i+1 cos θi+1

sin θi+1
− θ′i+2 cos θi+2

sin θi+2

)

+
2(τ + ψ′

i) cosφ cos θi
sin θi

+
cos2 φi+1

(

a∗i+1 cos2 φi+1 − φ′

sinφ

)

cos2 φ sin2 θi+1

(3.72)

−
cos2 φi+2

(

a∗i+2 cos2 φi+2 − φ′

sinφ

)

cos2 φ sin2 θi+2

+
κ

sinφ

(

sinψi+1 cos2 φi+1 cos θi+1

cos2 φ sin2 θi+1

− sinψi+2 cos2 φi+2 cos θi+2

cos2 φ sin2 θi+2

− cosψiBi

sin θi

)

.

Here Bi = cos2 φ + sin2 φ sin2 θi. The equation (3.72), together with Theo-

rem 3.4.2.1 at (r0, 0), gives the complete set of consistency conditions on the

medial axis at the A3
1 point γi(r0, 0) up to second order. Taking the sum of
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(3.72) from i =1 to 3 also gives (3.71). (See Table 3.1 for a summary of the

notation used.)

Another version can be obtained as follows. We have

ati =
∂vi
∂ti

by definition from §3.2

=
∂

∂ti

( −1

cosφi

)

from (3.6)

= − sinφi
cos2 φi

∂φi
∂ti

.

Then, by (3.27) and (3.29)

Ui = − sinαiT + cosαiWi

⇒ ∂(∗)
∂ti

= − sinαi(∗)′ + cosαi ˙(∗) ,

at (r0, 0), where ˙ (‘dot’) means differentiation with respect to arclength along a

curve passing through γi(r0, 0), with tangent Wi. (See Table 3.1 for a summary

of the notation used in the A3
1 case.) Hence

ati = − sinφi
cos2 φi

(−φ′

i sinαi + φ̇i cosαi)

= − sinφi
cos2 φi

(

− sinαi
cos φi

(φ′ cos φ sin θi + θ′i sin φ cos θi) + φ̇i cosαi

)

,

by differentiating (3.39) from Theorem 3.4.2.1 with respect to arclength along

the A3
1 curve. Then we get

ati cos4 φi = −φ′ cosφ sin2 φ cos θi sin
2 θi − θ′i sin

3 φ cos2 θi sin θi

−φ̇i cosφi cosφ sinφ sin θi .
(3.73)

Then, substitution of this into (3.70) from Theorem 3.4.5.2 gives the following.

Theorem 3.4.5.4 (Consistency Condition at A3
1 Points) The normal
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curvatures κWi at γi(r0, 0) on the A3
1 curve, for i =1, 2, 3, are uniquely deter-

mined by the following:

κWi sinφ

sin θi
=

(θ′i+1 cosφ cos(2θi+1) − φ̇i+1 cosφi+1)

cos θi+1 sin θi+1

−(θ′i+2 cosφ cos(2θi+2) − φ̇i+2 cosφi+2)

cos θi+2 sin θi+2
(3.74)

+
κ

sinφ

(

sinψi+2 cos2 φi+2

cos θi+2
− sinψi+1 cos2 φi+1

cos θi+1
− cosψiBi

sin θi

)

+
2(τ + ψ′

i) cosφ cos θi
sin θi

.

Here Bi = cos2 φ + sin2 φ sin2 θi. The equation (3.74), together with Theo-

rem 3.4.2.1 at (r0, 0), gives the complete set of consistency conditions on the

medial axis at the A3
1 point γi(r0, 0) up to second order. Taking the sum of

(3.74) from i =1 to 3 also gives (3.71). (See Table 3.1 for a summary of the

notation used.)

Remark 3.4.5.5 Consider when the denominators are zero in (3.70), (3.72)

and (3.74). A point for which sin θi = 0 for some i is an A1A3 point and will

be covered in §3.9, which deals with the A1A3 case. When sinφ = 0 the three

points of contact on the boundary are coincident and so the sphere of contact

has A5 contact with the boundary. This case is not generic for a surface, so we

ignore it. When cosφ = cos θi = 0 then cos φi = 0 (see (3.38)), which means

that ‖∇ri‖ = 0. We assumed ‖∇ri‖ 6= 0 for our coordinate system in §3.2 and

so, at γi(r0, 0), one of cosφ, cos θi will be non-zero. Hence we can use either

(3.72) or (3.74). Points where ‖∇ri‖ = 0 are isolated and only occur for generic

surfaces on A2
1 sheets, so we do not need to consider them in the A3

1 case.

Now we consider when the radius r has a local maximum or minimum at

an A3
1 point.

Proposition 3.4.5.6 When the radius r of the sphere of contact at an A3
1 point

γi(r0, 0) has a local maximum or minimum, the normal curvatures κWi satisfy
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the following:
3
∑

i=1

(

κWi
sin θi

)

= 0 . (3.75)

Proof. From (3.64), at γi(r0, 0),

dr

ds
= 0 ⇐⇒ cosφ = 0 .

Then setting cosφ = 0 in (3.71) gives the result. �

Remark 3.4.5.7 The equation (3.75) is reminiscent of the second equation of

(3.1) for the medial axis in R2. Note that cosφ = 0 implies cosφi = − cos θi,

sin φi = sin θi, cosαi = 0, and sinαi = 1, by Theorem 3.4.2.1. Then, from

(3.27), we see that Ti = sinψiN − cosψiB, and hence that Ti, Ni are in the

plane of N , B for each i. Then, from (3.3) and (3.5) this means that when

cosφ = 0 at γi(r0, 0) then γi(r0, 0) and γ±i (r0, 0) are all in the same plane for

each i. Hence the situation is similar to that of the medial axis in R2.

3.5 First Example of the A3
1 Case

Suppose the three medial surfaces γi, for i =1, 2, 3 are general cylinders inter-

secting in a line, that is the A3
1 set here is a straight line, the z-axis (see Fig-

ure 3.9). The consistency conditions of §3.4, including those of Theorem 3.4.5.2

(or alternatively one of Theorems 3.4.5.3, 3.4.5.4), were obtained using the as-

sumption that the curvature κ of the A3
1 curve was never zero, enabling a Frenet

frame to be set up. If the A3
1 curve is a straight line then κ is zero for all points

of the A3
1 curve, which means the Frenet frame is not defined. When κ ≡ 0 the

principal normal N and the binormal B to the A3
1 curve are arbitrary. Hence,

in this section we will make choices for N , B and use the consistency conditions

of §3.4 to gain information about the radius functions r1, r2, r3 associated to

the three medial sheets γ1, γ2, γ3 at a point of the A3
1 curve, the z-axis.
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Figure 3.9: Left: an example of the medial axis as three general cylinders with the

A3
1 curve being the z-axis. Right: a further simplification of the medial axis where

each medial sheet γi, for i = 1, 2, 3, is a flat sheet. Also shown is the corresponding

boundary surface.

Given that δi is a unit speed space curve, we parametrize the cylinders as

below:

γi(u, z) = δi(u) + z(0, 0, 1), where δi(u) = (Xi(u), Yi(u), 0) ,

and

(

dXi

du

)2

+

(

dYi
du

)2

= 1 for all u (δi unit speed) ,

so Ni(u, z) = ηi

(

dYi
du

,−dXi

du
, 0

)

, where ηi = ±1 .

Let δi(ui) = 0, for ui constant, so that γ1(u1, z) = γ2(u2, z) = γ3(u2, z) is a

point of the A3
1 curve. The radii r1, r2, r3 are all equal for points of the A3

1

curve, so r(z) = r1(u1, z) = r2(u2, z) = r3(u1, z) for all z. Hence all of the

derivatives of ri with respect to z are equal at (ui, z). We shall consider the

point on the A3
1 curve given by u = ui, z = 0, corresponding to ri = r0, ti = 0.

In this example we illustrate Theorem 3.4.2.1 and one of Theorems 3.4.5.2,

3.4.5.3, 3.4.5.4. Firstly we shall calculate some quantities such as cos φi that

appear in these results and some that will be of use for an example of the A3

case. Equations (3.9), (3.10), (3.11), (3.12) give such expressions in terms of

an arbitrary parametrization. Using these (and replacing (x, y) with (u, z)) we

get the following expressions, which hold for all (u, z) near to u = ui, z = 0,
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where suffices denote differentiation:

∂γi
∂ri

=
1

r2
iu + r2

iz

(

riu
dXi

du
, riu

dYi
du

, riz

)

, (3.76)

vi =
ǫi

√

r2
iu + r2

iz

, where ǫi = sign(cos θi) , (3.77)

Ti =
1

vi

∂γi
∂ri

=
ǫi

√

r2
iu + r2

iz

(

riu
dXi

du
, riu

dYi
du

, riz

)

, (3.78)

Ui = Ni × Ti =
ǫiηi

√

r2
iu + r2

iz

(

−riz
dXi

du
,−riz

dYi
du

, riu

)

, (3.79)

N±

i =

(

riu
dXi

du
, riu

dYi
du

, riz

)

∓ ηi

√

1 − r2
iu − r2

iz

(

dYi
du

,−dXi

du
, 0

)

. (3.80)

Using

∂γi
∂ri

∂ri
∂u

+
∂γi
∂ti

∂ti
∂u

=
∂γi
∂u

=

(

dXi

du
,
dYi
du

, 0

)

,

∂γi
∂ri

∂ri
∂z

+
∂γi
∂ti

∂ti
∂z

=
∂γi
∂z

= (0, 0, 1) ,

and the facts that ∂γi/∂ri · ∂γi/∂ti = 0 for all (ri, ti) near (ri = r0, t = 0) and

that ∂γi/∂ti = Ui at ri = r0 (see (3.4)), we obtain the following:

tiu = − ǫiηiriz
√

r2
iu + r2

iz

, tiz =
ǫiηiriu

√

r2
iu + r2

iz

, (3.81)

∂γi
∂ti

=
ǫiηi

√

r2
iu + r2

iz

(

−riz
dXi

du
,−riz

dYi
du

, riu

)

, (3.82)

all evaluated at ri = r0.

Now for second order terms. By definition ai, a
t
i are respectively ∂vi/∂ri,

∂vi/∂ti. So we need to calculate these quantities in terms of the parametriza-

tions of the cylinders γi. From the change of variables (u, z) 7→ (ri, ti) we

get

(

uri uti

zri zti

)

=

(

riu riz

tiu tiz

)−1

=
1

riutiz − riztiu

(

tiz −riz
−tiu riu

)

. (3.83)

Using this and differentiating (3.77) with subscript i (which is allowed since it
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holds for all (u, z) close to u = ui, z = 0) we get the following:

ai
vi

= −(r2
iuriuu + 2riurizriuz + r2

izrizz)

(r2
iu + r2

iz)
2

, (3.84)

ati = ηi
(riurizriuu + (r2

iz − r2
iu)riuz − riurizrizz)

(r2
iu + r2

iz)
2

, (3.85)

both evaluated at ri = r0. Now to calculate a∗i . From (3.7) and (3.8) we see

that

a∗i =
∂2γi
∂ri∂ti

· Ui = −vi
∂2γi
∂t2i

· Ti .

Using the chain rule on ∂γi/∂u, ∂γi/∂z and using (3.81), (3.84) and (3.85) at

ri = r0 gives the following:

a∗i =
r2
izriuu − 2riurizriuz + r2

iurizz
(r2
iu + r2

iz)
2

. (3.86)

We can also calculate the terms of the geometry: κri , κ
t
i, and τ ti . Although

these are not required for the constraints, they will be of use in §3.8. From

(3.7) we have

κri =
1

v2
i

∂2γi
∂r2

i

·Ni = − 1

v2
i

∂γi
∂ri

· ∂Ni

∂ri
,

−viτ ti =
∂2γi
∂ri∂ti

·Ni = −∂γi
∂ri

· ∂Ni

∂ti
,

κti =
∂2γi
∂t2i

·Ni = −∂γi
∂ti

· ∂Ni

∂ti
.

Using (3.83), we can calculate ∂Ni/∂ri and ∂Ni/∂ti, evaluated at ri = r0 Then,

using (3.76) and (3.82) we get

κri =
ηir

2
iu

r2
iu + r2

iz

(

d2Xi

du2

dYi
du

− dXi

du

d2Yi
du2

)

, (3.87)

κti =
ηir

2
iz

r2
iu + r2

iz

(

d2Xi

du2

dYi
du

− dXi

du

d2Yi
du2

)

, (3.88)

τ ti =
riuriz
r2
iu + r2

iz

(

d2Xi

du2

dYi
du

− dXi

du

d2Yi
du2

)

, (3.89)

all evaluated at ri = r0.
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We want to gain information about the radius functions ri along the A3
1

curve from Theorem 3.4.2.1 and one of Theorems 3.4.5.2, 3.4.5.3, 3.4.5.4, which

must hold at points of the A3
1 axis. As described above, the Frenet frame is not

defined when κ is zero, but since κ ≡ 0 we choose T = (0, 0, 1), andN = (0, 1, 0)

and then B = T × N = (−1, 0, 0). Then κ ≡ 0 and τ ≡ 0. The A3
1 curve is

γi(ui, z) = (0, 0, z), so by (3.27) we have

Ni = cosψiN + sinψiB

⇒ (− sinψi, cosψi, 0) = ηi

(

dYi
du

(ui),−
dXi

du
(ui), 0

)

⇒ dXi

du
(ui) = −ηi cosψi ,

dYi
du

(ui) = −ηi sinψi , (3.90)

for any z and where the derivatives of δi are evaluated at u = ui. Using these

we can get expressions for cos θi, sin θi, since by definition θi = ψi+2 − ψi+1.

Note that the ψi are constants along the A3
1 curves, that is at (u = ui, z).

Hence ψ′

i ≡ 0 along the A3
1 curve. By (3.64) we have dr/ds = − cosφ, where

s is arclength along the A3
1 curve. In our example z is arclength along the A3

1

curve, so we have

cos φ = −riz(ui, z) = −rz ⇒ φ′ =
rzz

sinφ
.

We assumed φ was obtuse along the A3
1 curve in the general case, so cosφ < 0.

Hence rz > 0.

3.5.1 First Order

Now we shall consider Theorem 3.4.2.1, which gives

cos φi = ǫi cosφ
√

1 + tan2 φ cos2 θi = −ǫirz

√

1 +
(1 − r2

z)

r2
z

cos2 θi

= −ǫi
√

r2
iu + r2

z , from (3.77) ,

⇒ r2
iu = (1 − r2

z) cos2 θi and so (1 − r2
z) ≥ 0 ,

for any z and where the derivatives of δi are evaluated at u = ui. Using (3.80)

and the fact that N+
i = N−

i+1 along the A3
1 curve we get

riu = −ηi cos θi
√

1 − r2
z at (u = ui, z) . (3.91)
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Hence we can uniquely determine riu(ui, z) in terms of rz(z) and the first order

derivatives of δ1,2,3 at u = u1,2,3 and so we have the following.

Remark 3.5.1.1 Knowledge of the first order derivatives of the radius along

the A3
1 curve and of the curves δi at a point of the A3

1 curve uniquely determines

the first derivatives of the ri in every direction.

3.5.2 Second Order

Now we shall consider the second order constraints, that is (3.72) from Theo-

rem 3.4.5.3. For the moment cosφ is assumed to be non-zero, that is rz 6= 0.

Most of the terms vanish since κ ≡ 0, τ ≡ 0 and ψ′

i ≡ 0 along the A3
1 curve.

Firstly, we can differentiate (3.91) along the A3
1 curve, that is with respect to

z, to get an expression for riuz(ui, z):

riuz =
ηi cos θirzrzz
√

1 − r2
z

.

We have φ′ = rzz/ sinφ and (3.86) gives us a∗i , so the last term we need is κWi .

By definition

Wi = Ni × T , κWi = −Ṅi ·Wi ,

where by definition ˙ (‘dot’) means differentiation with respect to arclength

along a curve passing through γi(r0, 0) with tangent Wi (see Table 3.1). Now

Wi = −ηi
(

dXi

du
,
dYi
du

, 0

)

= −ηi
∂γi
∂u

(u, z = 0) ,

and so for this example let ˙ (‘dot’) be the same as (−ηid/du) at z = 0 for all u

on γi. Therefore

κWi = −
(

−ηi
dNi

du
(u, 0)

)

·Wi = −ηi
(

dXi

du

d2Yi
du2

− d2Xi

du2

dYi
du

)

. (3.92)

Using these expressions, (3.74) from Theorem 3.4.5.3 becomes the following

at (u = ui, z = 0):

κWi
√

1 − r2
z

sin θi
=

(r2
(i+1)u + r2

z)

r2
z sin2 θi+1

(

r2
zr(i+1)uu +

rzz
(1 − r2

z)

(

(1 − r4
z) cos2 θi+1 − 1

)

)

−
(r2

(i+2)u + r2
z)

r2
z sin2 θi+2

(

r2
zr(i+2)uu +

rzz
(1 − r2

z)

(

(1 − r4
z) cos2 θi+2 − 1

)

)

,
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for i =1, 2, 3 and where κWi is given by (3.92). Attempting to solve these

consistency conditions for riuu(ui, 0) for i = 1, 2, 3 only gives

r2uu
(r2

2u + r2
z)

sin2 θ2
= −κ

W
3 sinφ

sin θ3
+

(r2
1u + r2

z)rzz
r2
z(1 − r2

z) sin2 θ1
(cos2 θ1(1 − r4

z) − 1)

+
(r2

1u + r2
z)r1uu

sin2 θ1
− (r2

2u + r2
z)rzz

r2
z(1 − r2

z) sin2 θ2
(cos2 θ2(1 − r4

z) − 1) ,

r3uu
(r2

3u + r2
z)

sin2 θ3
=

κW2 sinφ

sin θ2
+

(r2
1u + r2

z)rzz
r2
z(1 − r2

z) sin2 θ1
(cos2 θ1(1 − r4

z) − 1)

+
(r2

1u + r2
z)r1uu

sin2 θ1
− (r2

3u + r2
z)rzz

r2
z(1 − r2

z) sin2 θ3
(cos2 θ3(1 − r4

z) − 1) ,

3
∑

i=1

(

κWi
sin θi

)

= 0 ,

so we can only solve for two of r1uu(u1, 0), r2uu(u2, 0), r3uu(u3, 0). This last

equation is a constraint on the curves δi – it must be satisfied if there is to

be a smooth reconstruction of the boundary. Compare this with the second

equation of (3.1) in R2, since for three general cylinders the three points of

contact of the tritangent sphere with the boundary are in the same plane as

the corresponding A3
1 point.

Now consider the case when cos φ = 0. Using Theorem 3.4.2.1, substitution

of cos φ = 0 in (3.74), with some simplification, gives the following:

κWi
sin θi

=
φ̇i+1

sin θi+1
− φ̇i+2

sin θi+2
(3.93)

In this example cosφ = 0 ⇐⇒ rz = 0. We have that ˙ (‘dot’) is the same as

(−ηid/du) on γi and, using (3.77), we get

φ̇i cosφi =
ηi(riuriuu + rizriuz)

sinφi
at (u = ui, z) .

Then, using Theorem 3.4.2.1 we get φ̇i = riuu/ sin θi when rz(0) = 0 at (ui, 0).

Hence (3.93) becomes

κWi sin φ

sin θi
=

r(i+1)uu

sin2 θi+1

− r(i+2)uu

sin2 θi+2

.
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This then gives

r2uu =
r1uu

sin2 θ1
− κW3 sinφ

sin θ3
, r3uu =

r1uu

sin2 θ1
+
κW2 sin φ

sin θ2
,

and

3
∑

i=1

κWi
sin θi

= 0 ,

at a point of the A3
1 curve for which cosφ = 0. So again we can only solve for

two of r1uu(u1, 0), r2uu(u2, 0), r3uu(u3, 0).

Remark 3.5.2.1 In summary, for a given set of three general cylinders, the

derivatives rz(0), r1uu(u1, 0) and rzz(0) and the first and second derivatives of

δi at u = ui uniquely determine all of the other derivatives (up to second order)

of ri in all directions at (u = ui, z = 0) for i = 1, 2, 3. The curves δi must also

satisfy the constraint:

3
∑

i=1

κWi
sin θi

= 0 , that is

3
∑

i=1

(

d2Xi

du2 (ui)
dYi

du
(ui) − dXi

du
(ui)

d2Yi

du2 (ui)
dXi+1

du
(ui+1)

dYi+2

du
(ui+2) − dXi+2

du
(ui+2)

dYi+1

du
(ui+1)

)

= 0 .

3.5.3 Three Planes

Now consider the curves δi as straight lines, so the γi are planes, parametrized

as below:

δ1(u) = (X1(u), Y1(u), 0) = (u, 0, 0) ,

δ2(u) = (X2(u), Y2(u), 0) =
(−u, λu, 0)√

1 + λ2
,

δ3(u) = (X3(u), Y3(u), 0) =
(−u,−ρu, 0)
√

1 + ρ2
,

for u ≥ 0 and where λ, ρ are both positive constants. Then u1 = u2 = u3 = 0

corresponds to the A3
1 point. Using (3.90) we get

cosψ1 = −η1 , sinψ1 = 0 ,

cosψ2 =
η2√

1 + λ2
, sinψ2 = − η2λ√

1 + λ2
,

cosψ3 =
η3

√

1 + ρ2
, sinψ3 =

η3ρ
√

1 + ρ2
.
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Then

sin θ1 = sin(ψ3 − ψ2) =
η2η3(λ+ ρ)√
1 + λ2

√

1 + ρ2
,

sin θ2 = sin(ψ1 − ψ3) =
η1η3ρ
√

1 + ρ2
,

sin θ3 = sin(ψ2 − ψ1) =
η1η2λ√
1 + λ2

.

Since sin θi > 0 for each i we get η1 = η2 = η3. Then

cos θ1 = cos(ψ3 − ψ2) =
1 − λρ√

1 + λ2
√

1 + ρ2
,

cos θ2 = cos(ψ1 − ψ3) =
−1

√

1 + ρ2
,

cos θ3 = cos(ψ2 − ψ1) =
−1√
1 + λ2

.

By definition (see Theorem 3.4.2.1) we have that

sign(cosφi) = −sign(cos θi) = −ǫi = −sign(vi) ,

by (3.6). Therefore, for this example, we get

sign(v1) = sign(1 − ρλ) , v2 < 0 , v3 < 0 .

So there are two cases: if the angle between the half-lines δ2, δ3 is acute, then

v1 > 0, v2 < 0, v3 < 0; if the angle between δ2, δ3 is obtuse, then vi < 0 for

i = 1, 2, 3. When (1 − ρλ) = 0 then cos θ1 = 0. By Remark 3.4.2.2 when this

happens we must interpret ǫ1 as the sign of v1. Hence there are still two cases:

v1 positive or negative.

3.5.4 Three Circular Cylinders

Now consider the curves δi as segments of circles, so the γi are segments of

circular cylinders, parametrized as below:

δi(u) =

(

pi + di cos

(

u

di

)

, qi + di sin

(

u

di

)

, 0

)

,
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where pi, qi, and di are constants, and di > 0 for each i. Then (3.30) becomes

3
∑

i=1

ηi sinφi

(

cos

(

ui
di

)

, sin

(

ui
di

)

, 0

)

= 0 .

From (3.92) we get κWi = −ηi/di for all u. Then

3
∑

i=1

κWi
sin θi

= 0 becomes
3
∑

i=1

ηi
di sin θi

= 0

and, since di > 0, sin θi > 0 for each i, we cannot have all of η1, η2, η3 the same

sign. (Recall from the start of this section that ηi is defined by

Ni(u, z) = ηi

(

dYi
du

,−dXi

du
, 0

)

, where ηi = ±1 .)

3.6 Second Example of the A3
1 Case

Let the boundary surface be a parabolic gutter given by z = by2 and the

plane x = p for b > 0, p > 0 constants. The boundary is not smooth for

points where x = p intersects with z = by2, but we imagine the boundary is

‘smoothed off’ near to these points. A sphere whose centre lies on the A3
1 curve

has two points of contact with z = by2 and one with x = p. See Figure 3.10

where b = 1, p = 0.6. We shall explicitly calculate the medial axis and all

of the terms which appear in the constraints in the A3
1 case given by one of

Theorems 3.4.5.2, 3.4.5.3, 3.4.5.4. These constraints can be verified in this case.

3.6.1 Calculating the Medial Axis

Firstly consider a sphere tangent to the parabolic gutter in two places. A

general point of the normal to z = by2 at (x, y, by2) is

(x, y, by2) + µ(0,−2by, 1) ,

where µ > 0 since (0,−2by, 1) is an inward normal (compare with N± from

(3.5) which points from the boundary towards the centre of the corresponding
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Figure 3.10: An example of a boundary surface consisting of a parabolic gutter

z = by2 with a flat end x = p for b = 1, p = 0.6 and its medial axis near to an

A3
1 curve. The boundary is in wireframe, the medial axis is shaded. The A3

1 curve

is where the three medial sheets intersect. The A3 curve, or edge, lies on the flat

medial sheet and corresponds to centres of bitangent spheres where the two points

of contact have come into coincidence at the bottom of the gutter. This edge is a

straight line parametrized by (u, 0, 1/2b) and ends at an A1A3 point, where the A3
1

curve also ends.

sphere). By symmetry the centre of the sphere will lie on the plane Y = 0 and

the points of contact of the sphere with the parabolic gutter will have equal

and opposite values for y. Hence µ = 1/2b and the centre of the sphere is
(

x, 0, by2 +
1

2b

)

.

From (3.3) we have r = ‖γ± − γ‖, and so the radius of the sphere tangent to

the parabolic gutter at (x, y, by2) and (x,−y, by2) is

‖(x, y, by2) + µ(0,−2by, 1)− (x, y, by2)‖
= ‖(x,−y, by2) + µ(0,−2by, 1) − (x,−y, by2)‖

=
1

2b

√

1 + 4b2y2 .

Hence, labelling the A2
1 sheet corresponding to the two points of contact on the

parabolic gutter as γ1, we have

γ1(x, y) =

(

x, 0, by2 +
1

2b

)

, r1(x, y) =
1

2b

√

1 + 4b2y2 . (3.94)
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In a similar way, labelling γ3 as the A2
1 sheet corresponding to the points of

contact (p, u, v) and (x, y, by2), we get

γ3(x, y) =
(

x, y(1 − 2bλ), by2 + λ
)

, r3(x, y) = p− x , (3.95)

where λ =
p− x

√

1 + 4b2y2
.

(This is labelled γ3 since if it were labelled γ2, it can be shown that conventions

taken in the general case are violated.) Symmetry gives the other medial sheet

γ2 corresponding to the points of contact (p, u, v) and (x,−y, by2)

γ2(x, y) =
(

x,−y(1 − 2bλ), by2 + λ
)

, r2(x, y) = p− x . (3.96)

Hence (3.94), (3.95), and (3.96) give us parametrizations of the three medial

sheets γ1, γ2, γ3 and their corresponding radius functions r1, r2, r3 in terms of

(x, y), where y > 0 and (x, y, by2) is a point on the parabolic gutter.

Using the parametrizations, the terms involved in the consistency conditions

of Theorem 3.4.5.2, (or Theorem 3.4.5.3, or Theorem 3.4.5.4) can be calculated.

From (3.94), (3.95), and (3.96) we get the following:

N1(x, y) = (0, η1, 0) ,

N2(x, y) =
η2√

2
√

1 + 4b2y2

(

√

1 + 4b2y2, 2by, 1
)

,

N3(x, y) =
η3√

2
√

1 + 4b2y2

(

√

1 + 4b2y2,−2by, 1
)

,

where η1 = ±1, η2 = ±1, η3 = ±1. From (3.11) we get

cos2 φ1 =
1

1 + 4b2y2
⇒ sin φ1 =

2by
√

1 + 4b2y2
,

cos2 φ2 =
1

2
⇒ sin φ2 =

1√
2
,

cos2 φ3 =
1

2
⇒ sin φ3 =

1√
2
, all evaluated at (x, y) .

Since φ2 and φ3 are constants for all x, y and cos φi = −1/vi (see Table 3.1) we

have that a2, a
t
2, a3, a

t
3 are zero for all x, y, since ai = ∂vi/∂ri, a

t
i = ∂vi/∂ti by
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definition. (See §3.2 immediately before (3.7).) For a1, a
t
1 consider (3.83), where

(u, z) is replaced by (x, y) and where suffices are used to denote differentiation:

a1 =
v1xt1y − v1yt1x
r1xt1y − r1yt1x

=
v1y

r1y
, at1 =

−v1xr1y + v1yr1x
r1xt1y − r1yt1x

= 0 ,

since v1x, r1x are zero for all x, y.

3.6.2 Involving the A3
1 Curve

The centre of the sphere tangent to the parabolic gutter at (x, y, by2) and

(x,−y, by2), and to the plane x = p is given by setting γ1(x, y) = γ2(x, y) =

γ3(x, y) from (3.94), (3.95), and (3.96). If we label this centre as C(y), we get

C(y) =

(

p− 1

2b

√

1 + 4b2y2, 0, by2 +
1

2b

)

, r(y) =
1

2b

√

1 + 4b2y2 , (3.97)

where r(y) is the radius of the tritangent sphere. The expressions of (3.97) give

a parametrization of the A3
1 curve, which we label C, and so we can obtain

expressions for T , N , B, κ, τ (see Table 3.1). We get

ds

dy
= 2

√
2by

√

1 + 2b2y2

√

1 + 4b2y2
, where s is arclength on C ,

T (y) =
1√

2
√

1 + 2b2y2

(

−1, 0,
√

1 + 4b2y2
)

,

N(y) =
1√

2
√

1 + 2b2y2

(

√

1 + 4b2y2, 0, 1
)

,

B(y) = (0, 1, 0) ,

κ(y) =
b√

2(1 + 2b2y2)3/2
, τ(y) = 0 .

We expect B to be a constant vector and τ to be zero at every point of the A3
1

curve since C lies in a plane. From (3.64) we have dr/ds = − cosφ, so for this

example we get

cosφ = − 1√
2
√

1 + 2b2y2
⇒ sinφ =

√

1 + 4b2y2

√
2
√

1 + 2b2y2

⇒ φ′ = − b√
2(1 + 2b2y2)3/2

,
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where ′ (‘prime’) means differentiation with respect to arclength s along the A3
1

curve. Note that cosφ is always negative, which agrees with the convention of

T being in the direction of r increasing.

We can find expressions for the angles ψi as follows (see Table 3.1). From

(3.27) we have cosψi = N ·Ni and sinψi = B ·Ni, so

cosψ1 = 0 , sinψ1 = η1 = ±1 for all y .

Using θi = ψi+2 − ψi+1 and the fact that sin θi > 0 for each i, it can be shown

that η3 = −η2 = sinψ1 and

cosψ2 = − cosψ3 = − sinψ1

√

1 + 2b2y2

√

1 + 4b2y2
,

sinψ2 = sinψ3 = −
√

2by sinψ1
√

1 + 4b2y2
.

Using these expressions we get

ψ′

1 = 0 , ψ′

2 = −ψ′

3 =
1

2y(1 + 2b2y2)
√

1 + 4b2y2
.

Now for the geometrical terms involved in Theorems 3.4.5.2, 3.4.5.3 and

3.4.5.4. Since N1 is a constant vector for all x, y we have κW1 = 0 for all x, y.

By definition ˙ (‘dot’) is differentiation with respect to arclength along a curve

passing through γi(r0, 0) with tangent Wi (see Table 3.1), and so we have

Wi =
∂γi
∂x

ẋi +
∂γi
∂y

ẏi at C(y) , Ṅi =
∂Ni

∂x
ẋi +

∂Ni

∂y
ẏi .

We solve the first equation for ẋi, ẏi to get Ṅi from the second and then, since

κWi = −Ṅi ·Wi by definition, we get

κW2 = −κW3 = − sinψ1

2
√

2by2
√

1 + 4b2y2(1 + 2b2y2)
.

3.6.3 The Consistency Conditions in this Example

Having calculated all of the terms involved in (3.70) from Theorem 3.4.5.2, it

can be shown that (3.70) is satisfied for i = 1, 2, 3 if and only if sinψ1 = −1.
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As a check we can substitute the following into (3.72), (3.74) respectively from

Theorems 3.4.5.3, 3.4.5.4:

a∗1 = 0 , a∗2 = a∗3 = − 1

2by2
√

1 + 4b2y2
,

φ̇1 cosφ1 = − 1√
2y
√

1 + 2b2y2(1 + 4b2y2)3/2
, φ̇2 = φ̇3 = 0 ,

using sinψ1 = −1. These were obtained from (3.67), (3.73).

3.7 The A4
1 Case

When there is a sphere tangent to a surface in four distinct points, its centre is

said to be an A4
1 point. In this case the medial axis is locally six sheets γi, for

i = 1, . . . , 6, which meet at the A4
1 point (and so the A4

1 point is also referred

to as a ‘6-junction point’). There are four A3
1 curves which meet and end at an

A4
1 point and each medial sheet γi contains two A3

1 curves. Let the A3
1 curves

be labelled P , Q, L, M , so that we have the following.

1. The curve P is the transversal intersection of γ1, γ2, and γ3.

2. The curve Q is the transversal intersection of γ3, γ4, and γ5.

3. The curve L is the transversal intersection of γ2, γ5, and γ6.

4. The curve M is the transversal intersection of γ1, γ4, and γ6.

This is as in Figure 3.11. We want to use the constraints from §3.4 which

hold along an A3
1 curve to obtain information about the medial axis at an A4

1

point. Firstly, we consider the reconstruction of the four boundary points given

certain information on the medial axis.

3.7.1 Recovery of the Points of Tangency

Let TP , TQ, TL, TM be respectively the unit tangents to the curves P , Q, L,

M . As in the A3
1 case, TP , TQ, TL, TM are assumed to point in the direction
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Figure 3.11: The A4
1 case, corresponding to the centre O of a sphere of radius r0

tangent to the boundary at four points A, B, C, D. Top left: the points of contact

and the line from the A4
1 point O to the circumcentre of the triangle through B, C

and D. The tangent vector TP to the A3
1 curve given by spheres with tangency to

the boundary surface in three points near to B, C, D is parallel to this line and so

is perpendicular to the triangle through B, C and D. The other three diagrams are

of the tangent planes to the medial axis near to an A4
1 point: taken together, these

look locally like a tetrahedron. The bold lines are the tangent lines to the four A3
1

curves which meet at the A4
1 point. The tangent planes to the six medial sheets γi

are identified by the edge which connects two vertices of the tetrahedron. The last

three pictures show the three possible configurations of r increasing along the four

A3
1 curves. Arrows indicate the direction of increasing radius r.
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of increasing radius along P , Q, L, M . Also, it is assumed that no three of

TP , TQ, TL, TM are coplanar. As shown in [GK04], there are three possible

combinations for these tangents to point towards or away from the A4
1 point.

See Figure 3.11. We assume we are given TP , TQ, TL, TM ; the tangent planes

to the six medial sheets; and the radius r0 sphere tangent to the boundary at

the four contact points at the A4
1 point. The A4

1 point is labelled as O and the

four contact points as A, B, C, D. Let a, b, c, d be respectively the vectors

from O to A, to B, to C, and to D. Going back to the A3
1 case, we had that

the tangent to the A3
1 curve was perpendicular to the plane of contact points.

(Check this by using γ+
i = γ−i+1, (3.3), (3.5), and (3.27).) Hence we let TP , TQ,

TL, TM be respectively perpendicular to the planes BCD, ACD, ABD, ABC.

Using this, we have the following.

• The point A reflects in the plane spanned by TL, TM to give B.

• The point B reflects in the plane spanned by TP , TM to give C.

• The point A reflects in the plane spanned by TQ, TM to give C.

• The point A reflects in the plane spanned by TQ, TL to give D.

• The point B reflects in the plane spanned by TP , TL to give D.

• The point C reflects in the plane spanned by TP , TQ to give D.

These mean that

b = a − 2
[a, TL, TM ]

‖TL × TM‖2
(TL × TM) ,

c = a − 2
[a, TQ, TM ]

‖TQ × TM‖2
(TQ × TM) ,

d = a − 2
[a, TQ, TL]

‖TQ × TL‖2
(TQ × TL) ,

d = b− 2
[b, TP , TL]

‖TP × TL‖2
(TP × TL) ,

d = c − 2
[c, TP , TQ]

‖TP × TQ‖2
(TP × TQ) ,

b = c − 2
[c, TP , TM ]

‖TP × TM‖2
(TP × TM ) ,
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where for example [a, TL, TM ] means a · (TL × TM ). Note that these vector

equations depend only on the tangent lines to the A3
1 curves, since the equations

are unchanged by substituting −TP for TP , or −TQ for TQ, or −TL for TL, or

−TM for TM . Using the fact that ‖a‖ = ‖b‖ = ‖c‖ = ‖d‖ = r0, these six vector

equations can be solved for a, b, c and d and we get two sets of solutions:

{a = δa0,b = δb0, c = δc0,d = δd0} , (3.98)

where δ = ±1 and a0, b0, c0 and d0 are uniquely determined by the four

tangent lines to P , Q, L, M and r0.

The ambiguity about whether to take δ = +1 or δ = −1, that is to take one

set of points of contact or the set of diametrically opposite ones, can be resolved

as follows. The tangent plane to the medial sheet containing L and M (that

is, γ6) is given by x · (a−b) = 0. Using [GK04, pp.8, 11] we can determine the

part of this tangent plane which corresponds to the medial axis, rather than

just the symmetry set. On each of the medial sheets γi, i = 1, . . . , 6, there are

two separatrices between the medial axis and the non-medial axis – these are

two of the A3
1 curves meeting at the A4

1 point. On the medial sheet containing

L and M , the line

x · (a− b) = 0 , x · (a − c) = 0 (3.99)

is tangent to one of the separatrices. Then,

c · (a − c) = c · a − r2
0 = r2

0(cosβ − 1) ,

where β is the angle between a and c. This right-hand side is always ≤ 0, so

the side of the line (3.99) which is remote from c is given by x · (a − c) ≥ 0.

Similarly, the line

x · (a− b) = 0 , x · (a− d) = 0

is tangent to the other separatrix and so the side of this line remote from d is

given by x · (a − d) ≥ 0. Hence, the part of the tangent plane x · (a − b) = 0

which corresponds to the medial axis, rather than just the symmetry set, is
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Figure 3.12: The A3
1 case in R

2 – see Figure 3.1 for another picture of this case. The

picture at the top shows the tangent lines to the symmetry set at an A3
1 point, the

two pictures at the bottom show the two possibilities for the tangents corresponding

to the medial branches. Hence, given the tangent lines to the three medial branches,

there are two possible sets of solutions for the points of tangency between the sphere

and the boundary curve: the set of grey points and the set of black points.

given by x · (a− c) ≥ 0 and x · (a− d) ≥ 0. If we have the knowledge of what

part of this tangent plane corresponds to the medial axis, we can get a point

x = x0, assumed not to be the A4
1 point, which lies on the part of this tangent

plane corresponding to the medial axis. Then, using (3.98), we have

x0 · (a0 − b0) = 0 ,

δx0 · (a0 − c0) ≥ 0 , δx0 · (a0 − d0) ≥ 0 .

These are now relations in known quantities, except δ, since a0, b0, c0 and d0

are uniquely determined by the four tangent lines to P , Q, L, M and r0. Given

that x = x0 is assumed not to be the A4
1 point, we know that at least one of

x0 · (a0 − c0), x0 · (a0 − d0) is > 0. Hence we can determine the sign of δ, and

so we can decide which of the two possible solutions (3.98) is the correct one

for the points of contact. Hence the following has been proved.

Proposition 3.7.1.1 (Reconstruction in the A4
1 Case) The four points of

tangency between a sphere and the boundary surface are uniquely determined by
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the lines of tangency to the four A3
1 curves at an A4

1 point, the knowledge of what

parts of the tangent planes to the A2
1 sheets of the symmetry set correspond to

the medial axis, and the radius r0 of the sphere centred at the A4
1 point. Given

only the lines of tangency to the four A3
1 curves at the A4

1 point and r0, then

the points of tangency are only determined up to a choice of two solutions of

the form (3.98), where δ = ±1, and a0, b0, c0 and d0 are uniquely determined

by the four tangent lines to the A3
1 curves and r0.

Remark 3.7.1.2 The reconstruction of the four points of contact in the A4
1

case in R3 is reminiscent of the reconstruction of the three points of contact in

the A3
1 case in R

2. Given the lines of tangency to the three medial branches and

the radius of the sphere centred at the A3
1 point, the three points of tangency

on the boundary curve are determined up to two possible choices: each point

of one solution is the diametrical opposite of a point of the other solution. This

arises because there are two choices for the configuration of tangents to the

medial branches at the A3
1 point, given the tangent lines to the symmetry set

(see Figure 3.12). However, given the tangent vectors oriented into the medial

branches, in addition to the radius of the sphere centred at the A3
1 point, the

points of tangency on the boundary curve are uniquely determined.

3.7.2 Consistency Conditions in the A4
1 Case

Now we shall consider the consistency conditions of §3.4. These lead to quite

complicated equations in the A4
1 case, so we will give details of some constraints

which can be obtained simply, but these do not constitute a complete set of

constraints. For each A3
1 curve we want the same situation as in Figure 3.7,

that is, the circle of contact points is oriented anti-clockwise, looking along the

opposite direction of the tangent to the A3
1 curve. However, this means that

there are two formulae for Ni on γi at the A4
1 point in terms of the Frenet frame

of the two A3
1 curves on γi, and these formulae might be the same or minus

each other, because of the conventions taken for each A3
1 curve. So, from (3.27)

we have the following at an A4
1 point, where NP , BP , ψ1P , etc. are defined
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analogous to the A3
1 case:

N1P = cosψ1PNP + sinψ1PBP , N1M = cosψ1MNM + sinψ1MBM ,

N2P = cosψ2PNP + sinψ2PBP , N2L = cosψ1LNL + sinψ2LBL ,

N3P = cosψ3PNP + sinψ3PBP , N3L = cosψ3QNQ + sinψ3QBQ ,

N4Q = cosψ4QNQ + sinψ4QBQ , N4M = cosψ4MNM + sinψ4MBM ,

N5Q = cosψ5QNQ + sinψ5QBQ , N5L = cosψ5LNL + sinψ5LBL ,

N6L = cosψ6LNL + sinψ6LBL , N6M = cosψ6MNM + sinψ6MBM ,

where N1P = η1N1M , N2P = η2N2L , N3P = η3N3Q ,

N4Q = η4N4M , N5Q = η5N5L , N6L = η6N6M ,

for ηi = ±1. By examining the three cases of the direction of r increasing along

the A3
1 curves as in the three pictures of Figure 3.11, it can be shown that there

are three cases:

(i). η1 = η2 = η3 = η4 = η5 = η6 = −1 (top right of Figure 3.11);

(ii). η1 = η4 = η6 = +1, η2 = η3 = η5 = −1 (bottom left of Figure 3.11);

(iii). η2 = η3 = η4 = η6 = +1, η1 = η5 = −1 (bottom right of Figure 3.11).

These orientations for each A3
1 curve also affect the terms of the geometry

involved in the A3
1 constraints from §3.4 at an A4

1 point. For example, at the

A4
1 point, we have κr1P = η1κ

r
1M , κt1P = η1κ

t
1M , τ t1P = η1τ

t
1M , and similarly for

the other medial sheets. Then we can use (3.63) from Lemma 3.4.4.3 to get

relations among the geometry of the four A3
1 curves at the A4

1 point. The first

equation of (3.63) gives the following:

κPκ
W
1P cosψ1P − (τP + ψ′

1P )2 = κMκ
W
1M cosψ1M − (τM + ψ′

1M )2 ,

κPκ
W
2P cosψ2P − (τP + ψ′

2P )2 = κLκ
W
2L cosψ2L − (τL + ψ′

2L)2 ,

κPκ
W
3P cosψ3P − (τP + ψ′

3P )2 = κQκ
W
3Q cosψ3Q − (τQ + ψ′

3Q)2 ,

κQκ
W
4Q cosψ4Q − (τQ + ψ′

4Q)2 = κMκ
W
4M cosψ4M − (τM + ψ′

4M )2 ,

κQκ
W
5Q cosψ5Q − (τQ + ψ′

5Q)2 = κLκ
W
5L cosψ5L − (τL + ψ′

5L)2 ,

κLκ
W
6L cosψ6L − (τL + ψ′

6L)2 = κMκ
W
6M cosψ6M − (τM + ψ′

6M )2 .
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Then the second equation of (3.63) gives the following:

κW1P + κP cosψ1P = η1

(

κW1M + κM cosψ1M

)

,

κW2P + κP cosψ2P = η2

(

κW2L + κL cosψ2L

)

,

κW3P + κP cosψ3P = η3

(

κW3Q + κQ cosψ3Q

)

,

κW4Q + κQ cosψ4Q = η4

(

κW4M + κM cosψ4M

)

,

κW5Q + κQ cosψ5Q = η5

(

κW5L + κL cosψ5L

)

,

κW6L + κL cosψ6L = η6

(

κW6M + κM cosψ6M

)

.

These twelve equations can then be solved for the κW
∗

-type terms. Then these

solutions can be substituted into the four constraints given by (3.71) from

Theorem 3.4.5.2. Then we get the following.

Proposition 3.7.2.1 (Condition at A4
1 Points) At an A4

1 point, the follow-

ing equations hold. From (3.71) for P we get

1

sin(ψ3P − ψ2P )

(

(τP + ψ′

1P )2 − (τM + ψ′

1M )2

κP cosψ1P − η1κM cosψ1M
+ η1κM cosψ1M

)

+
1

sin(ψ1P − ψ3P )

(

(τP + ψ′

2P )2 − (τL + ψ′

2L)2

κP cosψ2P − η2κL cosψ2L
+ η2κL cosψ2L

)

+
1

sin(ψ2P − ψ1P )

(

(τP + ψ′

3P )2 − (τQ + ψ′

3Q)2

κP cosψ3P − η3κQ cosψ3Q
+ η3κQ cosψ3Q

)

= 2
cosφP
sinφP

(

(τP + ψ′

1P ) cos(ψ3P − ψ2P )

sin(ψ3P − ψ2P )
+

(τP + ψ′

2P ) cos(ψ1P − ψ3P )

sin(ψ1P − ψ3P )

+
(τP + ψ′

3P ) cos(ψ2P − ψ1P )

sin(ψ2P − ψ1P )

)

−κP cos2 φP
sin2 φP

(

cosψ1P

sin(ψ3P − ψ2P )
+

cosψ2P

sin(ψ1P − ψ3P )
+

cosψ3P

sin(ψ2P − ψ1P )

)

.

139



From (3.71) for Q we get

1

sin(ψ4Q − ψ5Q)

(

(τQ + ψ′

3Q)2 − (τP + ψ′

3P )2

κQ cosψ3Q − η3κP cosψ3P
+ η3κP cosψ3P

)

+
1

sin(ψ5Q − ψ3Q)

(

(τQ + ψ′

4Q)2 − (τM + ψ′

4M)2

κQ cosψ4Q − η4κM cosψ4M

+ η4κM cosψ4M

)

+
1

sin(ψ3Q − ψ4Q)

(

(τQ + ψ′

5Q)2 − (τL + ψ′

5L)2

κQ cosψ5Q − η5κL cosψ5L
+ η5κL cosψ5L

)

= 2
cosφQ
sinφQ

(

(τQ + ψ′

3Q) cos(ψ4Q − ψ5Q)

sin(ψ4Q − ψ5Q)
+

(τQ + ψ′

4Q) cos(ψ5Q − ψ3Q)

sin(ψ5Q − ψ3Q)

+
(τQ + ψ′

5Q) cos(ψ3Q − ψ4Q)

sin(ψ3Q − ψ4Q)

)

−κQ cos2 φQ
sin2 φQ

(

cosψ3Q

sin(ψ4Q − ψ5Q)
+

cosψ4Q

sin(ψ5Q − ψ3Q)
+

cosψ5Q

sin(ψ3Q − ψ4Q)

)

.

From (3.71) for L we get

1

sin(ψ5L − ψ6L)

(

(τL + ψ′

2L)2 − (τP + ψ′

2P )2

κL cosψ2L − η2κP cosψ2P
+ η2κP cosψ2P

)

+
1

sin(ψ6L − ψ2L)

(

(τL + ψ′

5L)2 − (τQ + ψ′

5Q)2

κL cosψ5L − η5κQ cosψ5Q
+ η5κQ cosψ5Q

)

+
1

sin(ψ2L − ψ5L)

(

(τL + ψ′

6L)2 − (τM + ψ′

6M)2

κL cosψ6L − η6κM cosψ6M

+ η6κM cosψ6M

)

= 2
cosφL
sinφL

(

(τL + ψ′

2L) cos(ψ5L − ψ6L)

sin(ψ5L − ψ6L)
+

(τL + ψ′

5L) cos(ψ6L − ψ2L)

sin(ψ6L − ψ2L)

+
(τL + ψ′

6L) cos(ψ2L − ψ5L)

sin(ψ2L − ψ5L)

)

−κL cos2 φL
sin2 φL

(

cosψ2L

sin(ψ5L − ψ6L)
+

cosψ5L

sin(ψ6L − ψ2L)
+

cosψ6L

sin(ψ2L − ψ5L)

)

.
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And finally, from (3.71) for M we get

1

sin(ψ6M − ψ4M )

(

(τM + ψ′

1M )2 − (τP + ψ′

1P )2

κM cosψ1M − η1κP cosψ1P

+ η1κP cosψ1P

)

+
1

sin(ψ1M − ψ6M )

(

(τM + ψ′

4M )2 − (τQ + ψ′

4Q)2

κM cosψ4M − η4κQ cosψ4Q
+ η4κQ cosψ4Q

)

+
1

sin(ψ4M − ψ1M )

(

(τM + ψ′

6M )2 − (τL + ψ′

6L)
2

κM cosψ6M − η6κL cosψ6L
+ η6κL cosψ6L

)

= 2
cosφM
sin φM

(

(τM + ψ′

1M ) cos(ψ6M − ψ4M )

sin(ψ6M − ψ4M )
+

(τM + ψ′

4M) cos(ψ1M − ψ6M )

sin(ψ1M − ψ6M)

+
(τM + ψ′

6M ) cos(ψ4M − ψ1M )

sin(ψ4M − ψ1M )

)

−κM cos2 φM
sin2 φM

(

cosψ1M

sin(ψ6M − ψ4M)
+

cosψ4M

sin(ψ1M − ψ6M)
+

cosψ6M

sin(ψ4M − ψ1M)

)

.

Remark 3.7.2.2 The equations of Proposition 3.7.2.1 are constraints on the

geometry of the four A3
1 curves and the derivatives of angles between principal

normals to the A3
1 curves and the normals to the medial sheets γi for i = 1, . . . , 6

at the A4
1 point.

3.8 The A3 Case

Consider the medial axis γ locally as a single (A2
1) sheet. When the two points

of contact on the boundary surface γ± come into coincidence the medial axis

is locally a surface with boundary – this boundary is the A3 curve, referred to

as the edge of the medial axis. The corresponding curve on the boundary γ±

is called a ridge curve and its points are ridge points. From (3.3) we have

γ± = γ − rN±

and, using (3.5), we see that γ+ = γ− if and only if cos2 φ = 1. Hence, from

(3.6), a point of the edge is a point where v2 = 1. Consider Figure 3.3 – the

A3 case corresponds to φ = 0 or π.
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In §3.1, the conditions on the medial axis in R2 at an endpoint (A3) were

discussed. The condition on the radius function was that r′′ should be non-

zero at the endpoint, where ′ (‘prime’) means differentiation with respect to

arclength on the boundary curve. Also there was (3.2), an expression for the

curvature κ of the medial axis at an endpoint in terms of the curvature k of

the boundary curve. This section contains the analogues of these in R3; there

is a condition (3.102) contained in Proposition 3.8.1.2 for the smoothness of

the boundary at A2
1 points (for the condition at A3 points, substitute v2 = 1 to

get (3.103)). Also, (3.107) from Proposition 3.8.2.1 is a formula for the Gauss

curvature of the medial axis at an A3 point in terms of the derivatives of the

boundary.

3.8.1 Smoothness Condition on the Boundary

The envelope of spheres centred on γ is

{

x : there exist r, t with F = ∂F
∂r

= ∂F
∂t

= 0
}

where F = (x − γ(r, t)) · (x − γ(r, t)) − r2.

}

(3.100)

Consider the following:

R5 g−→ R3

(x, y, z, r, t) 7−→
(

F, ∂F
∂r
, ∂F
∂t

)

π




y

R3

(x, y, z)



































(3.101)

The medial axis is π(g−1(0)). For g−1(0) to be smooth we need 0 to be a regular

value of g. Then, for x = (x, y, z) and γ(r, t) = (X(r, t), Y (r, t), Z(r, t)), the
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Jacobian J of g evaluated at (r, t) is given by

−1

2
J(r, t) =









Fx Fy Fz Fr Ft

Fxr Fyr Fzr Frr Frt

Fxt Fyt Fzt Frt Ftt









=









X − x Y − y Z − z 0 0

Xr Yr Zr (x − γ) · γrr − v2 + 1 (x − γ) · γrt
Xt Yt Zt (x − γ) · γrt (x − γ) · γtt − w2









.

We have x = γ±. Now consider the three left most columns of the above. From

(3.3), (3.4), (3.5), and (3.6) we have

(X − x, Y − y, Z − z) = γ − γ± =
r

v
T ∓ r

√

1 − 1

v2
N ,

(Xr, Yr, Zr) = γr = vT ,

(Xt, Yt, Zt) = γt = wU .

These three vectors are linearly independent if and only if v2 6= 1. Therefore,

when v2 6= 1 at (r = r0, t = 0) there is a 3 × 3 minor of J(r0, 0) which is

non-zero, and so in this case 0 is a regular value of g.

When v2 = 1 at (r0, 0) we need to consider the other 3×3 minors of J(r0, 0).

In this case we have

(γ±(r0, 0) − γ(r0, 0)) = −r0
v
T

and, from (3.7) we have

(γ±(r0, 0) − γ(r0, 0)) · γrr(r0, 0) = −r0a
v

,

(γ±(r0, 0) − γ(r0, 0)) · γrt(r0, 0) = −r0a
t

v
,

(γ±(r0, 0) − γ(r0, 0)) · γtt(r0, 0) =
r0a

∗

v2
= r0a

∗ .

Let T (r0, 0) = (T1, T2, T3) and U(r0, 0) = (U1, U2, U3). Then, using the fact

that w(r0, t) = 1 for all t near t = 0, we have

J(r0, 0) = −2









r0
v
T1

r0
v
T2

r0
v
T3 0 0

vT1 vT2 vT3 −r0a
v

−r0at

v

U1 U2 U3 −r0at

v
r0a

∗ − 1









.
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We know that 0 is not a regular value of g at (r0, 0) if and only if all of the

3 × 3 minors of J(r0, 0) are zero. Given r0 > 0, this is true if and only if all of

the following are true, where a, at, and a∗ are all evaluated at (r0, 0):

a(T1U2 − U1T2) = 0 , a(T1U3 − U1T3) = 0 , a(T2U3 − U2T3) = 0 ,

at(T1U2 − U1T2) = 0 , at(T1U3 − U1T3) = 0 , at(T2U3 − U2T3) = 0 ,

T1

(

r0

(

aa∗

v
+ (at)2

)

− a

v

)

= 0 ,

T2

(

r0

(

aa∗

v
+ (at)2

)

− a

v

)

= 0 ,

T3

(

r0

(

aa∗

v
+ (at)2

)

− a

v

)

= 0 .

We have N(r0, 0) = (T2U3 −U2T3, T3U1 −U3T1, T1U2 −U1T2) by definition. We

assume that T , U and N are not zero vectors, so all of the 3 × 3 minors of

J(r0, 0) are zero from the above if and only if a = 0 and at = 0. Hence we have

the following.

Lemma 3.8.1.1 Consider the medial axis as π(g−1(0)) given by (3.100) and

(3.101). When γ(r0, 0) is an A2
1 point (so v2 6= 1) then g−1(0) is smooth at

γ(r0, 0). When γ(r0, 0) is an A3 point (so v2 = 1) then g−1(0) is smooth at

γ(r0, 0) if and only if at least one of a, at is non-zero.

For γ± to be smooth near to (r0, 0), that is for π(g−1(0)) to be smooth,

we require that g−1(0) is smooth (that is that 0 is a regular value of g) and

that, if ξ = (ξ1, ξ2, ξ3, ξ4, ξ5) is a tangent vector to g−1(0) at (r0, 0) in R5 and

projects to (0, 0, 0) in R
3, then ξ = 0. In other words, we require that no

non-zero tangent vectors to g−1(0) are sent to (0, 0, 0) in R3 by π. We have the

following, which is true when γ(r0, 0) is an A2
1 point or an A3 point. (When

γ(r0, 0) is an A3 point, substitute v2 = 1.) From π : (x, y, z, r, t) → (x, y, z) we
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see that ξ1 = ξ2 = ξ3 = 0. Then ξ is sent to (0, 0, 0) by π if and only if

J(r0, 0)



















0

0

0

ξ4

ξ5



















=









0

0

0









⇐⇒

((x − γ) · γrr − v2 + 1)ξ4 + ((x − γ) · γrt)ξ5 = 0 ,

and ((x − γ) · γrt)ξ4 + ((x − γ) · γtt − 1)ξ5 = 0 ,

where x = γ±. If

((x − γ) · γrr − v2 + 1)((x − γ) · γtt − 1) − ((x − γ) · γrt)2 6= 0 ,

where the left-hand side is evaluated at (r0, 0), then ξ4 = ξ5 = 0, and so the

only tangent vector to g−1(0) which projects to 0 under π is 0. We have

x − γ = −r
v
T ± r

√

1 − 1

v2
N ,

so (x − γ) · γrr = −ra
v

± rv2κr
√

1 − 1

v2
,

(x − γ) · γrt = −ra
t

v
∓ rvτ t

√

1 − 1

v2
,

(x − γ) · γtt =
ra∗

v2
± rκt

√

1 − 1

v2
.

Using these, we get the following.

Proposition 3.8.1.2 (Smoothness of the Boundary) When γ is locally a

single sheet, the condition for smoothness of the boundary γ± at (r0, 0) (corre-

sponding either to an A2
1 point or to an A3 point) is

0 6= −r
2
0

v2

(

aa∗

v
+ (at)2

)

+
r0a

v

+(v2 − 1)

(

r2
0(κ

rκt − (τ t)2) − r0a
∗

v2
+ 1

)

(3.102)

±r0
√

1 − 1

v2

(

r0

(

a∗κr − aκt

v
− 2atτ t

)

− v2κr + (1 − v2)κt
)

.

(For ridge points substitute v2 = 1.)
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Proof. By Lemma 3.8.1.1, when v2 6= 1 at γ(r0, 0) we have that g−1(0) is

smooth. Then π(g−1(0)) is smooth if (3.102) holds. When v2 = 1 at γ(r0, 0)

we have that g−1(0) is smooth if and only if at least one of a, at is non-zero.

Hence π(g−1(0)) is smooth if, in addition, we have (3.102); in other words if

0 6= −r0
(

aa∗

v
+ (at)2

)

+
a

v
. (3.103)

But if (3.103) holds then at least one of a, at being non-zero follows. Hence

(3.102) with v2 = 1 is the condition for smoothness of γ± at a ridge point. �

Remark 3.8.1.3 Consider the medial axis in R2. As stated at the start of

this section, the condition for smoothness of the boundary curve at a point

corresponding to an endpoint (A3) of the medial axis in two dimensions is that

r′′(0) 6= 0. Using a similar method as was employed to obtain the condition

(3.102) for smoothness in Proposition 3.8.1.2, the same can be done for the

medial axis in R
2. The envelope of circles centred on the medial axis γ is

{

x : there exists s with G =
∂G

∂s
= 0

}

where G = (x − γ(s)) · (x − γ(s)) − r(s)2. Then, the corresponding boundary

curve is smooth at γ(s) (corresponding to an A2
1 point or an A3 point) if

∂2G

∂s2
= 1 − r′2 − rr′′ ∓ rκ

√
1 − r′2 6= 0 .

(For an endpoint, substitute r′ = ±1.)

Smoothness Condition for a General Cylinder

From the first example of the A3
1 case (§3.5) we had expressions (3.84), (3.85),

(3.86), (3.87), (3.88), (3.89) respectively for ai, a
t
i, a

∗

i , κ
r
i , κ

t
i, τ

t
i for a medial

sheet γi in terms of the radius function ri(u, z). These expressions are also valid

away from the A3
1 curve. Hence we can consider the expressions for a single
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medial sheet γ which is a general cylinder given by

γ(u, z) = δ(u) + z(0, 0, 1), where δ(u) = (Xi(u), Yi(u), 0) ,

and

(

dX

du

)2

+

(

dY

du

)2

= 1 for all u (δ unit speed) ,

so N(u, z) = η

(

dY

du
,−dX

du
, 0

)

, where η = ±1 .

Consider the smoothness condition (3.102) from Proposition 3.8.1.2 for the

boundary surface γ± corresponding to γ as a general cylinder parametrized as

above. Then (3.102) becomes

0 6= −r0
(

r0(ruz − ruurzz) +
r2
uruu + 2rurzruz + r2

zrzz
r2
u + r2

z

)

)

+(1 − r2
u − r2

z)

(

1 − r0
(r2
zruu − 2rurzruz + r2

urzz)

r2
u + r2

z

)

±η
√

1 − r2
u − r2

z(r0rzz + r2
z − 1)

(

d2Xi

du2

dYi
du

− dXi

du

d2Yi
du2

)

.

Hence this is the condition for the boundary γ± to be smooth at an A2
1 or an

A3 point (for A3, set r2
u + r2

z = 1).

3.8.2 Gauss Curvature on the Medial Axis at an A3

Point

We want to obtain the analogue of (3.2) in R3, that is to acquire a result

connecting the geometry of the boundary and the geometry of the medial axis

at the edge. A parametrization of the medial axis near to an edge point can be

obtained in Maple by taking the associated boundary in Monge form near to a

ridge point. Let the boundary be (x, y, f(x, y)), where

f(x, y) = 1
2
(κ1x

2 + κ2y
2) + ((0)x3 + b1x

2y + b2xy
2 + b3y

3)

+(c0x
4 + c1x

3y + c2x
2y2 + c3xy

3 + c4y
4)

+(d0x
5 + d1x

4y + d2x
3y2 + d3x

2y3 + d4xy
4 + d5y

5) + · · · .















(3.104)

Since the coefficient of x3 is zero, the ridge corresponds to the x-direction and

a ridge point corresponds to x = y = 0. We proceed by taking two points
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(u, v, f(u, v)), (s, t, f(s, t)) near to 0. From (3.3), the condition for there to be

a sphere tangent to the boundary at these two points is that

(u, v, f(u, v)) + rN1(u, v) = (s, t, f(s, t)) + rN2(s, t) , (3.105)

where r is the radius of the bitangent sphere and N1, N2 are the unit normals

to the boundary at (u, v) and at (s, t), respectively. Then we solve for u, v

and r as functions of s and t such that (3.105) is satisfied. Using Maple a

parametrization of the medial axis near to an edge point can be calculated

explicitly. We get

r(s, t) =
1

κ1
− 2b1

κ2
1

t+
κ3

1 − 8c0
2κ2

1

s2 − 2c1
κ2

1

st+ (∗)t2

−4d0

κ2
1

s3 + (∗)s2t+ (∗)st2 + (∗)t3 + h.o.t. , (3.106)

where the more complicated coefficients are denoted (∗). The parametrization

of the medial axis near to an edge point is then (G1(s, t), G2(s, t), G3(s, t)) =

(s, t, f(s, t)) − r(s, t)N2(s, t) where

G1(s, t) = − b2
κ1
t2 − c1

κ1
s2t+ 4

(

(κ3
1 − 8c0)b

2
2 + (κ1 − κ2)c

2
1 + 4b1b2c1

κ1((κ1 − κ2)(κ3
1 − 8c0) − 4b21)

)

st2

+
2b1b2 − κ1c3

κ2
1

t3 − d0

κ1

s4 + (∗)s3t+ (∗)s2t2

+(∗)st3 + (∗)t4 + h.o.t. ,

G2(s, t) =

(

κ1 − κ2

κ1

)

t− b1
κ1
s2 − 2b2

κ1
st+

(

2κ2b1 − 3κ1b3
κ2

1

)

t2 − c1
κ1
s3

+2

(

b21 − κ1c2 + 2κ2c0
κ2

1

)

s2t+

(

4b1b2 − 3κ1c3 + 2κ2c1
κ2

1

)

st2

+(∗)t3 +

(

4b1c0 − κ1d1

κ2
1

)

s4

+2

(

2b1c1 + 4b2c0 + 2κ2d0 − κ1d2

κ2
1

)

s3t+ (∗)s2t2

+(∗)st3 + (∗)t4 + h.o.t. ,

G3(s, t) =
1

κ1
− 2b1
κ2

1

t+

(

κ3
1 − 8c0
2κ2

1

)

s2 − 2c1
κ2

1

st+ (∗)t2

−4d0

κ2
1

s3 + (∗)s2t+ (∗)st2 + (∗)t3 + h.o.t.
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A standard formula for the Gauss curvature K at a point p of a surface is

as follows, where suffices denote differentiation:

K =
eg − f 2

EG− F 2
,where

E = Xu ·Xu , F = Xu ·Xv , G = Xv ·Xv ,

ẽ = Xuu ·N , f̃ = Xuv ·N , g̃ = Xvv ·N ,

where N is a unit normal to S at p. Using this formula for K and the

parametrization G(s, t) of the medial axis near to an A3 point we can calculate

the Gauss curvature on the medial axis at (s, t).

Proposition 3.8.2.1 The limiting value (if it exists) of the Gauss curvature

K (which is the product of the principal curvatures on the medial axis) as x, y

tend to zero, that is as we tend towards the edge point, is as follows:

K =
4(4b2d0 − c21)κ

4
1

((κ1 − κ2)(κ
3
1 − 8c0) − 4b21)

2
. (3.107)

(The reason for the qualifying ‘if it exists’ is that not all of the limiting di-

rections tending towards the edge point (0, 0, 1/κ1) have been considered in the

calculation of (3.107).)

The denominator of the right-hand side of (3.107) is zero only if 0 corre-

sponds to an A4 point, which we assume is not true. Compare this value with

the expression for the limiting value of the curvature of the medial axis in R2

at the endpoint given by (3.2). This depends on the third derivative of the

curvature of the boundary, that is it depends on the 5-jet of the boundary at

the corresponding point. The limiting value of K as in (3.107) also depends on

the 5-jet of the boundary in three dimensions.

Equation (3.107) gives a criterion for K = 0 on the medial axis. We can

also express K in terms of derivatives of the principal curvatures κ1 and κ2

at (x, y) = (0, 0) on the boundary by using Maple to expand the principal

curvatures κ1, κ2 as functions of x and y near to x = y = 0. (See [HGYGM99,
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pp.128-142].) Then we get

κ1(0, 0) = κ1 (const.) , κ2(0, 0) = κ2 (const.) ,

κ1x(0, 0) = 2b1, κ2x(0, 0) = 2b2 ,

κ1xx(0, 0) =
8b21 − 3κ3

1(κ1 − κ2)

κ1 − κ2
+ 24c0 ,

κ1xy(0, 0) =
8b1b2
κ1 − κ2

+ 6c1 ,

κ1xxx(0, 0) = 24b1

(

3c1(κ1 − κ2) + 2b1b2
(κ1 − κ2)2

)

+ 120d0 .

Using (3.107) we can express the limiting value of K at an edge point in terms

of the derivatives of κ1 and κ2 as follows:

K =
κ4

1((κ1 − κ2)
2(3κ2xκ1xxx − 5κ2

1xy) + 2(κ1 − κ2)κ1xκ2xκ1xy − 2κ2
1xκ

2
2x)

5(κ1 − κ2)2(κ2
1x + (κ1 − κ2)κ1xx)2

.

The above shows that the Gauss curvature of the medial axis at an edge

point depends on up to the third derivatives of the principal curvatures, and so

on the fifth derivatives of the boundary at ridge points. This is analogous to the

situation in R
2; from (3.2) the curvature of the medial axis in two dimensions

at an endpoint depends on up to the third derivative of curvature, so up to

fifth derivatives of the boundary curve.

3.8.3 Local Maximum or Minimum of r Along the Ridge

Here is a result about the ridge, which is the space curve lying on γ± whose

points are obtained from the points of the edge by (3.3).

Proposition 3.8.3.1 At a point of the ridge corresponding to the principal

curvature κ1 on the boundary surface given by (3.104), the radius of the sphere

of contact with the boundary surface has a local maximum or minimum if and

only if κ1 has a critical point on the boundary.

Proof. From [HGYGM99, pp.144, 162], the tangent to the ridge curve on the

boundary surface given by (3.104) is

(

(κ1 − κ2)(8c0 − κ3
1) + 4b21

)

x+ (2c1(κ1 − κ2) + 4b1b2) y = 0 .
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Then the derivative of r along the ridge at x = y = 0 is

(

(κ1 − κ2)(8c0 − κ3
1) + 4b21

) ∂r

∂y
(0, 0) − (2c1(κ1 − κ2) + 4b1b2)

∂r

∂x
(0, 0) .

Using (3.106), this is zero if and only if

b1
(

(κ1 − κ2)(8c0 − κ3
1) + 4b21

)

= 0 .

From (3.107) we know that ((κ1 − κ2)(8c0 − κ3
1) + 4b21) 6= 0. Hence

r has a local maximum or minimum ⇐⇒ b1 = 0 ,

which is the same as κ1 having a critical point on the boundary. �

3.8.4 Principal Curvatures, Principal Directions of the

Boundary

Now we shall consider the information sufficient to determine the boundary at

ridge points up to second order. Assume we have the edge of the medial axis as

a space curve with curvature κ and torsion τ , the tangent planes to the medial

sheet, the radius function r on the edge, and the angle α between the tangent

to the edge and ∇r (‘grad(r)’) at a point of the edge.

We can express N± in terms of ∇r by using the facts that ∇r = T‖∇r‖
and cosφ = −‖∇r‖, so the formula for N± from (3.5) becomes

N± = ∇r ∓
√

1 − ‖∇r‖2N .

Hence, as sinφ → 0 (corresponding to ‖∇r‖ → 1) we see that N± → ∇r.
Since we are given the tangent to the ridge curve and α, we can determine ∇r
and hence N± at each point of the edge. Then, using (3.3), we have each ridge

point and so we have the ridge curve. Since we have the normal N± along the

ridge, we also have the tangent planes to γ± along the ridge. Hence we have

determined the first order geometry of γ± along a ridge curve.
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Now for the second order geometry of the boundary. Given the ridge curve

we have its geodesic curvature, normal curvature, κ̂n1 say, and geodesic torsion,

τ̂g1 say. We also know that one of the principal curvatures of the boundary at

a ridge point is 1/r. We label this k1 = 1/r. Let k2 be the other principal

curvature on γ± at a ridge point, let θ̂ be the angle from the principal direction

corresponding to k1 to the tangent to the ridge curve, and κ̂n2 be the normal

curvature of γ± in the tangent direction to γ± perpendicular to the ridge curve.

Equations (3.54), (3.55) give formulae for κ̂n1, κ̂n2, τ̂g1. (These were used in

the A3
1 case, but are valid here too.) We can solve these to obtain formulae for

θ̂, k2, and κ̂n2, and we get

k2 = κ̂n1 +
τ̂ 2
g1

κ̂n1 − k1

, κ̂n2 = k1 +
τ̂ 2
g1

κ̂n1 − k1

,

cos θ̂ = ± τ̂g1
√

τ̂ 2
g1 + (κ̂n1 − k1)2

, sin θ̂ =
|κ̂n1 − k1|

√

τ̂ 2
g1 + (κ̂n1 − k1)2

,

where sign(cos θ̂) = sign(κ̂n1 − k1). Hence we can determine the principal

curvatures of the boundary at ridge points. However, these formulae are not

enough to determine the normal curvature of γ± in an arbitrary direction V at

a point of the ridge; we need the angle from the first principal direction to V

in addition to k1, k2 (see Lemma 3.4.4.1).

Now for the principal directions on the boundary. Let (r = r0, t = 0)

correspond to an edge point, so sinφ = 0 at (r0, 0). Let s, s± be respectively

arclengths on γ(r, 0), γ±(r, 0). Then from (3.3), (3.5), and (3.18) we get

dγ±

ds
(r, 0) = ∓ sin φT± − r

dN±

ds
, where

dN±

ds
(r, 0) =

(

∓a cos3 φ

sin φ
− κr

)

T± +
(

−at cos2 φ∓ τ t sinφ
)

U .

Using these we get

ds±

ds
=

√

(

∓ sin2 φ± ra cos3 φ+ rκr sinφ
)2

+ r2 sin2 φ (at cos2 φ± τ t sinφ)2

sinφ
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at (r, 0). Hence

dγ±

ds±
=

(

∓ sin2 φ± ra cos3 φ+ rκr sin φ
)

T± + r sinφ (at cos2 φ± τ t sinφ)U
√

(

∓ sin2 φ± ra cos3 φ+ rκr sinφ
)2

+ r2 sin2 φ (at cos2 φ± τ t sinφ)2
,

dN±

ds±
=

(∓a cos3 φ− κr sin φ)T± + (−at cos2 φ∓ τ t sinφ) sin φU
√

(

∓ sin2 φ± ra cos3 φ+ rκr sinφ
)2

+ r2 sin2 φ (at cos2 φ± τ t sin φ)2
,

both at (r, 0). Then as we let r → r0, so that sinφ→ 0 and cos2 φ→ 1, we get

lim
r→r0

(

dN±

ds±
(r, 0)

)

=
∓a
r0|a|

N , lim
r→r0

(

dγ±

ds±
(r, 0)

)

=
±a
|a|N . (3.108)

Now let t± be arclength on γ±(r0, t). Then from (3.3), (3.5), and (3.19) we

get

dγ±

dt
(r0, t) = U − r0

dN±

dt
, where

dN±

dt
(r0, t) =

(

±a
t cos2 φ

sin φ
+ τ t

)

T± +
(

a∗ cos2 φ± κt sinφ
)

U .

From these we get

dt±

dt
=

√

r2
0 (±at cos2 φ+ τ t sinφ)2 + sin2 φ (1 − r0a∗ cos2 φ∓ r0κt sinφ)2

sin φ

at (r0, t). Hence

dγ±

dt±
=
r0 (∓at cos2 φ− τ t sinφ)T± + sin φ (1 − r0a

∗ cos2 φ∓ r0κ
t sin φ)U

√

r2
0 (±at cos2 φ+ τ t sinφ)2 + sin2 φ (1 − r0a∗ cos2 φ∓ r0κt sinφ)2

,

dN±

dt
=

(±at cos2 φ+ τ t sinφ)T± + sin φ (a∗ cos2 φ± κt sinφ)U
√

r2
0 (±at cos2 φ+ τ t sinφ)2 + sin2 φ (1 − r0a∗ cos2 φ∓ r0κt sinφ)2

,

both at (r0, t). Similar to before, as we let t → 0, so that sin φ → 0 and

cos2 φ→ 1, we get

lim
t→0

(

dN±

dt±
(r0, t)

)

=
±at cosφ

r0|at|
N , lim

t→0

(

dγ±

dt±
(r0, t)

)

=
∓at cosφ

|at| N. (3.109)

Now we shall interpret (3.108), (3.109). We assume that the boundary γ± is

smooth at all points near to (r0, 0) and so, by (3.102) from Proposition 3.8.1.2,
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we know that at least one of a, at is non-zero at (r0, 0). Then (3.108), (3.109)

imply that the derivative of N± in the N direction is parallel to N itself, and

so N is a principal direction of γ± at ridge points. The vector N± becomes

parallel to T at edge points, and so the other principal direction on γ± at ridge

points is U .

Hence, the following has been proved.

Proposition 3.8.4.1 Given the edge of the medial axis as a space curve with

curvature κ and torsion τ , the tangent planes to the medial sheet, the radius

function r on the edge, and the angle α between the tangent to the edge and ∇r
(‘grad(r)’) at a point of the edge; then the principal curvatures and principal

directions of the boundary at a ridge point are determined.

This shows that not much information about the medial axis at an edge

point is needed to give second order information of the boundary at ridge

points.

3.9 The A1A3 Case

An A1A3 point on the medial axis is where an A3
1 curve and an A3 curve meet

and end, that is the A1A3 point is the centre of a sphere which is tangent to a

surface in three places, but two of the points of contact coincide. The medial

axis near to an A1A3 point looks like part of a swallowtail surface with a ‘fin’

(another medial sheet) intersecting with the swallowtail in a curve (see the

self-intersection curve of Figure 3.13). The A1A3 point is then the point where

the edge curve of the fin meets the other two sheets.

3.9.1 Taking the Limit at Points Tending Towards the

A1A3 Point

The equations (3.70), (3.72), (3.74), which are respectively from Theorems

3.4.5.2, 3.4.5.3 and 3.4.5.4, all hold at γi(r0, 0) on the A3
1 curve, so they hold

154



A

A

g
+2 +1

j

g

g

jj

A

1
A

3

3

31

Figure 3.13: The A1A3 (or fin point) case. The medial axis is locally part of a

swallowtail surface with another sheet meeting along the curve of self-intersection.

Part of the swallowtail surface above is only on the symmetry set, not on the medial

axis (compare with Figure 3.2). The two sheets of the swallowtail surface that are

on the medial axis are labelled γj+1, γj+2 and the other sheet of the medial axis is

labelled γj for some j. An A3
1 curve and an A3 curve meet and end at an A1A3 point.

in the limit as we tend towards an A1A3 point. Hence, in order to obtain

the forms of (3.70), (3.72), (3.74) at an A1A3 point, we need to calculate the

limits of the terms involved as two of the points of contact with the boundary

surface coincide. Let these points be γ+
j and γ−j for some j, which means that

sin φj = 0 at the A1A3 point, from (3.3) and (3.5). From (3.39) this corresponds

to sin θj = 0 (we dismissed the possibility of sin φ = 0 for a generic surface in

Remark 3.4.5.5). Therefore the other two sheets γj+1 and γj+2 are part of the

swallowtail surface. Let sin φj = 0 in (3.30). This gives

sinφj+1Nj+1 + sinφj+2Nj+2 = 0

⇒ Nj+1 = −Nj+2 , sinφj+1 = sinφj+2

⇒ cos θj = Nj+1 ·Nj+2 = −1 ⇒ θj = ψj+2 − ψj+1 = π .

155



From this and Theorem 3.4.2.1 we can deduce the following at the A1A3 point:

sinψj+1 = − sinψj+2 , cosψj+1 = − cosψj+2 ,

cos θj+1 = − cos θj+2 , sin θj+1 = sin θj+2 ,

cosφj+1 = − cosφj+2 , so vj+1 = −vj+2 .

From Remark 3.4.2.2 we have sign(vi) = ǫi = sign(cos θi). Hence at the A1A3

point we have vj = −1, vj+1 = −vj+2, which means that we have two of the

velocities negative and one positive at the A1A3 point.

Consider the standard swallowtail surface, which is given by
{

(u1, u2, u3) : ∃t with F =
∂F

∂t
= 0

}

, where F = t4 + u1t
2 + u2t+ u3 .

A parametrization of this is

X(u, v) = (u,−4v3 − 2uv, 3v4 + uv2) .

The double curve where two sheets intersect transversally is

X(u(t) = −2t2, v(t) = ±t) = (−2t2, 0, t4)

and so the swallowtail point is at t = 0.

A general swallowtail surface, S say, is a local diffeomorphism of the stan-

dard swallowtail surface. Then the medial axis near to an A1A3 point is part

of S and another sheet γj which intersects with S in the double curve on S.

We let the local diffeomorphism of the standard swallowtail be H :

R
2 X−→ R3 H−→ R

3,

(u, v) 7−→ (x, y, z) 7−→ (H1, H2, H3),

H(x, y, z) = (x+ a1y + a2z + (b11x
2 + b12xy + b13y

2) + · · · ,
a3y + a4z + (b21x

2 + b22xy + b23y
2) + · · · ,

a5z + (b31x
2 + b32xy + b33y

2) + · · ·
)

.

(The linear terms have been labelled so as not to be confused with the ac-

celerations a1, a2, a3 – see §3.2, just above (3.7).) We assume the Jacobian

156



of H is non-singular, which means that a3a5 6= 0. Then a parametrization of

S is H(x(u, v), y(u, v), z(u, v)), where x(u, v) = u, y(u, v) = −4v3 − 2uv, and

z(u, v) = 3v4 + uv2. Then the A3
1 curve is given by substituting u = −2t2,

v = ±t into H(x(u, v), y(u, v), z(u, v)), and so the A1A3 point corresponds to

t = 0. Hence we can calculate all of the terms which appear in the A3
1 curvature

constraints and take their limits tending along the A3
1 curve towards the A1A3

point.

Firstly, Nj+1, Nj+2 are obtained along the double curve on S as follows:

Nj+1(t) = − Hu ×Hv

‖Hu ×Hv‖
(u = −2t2, v = t) ,

Nj+2(t) =
Hu ×Hv

‖Hu ×Hv‖
(u = −2t2, v = −t) .

Then we get

cos θj = cos(ψj+2 − ψj+1) = Nj+1 ·Nj+2 = −1 + 2
a2

5

a2
3

t2 +O(t4) ,

sin θj =
√

1 − cos2 θj = 2

∣

∣

∣

∣

a5

a3

∣

∣

∣

∣

t+ O(t3) (3.110)

along the A3
1 curve, and so sin θj → 0, cos θj → −1, as t→ 0, as expected. Let

the A3
1 curve on S be C(t). Then we can calculate T , N , B as functions of t,

and so obtain κ, τ . We get

ds

dt
= t(4 − 4(a2 + 4b11)t

2 +O(t4)) ,

κ =

√

(a4 + 4b21)2 + (a5 + 4b31)2

2
+O(t2) ,

τ =
12 (c31(a4 + 4b21) − c21(a5 + 4b31))

(a4 + 4b21)2 + (a5 + 4b31)2
+O(t2) ,

where s is arclength on C. Since we assumed κ was never zero when setting

up the [T,N,B] frame, we have that (a4 + 4b21)
2 + (a5 + 4b31)

2 6= 0, and so at

least one of (a4 + 4b21), (a5 + 4b31) is non-zero. Then we get

cosψj+1 = Nj+1(t) ·N(t) =
(a3(a5 + 4b31) − a5(a4 + 4b21)t+O(t2))

|a3|
√

(a4 + 4b21)2 + (a5 + 4b31)2
,

cosψj+2 = Nj+2(t) ·N(t) =
(−a3(a5 + 4b31) − a5(a4 + 4b21)t+O(t2))

|a3|
√

(a4 + 4b21)2 + (a5 + 4b31)2
.
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Since sinψj+2 = − sinψj+1 at the A1A3 point, we get the following.

sinψj+1 = η
(|a4 + 4b21| +O(t))

√

(a4 + 4b21)2 + (a5 + 4b31)2
,

sinψj+2 = −η (|a4 + 4b21| +O(t))
√

(a4 + 4b21)2 + (a5 + 4b31)2
,

where η = ±1. Since sinψj+2 = − sinψj+1 at t = 0, then by the power series

for sinψj+1, sinψj+2 above and the fact that ψj+2 6= ψj+1, this means that

(a4 + 4b21) 6= 0. Using these formulae, we can obtain ψ′

j+1, ψ
′

j+2 at t:

ψ′

j+1 = −d(cosψj+1)

dt

1

sinψj+1
ds
dt

=
1

t

(

a5(a4 + 4b21) +O(t)

η|a3|(|a4 + 4b21| +O(t))(4 − 4(a2 + 4b11)t2 +O(t4))

)

,

ψ′

j+2 = −d(cosψj+2)

dt

1

sinψj+2
ds
dt

= −1

t

(

a5(a4 + 4b21) +O(t)

η|a3|(|a4 + 4b21| +O(t))(4 − 4(a2 + 4b11)t2 +O(t4))

)

.

Therefore we have the following.

Lemma 3.9.1.1 The derivatives ψ′

j+1, ψ
′

j+2 tend to infinity like 1/t as t tends

to zero. Then

lim
sin θj→0

(ψ′

j+1 sin θj) = − lim
sin θj→0

(ψ′

j+2 sin θj) =
ηa5|a5|

2a2
3

sign(a4 + 4b21) ,

which is finite.

Now to calculate expressions for κWj+1, κ
W
j+2 at t. Lemma 3.4.4.1 gives an

expression for the normal curvature in a given direction, but its disadvantage

is that it is in terms of the principal directions on the given surface. Another

expression for the normal curvature kn in the direction λXu+µXv for a surface

S parametrized by X(u, v) is

eλ2 + 2fλµ+ gµ2

Eλ2 + 2Fλµ+Gµ2
,
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where E, F , G, e, f , g are the coefficients of the first and second fundamental

forms on S. Now consider S. A tangent to the double curve C is

(

Hu
du

dt
+Hv

dv

dt

)

at u = −2t2, v = ±t .

Then a tangent vector perpendicular to this is

(Hu ×Hv) ×
(

Hu
du

dt
+Hv

dv

dt

)

=

(

−du
dt
F − dv

dt
G

)

Hu +

(

du

dt
E +

dv

dt
F

)

Hv ,

evaluated at u = −2t2, v = ±t, where E, F , G are the coefficients of the first

fundamental form on S with respect to the parametrization H(u, v). Therefore

κWj+1 =
ej+1λ

2
j+1 + 2f j+1λj+1µj+1 + gj+1µ

2
j+1

Ej+1λ2
j+1 + 2F j+1λj+1µj+1 +Gj+1µ2

j+1

, where

λj+1 = 4tF j+1 −Gj+1 , µj+1 = −4tEj+1 + F j+1 ,

ej+1 = Huu ·Nj+1 , f j+1 = Huv ·Nj+1 , gj+1 = Hvv ·Nj+1 ,

Ej+1 = Hu ·Hu , F j+1 = Hu ·Hv , Gj+1 = Hv ·Hv ,

all evaluated at u = −2t2 , v = t ,

and κWj+2 =
ej+2λ

2
j+2 + 2f j+2λj+2µj+2 + gj+2µ

2
j+2

Ej+2λ2
j+2 + 2F j+2λj+2µj+2 +Gj+2µ2

j+2

,where

λ3 = 4tF 3 +G3 , µ3 = −4tE3 − F 3 ,

ej+2 = Huu ·Nj+2 , f j+2 = Huv ·Nj+2 , gj+2 = Hvv ·Nj+2 ,

Ej+2 = Hu ·Hu , F j+2 = Hu ·Hv , Gj+2 = Hv ·Hv ,

all evaluated at u = −2t2 , v = −t .

Using these formulae, we get

κWj+1 =
1

t2

(

128a3a5 + 128a5(4a1a3 − a4)t+O(t2)

|a3|(1024a2
3 +O(t))

)

,

κWj+2 =
1

t2

(−128a3a5 + 128a5(4a1a3 − a4)t+O(t2)

|a3|(1024a2
3 +O(t))

)

.

Hence we have the following.
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Lemma 3.9.1.2 The normal curvatures κWj+1, κ
W
j+2 tend to infinity like 1/t2

as t tends to zero. Then

lim
sin θj→0

(κWj+1 sin2 θj) = − lim
sin θj→0

(κWj+2 sin2 θj) =
a3

5

2a3
3|a3|

,

which is finite.

3.9.2 The A3
1 Consistency Conditions at an A1A3 point

Using Lemmas 3.9.1.1 and 3.9.1.2 we can obtain the forms of (3.72), (3.74)

when sin θj = 0. Since γj is not part of the swallowtail surface it is a smooth

sheet, and so aj , a
t
j , a

∗

j , κ
r
j , κ

t
j, and τ tj are all finite as sin θj → 0. Then, when

we let sin θj → 0 in (3.67) for i = j from Lemma 3.4.4.4 and use Lemma 3.9.1.1,

we get that φ′ is finite at the A1A3 point. Similarly, letting sin θj → 0 in (3.60)

and (3.73) for i = j gives that both φ̇j sin θj and ψ′

j tend to finite numbers.

From Remark 3.4.5.5 we can use either (3.72) or (3.74), since cosφ = cos θi = 0

is impossible for any i where ∇ri 6= 0.

Firstly we shall consider the limiting form of (3.72) from Theorem 3.4.5.3.

For this, we assume cosφ 6= 0. For i = j + 1, multiplying (3.72) by sin2 θj and

then setting sin θj = 0 we get

κWj+1 sin2 θj sinφ

sin θj+1
= −

2θ′j sin θj(−1)

cosφ
+
a∗j+2 sin2 θj cos4 φj+2

cos2 φ sin2 θj+2

−
a∗j

cos2 φ

+
φ′

cos2 φ sinφ
+

κ

sinφ

(

−sinψj(−1)

cos2 φ

)

,

which implies a∗j+2 sin2 θj is finite at the A1A3 point, since all of the other terms

are finite. Then for i = j + 2, multiplying (3.72) by sin2 θj and then setting

sin θj = 0 we get

κWj+2 sin2 θj sin φ

sin θj+2

=
2θ′j sin θj(−1)

cosφ
−
a∗j+1 sin2 θj cos4 φj+1

cos2 φ sin2 θj+1

+
a∗j

cos2 φ

− φ′

cos2 φ sinφ
+

κ

sinφ

(

sinψj(−1)

cos2 φ

)

,

which implies a∗j+1 sin2 θj is finite at the A1A3 point, again since all of the other

terms are finite. Note that a∗j+1 sin2 θj = a∗j+2 sin2 θj when sin θj = 0, since
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κWj+1 sin2 θj = −κWj+2 sin2 θj at sin θj = 0. Finally, for i = j, multiplying (3.72)

by sin θj and then setting sin θj = 0 gives

κWj sinφ =
2 cos θj+1

cosφ sin θj+1
(θ′j+1 sin θj + θ′j+2 sin θj) + 2(τ + ψ′

j) cosφ(−1)

+
cos4 φj+1

cos2 φ sin2 θj+1

(a∗j+1 − a∗j+2) sin θj +
κ

sinφ
(− cosψj cos2 φ) .

Hence (a∗j+1 − a∗j+2) sin θj is finite when sin θj = 0. Hence we get the following.

Proposition 3.9.2.1 As an A3
1 point tends towards an A1A3 point along an

A3
1 curve, the medial sheets must satisfy the following:

lim
sin θj→0

(

a∗j+1 sin2 θj
)

= lim
sin θj→0

(

a∗j+2 sin2 θj
)

,

lim
sin θj→0

(

(a∗j+1 − a∗j+2) sin θj
)

exists ,

lim
sin θj→0

(

(κWj+1 sin2 θj) cosφ sinφ

sin θj+1

)

= − lim
sin θj→0

(

(κWj+2 sin2 θj) cosφ sinφ

sin θj+1

)

= lim
sin θj→0

(

a∗j+1 sin2 θj cos4 φj+1

cos φ sin2 θj+1

− 4ψ′

j+1 sin θj +
φ′ + κ sinψj − a∗j sinφ

cosφ sinφ

)

,

lim
sin θj→0

(

κWj sin φ
)

= lim
sin θj→0

(

(a∗j+1 − a∗j+2) sin θj cos4 φj+1

cos2 φ sin2 θj+1

− 2
(

τ + ψ′

j

)

cosφ

+
4ψ′

j+1 sin θj cos θj+1

cosφ sin θj+1
− κ cosψj cos2 φ

sinφ

)

.

Here cos φ 6= 0 and the notation used is contained in Table 3.1.

Now we shall consider the limiting form of (3.74) from Theorem 3.4.5.4. For

this, we assume cos θi 6= 0 for any i. When cos θi = 0 then Proposition 3.9.2.1

holds, since cosφ 6= 0 when cos θi = 0. A similar argument to that which

resulted in Proposition 3.9.2.1 gives the following.

Proposition 3.9.2.2 As an A3
1 point tends towards an A1A3 point along an

A3
1 curve, the medial sheets must satisfy the following:
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lim
sin θj→0

(

φ̇j+1 sin2 θj

)

= lim
sin θj→0

(

φ̇j+2 sin2 θj

)

,

lim
sin θj→0

(

(φ̇j+1 − φ̇j+2) sin θj

)

exists ,

lim
sin θj→0

(

(

κWj+1 sin2 θj
)

sinφ

sin θj+1

)

= − lim
sin θj→0

(

(

κWj+2 sin2 θj
)

sin φ

sin θj+1

)

= lim
sin θj→0

(

− φ̇j+1 sin2 θj cosφj+1

cos θj+1 sin θj+1

− 2ψ′

j+1 sin θj cos φ− φ̇j sin θj

)

,

lim
sin θj→0

(

κWj sin φ
)

= lim
sin θj→0

(

(φ̇j+2 − φ̇j+1) sin θj cosφj+1

cos θj+1 sin θj+1

− 2
(

τ + ψ′

j

)

cosφ

+
2ψ′

j+1 sin θj cosφ cos(2θj+1)

cos θj+1 sin θj+1

− κ cosψj cos2 φ

sinφ

)

.

Here cos θi 6= 0 for any i and the notation used is contained in Table 3.1.

3.9.3 Second Example of A3
1 Case (Continued)

As stated in the first part (in §3.6) of this example we can calculate explicitly

the terms which appear in Theorems 3.4.5.2, 3.4.5.3, and 3.4.5.4. Similarly we

can illustrate Propositions 3.9.2.1, 3.9.2.2 by taking the limit as sin θj → 0.

Two of the points of contact on the parabolic gutter (given by z = by2) were

(x, y, by2) and (x,−y, by2). These coincide when y = 0. Hence the A3
1 point

C(y) from (3.97) is an A1A3 point when y = 0. Then we can say that γ1 is the

sheet which is not part of the swallowtail surface, since sin θ1 = 0, sin θ2 6= 0

and sin θ3 6= 0 at y = 0. Hence j = 1 in this example. From §3.6 we had

a∗1 = 0 , a∗2 = a∗3 = − 1

2by2
√

1 + 4b2y2
,

so a∗2 and a∗3 tend to infinity like 1/y2 as y → 0. Then, since

sin θ1 =
2
√

2by
√

1 + 2b2y2

1 + 4b2y2
,

we get a∗2 sin2 θ1 → a∗3 sin2 θ1 and (a∗2 − a∗3) sin θ1 → a finite number as y → 0,

as in Proposition 3.9.2.1. The latter happens since a∗2 = a∗3 for all (x, y). Also
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from §3.6 we had

φ̇1 cos φ1 = − 1√
2y
√

1 + 2b2y2(1 + 4b2y2)3/2
, φ̇2 = φ̇3 = 0 ,

so φ̇3 sin2 θ1 → φ̇3 sin2 θ1 and (φ̇2 − φ̇3) sin θ1 → a finite number as y → 0, as in

Proposition 3.9.2.2. Finally, from §3.6 we had

κW2 = −κW3 =
1

2
√

2by2
√

1 + 4b2y2(1 + 2b2y2)
,

so κW2 and κW3 tend to infinity like 1/y2 as y → 0. It can be shown that the

results of Proposition 3.9.2.1 are satisfied as y → 0.
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Chapter 4

Transitions on the Euclidean

Symmetry Set and Medial Axis

in Three Dimensions

4.1 Introduction

The complete list of possible transitions on the full bifurcation set of a generic

family of functions of one variable was obtained in [BG86]. Also, the method

of realizing the transitions on a family of distance-squared functions in two

dimensions was described. This involved obtaining conditions on the family

such that the considered singularity was versally unfolded and that the sections

of the bifurcation set of the family were generic. Even though functions of one

variable were considered in [BG86], the methods used were general and so can

be employed in the case of functions of two variables, except when considering

the so-called bad planes. In this case some additional work needs to be done

– see the important Remark 4.2.1.1. Hence, the aim of this chapter is to

carry out a similar study of one-parameter families of symmetry sets and of

medial axes in three dimensions, using the same methods, for certain generic

transitions. Connected to the evolution of the symmetry set in a generic family

of surfaces is work by Bogaevsky [Bog90, Bog02a], which provides a complete
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list of transitions (perestroikas) of generic ‘minimum functions’.

The singularities that we expect to occur on a one-parameter family of

medial axes in three dimensions are A4
1, A

5
1, A5, A1A3 (two types) and A2

1A3

(two types) (see [GK02, p.724]). We study these singularities in this chapter

(except for A5
1) and one of the singularities which are expected to happen

only on the symmetry set, and not on the medial axis, namely A1A4. For each

considered transition we want to obtain a family of surfaces in three dimensions

for which the distance-squared function has a certain singularity at a value of

the parameter of the family of surfaces. Then we require the singularity to

be versally unfolded and we will obtain conditions for the sections of the ‘big

bifurcation set’ (to be explained below) of the distance-squared function to be

generic. Such conditions below will be interpreted geometrically and involve

naturally occurring objects – most intriguingly the osculating plane of a line of

curvature on a surface in R3.

The local structure of the medial axis as it undergoes such transitions is

described in [GKP05], where some of the conditions obtained in this chapter

are verified. However, [GKP05] does not concentrate on the conditions for

realizing the transitions and so a paper which does focus on this would be

desirable (see §4.7).

Definition 4.1.1 A function h where

h : R
2, (0, 0) → R

(x1, x2) 7→ h(x1, x2)

is said to have type Ak at (0, 0) when h is right-equivalent (take a diffeomor-

phism of R2 and add a constant) to ±x2
2 ± xk+1

1 .

Bogaevsky [Bog02b] produced the following list of possible one-dimensional

strata which can pass through the singularities of symmetry sets in R
3. The

stratum D±

4 does not occur for the singularities considered in this chapter.
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Possible 1-D strata passing through the considered singularities

One-level strata Two-level strata

A4
1 A2

1/A
3
1

A2
1A2 A3

1/A2

A2
2 A2

1/A1A2

A1A3 A2/A1A2

A4 A2
1/A3

D±

4 A2/A3

As mentioned above we will require unfoldings to be versal, so here is a brief

summary of what this means, using the appendix from [BGG85]. Consider an

n-parameter unfolding g : (Rm×R
n, (q, u0)) → R of a multi-germ g0 : (Rm, q) →

R, where g(qi, u0) = g0(qi) for all i and q = (q1, . . . , qn). Let k be ‘sufficient’,

that is not less than the maximal degree of determinacy of the singularities

g0,i : (Rm, qi) → R. Then, from [BGG85], g is versal if

the k-multi-jets of
∂g

∂u1

(−, u0) , . . . ,
∂g

∂un
(−, u0) at q , and (1, . . . , 1)

span
E(m)

Jg0,1

⊕ · · · ⊕ E(m)

Jg0,n

,

where E(m) is the algebra of germs at 0 of smooth functions on Rm and Jg0,i

is the Jacobian ideal of g0,i. The vector (1, . . . , 1) corresponds to the fact that

we are allowed to add the same constant to each g0,i.

4.2 The A5 Transition

In this section we aim to find a family of surfaces in three dimensions which

exhibits an A5 transition and to give an example with pictures of such a fam-

ily. As in [BG86] we firstly consider the standard versal unfolding of an A5

singularity:

G : R2 × R4 → R ,

(X, Y, u1, u2, u3, u4) 7→ Y 2 +X6 + u1X
4 + u2X

3 + u3X
2 + u4X .

}

(4.1)
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Here R2 corresponds to (X, Y ) and R4 corresponds to the unfolding parameters

(u1, u2, u3, u4). Now we require the big bifurcation set of G, which is

BifG = {(u1, u2, u3, u4) : G has a degenerate singularity for some (X, Y )

or G has two singularities at the same level } .

The sets of BifG for which G has two singularities at the same level are called

A2
1 sets, and the ones for which G has a degenerate singularity are called A2

sets. This big bifurcation set is a three-dimensional object in R4
u

(that is

(u1, u2, u3, u4)-space) and the A5 point is at the origin. Taking sections of the

big bifurcation set with non-singular surfaces near to (0, 0, 0, 0) gives one of the

possible full bifurcation sets near to the A5 singularity. Then taking a family

of such non-singular surfaces gives a family of full bifurcation sets which pass

through the A5 point. There is only one A2
1 set in BifG:

{(u1, u2, u3, u4) : u2 = −2(X1 +X2)(2X
2
1 +X1X2 + 2X2

2 + u1) ,

u3 = u1(X
2
1 + 4X1X2 +X2

2 )

+3(X2
1 + 3X1X2 +X2

2 )(X2
1 +X1X2 +X2

2 ) ,

u4 = −2X1X2(X1 +X2)(u1 + 3(X2
1 +X1X2 +X2

2 )) ,

for X1 6= X2, X1 6= 0, X2 6= 0} .



































(4.2)

The A2 set of BifG is given by

{(u1, u2, u3, u4) : u3 = −3X(5X3 + 2u1X + u2) ,

u4 = X2(24X3 + 8u1X + 3u2) , for X 6= 0} .

}

(4.3)

4.2.1 Bad 3-spaces

Following [BG86], a three-dimensional subspace through the origin in R4
u

given

by

λ1u1 + λ2u2 + λ3u3 + λ4u4 = 0 (4.4)

is called a bad 3-space if it contains the limit of tangent spaces to a stratum of

BifG at points tending to the origin. An as yet unresolved problem connected

to this is described in the remark below.
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Remark 4.2.1.1 In this chapter we have assumed that all limits of tangent

spaces to strata of dimension greater than one contain a limit of tangent spaces

to a one-dimensional stratum. This was the case in [BG86] and in correspon-

dence with Bogaevsky [Bog02b] he has confirmed that this is true in all the

cases he has checked, but there is as yet no general proof. Clearly this is

an interesting topic for further investigation; for the purposes of the present

chapter we note that our list of cases agrees with that of Bogaevsky, but in

principle there might be additional normal forms for generic functions on these

bifurcation sets.

Calculations show that of the possible one-dimensional strata only the fol-

lowing occur for an A5 transition:

A2
2 : {(u1, u2, u3, u4) = (−3X2, 0, 3X4, 0)} ,

A1A3 : {(u1, u2, u3, u4) = (−6X2, 4X3, 9X4,−12X5)} ,
A4 : {(u1, u2, u3, u4) = (−15X2, 40X3,−45X4, 24X5)} ,

A2
1/A

3
1 : {(u1, u2, u3, u4) = (−6X2, 0, 9X4, 0)} ,

A2
1/A1A2 : {(u1, u2, u3, u4) =

(

−
(

3 + 21/3 + 22/3
)

X2,

(

−(2 + 21/3)

3

)

X3,

(

23(22/3) + 44 + 28(21/3)

12

)

X4,

(

4 + 2(21/3) + 22/3

6

)

X5

)}

,

A2
1/A3 : {(u1, u2, u3, u4) = (−X2, 0, 0, 0)} ,

A2/A3 : {(u1, u2, u3, u4) = (−135X2,−40X3, 120X4, 96X5)} ,

where X 6= 0. It is easy to see that this limit of tangent vectors is (1, 0, 0, 0).

Hence, when considering the limits of tangent spaces to the one-dimensional

strata, the bad 3-spaces in R4
u

are (4.4) for which λ1 = 0. There might be other

bad 3-spaces (see Remark 4.2.1.1).

In RP 3 the 3-space λ1u1 + λ2u2 + λ3u3 + λ4u4 = 0 is represented by a

point (λ1 : λ2 : λ3 : λ4). If ∆ is the set of bad 3-spaces, we are interested the

number of regions in RP 3−∆, and also the amount of types of transition given
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by taking 3-spaces which have representations from within these regions. By

doing this we aim to identify the various types of transition and obtain criteria

for realizing them. For the A5 transition RP 3 − ∆ is in

{(λ1 : λ2 : λ3 : λ4) : λ1u1 + λ2u2 + λ3u3 + λ4u4 = 0, λ1 6= 0} . (4.5)

If there are no other bad 3-spaces then RP 3−∆ has one region and hence there

is only one type of A5 transition.

4.2.2 Representations of the A5 Transition

To obtain pictures of the symmetry set as it goes through an A5 transition, we

choose a particular 3-space which is not a bad space. From (4.5) the choice of

{(u1, u2, u3, u4) : u1 = k const.}

is not a bad 3-space, provided there are no bad 3-spaces given by considering

limits of tangent spaces to two- and three-dimensional strata. In this case

taking the sections of this with the A2
1 sets of BifG for various k gives the A5

transition on the family of symmetry sets. In Figures 4.1, 4.2 are pictures of

these sections, in (u2, u3, u4)-space.

Bogaevsky [Bog02b] suggested the following alternative to Figures 4.1, 4.2.

Let π(u1, u2, u3, u4) = (ξ, η) be a projection such that its fibre lies on an

isochrone τ(u1, u2, u3, u4) = u1 = k. That is, τ(·) = σ(π(·)) where σ(ξ, η)

is a smooth function. Consider in the plane with coordinates (ξ, η) the projec-

tion of all one-dimensional strata of the A2
1 and A2 sets of BifG, given by (4.2),

(4.3). For some point (ξ0, η0) of the complement to this projection we can draw

the curve π−1(ξ0, η0)∩BifG. This ‘clock face’ with the curve σ(ξ0, η0) = 0 helps

to imagine the transition. It can be shown that the choice of

π(u1, u2, u3, u4) =

(

u2 +
1

10
(u3 + u4), u1

)

has the fact that π restricted to each of the two- and three-dimensional strata

of BifG is a submersion at smooth points close to the origin. Also, the choice

of σ(ξ, η) = η means that σ(π(u1, u2, u3, u4)) = u1.

169



Figure 4.1: The sections of the A2
1 sets of BifG, the big bifurcation set of the standard

unfolding G given by (4.1), with the planes u1 = k (const.). In these pictures,

k = −0.5. Top: Two different views of the A2
1 sets and the special curves on them.

Bottom: only the special curves and special points are shown. The blue, red curves

correspond respectively to A3, A
3
1 curves. The green, turquoise curves are A1A2

curves. The black, red and blue points correspond respectively to A1A3, A4, A
2
2

points. Not all of the surfaces and curves in these pictures lie on the medial axis;

the A3 (blue) curve would end on the medial axis where it meets the A3
1 (red) curve,

and the A1A2 curves and A4, A
2
2 points would not lie on the medial axis.
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Figure 4.2: Left: k = 0, the moment of transition. All of the structure of the

previous picture has collapsed, except for the A3 (blue) curve, on which is an A5

point. Right: k = 0.5. There is a smooth A3 curve on the medial axis.

Figure 4.3 shows the projections under π of the one-dimensional strata of

BifG in the plane with coordinates (ξ, η). These are labelled; for example the

one-dimensional stratum corresponding to an A4 singularity of the standard

unfolding (4.1) is labelled A4. Also drawn is the curve σ = −0.5, which inter-

sects the projections of the one-dimensional strata in the points labelled pi. The

points on σ = −0.5 which lie between the projections of the one-dimensional

strata are labelled qi. Finally, the point m2 corresponds to the A5 point. Fig-

ures 4.4 to 4.12 show π−1(pi) ∩ BifG, π−1(qi) ∩ BifG and π−1(m2) ∩ BifG. In

order to obtain π−1(ξ0, η0) ∩ {A2
1 set given by (4.2)} for ξ0, η0 constants, it is

necessary to solve equal to zero a polynomial in X1 and X2. Hence the boxes

in each of Figures 4.4 to 4.12 are the set of X1, X2 near to zero for which this

equation is satisfied for (ξ0, η0) corresponding to one of the points pi, qi or m2.

Some of the transitions that occur in these pictures can be observed in these

‘pre-sets’ – see the captions to Figures 4.4 to 4.12.
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Figure 4.3: Representing the A5 transition. The picture at the bottom is of the

picture at the top, but with the ξ-axis stretched. The curves labelled A4, etc. are

the projections under π of the one-dimensional strata of BifG for the A5 transition. A

curve σ = −0.5 intersects these in points pi. In Figures 4.4 to 4.12, the intersections

π−1(pi) ∩ BifG, π−1(qi) ∩ BifG and π−1(m2) ∩ BifG are drawn.
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Figure 4.4: In Figures 4.4 to 4.12, the intersections π−1(pi) ∩ BifG, π−1(qi) ∩ BifG

and π−1(m2) ∩ BifG are drawn (see Figure 4.3 for an explanation of what pi, qi, m2

are). The intersection with the A2 part of BifG is drawn in bold, the intersection

with the A2
1 part is the thinner curve. The boxes underneath the curves are the set of

X1, X2 such that π−1(ξ0, η0), for ξ0, η0 constants, intersects with the A2
1 set given by

(4.2). Some of the transitions that occur in these pictures can be observed in these

‘pre-sets’. Top, from left: q1, p1; bottom, from left: q2, p2. Top right: a new piece

of A2
1 set is about to form. Bottom left: this new piece of A2

1 set is a swallowtail

with endpoints coinciding with newly created cusps on the A2 set. This new piece is

visible on the pre-set. Bottom right: a cusp of the A2 curve meets a part of the A2
1

set.
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Figure 4.5: Top: q3 (right: a closer look at the picture on the left); bottom: p3

(right: closer look). Top: there are two newly created cusps on the A2
1 set. Bottom:

a cusp of the A2 set now meets another part of the A2 set.
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Figure 4.6: Top, from left: q4, p4; bottom: q5. Top left: the A2 piece now intersects

the other A2 piece with a cusp in two points. Top right: a cusp of the A2
1 set now

meets another part of the A2
1 set. Bottom right: an A2

1 piece with a cusp meets

another part of the A2
1 set in two points.
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Figure 4.7: Top: p5 (right: closer look); bottom: q6 (right: closer look). Top: a part

of the A2
1 set passes through the leftmost cusp of the A2 set. Bottom: the branch of

the A2
1 no longer passes through the leftmost cusp of the A2 set.
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Figure 4.8: Top: p6 (right: closer look); bottom: q7 (right: closer look). Top: there

is now a point where four branches of the A2
1 set meet. Bottom: now there is only a

triple intersection and two double intersections nearby.
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Figure 4.9: Top: p7 (right: closer look); bottom: q8 (right: closer look). Top: the

moment of a nib transition on the A2
1 set – two cusps of the A2

1 set coincide at an

intersection of two pieces of the A2 set. After this transition the branches will pair

off differently from before. The moment of transition is visible on the pre-set, since

there are two self crossings here. Bottom: the two cusps of the A2
1 set now lie only

on one piece of the A2 set and they do not coincide. The branches on the pre-set

and on the A2
1 set are now paired differently.
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Figure 4.10: Top, from left: p8, q9; bottom: p9. Top left: one of the cusps of the A2
1

set meets another piece of the A2
1 set and a piece of the A2 set. Top right: the same

cusp meets only the A2 set, not the A2
1 set. Bottom: a cusp of the A2 set now meets

another piece of the A2 set.
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Figure 4.11: Top, from left: q10, p10; bottom, from left: q11, p11. Top left: the

part of the A2 set near to the cusp at the bottom of the picture no longer intersects

another part of the A2 set nearby. Top right: a cusp of the A2 set meets a part of

the A2
1 set and two cusps of the A2

1 set collapse. Bottom left: the cusp of the A2

set no longer meets a part of the A2
1 set, which is smooth nearby. Bottom right: the

moment of a piece of the A2
1 set vanishing and two cusps collapsing on the A2 set.
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Figure 4.12: From left: q12, m2. Left: a piece of the A2
1 set has now vanished and

two cusps of the A2 set have disappeared, leaving the A2 set smooth nearby. This

picture is the same as that for q1. Right: this corresponds to the A5 point. There is

a cusp worse than (t2, t3) on the A2 set.

4.2.3 A Family of Surfaces

Now we shall connect these calculations for the standard unfolding of an A5

singularity with a family F of distance-squared functions from a one-parameter

family of surfaces in R3 to a point in R3. Consider a family of surfaces in Monge

form given by z = f(x, y, t) where

f0(x, y) = f(x, y, 0)

= 1
2
(κ1x

2 + κ2y
2) + (b0x

3 + b1x
2y + b2xy

2 + b3y
3)

+(c0x
4 + c1x

3y + c2x
2y2 + c3xy

3 + c4y
4)

+(d0x
5 + d1x

4y + d2x
3y2 + d3x

2y3 + d4xy
4 + d5y

5)

+(e0x
6 + e1x

5y + e2x
4y2 + e3x

3y3 + e4x
2y4 + e5xy

5 + e6y
6)

+ · · ·















































(4.6)

where we assume κ1 6= κ2, so that (0, 0, f0(0, 0)) is not an umbilic, and that

κ1 6= 0. Then the family F is given by

F : R2 × R4, (0, 0, 0,p0) → R ,

(x, y, t, a, b, c) 7→ ‖(x, y, f(x, y, t))− (a, b, c)‖2 .

}

(4.7)
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Hence F (x, y, t, a, b, c) is the square of the distance from a point (a, b, c) ∈ R3

to a point (x, y, f(x, y, t)).

We want to realize an A5 transition on this family and so firstly we use

Definition 4.1.1. Let F0 be such that F0(x, y) = F (x, y, 0,p0). Then we require

F0 to be right-equivalent to ±y2 ± x6.

Right-equivalence to ±y2 ± x3. We have

F (x, y, 0, a, b, c) = (x− a)2 + (y − b)2 + (f0(x, y) − c)2

= a2 + b2 + c2 − 2ax− 2by + (1 − cκ1)x
2 + (1 − cκ2)y

2

−2c(b0x
3 + b1x

2y + b2xy
2 + b3y

3) + h.o.t. in x, y.

Hence for F0 to be right-equivalent to ±y2±x3 we need a = b = 0 and c = 1/κ1,

so p0 = (0, 0, 1/κ1). (This is where we require κ1 6= 0.) We need the y2 term

to remain, which means that we assume 1 − κ2/κ1 6= 0. Let

λ = 1 − κ2

κ1

, ǫ = sign(λ) .

Then take the change of variables

x 7→ x , y 7→ y −
(

b1x
2 + b2xy + b3y

2

κ1 − κ2

)

= y1 ,

which makes F (x, y(y1), 0, 0, 0, 1/κ1) =
1

κ2
1

+

(

1 − κ2

κ1

)

y2
1 −

2b0
κ1
x3 + h.o.t.

Then if we take a further change of variables

x 7→
(

3

√

−2b0
κ1

)

x , y1 7→
(

√

|λ|
)

y1

we get that F0 is right-equivalent to ǫy2 +x3 when b0 6= 0 (since, by [A74], this

is 3-determined). Hence F0 has type A2 if p0 = (0, 0, 1/κ1), κ1 6= 0, λ 6= 0 and

b0 6= 0.

The following uses the same methods to obtain conditions for F0 to have

A3, A4, and A5 at x = y = 0. We assume that p0 = (0, 0, 1/κ1), κ1 6= 0, λ 6= 0

and b0 = 0.
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Right-equivalence to ±y2 ± x4. If α0 6= 0 where

α0 =
κ2

1

4
− b21
κ1(κ1 − κ2)

− 2c0
κ1

then F0 is right-equivalent to ǫy2 +ηx4, where η = sign(α0), and so F0 has type

A3 at x = y = 0.

Right-equivalence to ±y2 ± x5. Given α0 = 0 and β0 6= 0, where

β0 = −2b1(c1(κ1 − κ2) + b1b2)

κ1(κ1 − κ2)2
− 2d0

κ1
,

then F0 is right-equivalent to ǫy2 + x5 and so has A4 at x = y = 0.

Right-equivalence to ±y2 ± x6. If α0 = β0 = 0 and γ0 6= 0, where

γ0 =
κ4

1

8
− (2b1d1 + c21)

κ1(κ1 − κ2)
+
b1(b1κ

3
1 − 4b1c2 − 8b2c1)

2κ1(κ1 − κ2)2

−2b21(b1b3 + 2b22)

κ1(κ1 − κ2)3
− 2e0

κ1
,

then F0 is right-equivalent to ǫy2 + νx6, where ν = sign(γ0) and so has A5 at

x = y = 0.

Summary. If p0 = (0, 0, 1/κ1), κ1 6= 0, λ 6= 0, b0 = 0, α0 = 0, β0 = 0 and

γ0 6= 0 then F0 has type A5. Moreover, if sign(λ) = sign(γ0) then F0 is right-

equivalent to ±(y2 +x6), which corresponds to an isolated intersection between

the sphere centred at (0, 0, 1/κ1) of radius 1/κ1 and the surface z = f0(x, y) at

the origin. This is what we want, since we are interested in the A5 transition

on the medial axis rather than on the part of the symmetry set which is not

on the medial axis.

4.2.4 Condition for Versal Unfolding

Given that F0 has type A5 we then require the A5 singularity to be versally

unfolded by F . The condition for an unfolding to be versal was described in
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§4.1. For the A5 transition we require that the 6-multi-jets of

∂F

∂t
,
∂F

∂a
,
∂F

∂b
,
∂F

∂c
(all evaluated at t = a = b = 0, c = 1/κ1)

should span
E(2)

JF0

(ignoring constant terms),

where JF0
is the Jacobian ideal of F0, and so is spanned by ∂F0/∂x, ∂F0/∂y.

We need only consider the 6-multi-jets since the A5 singularity is 6-determined.

Strictly speaking we should have ∂F/∂(c− 1/κ1), since we allow small changes

in (c − 1/κ1) in order to obtain all singularities near to A5. However, this

does not make any difference to the formulae. We obtain E(2)/JF0
by taking

polynomial multiples of ∂F0/∂x, ∂F0/∂y to remove monomials in x, y contained

in E(2). If we take f(x, y, t) = f0(x, y) + tx4 in (4.6) it can be shown that F

versally unfolds the A5 singularity if













κ1 0 0

0 2b1(κ1 − κ2) −2b21

b1 2b2 c1

0 κ1 − κ2 −b1













has maximal rank.

Hence the condition for F to be a versal unfolding of an A5 singularity is that

c1(κ1 − κ2) + 2b1b2 6= 0 . (4.8)

4.2.5 Conditions for Generic Sections

We will now connect the unfolding F given by (4.6), (4.7) and f(x, y, t) =

f0(x, y) + tx4 with the standard unfolding G, from (4.1), of the A5 singularity.

Given that F has the property that F0 has type A5 at x = y = 0 and that it

versally unfolds the A5 singularity (which happens when (4.8) is satisfied), we

can say that F and G are isomorphic as unfoldings (from [BGG85]) and so G

can be induced from F by

G(X, Y,u) = F (A(X, Y,u), B(u)) + C(u) (4.9)

184



where A : (R2 × R4, (0, 0)) → R2 is a germ with A(−, 0) invertible, B :

(R4, 0) → (R4, (0,p0)) is an invertible germ and C : (R4, 0) → (R,−1/κ2
1)

is a germ.

Now the big bifurcation set (BifF ) of F is a three-dimensional object in R4,

corresponding to (t, a, b, c)-space. Sections of this give the symmetry set and

focal set of the surface z = f(x, y, t) at values of t. We require these sections

to be generic, which imposes restrictions on the family F , obtained from the

following:

R
2 × R

4 F×id−→ R × R
4 −→ R

4 π−→ R

(A× B)
x




(−C × B)

x



 B
x




ր h

R2 × R4 G×id−→ R × R4 −→ R4

Using this commutative diagram we can get the condition for avoiding bad

sections of BifF by using the condition for a bad 3-space in the standard case.

The tangent space to BifG is given by the kernel of h:

ker dh : R
4 → R, which has matrix

(

∂h

∂u1

,
∂h

∂u2

,
∂h

∂u3

,
∂h

∂u4

)∣

∣

∣

∣

u=0

.

Hence, from (4.5), we see that the generic functions h are those for which

∂h/∂u1 6= 0 at u = 0, with possibly other functions given by considering

tangent spaces to the two- and three-dimensional strata (see Remark 4.2.1.1).

From the commutative diagram we see that h = π ◦B, where π : (t, a, b, c) 7→ t

and so some generic sections of BifF are given by

∂B1

∂u1

∣

∣

∣

∣

u=0

u1 +
∂B1

∂u2

∣

∣

∣

∣

u=0

u2 +
∂B1

∂u3

∣

∣

∣

∣

u=0

u3 +
∂B1

∂u4

∣

∣

∣

∣

u=0

u4 = 0 ,

for which
∂B1

∂u1

∣

∣

∣

∣

u=0

6= 0, where B1 is the first component of B .

The remaining task is to link this condition with the unfolding F , which is
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done by using the relationship (4.9) between F and G. We get

(

∂G
∂u1

∂G
∂u2

∂G
∂u3

∂G
∂u4

)∣

∣

∣

(X,Y,0)
=
(

X4 X3 X2 X
)

=
(

∂F
∂x

∂F
∂y

)∣

∣

∣

(A(X,Y,0),B(0))
×









∂Ax

∂u1

∂Ax

∂u2

∂Ax

∂u3

∂Ax

∂u4

∂Ay

∂u1

∂Ay

∂u2

∂Ay

∂u3

∂Ay

∂u4









∣

∣

∣

∣

∣

∣

∣

∣

(X,Y,0)

+
(

∂F
∂t

∂F
∂a

∂F
∂b

∂F
∂c

)∣

∣

∣

(A(X,Y,0),B(0))
×





























∂B1

∂u1

∂B1

∂u2

∂B1

∂u3

∂B1

∂u4

∂B2

∂u1

∂B2

∂u2

∂B2

∂u3

∂B2

∂u4

∂B3

∂u1

∂B3

∂u2

∂B3

∂u3

∂B3

∂u4

∂B4

∂u1

∂B4

∂u2

∂B4

∂u3

∂B4

∂u4





























∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u=0

+
(

∂C
∂u1

∂C
∂u2

∂C
∂u3

∂C
∂u4

)∣

∣

∣

u=0

.

Consider the Taylor expansions at X = Y = 0 of the components of both

sides of the above; the left-hand side evaluated at (X, Y, 0), the right-hand side

evaluated at (A(X, Y, 0), B(0)). In particular we want the coefficients of X,

X2, X3, X4 of these Taylor expansions. Using the relation (4.9) at u = 0:

Y 2 +X6 = F

(

A(X, Y, 0),

(

0, 0, 0,
1

κ1

))

+ C(0) for all X, Y ,

it can be shown that the coefficients of X, X2, X3, X4 in the Taylor expansions

at X = Y = 0 of ∂F/∂x, and of ∂F/∂y, evaluated at (A(X, Y, 0), B(0)) are all
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zero. Hence we get the following:

I4 = M × JB , where

JB =





























∂B1

∂u1

∂B1

∂u2

∂B1

∂u3

∂B1

∂u4

∂B2

∂u1

∂B2

∂u2

∂B2

∂u3

∂B2

∂u4

∂B3

∂u1

∂B3

∂u2

∂B3

∂u3

∂B3

∂u4

∂B4

∂u1

∂B4

∂u2

∂B4

∂u3

∂B4

∂u4





























∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u=0

,

M =





























coeff. of X4 in Taylor exp. of ∂F
∂t
, ∂F
∂a
, ∂F
∂b
, ∂F
∂c

coeff. of X3 in . . .

coeff. of X2 in . . .

coeff. of X in . . .





























∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A(X,Y,0),B(0)

and I4 is the (4×4) identity matrix. Since we have assumed the condition (4.8)

for F to be a versal unfolding is satisfied, we can say that the determinant of

JB is non-zero and so JB = M−1. We can calculate the matrix M−1 in the

terms that appear in the of the family F using the relation (4.9). Then we find

that

∂B1

∂u1
(0) 6= 0 ⇐⇒ c1(κ1 − κ2) + 2b1b2 6= 0 ,

which we know is true, since we assumed (4.8) holds. Hence, provided there

are no additional normal forms for generic functions other than the h with

∂h/∂u1 6= 0 at u = 0, if F is a versal unfolding of the A5 singularity, the

sections of BifF are generic.

So we have the following.

Proposition 4.2.5.1 The necessary conditions for the one-parameter family

of symmetry sets of the family of surfaces z = f0(x, y) + tx4, where f0(x, y) is
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given by (4.6), to exhibit an A5 transition are that

0 = b0 ,

0 =
κ2

1

4
− b21
κ1(κ1 − κ2)

− 2c0
κ1

,

0 = −2b1(c1(κ1 − κ2) + b1b2)

κ1(κ1 − κ2)2
− 2d0

κ1
,

0 6= κ4
1

8
− (2b1d1 + c21)

κ1(κ1 − κ2)
+
b1(b1κ

3
1 − 4b1c2 − 8b2c1)

2κ1(κ1 − κ2)2

−2b21(b1b3 + 2b22)

κ1(κ1 − κ2)3
− 2e0

κ1

,

0 6= c1(κ1 − κ2) + 2b1b2 .

Moreover if the sign of the right-hand side of the fourth condition is the same

as the sign of (κ1 − κ2)/κ1 then the transition occurs on the medial axis. The

first four conditions ensure that the origin is an A5 point at the moment of

transition and the last condition means the A5 singularity is versally unfolded

by F (given by (4.6), (4.7)) and that the plane sections of the big bifurcation set

are generic, provided there are no additional normal forms for generic functions

given by considering the limits of tangent spaces to two- and three-dimensional

strata (see Remark 4.2.1.1).

4.2.6 Interpretation of the A5 Condition

There are several interpretations of the last condition of Proposition 4.2.5.1.

From [HGYGM99, pp.144, 162], the local equation of the ridge corresponding

to κ1 at the origin is

3
(

(κ1 − κ2)(8c0 − κ3
1) + 4b21

)

x+ 6 (c1(κ1 − κ2) + 2b1b2) y + · · · = 0

⇐⇒ (0)x+ 6 (c1(κ1 − κ2) + 2b1b2) y + · · · = 0 ,

since the origin is an A5 point and so the first four conditions of Propo-

sition 4.2.5.1 hold. Then the last condition of Proposition 4.2.5.1 is that

0 6= c1(κ1 − κ2) + 2b1b2, which is the same as the ridge curve corresponding to

κ1 being non-singular at the origin.
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Another interpretation is given by considering the line of curvature cor-

responding to κ1. When the first four conditions of Proposition 4.2.5.1 are

satisfied, this line of curvature is given by z = f0(x, y(x)) where

y(x) =

(

b1
κ1 − κ2

)

x2 +

(

c1(κ1 − κ2) + 2b1b2
(κ1 − κ2)2

)

x3 + · · · ,

giving f0(x, y(x)) =
κ1

2
x2 +

κ1(κ
2
1(κ1 − κ2)

2 + 4b21)

8(κ1 − κ2)2
x4

+
κ1b1(c1(κ1 − κ2) + 2b1b2)

(κ1 − κ2)2
x5 + · · · .

Then the torsion τ of this curve is zero at x = 0 if and only if c1(κ1−κ2)+2b1b2 =

0. Hence the condition c1(κ1 − κ2) + 2b1b2 6= 0 means that the torsion of the

line of curvature corresponding to κ1 is non-zero. Alternatively, the condition

c1(κ1 − κ2) + 2b1b2 6= 0 means that the projection of the line of curvature

corresponding to κ1 to the (x, y)-plane does not have an inflexion when b1 6= 0.

Secondly, choose κ1 > κ2 without loss of generality, since (κ1 − κ2) 6= 0.

Then we want sign(κ1) = the sign of the right-hand side of the fourth condition

of Proposition 4.2.5.1 for the transition to be on the medial axis. Given this, it

can be shown that the expansion of κ1 along the line of curvature corresponding

to κ1 is

κ1(x) = κ1(0) − (positive const.)x4 + · · ·

and so κ1 has a maximum at x = 0.
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4.2.7 Example

Take numerical values for the coefficients of f0(x, y) so that the conditions of

Proposition 4.2.5.1 are satisfied. Let

f0(x, y) =
1

2

(

x2 +
1

4
y2

)

+

(

1

2
x2y +

3

10
xy2 − 1

5
y3

)

+

(

− 1

24
x4

)

+

(

− 2

15
x5

)

+

(

1363

10800
− 1

10

)

x6,

that is κ1 = 1, κ2 =
1

4
,

b0 = 0, b1 =
1

2
, b2 =

3

10
, b3 = −1

5
,

c0 = − 1

24
, d0 = − 2

15
, e0 =

1363

10800
− 1

10

and all the other coefficients are zero in the formula (4.6) for f0(x, y). All

of the conditions of Proposition 4.2.5.1 are satisfied for these values. Hence

the necessary conditions are satisfied for a generic A5 transition to occur on

the family of distance-squared functions F given by (4.7) for f0(x, y) with the

numerical values for the coefficients taken as above. It can be shown that the

right-hand side of the fourth condition of Proposition 4.2.5.1 is positive. Then,

since (κ1 − κ2) > 0 and κ1 > 0, the transition takes place on the medial axis of

the surface z = f(x, y, t) at values of t moving from positive to negative.

As an A5 transition occurs on the medial axis, certain events happen on

the surface z = f(x, y, t) at various values of t. See Figures 4.13, 4.14 for an

example of what happens to ridge curves during an A5 transition.
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Figure 4.13: An example of the surface z = f(x, y, t) at values of t; on the left

t = 0.03, on the right t = 0. Drawn on each surface are the principal direction field

and the ridge curves corresponding to the larger principal curvature. (The ridge

should be a continuous curve, but owing to numerical errors it sometimes ‘dives’

underneath the surface and so cannot be seen.) The ridge curves on the right of the

surfaces are of interest: as the medial axis goes through the A5 transition, the ridge

curve loses two A4 points, that is points at which the ridge has a turning point and

is tangent to the corresponding principal direction. Left: the A4 points are still on

the ridge curve on the right of the surface. Right: at t = 0 the ridge has degenerate

tangency with the principal direction at x = y = 0 – this corresponds to the A5

point.
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Figure 4.14: The continued example of the surface z = f(x, y, t); this picture is at

t = −0.1. This is after the A5 transition and the ridge curve has lost two A4 points,

since there are no points on the ridge at which the ridge has a turning point and is

tangent to the corresponding principal direction.
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4.3 The A2
1A3 Transitions

Now we shall use the same methods for the A2
1A3 cases as employed for the A5

transition. The standard multi-versal unfolding of an A2
1A3 singularity is

G : R
2 × R

4 → R , given by the three unfoldings

G1 : (X1, Y1, u1, u2, u3, u4) 7→ Y 2
1 +X4

1 + u1X
2
1 + u2X1 ,

G2 : (X2, Y2, u1, u2, u3, u4) 7→ Y 2
2 +X2

2 + u3 ,

G3 : (X3, Y3, u1, u2, u3, u4) 7→ Y 2
3 +X2

3 + u4 .























(4.10)

4.3.1 The Bad 3-spaces

We need to calculate the bad 3-spaces, in other words those spaces in R
4
u

given

by (4.4) which contain any of the limiting tangent vectors to the strata of the

big bifurcation set of G given by (4.10). For (4.10), the one-dimensional strata

are

A4
1 : {(u1, u2, u3, u4) = (−2X2, 0,−X4,−X4)} ,

A2
1A2 : {(u1, u2, u3, u4) = (−6X2, 8X3, 3X4, 3X4)} ,

A1A3 : {(u1, u2, u3, u4) = (0, 0, u3, 0)}
∪{(u1, u2, u3, u4) = (0, 0, 0, u4)} ,

A2
1/A

3
1 : {(u1, u2, u3, u4) = (−2X2, 0, 0, 0)} ,

A2/A
3
1 : {(u1, u2, u3, u4) = (−6X2, 8X3,−24X4,−24X4)} ,

A2
1/A1A2 : {(u1, u2, u3, u4) = (−6X2, 8X3, 3X4,−24X4)}

∪{(u1, u2, u3, u4) = (−6X2, 8X3,−24X4, 3X4)} ,
A2

1/A3 : {(u1, u2, u3, u4) = (0, 0, u3, u3)} .

We can see that the limits of tangent vectors to these one-dimensional strata

are (1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) and (0, 0, 1, 1). Hence the bad 3-spaces are

(4.4) where λ1 = 0 or λ3 = 0 or λ4 = 0 or λ3 + λ4 = 0, with other possible

bad 3-spaces given by considering limits of tangent spaces to two- and three-

dimensional strata (see Remark 4.2.1.1).
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As we did for the A5 transition, we need to determine the number of regions

in RP 3 − ∆, where ∆ is the set of bad 3-spaces. From this we can decide the

number of types of transition and obtain criteria for realizing each one. Since

λ2 is not mentioned in ∆, we need only consider (λ1 : λ3 : λ4) as a point in

RP 2.

(1:0:0)

l
1
= 0

l
4
= 0

l
3
= 0

l
3

= 0l
4

+

(0:1:0) (0:0:1) (0:-1:1)

Figure 4.15: The A2
1A3 case: the non-shaded region gives one type of transition, the

lightly shaded region gives another type, and the darkly shaded region gives the last

type of transition.

Given that there are no additional bad 3-spaces, it can be shown that there

are three possible types of A2
1A3 transition, according to the region in which

(λ1 : λ3 : λ4) lies in Figure 4.15; the non-shaded region gives one type, the

lightly shaded region gives another type, and the darkly shaded region gives

the last type of transition. From Proposition 4.3.5.1 below, we get that one

of these types of transition cannot be realized by a family of distance-squared

functions. We get the following.

Proposition 4.3.1.1 Provided the bad 3-spaces are (4.4) where λ1 = 0 or λ3 =

0 or λ4 = 0 or λ3 +λ4 = 0, then the sections λ1u1 +λ2u2 +λ3u3 +λ4u4 = const.

of the big bifurcation set of the standard unfolding G from (4.10) give one of

three possible transitions, distinguished by the following:

• λ3λ4 < 0 corresponds to A2
1A3-I;
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• sign(λ1) = −sign(λ3) = −sign(λ4) corresponds to A2
1A3-II;

• sign(λ1) = sign(λ3) = sign(λ4) corresponds to the other possible type of

A2
1A3 transition.

4.3.2 Representations of the A2
1A3 Transition

The pictures of the sections of the big bifurcation set of the standard unfolding

G from (4.10) can be obtained in the same way as for the A5 singularity (see

§4.2.2). Hence, when considering the list of bad 3-spaces in Proposition 4.3.1.1,

the three possible cases are illustrated in Figures 4.16 to 4.18. In this case a one-

parameter family of symmetry sets must look like one of the three transitions

in these figures (in fact it will be shown in Proposition 4.3.5.1 below that one of

the cases cannot occur for a one-parameter family of symmetry sets). Pictures

of the medial axis in the two occurring cases can be deduced from Figures 4.16

to 4.18 and are drawn in Figure 4.19.

4.3.3 A Family of Surfaces

Now we shall connect these calculations for the standard unfolding of an A2
1A3

singularity with a family of distance-squared functions on a one-parameter

family of surfaces in three dimensions. We consider the unfolding

F : R2 × R4, (0, 0, 0, 0, 0, 1/κ1) → R , given by the three unfoldings

F1(x1, y1, t, a, b, c) = (x1 − a)2 + (y1 − b)2

+(f0(x, y) + tg1(x1, y1) − c)2 ,

F2(x2, y2, t, a, b, c) = ‖γ2(x2, y2, t) − (a, b, c)‖2 ,

F3(x3, y3, t, a, b, c) = ‖γ3(x3, y3, t) − (a, b, c)‖2 ,



































(4.11)

where f0(x1, y1) is given by (4.6) and F0,1 has type A3 at x1 = y1 = 0, where

F0,i(xi, yi) = Fi(xi, yi, 0, 0, 0, 1/κ1). This means that b0 = 0 and

κ2
1

4
− b21
κ1(κ1 − κ2)

− 2c0
κ1

6= 0 .
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Figure 4.16: Sections of the big bifurcation set of the standard unfolding G from

(4.10) in the case A2
1A3-I of Proposition 4.3.1.1. Top: two views before the transi-

tion, middle: two views at the moment of transition, bottom: two views after the

transition. The blue, red curves correspond respectively to A3, A
3
1 curves. This is

one of the possibilities for a one-parameter family of symmetry sets (See Figure 4.19

for pictures of the medial axis in this case).
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Figure 4.17: Sections of the big bifurcation set of the standard unfolding G from

(4.10) in the case A2
1A3-II of Proposition 4.3.1.1. Top: two views before the tran-

sition, middle: two views at the moment of transition, bottom: two views after the

transition. The blue, red curves correspond respectively to A3, A
3
1 curves. This is

the second possibility for a one-parameter family of symmetry sets (See Figure 4.19

for pictures of the medial axis in this case).
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Figure 4.18: The third type of transition as listed in Proposition 4.3.1.1 of sections

of the big bifurcation set of the standard unfolding G from (4.10). This does not

occur for a one-parameter family of symmetry sets. Top: two views before the

transition, middle: two views at the moment of transition, bottom: two views after

the transition. The blue, red curves correspond respectively to A3, A
3
1 curves.
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A
3

A
1

2
I-

A
3

A
1

2
II-

Figure 4.19: The medial axis corresponding to two possible types of A2
1A3 transition

on a one-parameter family of symmetry sets from Figures 4.16, 4.17 and 4.18. The

third case does not occur. The blue, red curves correspond respectively to A3, A
3
1

curves.

199



We also want F0,2 and F0,3 to have type A1 at x2 = y2 = 0 and at x3 = y3 = 0

respectively. This corresponds to the sphere of centre (0, 0, 1/κ1), radius 1/κ1

having A1 contact at two points on the two families γ2, γ3 of surfaces at t = 0.

Consider F2. Let the point of contact with the sphere and the surface given

by γ2(x2, y2, 0) at x2 = y2 = 0 be

x0,2 = (p0,2, q0,2, w0,2) =
1

κ1
(cosφ2 cosλ2, cosφ2 sinλ2, sinφ2 + 1) , (4.12)

where φ2, λ2 are constants. Then the tangent plane to this surface is given by

((x, y, z) − (p0,2, q0,2, w0,2)) · (κ1(p0,2, q0,2, w0,2) − (0, 0, 1)) = 0 .

Depending on the parametrization of the surface, we consider three forms of

F2(x2, y2, t, a, b, c) as follows:

F2 ≡ (f2,1(x2, y2) + tg2,1(x2, y2) − a)2

+ (y2 + q0,2 − b)2 + (x2 + w0,2 − c)2 (4.13)

where f2,1(x2, y2) = p0,2 + y2

(

−q0,2
p0,2

)

+ x2

(

1 − κ1w0,2

κ1p0,2

)

+ · · ·

or F2 ≡ (x2 + p0,2 − a)2 + (f2,2(x2, y2) + tg2,2(x2, y2) − b)2

+ (y2 + w0,2 − c)2 (4.14)

where f2,2(x2, y2) = q0,2 + x2

(

−p0,2

q0,2

)

+ y2

(

1 − κ1w0,2

κ1q0,2

)

+ · · ·

or F2 ≡ (x2 + p0,2 − a)2 + (y2 + q0,2 − b)2

+ (f2,3(x2, y2) + tg2,3(x2, y2) − c)2 (4.15)

where f2,3(x2, y2) = w0,2 + x2

(

κ1p0,2

1 − κ1w0,2

)

+ y2

(

κ1q0,2
1 − κ1w0,2

)

+ · · · .

We can choose at least one of these since not all of p0,2, q0,2, (1 − κ1w0,2) are

zero. We assume F0,2 has type A1 at x2 = y2 = 0, which means the second order

terms of f2,1, f2,2, f2,3 satisfy certain conditions. We have similar expressions in

the case of F3, given by one of (4.13), (4.14), (4.15), with x2, y2, (−)∗,2 replaced

respectively by x3, y3, (−)∗,3.
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4.3.4 Condition for Versal Unfolding

Using the end of §4.1 we get that F is versal if
(

∂F1

∂t
,
∂F2

∂t
,
∂F3

∂t

)

,

(

∂F1

∂a
,
∂F2

∂a
,
∂F3

∂a

)

,

(

∂F1

∂b
,
∂F2

∂b
,
∂F3

∂b

)

,

(

∂F1

∂c
,
∂F2

∂c
,
∂F3

∂c

)

(all evaluated at t = a = b = 0, c = 1/κ1)

and (1,1,1) span
E(2)

JF0,1

⊕ sp{1} ⊕ sp{1} ,

where we only consider terms of degree ≤ 4 for F1, terms of degree ≤ 2 for F2

and terms of degree ≤ 2 for F3. If we let g1(x1, y1) = η0+η1x1+η2y1+η3x
2
1+· · ·

then F is versal if
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

η0 η1 η2

(

η3 − η0κ2
1

2

)

−κ1

2
δ2 −κ1

2
δ3

0 1 0 0 cos φ2 cosλ2

κ1

cosφ3 cos λ3

κ1

0 0 1 0 cos φ2 sinλ2

κ1

cosφ3 sinλ3

κ1

1 0 0 −κ2
1

2
− sinφ2 − sin φ3

1 0 0 0 1 1

0 0 κ1 − κ2 −b1 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0 , (4.16)

where

δ2 =















2g2,1(0, 0) cosφ2 cosλ2

κ1
if F2 is of form (4.13)

2g2,2(0, 0) cosφ2 sinλ2

κ1
if F2 is of form (4.14)

2g2,3(0, 0) sinφ2

κ1
if F2 is of form (4.15)

and δ3 is similarly defined (replace g2,∗ by g3,∗, etc.).

4.3.5 Conditions for Generic Sections

We found that the list of bad 3-spaces included (4.4) where λ1 = 0 or λ3 = 0

or λ4 = 0 or λ3 +λ4 = 0. Then, given that these hold, Proposition 4.3.1.1 gave

criteria for the type of A2
1A3 transition. As in the case of an A5 transition we

have the relation

Gi(Xi, Yi,u) = F (Ai(Xi, Yi,u), B(u)) + C(u)
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where each Ai : (R2 × R4, (0, 0)) → R2 is a germ with Ai(−, 0) invertible,

B : (R4, 0) → (R4, (0,p0)) is an invertible germ and C : (R4, 0) → (R,−1/κ2
1)

is a germ. Using this relation in the same way as for the A5 transition we

obtain the geometrical interpretation of the conditions for generic sections and

for the criterion for the type of A2
1A3 transition, as follows.

Proposition 4.3.5.1 The necessary conditions for the one-parameter family

of symmetry sets of the families of surfaces z = f0(x1, y1) + tg1(x1, y1), where

f0(x1, y1) is given by (4.6), and those given by γ2(x2, y2, t), γ3(x3, y3, t) (see

(4.11)) to exhibit an A2
1A3 transition are that

b0 = 0 ,

κ2
1

4
− b21
κ1(κ1 − κ2)

− 2c0
κ1

6= 0 ,

that F0,2, F0,3 have type A1 respectively at x2 = y2 = 0, x3 = y3 = 0, that the

versality condition (4.16) holds, and that the following necessary conditions for

generic sections hold

cosφ2 sin λ2(1 + sinφ3) − cosφ3 sinλ3(1 + sinφ2) 6= 0 ,

2b1(1 + sin φ2) − κ1(κ1 − κ2) cosφ2 sin λ2 6= 0 ,

2b1(1 + sin φ3) − κ1(κ1 − κ2) cosφ3 sin λ3 6= 0 ,

2b1(sinφ3 − sinφ2) + κ1(κ1 − κ2)(cosφ2 sinλ2 − cos φ3 sin λ3) 6= 0 .























(4.17)

Moreover, the transition is of type A2
1A3-I, A

2
1A3-II when

(2b1(1 + sinφ3) − κ1(κ1 − κ2) cosφ3 sinλ3)

× (−2b1(1 + sin φ2) + κ1(κ1 − κ2) cosφ2 sinλ2)
(4.18)

is respectively negative, positive, provided there are no additional normal forms

for generic functions given by considering the limits of tangent spaces to two-

and three-dimensional strata (see Remark 4.2.1.1). The third type of transition

as described in Proposition 4.3.1.1 cannot be realized by a one-parameter family

of distance-squared functions.
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4.3.6 Interpretation of the A2
1A3 Conditions

The condition (4.16) for versality of the geometric family F is difficult to under-

stand, so we consider firstly the necessary conditions (4.17) for generic sections

and the sign of (4.18), which determines the type of transition, provided there

are no further conditions for generic sections. Using [HGYGM99, p.142] we get

the following. Let t, n, be respectively the unit tangent, principal normal to

the line of curvature corresponding to κ1 on the surface z = f0(x, y), given by

(4.6). Note that the tangent to the line of curvature corresponding to κ1 at a

point is the same as the principal direction corresponding to κ1 at the point.

Then, for x0,2 as a vector as in (4.12) (and similarly for x0,3), we have

t(0) = (1, 0, 0) , n(0) ‖
(

0,
2b1

κ1 − κ2
, κ1

)

,

the first condition of (4.17) ⇐⇒ t(0) · (x0,2 × x0,3) 6= 0 ,

the second condition of (4.17) ⇐⇒ x0,2 · (t(0) × n(0)) 6= 0 ,

the third condition of (4.17) ⇐⇒ x0,3 · (t(0) × n(0)) 6= 0 ,

the fourth condition of (4.17) ⇐⇒ (x0,2 − x0,3) · (t(0) × n(0)) 6= 0 .

Hence, the first condition of (4.17) is the same as stating that the tangent

to the line of curvature corresponding to κ1 must not lie in the plane containing

the origin and the points x0,2, x0,3. In other words, the first condition of (4.17)

is the same as stating that the principal direction corresponding to κ1 must not

lie in the plane containing the origin and the points x0,2, x0,3. Let Ω be the

osculating plane of the line of curvature corresponding to κ1 at the origin. Then

the second condition of (4.17) is the same as stating that the line through the

origin and the point x0,2 must not lie in Ω. Similarly for the third condition of

(4.17) and the point x0,3. Finally, the fourth condition of (4.17) is the same as

stating that the line through x0,2 and x0,3 must not be parallel to Ω.

In a similar way we can get an interpretation of the sign of (4.18):

sign of (4.18) = sign of (x0,3 · (t(0) × n(0))) (−x0,2 · (t(0) × n(0))) .

Hence the symmetry set of the families of surfaces as in Proposition 4.3.5.1

exhibits respectively an A2
1A3-I, A

2
1A3-II transition if x0,2, x0,3 are on the same
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side, opposite sides of Ω, provided there are no conditions for generic sections

other than (4.17).

Consider the condition (4.16) in a simplified situation. Assume the families

γ1, γ3 given by (4.11) do not change with t, which means that η0, η1, η2, η3 and

δ3 are all zero in (4.16). Then, (4.16) becomes

δ2 (2b1(1 + sin φ3) − κ1(κ1 − κ2) cosφ3 sinλ3) 6= 0 ,

where δ2 is defined immediately after (4.16). Hence the simplified version of

(4.16) becomes

g2,1(0, 0) cosφ2 cosλ2 (2b1(1 + sinφ3) − κ1(κ1 − κ2) cosφ3 sinλ3) 6= 0

when F2 is of form (4.13) ,

g2,2(0, 0) cosφ2 sinλ2 (2b1(1 + sinφ3) − κ1(κ1 − κ2) cosφ3 sinλ3) 6= 0

when F2 is of form (4.14) ,

g2,3(0, 0) sinφ2 (2b1(1 + sinφ3) − κ1(κ1 − κ2) cosφ3 sinλ3) 6= 0

when F2 is of form (4.15) .

Take each of g2,1(0, 0), g2,2(0, 0), g2,3(0, 0) to be non-zero. Using the fact that

the unit surface normal n0,2 to γ2 at t = 0 is

n0,2 = x0,2 −
(

0, 0,
1

κ1

)

= (cosφ2 cosλ2, cosφ2 sinλ2, sinφ2) ,

we can obtain an interpretation of the simplified version of (4.16), which is

that the line from the origin to the point x0,3 must not lie in Ω and either n0,2

must not lie in the (y,z) plane (when F2 is of form (4.13)), or n0,2 must not

lie in the (x,z) plane (when F2 is of form (4.14)), or n0,2 must not lie in the

(x,y) plane (when F2 is of form (4.15)). These last three interpretations can

be summarized by stating that n0,2 must not lie in the plane perpendicular to

the coordinate direction corresponding to change with the family parameter t.

For example, if the family of surfaces γ2(x2, y2, t) corresponds to translating the

surface γ2(x2, y2, 0) in any direction, then for versality we require the direction

of translation not to lie in the tangent plane to γ2(x2, y2, 0) at the point of

contact x0,2.
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4.3.7 Example

Consider the example from §3.6 of the parabolic gutter with a flat end, but with

slightly changed notation to agree with this chapter. Take the three unfoldings

from (4.11) to be

F1(x1, y1, t, a, b, c) =

∣

∣

∣

∣

∣

∣

∣

∣

(

x1, y1,
κ1x

2
1

2

)

− (a, b, c)

∣

∣

∣

∣

∣

∣

∣

∣

2

,

F2(x2, y2, t, a, b, c) =

∣

∣

∣

∣

∣

∣

∣

∣

(

x2,
1

κ1
+ t, y2

)

− (a, b, c)

∣

∣

∣

∣

∣

∣

∣

∣

2

,

F3(x3, y3, t, a, b, c) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

x3, y3, dy2 +
1 +

√
1 + d2

κ1

)

− (a, b, c)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

,

for d a positive constant. So F2 is of form (4.14) and F3 is of form (4.15)

(with x2, y2 replaced by x3, y3 and so on). Hence we take the parabolic gutter

z = κ1x
2/2 with a roof z = dy+(1+

√
1 + d2)/κ1 and the flat end y = 1/κ1 + t

as the three local pieces of boundary and consider the medial axis of these

surfaces at values of t close to zero. The effect of changing t is that the end

y = 1/κ1 + t moves away from the origin along the y-axis and the other two

surfaces remain unaltered. Hence g1 ≡ 0 (and so ηi = 0 for each i), g2,2 ≡ 1,

g3,3 ≡ 0.

The medial axis corresponding to the local boundary surfaces z = κ1x
2/2,

z = dy + (1 +
√

1 + d2)/κ1 and y = 1/κ1 + t at values of t can be calculated

explicitly. However, these calculations are very similar to those done for the

example in §3.6 of the constraints on the medial axis in three dimensions, where

local boundary was a parabolic gutter z = by2 with a flat end x = p, and so

the calculations are omitted. The points of contact on the flat end and on the

roof given by (4.12) are

x0,2 =
(0, 1, 1)

κ1
, x0,3 =

(

0,−d, 1 +
√

1 + d2
)

κ1

√
1 + d2

,

so we can obtain φ2, λ2, φ3, λ3. Using these we can check that (4.16) and each

of the conditions given by (4.17) hold. For this example

(4.18) =

(

−κ2
1

(

− d√
1 + d2

))

(

κ2
1

)

> 0
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Figure 4.20: Figures 4.20 to 4.22 are of an example of the A2
1A3-II transition. This

figure is for t = −0.2, that is before the transition. Top left: the boundary surface;

top centre, top right: the corresponding medial axis from two points of view; bottom:

the medial axis from another point of view. The red curve is an A3
1 curve.

and so the symmetry set exhibits an A2
1A3-II transition, provided there are no

conditions for generic sections other than (4.17).

The interpretations of the A2
1A3 conditions given immediately before this

example can be easily verified in this example, as follows. In this example, the

plane containing 0, x0,2 and x0,3 is x = 0; and Ω, the osculating plane of the

line of curvature corresponding to κ1 at the origin, is y = 0. It is easy to show

that the tangent (1, 0, 0) to the line of curvature corresponding to κ1 does not

lie in the plane x = 0, that x0,2 and x0,3 do not lie in the plane y = 0 and

that the line through x0,2, x0,3 does not lie in the plane y = 0. Hence all of the

interpretations of the conditions (4.16) hold for this example. Finally, we see

that the y-coordinates of x0,2 and x0,3 have opposite signs and so 0, x0,2 and

x0,3 lie on opposite sides of y = 0 and so we have an A2
1A3-II transition on the

medial axis.

Figures 4.20, 4.21 and 4.22 show the transition on the medial axis where

d = 1, κ1 = 2.
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Figure 4.21: The moment of transition (t = 0): these pictures are different views of

the medial axis, which has acquired an A2
1A3 point.

Figure 4.22: These are all different views of the medial axis for t = 0.5, so the

A2
1A3-II transition has taken place. An extra medial sheet with an edge curve (the

blue curve) has been created. This curve has two endpoints (A1A3 points) which lie

on two created A3
1 curves lying on the new medial sheet. So we now have four (red)

A3
1 curves which meet at an A4

1 point created by the transition.
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4.4 The A1A4 Transition

For this transition, we follow the method as used in §4.2, but omit the details.

This transition is different from the others considered in this chapter in that it

does not occur on a one-parameter family of medial axes, but only on a one-

parameter family of symmetry sets. The family of symmetry sets looks locally

like the pictures in Figures 4.23, 4.24 as it goes through an A1A4 transition.

As in the transitions considered previously there might be other cases of A1A4

transitions – see Remark 4.2.1.1.

Take a family of distance-squared functions on a one-parameter family of

surfaces in three dimensions. Consider the unfolding

F : R2 × R4, (0, 0, 0, 0, 0, 1/κ1) → R , given by the two unfoldings

F1(x1, y1, t, a, b, c) = (x1 − a)2 + (y1 − b)2

+(f0(x, y) + tg1(x1, y1) − c)2 ,

F2(x2, y2, t, a, b, c) = ‖γ2(x2, y2, t) − (a, b, c)‖2 ,























(4.19)

where f0(x1, y1) is given by (4.6) and F0,1 has type A4 at x1 = y1 = 0, where

F0,i(xi, yi) = Fi(xi, yi, 0, 0, 0, 1/κ1). This means that

b0 =
κ2

1

4
− b21
κ1(κ1 − κ2)

− 2c0
κ1

= 0 ,

−2b1(c1(κ1 − κ2) + b1b2)

κ1(κ1 − κ2)2
− 2d0

κ1
6= 0 .

We assume F0,2 has type A1 at x2 = y2 = 0 and that F2 has one of the forms

(4.13), (4.14) or (4.15). Then we get the following.

Proposition 4.4.1 The necessary conditions for the one-parameter family of

symmetry sets of the families of surfaces z = f0(x1, y1) + tg1(x1, y1), where

f0(x1, y1) is given by (4.6), g1(x1, y1) = η0+η1x1+η2y1+η3x
2
1+η4x1y1+(∗)y2

1 +

η5x
3
1 + · · · and the one given by γ2(x2, y2, t) to exhibit an A1A4 transition are

that

b0 =
κ2

1

4
− b21
κ1(κ1 − κ2)

− 2c0
κ1

= 0 ,

−2b1(c1(κ1 − κ2) + b1b2)

κ1(κ1 − κ2)2
− 2d0

κ1
6= 0 ,
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that F0,2 has type A1 at x2 = y2 = 0, that the versality condition holds:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

η0 η1 η2

(

η3 − η0κ2
1

2

)

η4

(

η5 − η1κ2
1

2

)

−κ1

2
δ2

0 1 0 0 0 0 cos φ2 cosλ2

κ1

0 0 1 0 0 0 cos φ2 sinλ2

κ1

1 0 0 −κ2
1

2
0 0 − sinφ2

0 0 κ1 − κ2 −b1 −2b2 −c1 0

0 0 0 κ1 − κ2 −b1 0

1 0 0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0, (4.20)

where

δ2 =















2g2,1(0, 0) cosφ2 cosλ2

κ1
if F2 is of form (4.13) ,

2g2,2(0, 0) cosφ2 sinλ2

κ1
if F2 is of form (4.14) ,

2g2,3(0, 0) sinφ2

κ1
if F2 is of form (4.15) ,

and that the following necessary conditions for generic sections hold.

2b1b2 + c1(κ1 − κ2) 6= 0

2b1(1 + sinφ2) − κ1(κ1 − κ2) cosφ2 sinλ2 6= 0

}

(4.21)

There is only one type of A1A4 transition, provided no others arise when con-

sidering the limits of tangent spaces to two- and three-dimensional strata (see

Remark 4.2.1.1).

Interpretation of the A1A4 Conditions

The condition (4.20) for the unfolding F to be versal is complicated, as in the

A2
1A3 case. Hence, we consider again a simpler situation, where the family γ1

given by (4.19) does not change with t, which means that g1(x1, y1) ≡ 0, and

so η0, η1, η2, η3, η4, η5 are all zero in (4.20), which becomes

δ2 (2b1b2 + c1(κ1 − κ2)) 6= 0 ,

where δ2 is defined immediately after (4.20). Using the interpretations in §4.2.6,

§4.3.6 and assuming g2,1(0, 0), g2,2(0, 0), g2,3(0, 0) are all non-zero, we get that
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this simplified version of the versality condition (4.20) is the same as stating

that the ridge curve corresponding to κ1 must be non-singular and that the

unit normal to γ2 at t = 0 must not lie in the plane perpendicular to the

coordinate direction corresponding to change with the family parameter t. For

example, if the family of surfaces γ2(x2, y2, t) corresponds to translating the

surface γ2(x2, y2, 0) in any direction, then for versality we require the direction

of translation not to lie in the tangent plane to γ2(x2, y2, 0) at the point of

contact x0,2.

Now consider the necessary conditions for generic sections. The first condi-

tion of (4.21) is that of the non-singularity of the ridge curve corresponding to

κ1. Using §4.3.6, the second condition of (4.21) is the same as stating that the

line from the origin to the point x0,2 must not lie in the osculating plane of the

line of curvature corresponding to κ1 at the origin.
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Figure 4.23: A one-parameter family of symmetry sets looks locally like the pictures

in this figure and Figure 4.24 as it goes through an A1A4 transition. It is possible

that there are other cases of A1A4 transitions (see Remark 4.2.1.1). None of these

surfaces is part of the medial axis. In Figures 4.23, 4.24 the green and yellow curves

are A1A2 curves, the red curves are A3
1 curves and the blue curves are A3 curves.

Top: before the transition. Here there is a swallowtail surface and a surface with

a cusp edge. Top right: just the curves are drawn, not the surfaces. Bottom: the

moment of transition. The swallowtail surface intersects with the other surface in a

point, the A1A4 point. Bottom right: the curves all meet at the A1A4 point.
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Figure 4.24: After the transition. The swallowtail surface now intersects with the

other surface in a curve. There is now an A3
1 curve (red) which meets the (blue) A3

at A1A3 points, where the A3
1 curve ends – these endpoints coincide with the cusps

of the (green) A1A2 curve. The red curve has two cusps which coincide with the

intersections of the two A1A2 curves (yellow, green). The yellow curve only meets

another curve at the cusps of the A3 (blue) curve. The pictures at the bottom show

just the green and red curves, but these do not self-intersect, which is shown by the

picture on the right.
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4.5 The A1A3 Transitions

The A1A3 transitions are different from the previous transitions – the big bi-

furcation sets of the standard multi-versal unfolding are products. There are at

least four possible types of transitions for the standard multi-versal unfolding

of an A1A3 singularity, but it is stated below in Proposition 4.5.1 that two of

the four identified are not possible for a one-parameter family of symmetry sets

in R3. Hence a family of symmetry sets looks locally like the pictures in one

of Figures 4.25, 4.26 as it goes through the an A1A3 transition, allowing for

other possible cases of A1A4 transitions (see Remark 4.2.1.1). We take a family

of distance-squared functions on a one-parameter family of surfaces in three

dimensions. Then we consider the unfolding given by (4.19) where f0(x1, y1) is

given by (4.6) and F0,1, where F0,i(xi, yi) = Fi(xi, yi, 0, 0, 0, 1/κ1), has type A3

at x1 = y1 = 0. We assume F0,2 has type A1 at x2 = y2 = 0 and that F2 has

one of the forms (4.13), (4.14) or (4.15).

The method is as follows. We require that when the family parameter t is

fixed, then a, b, c do not versally unfold the A1A3 singularity, but that t, a, b, c

do. To realize the various types of transition we consider the three-dimensional

space with coordinates (u1, u2, u3) of the standard bifurcation set of the stan-

dard multi-versal unfolding of an A1A3 singularity (so we ignore the u4 com-

ponent in the four-dimensional space with coordinates (u1, u2, u3u4)). Then we

obtain generic linear functions h on this set and use projections h(u1, u2, u3)±u2
4

to realize the various types of transition. We get the following.

Proposition 4.5.1 The necessary conditions for the one-parameter family of

symmetry sets of the families of surfaces z = f0(x1, y1) + tg1(x1, y1), where

f0(x1, y1) is given by (4.6), g1(x1, y1) = η0 + η1x1 + η2y1 + η3x
2
1 + · · · and the

one given by γ2(x2, y2, t) to exhibit an A1A3 transition are that

b0 = 0,
κ2

1

4
− b21
κ1(κ1 − κ2)

− 2c0
κ1

6= 0 ,
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that F0,2 has type A1 at x2 = y2 = 0, that the versality conditions hold:

b1 =
κ1(κ1 − κ2) cosφ2 sin λ2

2(1 + sinφ2)
, (4.22)

0 6= δ2κ
3
1 − 2η0κ

2
1 sin φ2 + 2η1κ1 cos φ2 cos λ2

+2η2κ1 cosφ2 sinλ2 + 4η3(1 + sinφ2)

}

(4.23)

where

δ2 =















2g2,1(0, 0) cosφ2 cosλ2

κ1
if F2 is of form (4.13) ,

2g2,2(0, 0) cosφ2 sinλ2

κ1
if F2 is of form (4.14) ,

2g2,3(0, 0) sinφ2

κ1
if F2 is of form (4.15) .

Generic sections are automatic, provided no other conditions for generic sec-

tions arise arise when considering the limits of tangent spaces to two- and

three-dimensional strata (see Remark 4.2.1.1). Moreover, the transitions of

Figures 4.27, 4.28 do not occur on a one-parameter family of symmetry sets.

The additional criterion for realizing either A1A3-I or A1A3-II is not yet known.

Remark 4.5.2 We require an expression for ∂2B1/∂u
2
4(0) in order to decide

the type of A1A3, since

h(u1, u2, u3) ± u4
4 = π(B(u)) = B1(u) .

This has proved very difficult owing to the very complicated expressions. Hence

we consider a geometric reason to distinguish the two cases. From Figures 4.25,

4.26 we see that in the A1A3-II case there is an A3
1 curve through the A1A3

point at the moment of transition, but in the A1A3-I case there is no A3
1 curve

through the A1A3 point at the moment of transition. Hence we can examine

the condition for there to be an A3
1 curve on the symmetry set at points near

to those corresponding to A1, A3 points of contact.

Consider the case where the A1 surface γ2(x2, y2, 0) is a plane. It can be

shown that the parameters x1, y1 on the A3 surface z = f0(x1, y1) can be used

as parameters for the pre-symmetry set, given certain open conditions on the

A1 point. Hence we have a parametrization of the pre-symmetry set given by

(x1, y1)
ψ−→ (x2, y2) .
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Then it can be shown that the critical set Σ of ψ is singular if and only if (4.22)

holds. Furthermore, the condition for Σ to be an isolated point or not can be

calculated, but even in this case it is very complicated and involves the degree

4 terms on the surface γ1(x1, y1, 0). Hence the condition for an A3
1 curve to

exist can be calculated, but it is too complicated to be understood.

Interpretation of the A1A3 Conditions

Using §4.3.6, the condition (4.22) is the same as stating that the line through the

origin and the point of contact x0,2 on the A1 surface must lie in the osculating

plane of the line of curvature corresponding to κ1 at the origin. The condition

(4.23) for the unfolding F to be versal is complicated, as in the A2
1A3 and A1A4

cases. Hence, we consider again a simpler situation, where the family γ1 given

by (4.19) does not change with t, which means that g1(x1, y1) ≡ 0, and so η0, η1,

η2, η3 are all zero in (4.23), which becomes δ2 6= 0. Using the interpretations in

§4.3.6 and assuming g2,1(0, 0), g2,2(0, 0), g2,3(0, 0) are all non-zero, we get that

in the case of the family of surfaces γ2(x2, y2, t) corresponding to translating the

surface γ2(x2, y2, 0) in any direction, then for versality we require the direction

of translation not to lie in the tangent plane to γ2(x2, y2, 0) at the point of

contact x0,2.
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Figure 4.25: A one-parameter family of symmetry sets looks locally like these pic-

tures, as it goes through an A1A3-I transition. Top: two views before the transition,

middle: two views at the moment of transition, bottom: two views after the transi-

tion. In Figures 4.25 to 4.28, the blue, red curves correspond respectively to A3, A
3
1

curves. After the transition an A3
1 curve has been created.
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Figure 4.26: The A1A3-II transition on a one-parameter family of symmetry sets.

Top: two views before the transition, middle: two views at the moment of transition,

bottom: two views after the transition. At the moment of transition the A3
1 and A3

curves are tangent.
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Figure 4.27: The third type of A1A3 transition – this cannot occur for a one-

parameter family of symmetry sets. This type is possible for the standard multi-

versal unfolding. Top: two views before the transition, middle: two views at the

moment of transition, bottom: two views after the transition. At the moment of

transition the A3
1, A3 curves are tangent and after the transition there are two A3

1

curves which end at the (A1A3) points of intersection with the A3 curve.
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Figure 4.28: The fourth type of A1A3 transition – this also cannot occur for a

one-parameter family of symmetry sets. This type is possible for the standard multi-

versal unfolding. Top: two views before the transition, middle: two views at the

moment of transition, bottom: two views after the transition. At the moment of

transition the A3
1, A3 curves are tangent and after the transition there are two A3

1

curves which end at the (A1A3) points of intersection with the A3 curve.
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4.6 The A4
1 Transitions

The A4
1 transitions are similar to the A1A3 transitions in that the big bifurcation

sets of the standard multi-versal unfolding are products. Hence the method for

the following is omitted. In [GK02] there are three types of transitions listed

which are possible for the standard multi-versal unfolding of an A4
1 singularity,

but [GK02] states that only one of these types is possible for a one-parameter

family of medial axes in R3.

We consider four families of surface γi(xi, yi, t) for i = 1, . . . , 4 and four

corresponding distance-squared functions Fi when γi(xi, yi, t) is one of three

forms:

Fi ≡ (fi,1(xi, yi) + tgi,1(xi, yi) − a)2

+ (yi + q0,i − b)2 + (xi + w0,i − c)2 (4.24)

where fi,1(xi, yi) = p0,i + yi

(

−q0,i
p0,i

)

+ xi

(

r0 − w0,i

p0,i

)

+ · · ·

or Fi ≡ (xi + p0,i − a)2 + (fi,2(xi, yi) + tgi,2(xi, yi) − b)2

+ (yi + w0,i − c)2 (4.25)

where fi,2(xi, yi) = q0,i + xi

(

−p0,i

q0,i

)

+ yi

(

r0 − w0,i

q0,i

)

+ · · ·

or Fi ≡ (xi + p0,i − a)2 + (yi + q0,i − b)2

+ (fi,3(xi, yi) + tgi,3(xi, yi) − c)2 (4.26)

where fi,3(xi, yi) = w0,i + xi

(

p0,i

r0 − w0,i

)

+ yi

(

q0,i
r0 − w0,i

)

+ · · ·

where the point of contact on the surface γi(xi, yi, 0) at xi = yi = 0 is

x0,i = (p0,i, q0,i, w0,i) = r0(cosφi cos λi, cosφi sin λi, sinφi + 1)

where φi, λi are constants. Also, r0 (const.) is the radius of the sphere of

contact with the surfaces γi(xi, yi, 0) at xi = yi = 0. We get the following.

Proposition 4.6.1 Consider the one-parameter family of symmetry sets of the

families of surfaces γi(xi, yi, t) given by one of the forms (4.24), (4.25), (4.26).

Let the point of contact x0,1 be the origin, so φ1 = 3π/2 and then we have F1 is
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of form (4.26) for i = 1. The family of symmetry sets exhibits an A4
1 transition

if each F0,i has type A1 at xi = yi = 0, for i = 2, 3, 4; if the versality conditions

hold:

0 = p0,2(q0,3w0,4 − q0,4w0,3) + p0,3(q0,4w0,2 − q0,2w0,4)

+p0,4(q0,2w0,3 − q0,3w0,2)

}

(4.27)

0 6= δ1 (p0,2(w0,4 − w0,3) + p0,3(w0,2 − w0,3) + p0,4(w0,3 − w0,2))

+δ2(p0,3w0,4 − p0,4w0,3) + δ3(p0,4w0,2 − p0,2w0,4)

+δ4(p0,2w0,3 − p0,3w0,2)















(4.28)

where

δi =















2gi,1(0, 0)r0 cosφi cosλi if Fi is of form (4.24) ,

2gi,2(0, 0)r0 cosφi sinλi if Fi is of form (4.25) ,

2gi,3(0, 0)r0 sinφi if Fi is of form (4.26) ,

and that the sections of the big bifurcation set of the unfoldings Fi are generic.

Since x0,1 is chosen to be the origin we have that F1 is of the form (4.26) for

i = 1 and so δ1 = −2gi,3(0, 0)r0.

The above only contains the conditions for versality; the conditions for

generic sections have yet to be calculated. See §4.7 and [GK02] for more detail

on the A4
1 transition.

Interpretation of the A4
1 Conditions

The first condition for versality (4.27) is the same as requiring the four points

of tangency x0,i = (p0,i, q0,i, w0,i) on γi(xi, yi, 0) for i = 1, . . . , 4 are coplanar.

Again consider a simplified version of the second condition for versality (4.28),

where families γ1, γ3, γ4 do not change with t, so that δ1 = δ3 = δ4 = 0.

Then (4.28) becomes δ2(p0,3w0,4 − p0,4w0,3) 6= 0. Using the interpretations in

§4.3.6 and assuming g2,1(0, 0), g2,2(0, 0), g2,3(0, 0) are all non-zero, we get that

the simplified version of (4.28) is the same as stating that the unit normal to

γ2 at t = 0 must not lie in the plane perpendicular to the coordinate direction

corresponding to change with the family parameter t and that x0,3 × x0,4 must

not lie in the (x, z)-plane.
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4.7 Further Research

The above contains the necessary conditions for realizing the A5, A1A3-I,

A1A3-II, A
2
1A3-I, A

2
1A3-II and A1A4 transitions on a one-parameter family of

symmetry sets in R3. Also, there is some work done towards the conditions

for realizing the A4
1 transition. This remains to be completed, along with the

remaining transition on a one-parameter family of symmetry sets which also

occurs on a one-parameter family of medial axes, the A5
1 transition. There are

other transitions besides A1A4 that are expected on a generic one-parameter

family of symmetry sets, which do not occur on the medial axis. The same

methods as used in this chapter can be used to obtain the conditions for real-

izing these.

For each of the transitions considered in this chapter we did not consider

the limits of tangent spaces to strata of dimension greater than one, since we

assumed all of these contain a limit of tangent spaces to a one-dimensional stra-

tum (see Remark 4.2.1.1). Since this does not necessarily follow from [BG86]

a general proof of this is required. Failing that it will be necessary to check for

each transition that the limits of tangent spaces to strata of dimension greater

than one do not produce additional normal forms for generic functions.

As mentioned at the start of this chapter, a paper summarizing the methods

used in this chapter and the conditions obtained, together with any further

research, would be a natural completion of this area of research.
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