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Synopsis

Affine-invariant Symmetry Sets of planar curves were first introduced and
studied in a series of articles by Giblin and Sapiro (see [GS96], [GS98]).
The original idea was to mimic the numerous constructions of the Euclidean
Symmetry Set to produce analogous affine-invariant symmetry sets for affine
plane curves. One of the first, and most striking, observations was that,
although the different constructions for the Euclidean Symmetry Set led to
tdentical sets, the affine-invariant analogues of these constructions resulted
in genuinely different sets. Thus there is no single affine-invariant symmetry
set, but instead a number of affine-invariant sets which individually capture
some aspects of local affine symmetry.

In Chapter 1 we present some preliminary results and discussion concern-
ing affine transformations, planar affine differential geometry, conic sections,
and envelopes having high contact with their constituent curves.

Chapter 2 introduces the Affine Envelope Symmetry Set (AESS), an affine
analogue of the Euclidean Symmetry Set (SS). We begin by formulating a
geometrical interpretation of the AESS analogous to the interpretation of
the SS: in this way we can justifiably claim that the AESS captures some
aspect of local affine (reflexional) symmetry. The local structure of the AESS
was classified in [GS96], [GS98] for ovals, and in this thesis we extend the
classification to include non-oval and non-simple curves. We introduce the
Mid-Parallel Tangents Locus (MPTL), another affine symmetry set, in order
to understand the structure of the AESS, and this in turn leads to the Affine
Area Symmetry Set. The interesting links between these affine symmetry
sets are discussed.

Chapter 3 introduces the Affine Distance Symmetry Set (ADSS), the
other affine analogue of the SS considered in [GS96], [GS98]. The local struc-
ture of the ADSS was classified in these articles for ovals, and in this thesis
we extend this classification to include non-ovals and non-simple curves. The
main part of this chapter concerns the study of transitions on the ADSS of
1-parameter families of curves, following the analogous procedure given in
[BG86] for the SS. The conclusion uncovers an unexpected distinction be-
tween the transitions which can occur on families of ovals and the transitions
that can occur on families of generic plane curves.



Chapter 4 and Chapter 5 are concerned with an interesting problem for
the AESS and ADSS respectively, the so-called Reconstruction Problem, con-
sidered (implicitly) in [BG86]. The Reconstruction Problem asks, Given a
smooth curve segment S, how can we reconstruct a smooth plane curve having
S as its symmetry set? In effect, it asks, To what extent does the symmetry
set define a curve? In each of the affine symmetry set cases, we begin by
posing and solving a simpler problem, and then applying these ideas to the
Reconstruction Problem itself.

Chapter 6 begins the study of the ADSS and AESS for piecewise-conic
curves, that is, curves comprising segments which are parts of conics. This
consideration mirrors the analogous study of the Euclidean Symmetry Set for
piecewise-circular curves [BanG94]. In a first small step towards this study,
we consider the structure of the ADSS and AESS only for curves comprising
two complete ellipses. We consider how segments of the symmetry sets can
be created or destroyed, can join or split apart, and suggest some avenues of

further research.
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Chapter 1

Introduction

1.1 Euclidean transformations

Definition 1.1.1 ([BGG85]). The Euclidean Symmetry Set (SS) of a
smooth, simple, closed plane curve is (the closure of ) the locus of centres of

circles bitangent to the curve.

Bitangent circles are circles tangent to a curve at two or more distinct
points. The Euclidean Symmetry Set is a set of points connected to a plane
curve which is invariant under the Fuclidean group of transformations of R?,

that is, under transformations of the form x — X given by
x = Ax + b,

where A is an orthogonal (2 x 2) matrix, b is a (2 x 1) matrix, and x,X are
points in the Euclidean plane (written as column vectors). The Euclidean
group consists of rigid translations, rotations and reflexions in the plane.
These transformations preserve the degree of a curve, thus mapping circle
to circles, preserve ratios of distances, thus mapping centres of circles to
centres of circles, and preserve contact between curves. It follows that cen-
tres of bitangent circles are invariant under these transformations, and thus
the Euclidean Symmetry Set is invariant under the action of the Euclidean
group. The Euclidean Symmetry Set captures the local Euclidean reflexional

symmetry of a plane curve (see §2.1.2).



We will generalise the idea of a symmetry set in order to construct a set
of points which is invariant under a wider group of transformations, namely

the affine transformation group.

1.2 The affine transformation group

This section is based on Chapter 1 of [S83], which in turn is based on [Bla23],
both of which are excellent references for a general introduction to affine
transformations and affine differential geometry.

Let x = (x1,z2)" be the coordinates of a point P in a 2-dimensional affine
space. Consider a non-singular (2 x 2) matrix A = (a;;),%,j € {1,2}. Then

an affine transformation x — % = (Z1,%2)" is one of the form

2
.’i’i = Zaijxj + bz for i = 1,2.
k=1

If b denote the matrix (b, bo)”, then this affine transformation can be written
as
% = Ax +b. (1.1)

Definition 1.2.1. Transformations of type (1.1) form a group (under the
usual composition of transformations) called the affine transformation

group (or simply affine group), denoted A?.

A? contains six parameters. An important subgroup of A? is defined by
det(A) = 1, since any area will be magnified by det(A) under a transfor-
mation of type (1.1), and therefore transformations with the property that
det(A) =1 are area-preserving. We call such transformations equi-affine.

The transformations in A2 preserve: the degree of a curve — for exam-
ple, they map conics to conics, and more specifically they preserve the type
of conic; parallelness — two parallel lines will remain parallel after an affine
transformation; contact between curves — for example, curves which share the
same tangent line, affine tangent or affine normal (see Definition 1.3.1) will
continue to do so after an affine transformation; and ratios of Euclidean dis-

tances along a straight line — in particular, midpoints of chords are invariant.



The Euclidean group is a subgroup of the affine group. However, in general,
transformations from A% do not preserve lengths, distances or angles, and
nor do they map circles to circles. Thus the Euclidean Symmetry Set is not

invariant under the group of affine transformations.

1.2.1 Affine reflexions and affine symmetry

Definition 1.2.2. An affine reflexion with azis d is an affine transforma-
tion of order 2 (i.e. equal to its inverse, but not the identity) which leaves d

pointwise fized.

We now define the affine analogue to Euclidean reflexional (or bilateral)
symmetry. Since this is the only form of global affine symmetry we consider,

we omit the word ‘reflexional’.

Definition 1.2.3. A plane curve 7 is affine symmetric about azxis d if

there exists an affine reflexion with azxis d which maps 7y to itself.

1.2.2 Using affine transformations

We are able to utilise affine transformations to simplify specific geometrical
situations. For example, we will often consider a coordinate system with two
local curve segments in general position, with one passing through the origin
and tangent to the xz-axis there and the other passing through a point (c, d).
We simplify this situation without sacrificing generality by applying an affine
transformation to make ¢ = 0, which corresponds to the second curve segment
being translated to cross the y-axis. Where appropriate in the subsequent
analysis we will often assume that such an affine transformation has taken

place.

1.3 Review of Affine Differential Geometry

in the Plane

We present some basic concepts and definitions of planar affine differential

geometry.



1.3.1 The affine-invariant arclength parameter

Let y(t): [0,1] — R? be a smooth planar curve parametrised by ¢. Restricting
our analysis to equi-affine transformations, it can be shown that the simplest

affine-invariant parametrisation s is given by requiring that the relation

[V (s),7"(s)] = 1, (1.2)

holds at every curve point 7(s), where ' (prime) denotes derivative w.r.t.
parameter s, and [*, x| denotes the standard vector product, that is, the de-
terminant of the (2 x 2) matrix defined by the R? vectors. Throughout this
thesis we will denote by ' (prime) any derivative with respect to the affine-
wnvariant parameter, except where explicitly stated. This affine-invariant pa-
rameterisation is the central idea behind affine differential geometry in the

plane.

Definition 1.3.1. The vectors '(s) and +"(s) are respectively the affine
tangent and the affine normal to v at y(s).

Geometrically, the affine normal at a point of a curve 7y is the locus of
centres of conics having (at least) 4-point contact with + at that point. At an
inflexion, we take the affine normal to be in the same direction as the (non-
oriented) affine tangent and of infinite length. Since (1.2) cannot hold at
inflexion points of v, affine differential geometry is not defined at inflexion
points. However, since inflexions are affine-invariant, we circumvent this
problem in practice by segmenting the curve into convex portions.

We now discuss the relationship between Euclidean and affine arclength

parametrisations. Let " (dot) denote derivative w.r.t. t.

Convention: For brevity, we will often denote ¥(t) by 7, v'(s) by ', and
so on. Furthermore, when considering points such as y(s1) or y(ss), we will

often use v1, Yo to denote y(s1), v(s2), vy to denote +'(s1), and so on.

From (1.2) it follows that for arbitrary parametrisation ¢,

ds = [v,5]3dt. (1.3)



If we write k = [, 7], then it follows from (1.3) that
v = k7134, (1.4)

This identity expresses the affine tangent vector for an arbitrary regular

parametrisation of . For example, if ¢ is the Euclidean arclength parameter
(s0 (4,%) = 1), then

ds = [,5]'/*dt = [T, kN]'/*dt = &'/*dt,

where T, N and k represent the Euclidean unit tangent, unit normal and
curvature respectively. (This relation was introduced in [ST93],[ST94].) It
follows that the relationship between the affine tangent 4" and the Euclidean
tangent 7' is given by

v = k73T

Thus two curves share the same affine tangent at a point if and only if they
have the same Fuclidean tangent and curvature at that point, and this implies
the following.

Lemma 1.3.2. Two curves share the same affine tangent at a point if and

only if neither has an inflexion and they have (at least) 3-point contact there.

We define an affine analogue of Euclidean curvature in the following way.

Differentiating (1.2) w.r.t. s we obtain

[ (), 7" ()] =0,

for all s, and therefore
7"(s) + uy'(s) =0, (1.5)

for some real function u(s). We call p the affine-invariant curvature (or
just affine curvature) of . It is the simplest non-trivial affine differential
invariant, and defines a curve uniquely up to (equi-) affine transformation
(see [Bla23]), just as the Euclidean curvature defines a curve up to Euclidean

transformation. Bracketing both sides of (1.5) with '(s) gives us

p(s) = ["(s), 7" (s)]- (1.6)



Curves have constant affine curvature if and only if they are conics.

Lemma 1.3.3. The affine curvature of a non-degenerate conic C is constant
and positive if and only if C is an ellipse, zero if and only if C is a parabola,

and negative if and only if C is an hyperbola.

Proof. Consider the ellipse parameterised as

(s) = (acos (ﬁ) , bsin (ﬁ)) , (1.7)

for a,b > 0. This parametrisation is chosen because it is affine-invariant,
that is,

7 2 . @
ds ds (abgjl/s cos ((ab)l/S) T )2/3 sin @7
_ ab -
= W sin (ab 1/3 + cos? 1/3
= 1

We also calculate:

o i) 2o (i)

_(ab?z/g cos ((ab§1/3> 5 sin (—(ab§1/3>

_(ab;’2/3 sin ((ab?l/e’) —% cos (—(ab§1/3>
= ()",

and so

and thus p(s) > 0 for an ellipse. Similarly, consider a branch of an hyperbola
parametrised by

y(s) = (a sinh <(ab‘;/3) ,bcosh <(ab§1/3>) , (1.8)




where the parametrisation is affine-invariant. We find that

it sinh ( " /3) L cosh ( " /3)

—(ab;)2/3 cosh (—(ab§1/3) < sinh ((ab§1/3>
= _(a’b)_2/3a

and thus p(s) < 0 for an ellipse. The intermediate case when p = 0 corre-
sponds to a parabola.

Conversely, from (1.5), we know that
7"(s) = =1 (s);
where p is constant, and therefore
7"(s) = —py(s) + ¢, for some vector ¢ = (a, b).
If we separate 7(s) into coordinates (z(s), y(s)), then this says that

z"(s) = —px(s) + a,
y"(s) = —py(s) +o.

Setting X (s) = —px(s) + a, Y (s) = —py(s) + b we have

X"(s) = —pX (s),
Y"(s) = —u¥ (s),

which has well-known solutions. For example, if x> 0 then

(X(s),Y(s)) = (Acos(y/ps) + Bsin(y/us), C cos(y/us) + Dsin(y/11s)) ,

for arbitrary A, B,C, D € R, which gives us

(z(s),y(s)) = % (@ — Acos(y/ps) — Bsin(y/ps), b — C cos(y/us) — Dsin(y/ps)) ,



which is an ellipse (or a circle). A similar consideration applies for the case
p < 0, and in the case p = 0, z(s) and y(s) are both quadratic. O

A point where the affine curvature of v vanishes is an affine inflexion,
also known as a parabolic point of 7, so called since it is a point at which
exists an unique parabola having 5-point contact with . If a conic has (at
least) 5-point contact with a curve, then it shares the same affine curvature
with the curve at the point of contact, and is called an osculating conic. The
centre of affine curvature at y(s) is the centre of the osculating conic at that
point, that is, the point v(s) + (1/u(s))7"(s), and the locus of these points is
the affine evolute of y, the affine-invariant analogue of the Euclidean evolute.
Furthermore, with analogy to the Euclidean situation, the affine evolute is
the envelope of the affine normal lines to the curve. A point for which
p'(s) = 0 is called an affine vertex of a curve, or a sextactic point: at such a
point there exists a conic having 6-point contact with the curve. The centre
of a sextactic conic lies at a cusp of the evolute. There are at least six points
on a closed curve for which /(s) = 0 (see [Bla23] for a proof of this; see also

[F84] for a short exposition on the existence of sextactic points).

1.3.2 The affine distance function

We introduce the concept of affine distance, which is based on area and is

invariant under equi-affine transformations.

Definition 1.3.4. Let x be a point in the plane, and v(s) a planar curve
parametrised by affine-arclength s. The affine distance between x and a

non-inflexional point y(s) on the curve is given by

d(x,s) = [x = 7(s),7'(s)]. (1.9)

Note that the affine distance is defined between a point x of R? and a
curve point y(s). Since the basic geometric (equi-) affine invariant is area,
we require three points, or a point and a vector, to define affine-invariant
distance. It follows that there is no affine distance between two points in
space. For an oval parametrised by affine-arclength, the distance from a

point inside the oval to a point of the oval is negative. (By owval we will



always mean a simple, closed curve having no zeros of Euclidean curvature,
that is, a strictly convez plane curve.)

In [IS95], this family of functions is used to describe the affine evolute in
terms of singularity theory, and in [GS96], [GS98], this family of functions is
used to study an affine-invariant analogue of the Euclidean Symmetry Set,
the ADSS, the subject of Chapters 3, 5 and 6 of this thesis.

Using Arnold’s standard Ay notation for singularities of functions of one

variable, we have:

Proposition 1.3.5 ([IS95]). Away from affine inflexion points of v, the

affine distance function d defined on vy exhibits the following singularities:

A>q = x —(s) is parallel to 7"(s), and x is then on the affine normal
line to v at y(s).

Asy <= u(s) #0 and x = ~(s) + ﬁv”(s), and x is then at the centre of

affine curvature of v at y(s), that is, on the affine evolute of ~y.

Asg <= pu(s) #0, x = v(s) + ﬁ’y"(s) and p'(s) = 0, and x is then on

the affine evolute of v at an affine vertes.
We now consider the limit of the affine distance function at an inflexion.

Proposition 1.3.6. The limiting value of the affine distance of a point x

from an ordinary inflexion I on a plane curve vy is

{ 0 +f x is along the tangent line to v at I, and

oo otherwise.

Proof. Consider a smooth plane curve segment <, parametrised by ¢, and
having an inflexion for £ = 0. Set up a coordinate system with the inflexion

at the origin and the inflexional tangent along the x-axis. Then we can write
() = (X(1),Y(t) = (t,at® + bt +ct® +..),

for some a,b,c,... € R with a # 0. Let  (dot) denote derivative w.r.t. t.



Then

k() = [¥(2),5(¥)]

1 0
3at? + 4bt* + ... 6at + 12bt% + ... ‘
= 6at + 126t + . ..

and we calculate that

k(t)™3 = (6a) /3 (t—1/3 - §—bt2/3 . ) .
a

The affine tangent vector to 7 is given by (1.3), and thus the affine distance
from x = (z,y) to the curve « through ~(¢) is

dx,~(t)) = [x—7(t),7 )

= [x—(t), k7]

z — X(1) (6a)~1/3 (=13 — 2bt2/3 /3a + .. )
y—Y(t) (6a)3(tY3 — 20123 /3a + .. .)(3at? +...)

2b
= 1 (3a(6a) 3P +..) —y ((6&)_1/375_1/3 — 3—t2/3 +.. ) :
a

and thus as t — 0, d(x,v(t)) - 0if y =0 and — oo if y # 0. O

1.3.3 From an arbitrary regular parametrisation to the

affine-invariant parametrisation

Here we present some identities to convert from an arbitrary regular param-
eterisation to the affine-arclength parametrisation.

Suppose 7(t) is an arbitrary regular parametrisation of a plane curve
7. Using " (dot) for d/dt and k(t) = [¥,5], by (1.4) we have v = k~'/37.



Differentiating this expression w.r.t. affine-arclength we get
" —2/3 L. —5/3 4
y' =k — gkk 4. (1.10)

This identity expresses the affine normal vector for any arbitrary regular
parametrisation of v (note that [y,4"] = 1). For a smooth curve v(z) =
(z, f(z)) we have

k(@) = f(2), k(@) = f (), ¥(2) = (1, f(2)), and §() = (0, (),

and thus the affine normal to v at y(z) is

Y@ = FP0H - ST,

Loy _1.../...>
— ( 3f53f;f13 3ff53f .

Finally, from (1.5), we have
V"=, (1.11)

where p is the affine curvature of ~.

1.3.4 Affine-invariant parametrisation and induced ori-

entation

Affine-invariant parametrisation induces an orientation on curve segments in
the affine plane. Fixing [y',7"] = 1 means that any affine tangent vector to
a curve and the corresponding affine normal vector make a positive frame.
The direction of the affine normal to a curve v at a non-inflexional point v, is
the limiting tangent line to the locus of midpoints of chords joining points of
~ and parallel to the tangent at ;. Using the expression from §1.3.3 for the
affine normal vector 7{ , we know that it points in the direction as shown
in Figure 1.1(a). The affine normal vector always lies to the convex side
of the curve, irrespective of any parameterisation of v. Thus the identity
[7,7"] = 1 fixes the affine tangent 7' at each point of 7, and therefore (at

least locally) induces an orientation on a plane curve.



For example, consider an oval y of Figure 1.1(b). At each point the affine
normal vector points towards the interior of v, and thus the affine tangent
vector must be oriented as shown, which in turn induces the ‘positive’ orien-
tation on the oval. In the non-oval case of Figure 1.1(c), a curve is segmented
at its (Euclidean) inflexions, and the affine-invariant parametrisation induces

a positive orientation on each segment as shown.

() direction of
affine normal

Figure 1.1: See §1.3.4.

1.4 Conics

A conic is a curve of degree two in two variables, given in general form as
az? 4+ 2hxy + by® + 292 + 2fy +c =0, (1.12)

where a, b, c, f, g, h are real homogeneous parameters. Thus a conic has five

degrees of freedom, and five points define a conic uniquely. If the expression

<

I
@ >
- o >
o =

is zero, then the conic is degenerate, that is, either an intersecting line-pair,
a parallel line-pair, a repeated line-pair, a single point, or the empty set.
Otherwise, the conic is non-degenerate and its type is distinguished by the
sign of the discriminant A = ab — h%: if A > 0 then the conic is an ellipse,
if A = 0 then the conic is a parabola, and if A < 0 then the conic is an
hyperbola.



Definition 1.4.1. A centre of a conic of the form (1.12) is a solution (x,y)
to

ar + hy + g =0,
hz +by+ f = 0.

If A # 0, then this centre is unique and finite. In the case of an hyperbola,
the centre is at the intersection of the asymptotes; for a parabola, the centre
is the point at infinity along the axis of the parabola; for an intersecting
line-pair, the centre is at the intersection point; for a repeated line-pair, the
centre is an arbitrary point on the repeated line; for a parallel line-pair, the
centre is at infinity. A central conic is any non-degenerate conic with a finite
centre.

The affine distance from the centre of a central conic to a point of the
conic is constant; conversely, if the affine distance from a point to a closed

curve is constant then the curve is a conic with the point as its centre.

Definition 1.4.2. The affine radius o of a non-degenerate conic is minus

the affine distance from its centre to each of its points.

Lemma 1.4.3. The affine radius o of a non-degenerate conic is equal to

1/, where p is the (constant) affine curvature of the conic.

Proof. Consider an ellipse y(t) = (acost,bsint). The affine curvature of
is defined to be p = [7",4"], and in the proof of Lemma 1.3.3 we calculate
that

p=(ab)=*/?,

Now the affine radius of an ellipse v (centred at (0,0)) is defined to be

o = —[(0,0) —y(s),7(s)]
. (ab)_1/3 acost —asint
N bsint bcost

= (ab)*3.

Hence 0 = 1/p in the case of an ellipse.



A similar calculation confirms the result for an hyperbola, using the affine-
invariant parametrisation of Lemma 1.3.3. For a parabola, we note that its
affine radius is infinite, since its centre is at infinity, and this corresponds

with the fact that the affine curvature of a parabola is zero. O

Corollary 1.4.4. The affine radius of a conic C is positive if and only if C
1s an ellipse, zero if and only if C is a parabola, and negative if and only if

C is an hyperbola.
Proof. By Lemma 1.3.3 and Lemma 1.4.3. O

We now present an identity involving the affine radius, discriminant and
centre of a conic. Consider a central conic C(x,y) given by equation (1.12),

with centre (p, q), discriminant A = ab — h? and affine radius o.

Proposition 1.4.5.
o’A =C(p,q)°,

where C(p, q) denotes the expression for the conic C(x,y) after the substitution

{r=p,y=4q}.

Proof. Suppose C(z,y) = 0 is an ellipse. Substitute z =X +p,y =Y +pin
to equation (1.12) for C(z,y) = 0 to get

aX?+2hXY +bY%+C(p,q) =0,

and then apply the linear transformation X —— X — %Y, Y — Y of deter-

minant 1 to get
A
aX®+=Y?+C(p,q) = 0.
a

The affine radius of this conic has been preserved. This conic is then mapped
to a circle by X — AX)Y +— %Y, where \? = \/K/a. This circle is

parametrised as

(X(2),Y() = (H%cost,”%sint) :



Note that A > 0 for an ellipse, and the value of C(p,q) for an ellipse is
negative. The affine radius o of this circle is then

o = [(X(t),Y(®),(X'(t),Y'®)),

0 ot /=200 sin L\
|- _f%q) sin t _f%q) cost —_f}%q) ’

A similar procedure can be used for the case when the conic is an hyper-
bola. O

This confirms that the affine radius o will always have the same sign as
A. Compare this with the calculation carried out in [COT96], where the

same identity is derived by a different method.

Definition 1.4.6. A diameter of a conic is any line through the centre of

the conic.

In the case of an hyperbola, a diameter is any line through the intersection
of the asymptotes. For a parabola, a diameter is any line parallel to the axis.
We will link the idea of a diameter of a conic with the existence of an affine
symmetry of the conic, showing that, with one exception, a non-degenerate

conic is affine symmetric in any of its diameters.

Lemma 1.4.7. A central conic C is affine symmetric about any diameter d,

except when C is an hyperbola with d as an asymptote.

Proof. Consider C with centre at the origin and diameter d, which we take

to be the z-axis. C is then given by
az? + 2hzy + by? =1, (1.13)

for homogeneous coefficients a,b,h € R. The matrix of a general affine



reflexion in the z-axis (that is, which leaves the z-axis pointwise fixed) is

(03)

for A € R, corresponding to the transformation x — = + Ay, y — —y.
Substituting this into the equation for C above, we get

az® + (2a\ — 2h)zy + (a)? — 2RA + b)y* = 1. (1.14)

For the transformation above to be an affine reflexion in the z-axis fizing C,
we require that the expressions (1.13), (1.14) are identical, i.e. that

h=a)—h, and b = a)\® — 2h\ + b,

where we note that the second condition follows automatically from the first,

namely that A = 2h/a, assuming that a # 0. Thus the transformation given

1 2h/a
0o -1 )’

with a # 0 is the required affine transformation in the z-axis fixing C.

by the matrix

In the case a = 0, C is an hyperbola with the z-axis as one of its asymp-
totes. The transformation thus defined is not strictly a reflexion in the z-axis,
but a limit of such reflexions. It fixes the z-axis, but not pointwise, instead
mapping a point (z,0) — (—z,0). Thus an hyperbola is not affine symmetric
about an asymptote. O

Lemma 1.4.8. A parabola P is affine symmetric about any diameter.

Proof. Consider parabola P with diameter any line parallel to the axis of the
parabola. Let us take parabola P to be given by (y — a)? = bx. Then the
axis of P is parallel to the z-axis, which we will take to be our diameter d.

Following a similar approach to the proofs of Lemma 1.4.7, we are able to

deduce that the matrix
4q
S
0 -1/’



is the required affine reflexion in d fixing P. O
Thus we have shown:

Proposition 1.4.9. For a non-degenerate conic IC and any diameter d, there
exists an (unique) affine reflexion R in d which fizes IC, except when IC is

an hyperbola and d is an asymptote.

1.4.1 Locus of centres of a pencil of conics

For an oval v and two fixed points y(¢;), y(t2) on it, consider the 1-parameter
family of all conics C which are tangent to v at these two points. If 7; = 0
and T, = 0 are equations of the tangent lines to v at y(¢;) and ~(¢s), and
L = 0 is an equation of the line joining these two points, then the general

conic of the pencil is

TiTz + \L% =0,

for some real parameter A (extended by A = 00). Let m denote the midpoint
of the chord joining ~y(¢1),v(t2), p denote the intersection of 7; = 0 and
T2 =0, and M = 0 denote the equation of the line through p and m.

Proposition 1.4.10. The locus of centres of the conics in the pencil TiT> +
AL =0 (extended by A = 0) is the line pair LM = 0.

Remark 1.4.11. The component L = 0 of this locus of centres is degenerate,
corresponding to the repeated line-pair L? = 0 whose centre is indeterminate

along L = 0.

For the proof, we require the following: suppose A + AB = 0 is a pencil
of conics in the (z,y)-plane; then differentiating with respect to coordinates

x and y in turn we have

0A OB __
%4—)\%—0,

0A 9B __
24 4 A8 =,

For varying ), this system defines a pencil of line-pairs, intersecting at the

centres of the original pencil of conics, using the definition of the centre of a



conic to be the pole of the line at infinity. Thus

0A 0B 0A 0B
or dy Oy Oz’
gives us the locus of centres of the pencil of conics. We may now prove the

proposition.

Proof. (of Proposition 1.4.10) The derivatives of 775+ AL? = 0 with respect

to coordinates x,y respectively are

oy 0T, oL

—4B+T 20 =0,
Ox
ﬂ75+T%+2)\£?9—§=0,

and, eliminating A, the locus of centres of the conics in this pencil is

67'17, @a_ﬁ_gTac 8758£
25y T oz oy Oy ‘or oy ox

Thus £ = 0 is a component of the locus of centres. Denote the other line
component by M = 0. The intersection p of 7, = 0 and 7; = 0 lies on
M = 0. Without loss of generality, suppose 7; = 0 and 75 = 0 intersect at
the origin, and let £ = 0 be given by x — k = 0 for some k£ # 0. Suppose

T =0 Y cx+dy=0
Y41
—m p T
D ar +by =0
=0 £=0

Figure 1.2: See §1.4.1.

Ti=0isax+by=0,and 7, =0 is cx + dy = 0, for some a,b,c,d € R. Let
p1, p2 denote the points (1), y(t2), situated at 71 N L and 75N L respectively.



Then we see that

p1 = (ka _a’k/b) )
pa = (k,—ck/d).

A short calculation shows that line M = 0 is
(ad + bc)x + 2bdy = 0,

and hence the midpoint m of the chord p;p,, the point (k, —k(ad + bc)/2bd),
lies on M = 0. Thus we have shown that the component M = 0 of the locus
of centres of the pencil is indeed the line through p = 7; N 75 and midpoint
m, as required. O

1.5 Envelopes with high contact

Consider a 1-parameter family of smooth curves F'(z,y,u) = 0, where family
parameter u is taken to be in a neighbourhood of U. Suppose that this
family has a smooth envelope. The constituent curves of the envelope are

F(z,y,uy) =0, and the corresponding envelope point is denoted (zo, ¥o)-

Definition 1.5.1. A smooth envelope having n-point contact with each of

the constituent curves of the family is called an n-point contact envelope.

This section contains some general results concerning contact between
members of 1-parameter families of curves and the corresponding envelopes.
These results will be applied in Chapters 4 and 5, when we consider the
problem of creating envelopes having high contact with their constituent

curves.

1.5.1 Tangency between implicit curves

Derivatives will be denoted by subscripts.



Lemma 1.5.2. Two smooth curves F(z,y) =0 and G(x,y) = 0 are tangent
at (xo,Yo) if and only if

Fy(wo,0) Fy(20,%0)

=0.
Gw(xﬂayO) Gy(l'oayo)

F(x07 yo) = G(anyO) =0, and

Proof. The vectors (Fy (o, yo), Fy(%o,%0)) and (Gz(zo, yo), Gy (o, Yo)) are par-
allel to the normal vectors to F' =0 and G = 0 at (g, yo) respectively. Thus
the two curves are tangent if they pass through the point (zg,yy) and their
normal vectors are parallel there, the necessary and sufficient condition for

which is expressed as the determinant condition above. O

1.5.2 Envelopes
For any parameter value u = uy we have:

Proposition 1.5.3. The curve F(x,y,ug) = 0 has > 3-point contact with
the envelope curve at (xg,yo) if and only if the curve F,(x,y,uy) = 0 has

> 2-point contact with the envelope at (zo,yo)-

Proof. Consider the surface in (z,y,u)-space defined by F(z,y,u) = 0. Lo-
cally it can be expressed in the form y = G(z,u) for suitable function G.
The curve F(z,y,uq) = 0 is re-expressed as y = G(x, ug), the ‘slice’ of the
surface y = G(z,u) at level u = uy. The curve F,(z,y,up) = 0 is similarly
re-expressed as Gy (z,uy) = 0. The envelope is then defined to be the pro-
jection of the critical set of this surface to the (z,y)-plane, and is given by
solutions to the system

Y= G(:E, u):

0=Gulz,u).

Suppose that G, (z,u) = 0 has a non-singular solution z = X (u) for some u
in a neighbourhood of uy: the envelope is then (X (u), G(X(u),u)). We may
assume that X'(ug) # 0, since we require the envelope to be smooth. This

gives us the identities

G(X (u),u), (1.15)

Y
0 =Gu(X(u),u). (1.16)



To measure the contact between the curve y = G(z,up) and the envelope at
(x0, Yo) we consider the vanishing at u = ug of the derivatives w.r.t. u of the
expression

h(u,up) = G(X(u),u) — G(X (u), uop). (1.17)

The curve y = G(z,u0) and the envelope have > n-point contact at (x, yo)
if and only if the first (n — 1) derivatives of h w.r.t. u vanish at u = wuy.

To measure the contact between the curve G, (z, ug) = 0 and the envelope
(z,y) = (X(u),G(X(u),u)) we consider the vanishing at u = wug of the
derivatives w.r.t. u of the expression

flu,ug) = Gyu(X (u), up). (1.18)

The curve G,(z,up) = 0 and the envelope (z,y) = (X (u), G(X (u),u)) have
> n-point contact at (xg,yo) if and only if the first (n — 1) derivatives of f
w.r.t u vanish at u = uy.

The result follows by calculating the required derivatives of functions h
and f, evaluated at u = uo, using the identities (1.15) and (1.16). O

Calculating further derivatives of the functions h and f at u = g leads

to the following extension of Proposition 1.5.3.

Proposition 1.5.4. The curve F(x,y,ug) = 0 has > 4-point contact with
the envelope for all ug in a neighbourhood of U if and only if the curve
Fu(z,y,ug) = 0 has > 3-point contact with the envelope for all uy in a
neighbourhood of U.

Remark 1.5.5. It is crucial to note that Proposition 1.5.4 links 4-point
contact between F(x,y,ug) = 0 for a range of ug to 3-point contact between

Fu(z,y,ug) =0 for a range of uy.
We use Proposition 1.5.4 to improve Proposition 1.5.3.

Corollary 1.5.6. A curve F(x,y,u) = 0 has exactly 3-point contact with
the envelope curve at (xg,yo) if and only if the curve Fy(x,y,uy) = 0 has

ezactly 2-point contact with the envelope at (zo,yo).



We now use these results to link the contact between an envelope and a

constituent curve F(x,y, uy) = 0 to contact between this curve and the curve
Fu(xa Y, UO) =0.

Corollary 1.5.7. The curve F(x,y,ug) = 0 has > 3-point contact with the

envelope at (xg,%Yo) if and only if the curve F(z,y,up) = 0 has > 2-point

contact with the curve F,(x,y,u) = 0 at (xq,yo)-

Proof.

(=)

Suppose F'(x,y,ug) = 0 has > 3-point contact with the envelope at
(zo,%0)- Then F(z,y,up) = 0 and the envelope share the same 3-
jet (in suitable coordinates at (z,%)). Then, by Proposition 1.5.3,
F,(z,y,up) = 0 has > 2-point contact with the envelope at (zo, o),
and thus F,(z,y,uy) = 0 and the envelope share the same 2-jet. Thus
F(z,y,up) = 0 and F,(z,y,up) = 0 share the same 2-jet, and hence

have > 2-point contact.

Suppose Fy(z,y,uq) = 0 has > 2-point contact with F(x,y,uy) = 0.
Then F(x,y,uo) = 0 and Fy(z,y,us) = 0 share the same 2-jet. We
also know by construction that F'(x,y,up) = 0 and the envelope must
share the same 2-jet, and thus F,(x,y,uo) = 0 must share the same
2-jet, that is, Fy,(x,y,ue) = 0 has > 2-point contact with the envelope.
Hence, by Proposition 1.5.3, F'(z,y, ug) = 0 has > 3-point contact with
the envelope.

O

Corollary 1.5.8. The curve F(x,y,uo) = 0 has > 4-point contact with

the envelope at (zo,v0) for all uy in a neighbourhood of U if and only if

F(z,y,uy) = 0 has > 3-point contact with the curve F,(x,y,u) = 0 at

(x0,Yo) for all ug in a neighbourhood of U.

Proof. By similar arguments to above. U



Figure 1.3: Diagrammatic illustration of the zero-levels of F' and OF/0u.

1.5.3 Geometrical interpretation of Proposition 1.5.3

and Proposition 1.5.4

Consider the envelope of a smooth 1-parameter family of plane curves
F(z,y,u) =0.

Geometrically, an envelope point occurs at the intersections of the two ‘con-
secutive’ curves F(z,y,uq) = 0 and Fy(z,y,up) = 0. Normal (2-point)
contact envelopes are formed where consecutive curves in the family inter-
sect transversally. Proposition 1.5.3, or rather Corollary 1.5.6, tells that
3-point contact envelope points occur when the zero-levels of F(z,y, ug) and
F,(z,y,up) are tangent. Furthermore, Proposition 1.5.4 tells us that > 4-
point envelopes occur when the zero-levels of F'(x,y, ug) and F,(z,y, ug) have
> 3-point contact. This interpretation is intuitively attractive, and suggests

a general extension to these propositions.

Conjecture 1.5.9. For integer n > 2 the curve F(z,y,uq) = 0 has n-
point contact with the envelope curve at (xg,yo) for all ug if and only if
F(z,y,ug) = 0 has (n — 1)-point contact with the curve F,(x,y,ug) = 0 at
(x0, Yo) for all ug.

Remark 1.5.10. We are assuming that, for a specific family of curves, there
are enough degrees of freedom for these higher contact envelopes to occur.
In the application to conics in Chapters 4 and 5, we require only Proposi-
tion 1.5.3 and Proposition 1.5.4 respectively, since we are considering only

3- and 4-point contact envelopes.



Chapter 2
Affine Envelope Symmetry Sets

In this chapter we consider the affine-invariant symmetry set whose definition
mirrors that of the Euclidean Symmetry Set given in Definition 1.1.1.

The affine-invariant analogue of a circle is a conic section, and since affine
transformations preserve conics and contact between curves, we will base
the analogous affine-invariant symmetry set on contact between a curve and
conics. This will include degenerate conics, such as intersecting, parallel and
repeated line-pairs, and it is often the case that the geometry of the affine
symmetry set (as defined in Definition 2.1.1) becomes most interesting when

these degenerate conics appear.

Outline of Chapter 2

§2.1: We define the Affine Envelope Symmetry Set (AESS), the analogue of
the Euclidean Symmetry Set as defined in Definition 1.1.1, and intro-

duce the concept of a ‘3+8&’ conic.

62.2: We derive the ‘AESS Condition’, which defines the pre-AESS for ovals.
This condition is then considered for non-ovals, and slightly modified.
In §2.2.2, we define the Centre Map, which maps the pre-AESS to the
AESS, and in §2.2.3 we consider the effect of horizontal and wvertical
tangents to the pre-AESS. In §2.2.4, we consider Morse singularities on
the pre-AESS.

§2.3: We set up a coordinate system and derive explicit conditions for there

24



§2.4:

§2.5:

§2.6:

§2.7:

§2.8:

to exist 3+3 and 443 conics.

We begin the study of the local structure of the AESS, restricting the
study to ovals only. We will see that the structure of the AESS makes

more sense when considered in union with another affine-invariant set,
the MPTL.

We extend our classification of the local structure of the AESS to in-
clude non-oval curves, deducing the structure of the AESS (and MPTL)
in situations involving inflexions and double tangents. We also consider
the conditions for a cusp on the AESS and the structure of the AESS
and MPTL at points where they meet: we show that the AESS U
MPTL exhibits a beaks singularity in this case. Finally, we consider
the condition for the AESS to exhibit an inflexion and relate this to
the ADSS, the subject of Chapter 3.

We consider the local structure of the AESS for non-simple curves,
deducing that the AESS passes smoothly through self-intersections of

a curve.

We reconsider the MPTL, showing that it can be defined as a bifurca-
tion set of a family of area functions defined on a curve. This leads to

the introduction of another affine-invariant symmetry set, the AASS.

We illustrate the results of §§2.4-2.7 with some [LSMP] plots.

2.1 Introducing the Affine Envelope Symme-

try Set

Definition 2.1.1. The Affine Envelope Symmetry Set (AESS) of a

simple, closed, smooth plane curve vy s the closure of the locus of centres of

conics with (at least) 3-point contact with the curve in two or more distinct

points.

Notation: We will call a conic having (at least) 3-point contact with a

specific curve in two distinct points a ‘3+3 conic’; if, at one of these points,



the curve and the conic have (at least) 4-point contact, we will call the conic
a ‘4+38 conic’; if it is essential for us to specify that the conic should have
precisely 3-point contact at one point and precisely 4-point contact at the

other point, we will say ‘exactly 4+3 conic’, and so on.

2.1.1 Discussion of allowable 3+3 conics

It is necessary to decide precisely what we will mean by a $+38 conic, and
make a specific list of which 3+3 conics will contribute their centres to the
AESS. The simplest cases are those where the 343 conic is either an ellipse,
an hyperbola, or an intersecting line-pair, each of which has a finite centre
which contributes to the AESS.

Consider the line-pair consisting of two tangents to the curve, where one
of these lines is a tangent at an inflexion and cuts the curve again at the
point of contact of the other tangent (see Figure 2.1 for an illustration).
This line-pair is a legitimate 3+3 conic, and its contribution to the AESS is
its centre, ¢, which sits on the curve at the intersection of the two lines. This
phenomenon will occur for a generic non-oval plane curve, since whenever
we have an inflexion where the curve crosses its tangent line the inflexional
tangent will cut the curve at some other point, resulting in the degenerate
343 conic as prescribed. We will study the interesting geometry of this
situation in §2.5.4, showing that the AESS at this point will generically
exhibit an ordinary cusp.

Another allowable 3+3 conic is the parabola which has its centre at
infinity, and thus contributes this point to the AESS. A parallel line-pair
has centre at an arbitrary point of the parallel line midway between the line-
pair, but this conic corresponds to the tangent lines at parallel inflexions on
the original curve, the appearance of which is a non-generic phenomenon, and
thus this case is not considered. It remains for us to consider the possibility
that a repeated line pair, which has indeterminate centre at an arbitrary
point of the repeated line, could contribute to the AESS. The two situations

where a repeated line can have double 3-point contact with a curve are:

e The case of a repeated tangent at an inflexion of our original curve.

To consider this as a legitimate 3+3 conic would be to include the
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Figure 2.1: Non-oval curve v has two inflexional tangents, which cut the
curve again at p1,pa. The degenerate 3+3 conics centred at the points p; and
po consist of the inflexional tangents together with the corresponding tangent

to v at p1 or po.

entire inflexional tangent line as part of the AESS. However, in this
case the repeated tangent makes more sense when considered as a 6-
point contact conic, and geometrically the limit of a series of nearby
3+3 conics, with centres tending towards the inflexion point. We then
conclude that this repeated inflexional tangent should not be classed
as a 3+3 conic. The fact that the AESS is defined as the closure of
the locus of centres of 3+3 conics means that the point of inflexion is
included in the AESS, as an endpoint.

e The case of a repeated line-pair tangent to the curve at two distinct
points, that is, the case of a repeated double tangent. This repeated
line-pair in fact has 4-point contact with the curve at each of these
two points, and again the corresponding centre is an arbitrary point
along this repeated line. However, we will not exclude this conic from
our list of legitimate 3+3 conics, for reasons which will become clear
in §2.2. Regarding the problem of the contribution of this 3+3 conic
to the AESS of the curve, we see that if we view this repeated line as
a limit of a series of nearby 343 conics, then its contribution is the
midpoint of the chord joining points of contact of the double tangent.
This situation is considered in detail in §2.5.2.

In summary, our set of allowable 3+& conics will consist of the ellipse, the hy-



perbola and the intersecting line-pair (corresponding to finite AESS points),
the parabola (corresponding to AESS points at infinity), and the repeated
line-pair at a double tangent. The set of allowable 3+3 conics will not in-
clude the repeated line-pair comprising the tangent at an inflexion counted

twice.

2.1.2 Geometrical interpretation of Definition 2.1.1

We have now defined, for any simple, closed, smooth plane curve v, a set
of points which remains invariant under the group of affine transformations.
We now ask: In what respect may we think of this set of points as capturing
some aspect of the local affine symmetry of v¥¢

The Euclidean Symmetry Set is a means of quantifying the local Euclidean

reflexional (or bilateral) symmetry of a plane curve. Consider Figure 2.2,

N

p

M (tl)

Figure 2.2: [ is an infinitesimal axis of symmetry for v; U 7.

where 7, and 7, are two smooth curve segments. Suppose the two points
71(t1), v2(t2) are such that there exists a circle tangent to 1,7y, at these two
points. The line [/, through points m and p, respectively the midpoint of
the chord joining ~;(t1) and 75(t2) and the intersection of the tangents at
these two points, is tangent to the Symmetry Set at the corresponding point
(see Remark 4.1.1 for a geometrical justification of this statement). Then
there exists a reflexion in [ taking 7, (¢1) and its tangent line to o(t3) and its
tangent line. We call [ an ‘infinitesimal axis of (reflexional) symmetry’.

We will now show that an analogous geometrical interpretation can be

given for the AESS. Given two smooth curve segments 1, vy, suppose there



exists a non-degenerate conic C having 3-point contact with v; and v, at
v1(s1) and 7,(s2) respectively. We will assume that the tangent lines to 7,

and ~» at these points are not parallel.

Convention: We will denote the midpoint of the chord joining such points
71(81) and y2(se) by m, and the intersection of the tangent lines at y;(s1)
and y2(s2) by p.

Proposition 2.1.2. There ezxists a (non-degenerate) conic having 3-point
contact with curve segments vy, and vy at y1(s1) and v2(s2) if and only if there
exists an affine reflexion taking v1(s1), and its affine tangent vector, to v2(s2)
and its affine tangent vector. (The affine tangent vector is introduced in
§1.3.1, and the definition of an affine reflexion is given in Definition 1.2.2.)

Proposition 2.1.5 and Proposition 2.1.6 prove Proposition 2.1.2, and this
section concerns the proofs of these two propositions. We require an inter-
mediate result.

Lemma 2.1.3. The tangent to the AESS at the centre of conic C passes
through m and p.

Proof. See §2.4.3 (Proposition 2.4.3(iv)). O

Figure 2.3: [llustration of Lemma 2.1.3. Line T is tangent to the AESS at
the centre of conic C.

Denote the tangent to the AESS at the centre of conic C by 7. Then
T is a diameter of C. In Proposition 1.4.9 we have a result connecting the

diameter of a non-degenerate conic to an affine reflexion with the diameter



as an axis and fixing the conic, the exception being when the conic is an
hyperbola with an asymptote as the axis.

We will now consider the exceptional case of Proposition 1.4.9 in relation
to 3+3 conics. Suppose we have an hyperbola K having 343 contact with
a curve at finite points pi, po. By our convention, the tangent lines to the
curve intersect at point p, and the midpoint of the chord joining pi, ps is
m. The intersection of the asymptotes is the centre, ¢, of hyperbola K, and
this is the corresponding AESS point. By Lemma 2.1.3, the tangent 7T to
the AESS at this point passes through m and p, and is a diameter of K.
However, T" cannot be along an asymptote of I, regardless of whether or not
p1, p2 are on the same branch of IC: for this to happen we would require m
and p to lie on an asymptote, and it is clear from Figure 2.4 that in case (i)
m cannot lie on an asymptote, and in case (ii) p cannot lie on an asymptote.

So if T' is a diameter of conic K having double 3-point contact with a curve

Figure 2.4: The asymptotes are shown dashed.

in two distinct, finite points, then 7' is not an asymptote of X, and hence
there exists an affine reflexion in 7' fixing K by Proposition 1.4.9, that is,
K is affine symmetric about 7. Thus, when we insist that the conic K in
Proposition 1.4.9 is a 343 conic, and the diameter is taken to be the tangent
T to the AESS at the centre of IC, we deduce that the exceptional case cannot

occur.

Proposition 2.1.4. Any non-degenerate conic K having 3+38 contact with
a curve (at finite points) is affine symmetric about the tangent to the AESS
through the centre of K.



We use this result to obtain a geometrical interpretation of the AESS.
Consider two smooth curve segments 7; and <y, parametrised by affine-
arclength. Let v1(s1) and 72(s2) be two fixed points on y; and 7, and
let 71 (s1) and 74 (s2) denote the respective affine tangent vectors to the curve
segments at these two points. Let 7' be the unique line through midpoint m

and intersection point p.

Proposition 2.1.5. If there exists a non-degenerate conic C having 3+38 con-
tact with curve segments 1,72 at y1(81), ¥2(s2), then there exists an (unique)

affine reflexion R in T (which is a diameter of C) taking v1(s1) to va2(s2),
and 71(s1) to 75(s2).

Proof. In the case where C is an hyperbola, 7" cannot be an asymptote of C,
as deduced above. Then by Proposition 1.4.9, there exists an (unique) affine
reflexion R in T fixing C. Let T; denote the tangent direction to 7; at v;(s;),
which is also the tangent direction to C since C and +; have 3-point contact
at 7;(s;) and thus share a tangent line. Clearly R takes ;(s1) to 72(s2), and
vice-versa. Since R leaves T' pointwise fixed, and fixes C, it maps the tangent
line T to C at 71 (s;) to the unique other tangent line to C through p, namely
T5, since the tangents 7T and 75, to the points of contact of 3+3 conics, and
the tangent 7" to the AESS are concurrent (see Lemma 2.1.3). Thus R takes
71(81), and its tangent line, to y2(se) and its tangent line.

Furthermore, since R fixes the conic C, it must map the affine tangent to
C at v1(s1) to the affine tangent to C at y(s2), and vice-versa. Since C has
3-point contact with each of vy, 7o at 1(s1), ¥2(s2), Lemma 1.3.2 tells us that
C shares the same affine tangent with each of the curve segments at these
points. Also R preserves contact between C and vy, v2 at y1(s1), 72(s2), and
thus R maps the affine tangent to y; at v;(s1) to the affine tangent to v at

v2(82), and vice-versa. O
By similar arguments we also have the converse:

Proposition 2.1.6. If there exists an affine reflexion R in line T taking
Y1(81) to Ya(s2), and vi(s1) to V4(ss), then there exists an (unique) conic C
(with T as a diameter) having 3+3 contact with y1,v2 at y1(s1),¥2(s2).



Proposition 2.1.5 and Proposition 2.1.6 together imply that there exists a
non-degenerate conic having 343 contact with v1,ve at v1(s1), 72(s2) if and
only if there exists an affine reflexion taking 7;(s1), and the corresponding
affine tangent to 7y, to 72(s2) and the corresponding affine tangent to s,
and thus prove Proposition 2.1.2. This affine reflexion will be in the line T,
through the centre of the 343 conic and tangent to the AESS there. Hence
we can see that the existence of a 3+3 conic at 7;(s1),72(s2) is equivalent
to the two curve segments 7,7y, being locally affine symmetric about T.
The tangents to the AESS can be thought of as ‘“infinitesimal azes of affine
(reflexional) symmetry’, and in this way we think of the AESS as capturing
the local affine reflexional symmetry of a plane curve. This explains why the
AESS is named as it is, since the AESS is the envelope of the infinitesimal
azes of affine reflexional symmetry of a curve.

Note that this interpretation involves the set of tangents to the AESS,
the ‘dual-AESS’, rather than the AESS itself. In §2.4.1 we will study the
dual-AESS (augmented by the dual of the affine evolute) in order to derive
the local structure of the AESS (and the affine evolute) for generic plane

curves.

2.2 The pre-AESS

The analysis of the local structure of the AESS begins by locating pairs of
points on a given curve y contributing to the AESS. The pairs of parameter
values for such points is called the ‘pre-AESS’, the set of points in the space
of pairs of parameters (s, sp) for which there exists a conic having double
3-point contact with v at y(s1),7(s2). Our definition of the AESS requires
that v and a particular conic have two points and their affine tangents in
common, and we will use the following lemma to deduce the appropriate

condition.

Lemma 2.2.1 ([GS96]). Let 6 be a non-degenerate conic parametrised by
affine-arclength s. Then, for any two points §(s1), d(s2) we have

[6(81) — 6(82),51(81) + 51(82)] =0.



From this lemma we may deduce the following AESS Condition.

Proposition 2.2.2 ([GS96]: The AESS Condition). Let vy be parametrised
by affine-arclength. There is a non-degenerate conic C having (at least) 3-
point contact with v at two distinct points y(s1) and y(s2), neither of which

15 an inflexion, if and only if

[v(s1) —v(s52),7'(51) +7'(52)] = 0. (2.1)

Remark 2.2.3. IfC has (at least) 3-point contact with y at an inflexion, then
C has zero Euclidean curvature at this point, and is therefore degenerate, that
18, a line-pair. Conversely, if there are no inflexions on vy, then any conic C
having (at least) 3-point contact with v must be non-degenerate. Thus, if we

restrict vy to be an oval, then all 3+3 conics must be non-degenerate.

2.2.1 The AESS Condition for non-ovals

The AESS Condition of Proposition 2.2.2 expresses the condition for a pair
of parameter values (si, s2) to contribute to the AESS, allowing us to pick
out points of the pre-AESS, the set of parameter pairs (s, s2) for which there
exists a 3+3 conic. In effect, Proposition 2.2.2 defines the pre-AESS, where
we exclude the ‘diagonal’ in parameter space by insisting that the points
v(s1) and 7(sy) are distinct. This definition of the pre-AESS is suitable if
we restrict our curve -y to an oval, since then the affine tangent 7/(s) is finite
everywhere, and the condition that neither point is an inflexion is redundant.
Problems occur when we try to use the AESS Condition when 7 is a non-oval,
at points of v which are inflexions, since then the affine tangents will have
infinite length. We avoid this problem as follows. Using expression (1.4)
from §1.3.1 we can write v'(s;) = ki_l/?’"y(s,-) for each of i = 1,2, where %

is used to denote the derivative of v with respect to an arbitrary parameter



along 7, and k; = [¥(s;),7(s;)]. Then we can rewrite (2.1) as

[Y(51) = Y(s2), ki 24 (s1) + k3 *4(s5)] = 0,
= k7 Ph Py (s1) = (52), by (s1) + k1 *3(s9)] = 0.

Using this alternative expression, we have:

Proposition 2.2.4 (Alternative AESS Condition). Let 7 be parametrised
by affine-arclength. There is a conic C having (at least) 3-point contact with
v at two distinct points y(s1) and v(s2) if and only if

[Y(s1) — Y(s2), ky'* (1) + k1/*3(s55)] = 0. (2.2)

We now have a suitable definition for the pre-AESS for non-ovals. With
reference to §2.1.1, it is easy to check that this expression does indeed identify
all allowable 3+3 conics and thus, for the non-oval case, we are justified in
using the Alternative AESS Condition.

2.2.2 The Centre Map

Whichever expression we use to define the pre-AESS,; it is this set in (sq, s2)-
space which is mapped to the plane to produce the AESS. Such a mapping
will take the pairs of parameter values of points on the curve having 3+3
point contact conics (found using (2.1) or (2.2)), and map them to the centre
of the 343 conic, the AESS point. We will consider only central conics picked

out by these expressions, which requires the following lemma.

Lemma 2.2.5. Let 6 be a central conic, parametrised by affine-arclength s.

For any two points 6(s1), 6(s2) on 4, the vector
0(s2) — 6(s1) — [0(s1),0(52)]0"(51)

is along the line joining 6(s1) to the centre of the conic.



Proof. The statement is invariant under affine transformations of arbitrary
determinant, and thus the condition may be verified directly for the unit

circle and the hyperbola zy = 1 (similar to proof of Lemma 2.2.1). O

The statement above holds when parameter values s; and s, are inter-
changed. The centre of a non-degenerate conic having 3-point contact with
v at y(s1) and 7(s) will be at the intersection of the two prescribed lines.
Hence Lemma 2.2.5 can be applied to obtain an explicit formula for the cen-
tre of a central conic having 3-point contact with a curve v at points with
parameter values s; and s9, which is the required map from the pre-AESS to
the AESS.

Proposition 2.2.6. The centre of a central 3+8 conic is at

1

5(71+’Y2+

(11— 72, 15 %) (7] — ,))
2 1
2[y = ye, ] = 1, 72l

Proof. Applying the above lemma twice, with the roles of s; and s, reversed,
we get two equivalent expressions for the centre, ¢, of a conic having 3-point
contact at both y(s1),v(s2):

c=7+Mre—7—[M7%M) } (2.3)

c="%+X(n — v — [ 7])

for some A\, A2 € R. Summing these two expressions tells us that

1
c=3 (M +7— A2 — A1) (2 — 1) + 71 1l (Aeys — M) -

Taking the difference of the same two expressions tells us that

Y =72+ (M +X) (2 — 1) — (M + Aeve) 1, 7] = 0. (2.4)

Bracketing (2.4) with the vector ] + 4 gives us

M4+ 22 =Dy — 7,7 + e — v + Xeves v + %l 7] =0,

and since we know that the 343 Conic Condition [y; — 2, 7] + 5] = 0 holds,



we deduce that
[Ay1 + Aavg, Vi + vl 7] = 0.

If [v{,74] = 0, then the tangent lines at 7; and 7 are parallel, and the 3+3
conic is a parallel line-pair and thus not central. So, assuming [;,v4] # 0,
the above holds if and only if

[)‘171 + )\2’)/;,’}’1 + ’}é] =0 /\1 = )\Q(E A S&y).

Thus 1
c=5Mm+7+ A%l =)
Bracketing the equations (2.3) with +{, we see that

)\ — [71 - ’}/Qa ’}/i]
2[v1 — Yo, 7] — [, 18)?

which gives the required expression for the centre. O

Definition 2.2.7. For (sq,s2) on the pre-AESS of a curve y corresponding
to a central 3+3 conic, the Centre Map from the pre-AESS to the AESS is
given by

2 1

=l
: oh=0).

1
81,82)'—>—<71+72+ —
( 2 =00l — [, P

For finite points 7; and <, of an oval, and corresponding finite tangents

v1 and 75, the centre ¢ goes to infinity when
2 = 2] = [, wl*

By calculating each side of this expression for the unit circle and rectangular
hyperbola, we have:

Corollary 2.2.8. Suppose there exists a conic C having 3-point contact with

an oval at points 1, ve with corresponding affine tangents vy, v,. Then C is
e an ellipse if 2[v1 — Y2, 71] >[5, )%

e a parabola if 2[v; — v2,v1] = [71, 15]%;



e an hyperbola if 2[v1 — 72, 71] < [, %)%

We consider now the cases where the Alternative AESS Condition of (2.2)
has identified degenerate conics. For the intersecting line-pair comprising
the tangent line at an inflexion and the tangent to the curve where the
inflexional tangent intersects the curve, we know that the centre lies at the
intersection of these lines, namely at v,. In the case of a double tangent, we
have [v],74] = 0 and [y; — 72,71] = 0, and hence the above expression for
the centre may not be used in its present state. In §2.5.2, we see that the
limit of the centres of 3+3 conics tending towards the double tangent is the
midpoint of the chord joining the points of contact of the double tangent,
and we take this to be the centre of this 343 conic.

The expression for the centre of a 343 conic as given in Proposition 2.2.6
is essential to be able to plot the AESS for explicit curves using a graphics

package such as [LSMP]. Examples of such plots are contained in §2.8.

2.2.3 Horizontal and vertical tangents to the pre-AESS

We are able to use Lemma 2.2.5 to relate cusps on the AESS to the structure
of the pre-AESS. In §2.4.3 (Proposition 2.4.7), and §2.5.6 (Proposition 2.5.8),
we show that a cusp appears on the AESS when the 3+3 conic becomes a
4+3 conic, that is, when the conic has (at least) 4-point contact with the
curve at one of the two points of contact y(s1),7v(s2). Suppose the 4+3 conic
has 4-point contact at y(s;). Then the conic and 7 share the same affine
normal at y(s1) (since the affine normal at y(s;) is the locus of conics having
> 4-point contact with v at (s1)), and it follows that the line joining ~(s;)
to the AESS point (at the centre of the 4+3 conic) is the affine normal,
v"(s1). Using Lemma 2.2.5, this tells us that the vector shown is parallel to
7" (s1). We have:

Proposition 2.2.9. The 3+3 conic has in fact 4-point contact at v, if and
only if
[ve = v, M1 = [, 72l



Proof. From Lemma 2.2.5 we see that +”(s1) is parallel to the given vector
(with y(s1),v(se) for 6(s1),d(s2)), i.e.

7

Y1 — 2 — [V1, V] is parallel to 47,
= [r—m-M%nnl=0,
= [v2— 771 = 1,7l

since [v],7]] = 1. O

The condition in Proposition 2.2.9 is precisely the condition for the tan-
gent to the pre-AESS to be parallel to the s;-axis, which follows directly from
differentiating (2.2) with respect to s;. Similarly, tangents to the pre-AESS
parallel to the sy-axis correspond to a conic having 4-point contact at y(ss).
We will show that one way for the AESS to exhibit a cusp singularity is for
there to exist a 443 conic. Thus we will be able to predict the existence of
this type of cusp on the AESS by picking out horizontal or vertical tangents
to the AESS. The reader is referred to §2.4.3 and §2.5.6 for details.

Remark 2.2.10. Not all cusps on the AESS correspond to 4+3 conics, and
hence not all cusps can be recognised by observing horizontal or vertical tan-
gents to the pre-AESS.

2.2.4 Morse singularities on the pre-AESS

We now consider the occurrence of Morse singularities on the pre-AESS of a

smooth curve segment . Consider the function

F(ty,t2) = [v(t1) — v(t2), ¥ (t1) + 7' (t2)]. (2.5)

Then F(t1,ty) = 0 if and only if (¢, ¢2) lies on the pre-AESS. So F'(t1,t2) =0
is an equation for the pre-AESS, and is the condition for there to exist a
conic having 3-point contact with v at y(¢;) and 7(f3). Away from the
diagonal ¢; = t,, we require a condition which distinguishes between isolated

points and crossings on the pre-AESS. Now the pre-AESS exhibits a Morse



singularity at a point (¢1,ts) if
F(ty,t2) = Fy, (t, t2) = Fi, (t1,t2) = 0,

and we calculate that

Fy (t1,t2) = [v1, 78] + [ — 72, ), (2.6)
Fy,(t,t2) = [0, 78] + [ — 72, 7%3)5 (2.7)

So we consider only (¢;,t2) for which
F(t1,t0) = Fy, (t1,t2) = F,(t1,12) = 0. (2.8)
Taking (2.6) and (2.7) together we have:
Ey (t,te) = Fiy(t, 1) =08 [71 — 72,7 — 1] =0, (2.9)

which is precisely the condition for (¢1,%3) to lie on the pre-ADSS (see Chap-
ter 3 for details).

Remark 2.2.11. Thus if a point (t1,t3) is at a Morse singularity of the pre-
AESS, then it also lies on the pre-ADSS. See Remark 2.5.12 for a similar
link between the AESS and the structure of the pre-ADSS.

Thus (2.8) says that the conic having 3-point contact with v at (¢;) and
v(t2) is in fact a 4+4 conic, in which case the corresponding AESS point x,
lies at the intersection of the affine normals to v at +; and v, and at the
same affine distance from these points. Expression (2.9) and F(t1,t3) = 0

together give us
i+, — %l =0. (2.10)

We will require the following expressions:
Fyn(tite) = 14 h’i’a ’Yé] — [ — Y2, ’Y”’

Fiy, (tlat2) = -1+ Ma’Yg] - M2[’Yl - ’Yzﬁé]a
and Fyy,(t1,t2) = [71 47,7 — 1] = 0 by (2.10),



n —

using the fact that 7" = —u;7; (see §1.3.3). Let dy denote the common affine
distance from ~; to the AESS point, at the centre of the 444 conic. Then

where p is the affine curvature of the 444 conic, and we can write
. 1 " " 2 11
71—72—;(72—’71)- (2.11)

This follows since the centre xy of the 4+4 conic can be written as

X9 =71 — doyy = Y2 — dos-

From this, we deduce:

1
(=7, = u (g, Ml +1),
! 1 n !
[’Yl - 72,72] = _; ([71a72] + 1) .

The pre-AESS has an isolated point or a crossing at (Z;,t2) depending upon

whether the expression
-F;f1t1 (tla tZ)EQtQ (tla t?) - P;htz (tla t2)2’
is positive or negative respectively. We have Fy,4,(t1,12) = 0, and also

U
Fyy(t,t2) = 14[7,%] — ;1 (Ivg,ml+1),

= 14+[%,7) — % ([v{,7] + 1), using the fact that F} ;, = 0,

_ (1 — %) L+ [, 7)),



and similarly
7
Ft2t2 (tla t2) = - (1 - i) (1 + [fyg’/yé]) .

Thus we have an isolated point on the pre-AESS if and only if

F;fltl (tla tZ)F;fztz (tlv t2) >0

— (1—&)-(1—@)«),
1 1

<= pu lies between p; and po.

Thus we have a criterion for distinguishing between the Morse singulari-
ties on the pre-AESS. Unfortunately, a lack of intuition for affine geometry
hinders any attempt to find a simple geometric interpretation for this crite-

rion. However, we can make sense of this condition in the following situation.

§a!
Figure 2.5: Oval v and 4+4 conic C.

Consider an oval 7, and suppose there exists an ellipse C having 4-point
contact with v in two points 7; and v (see Figure 2.5). Denote the affine
curvature of vy at ; by u;. Then p; > 0, and without loss of generality we will
assume that gy > po. Denote the affine curvature of C by u (so g > 0). Thus
we have a Morse singularity on the pre-AESS of 7, and the intersection point
x of the affine normals to v at 7, and 7, is the corresponding AESS point
(at the centre of C). Let C; denote the osculating conic to 7 at -y;, that is, the



unique conic with 5-point contact with v at 7;. Then C; has affine curvature
1i- Each C; has 4-point contact with v at v;, and the centres of C and C;
lie along the corresponding affine normal. Then the situation p; < p < o
means geometrically that the centre of C is closer (along the affine normal)
to v, than the centre of C;, the centre of affine curvature of v at 7;, and
further away (along the affine normal) from 7, than the centre of Co, the
centre of affine curvature of v at 5. Thus p lying between p; and py in this
specific situation means that the 4+4 conic C lies inside the osculating conic
at one of the points but outside the other. Alternatively, we could say that
the points of the evolute of v corresponding to v; and ¥, lie ‘on the same
side’ of the AESS point x.

2.3 Studying the AESS

In §2.4 we begin to study the local structure of the AESS for oval curves,
and in §2.5 we extend this analysis to non-ovals, all under a general frame-
work. During this analysis we will occasionally be required to revert to
coordinate-wise calculations. In this section we introduce a suitable coor-
dinate system comprising two smooth curve segments v; and 7, in general
position, and derive an explicit condition (in these coordinates) for there to
exists a conic having double 3-point contact with 7, and ~,: §2.3.1 contains
these calculations, and the interpretation of this ‘3+8 Conic Condition’ of
Proposition 2.3.1 in terms of the Euclidean curvatures of the two curve seg-
ments. Furthermore, in §2.3.2 we derive an explicit condition (in the same
coordinates) for this 343 conic to be a 443 conic: Proposition 2.3.4 contains
this 4+38 Conic Condition’.

2.3.1 Double 3-point contact between curve segments

and a non-degenerate conic

Consider two smooth curve segments 7, and 7, given by

’Yl(tl) = (tl,agt% + agt? —+ .. .),
’)/Q(tQ) = (C+ tg, d+ bltg + bgtg + .. .),



where t1, to are parameters along curve segments 71, 7y, respectively. Consider
also a conic C, tangent to the x-axis at the origin, given by

az® + by? + 2hxy + 2fy = 0. (2.12)

where a,b, h, f € R are homogeneous coefficients. We first of all require 3-
point contact between C and 7, at the origin. Substituting (z,y) = (¢1, ast? +
ast3 + ...) into (2.12) and collecting terms in ¢; we get

(a4 2fa)t? + 2(hay + fas)ts + ... =0. (2.13)
So we have 3-point contact between C and 7, at the origin if and only if
a+2fay = 0.

We will assume that ay # 0 (which is equivalent to assuming that the cur-
vature of ; at the origin in non-zero), and we choose a = 1 (note that this
assumes that C is non-degenerate, which follows from the fact that as # 0).
Similarly, we measure contact between C and v, at (c¢,d) by substituting
(z,y) = (c+ta, d+bita+bot2 +...) into (2.12). The table below summarises
the conditions on the coefficients for the required degree of contact between

C and 7,.
Contact between C Condition
and vy, at (¢, d) for contact
(>)1-point ac® +bd* + 2d(hc+ f) =0
(>)2-point 2(ac + bdby + heby + hd + fb) =0
(>)3-point a + b(2dby + b?)
+2(hcby +bih + fbs) =0

Substituting @ = 1, f = —1/2as into the 1- and 2-point conditions from
the table (which are both equations in unknowns b, h), we can rewrite them

aod? 2¢das b\ [ —ac?+d (2.14)
2db1a2 20610,2 + 2da2 h B —2(1,20 + b1 ) )

The determinant of the matrix is equal to zero if and only if d = 0 or b; = d/c,

as



since we are assuming as # 0 throughout. Thus we cannot solve this system
for b and h in the following cases (see Figure 2.6):

(a) d =0, where the tangent to curve segment ; (namely the z-axis) cuts

the curve segment +,, or

(b) by = d/c, where the tangent to -, passes through the curve segment vy,
at the origin.

(a) ¥ (b)

’Yl / 72 ’)/1

w0 w0 ho ’

Figure 2.6: The two situations in which we cannot solve (2.14).

The two cases present an identical problem. In case (a), the line-pair con-
sisting of the tangent to 7, at the origin and the tangent to v, at 72(0) is
the (degenerate) conic having 3-point contact with v, at 72(0) and 2-point
contact with v, at 1(0). For this line-pair to be a 343 conic, we must have
an inflexion on 7; at v;(0) (i.e. az = 0). In case (b), we see that the line
pair consisting of the tangent to 7; at the origin (namely the z-axis) and
the tangent to v, passing through the origin is the conic having 3-point con-
tact with v, and 2-point contact with +,. For this line pair to be a 3+3
conic, we must have an inflexion on 7, at v5(0). Thus both cases relate to
the degenerate (but generically occuring, for non-ovals) phenomenon of an
inflexional tangent cutting the curve again, in which case the 343 conic con-
sists of the inflexional tangent together with the tangent at the point where
the inflexional tangent cuts the curve again (Figure 2.1 illustrates this situ-
ation). We would not expect to solve the system in these cases since we had
already assumed that the conic C was non-degenerate by taking coefficient
a = 1. We consider this situation in detail in §2.5.3.

Assuming from now on that d # 0, and b; # d/c, we solve (2.14) for b
and h to get

c? 1 c b,

I N
E T mld—ch) d " 2ay(d—chy)



From the table, we use the condition for 3-point contact between C and v,
at (c,d), which reduces to

ag(d — Cb1)3 + d3b2 = 0.

Thus we have the following:

Proposition 2.3.1 (343 Conic Condition). Given two curve segments

’yl(tl) = (tl, G,Qt% + agt? =+ .. )
’Yg(tz) = (C + tQ, d + bth + bgt% + .. )

where d # 0,b; # d/c, and ag # 0, there exists a non-degenerate conic having

3-point contact with both v1 and v at t1 =t = 0 if and only if
ag(d — Cb1)3 + d3b2 = 0.

Corollary 2.3.2. For the curves in Proposition 2.3.1, and ¢ = 0, there exists
a non-degenerate conic having 3-point contact with v, at t1 = 0 and v, at
to = 0 if and only if

as + by = 0. (2.15)

This can be re-interpreted in terms of the Euclidean curvature of the
two curve segments. If x;(¢;) denote the Euclidean curvature of the curve
segment 7y; at y;(¢;), then it is not hard to see that x1(0) = 2ag, k2(0) = 2b,,
and (2.15) is equivalent to x1(0) 4+ x2(0) = 0.

When a; = 0, then the 3+3 Conic Condition holds if and only if by = 0
also, in which case the 343 conic is a line-pair comprising the two inflexional
tangents at v, (0) and ~(0).

Remark 2.3.3. It may at first seem unusual that this affine condition for
the existence of 3+38 conics has an Euclidean interpretation. However, al-
though the individual Fuclidean curvatures of the two curve segments are not
preserved by affine transformations, the fact that they are equal and oppo-
site is preserved, since the affine transformation will change them both by
the same factor, namely by multiplying them both by the determinant of the

corresponding affine transformation. Thus the above condition is reasonable.



2.3.2 443 conics

We now derive the condition for the 3+3 conic to become a 4+3 conic,
where we will assume that the conic achieves 4-point contact with the ~;
curve segment. Since the calculations for ¢ = 0 are so much simpler, we
will from now on assume (by an affine transformation) that ¢ = 0. Now for
4-point contact between C and 7, at the origin, we require the ¢} coefficient
from (2.13) to vanish, i.e.

hay + fas =0,

where f = —1/2ay, h = —b; /2asd, which becomes
a2b1 + a3d =0.

Proposition 2.3.4 (4+3 Conic Condition). For the curves in Proposi-
tion 2.3.1, with ¢ = 0, byd # 0 and ay + by = 0, there exists a non-degenerate
conic having 4-point contact with v, at t; = 0 and 3-point contact with vy at
to = 0 if and only if

asby + asd = 0.

A simple calculation shows that it is equivalent to the analogous condition
for a 443 conic as stated in Proposition 2.2.9. Hence this is a condition, in
this coordinate system, for the AESS to exhibit a cusp. Note the following
special cases (remember that we have effectively ruled out the case d = 0 by

assuming that ¢ = 0):

® ay = a3 = 0: there is an higher inflexion on 7; at the origin, and also,
since b, = 0, and inflexion on 7, at 7,(0); the 443 conic is the line pair

consisting of the two inflexional tangents;

® ay = by = 0: there is an inflexion on 7; at the origin, an inflexion on
72 at 72(0), and the inflexional tangent to vo at v,(0) is parallel to the

inflexional tangent to 7.

We would not expect either of these situations to occur for a generic plane

curve. Thus we have found, in this coordinate system, explicit conditions for



343 and 443 conics. We will utilise the 3+3 and 4+3 Conic Conditions of
Propositions 2.3.1 and 2.3.4 numerous times during the analysis of the local
structure of the AESS in §§2.4-2.5, and will also find them indispensible when
constructing computer programs to plot the AESS (see Figure 2.7 and §2.8
for examples of such plots on [LSMP]).

2.4 The local structure of the AESS of an

oval

We now leave the coordinate-wise calculations of §2.3 and begin the task of
classifying the possible events which may occur on the AESS of a generic
oval using a general framework. The method involves studying the set of
tangents to the AESS, considering this set as a curve in dual-space, and
relating the possible local structures of this dual-AESS to the corresponding
events on the AESS. Our approach will be analogous to the study of the
Perpendicular Bisector Map, which gave rise to the dual of the Euclidean
Symmetry Set (see [T90], [GT95] for details). It is important to make the
following distinction. In the Euclidean case, it is well-known that the SS can
be obtained via a bifurcation set of Fuclidean distance functions, and the local
structure of the SS of the curve is found by analysing this bifurcation set. In
contrast, the alternative analysis of the perpendicular bisector map leads to
the classification of the local structure of the dual-SS. However, in the affine
case, the AESS is not a bifurcation set: the analogous construction of the
bifurcation set of the affine distance function leads to an entirely different
set, the ADSS, which is the subject of Chapters 3, 5 and 6. Thus in the case
of the AESS, our main tool in the classification of the local structure will be

to mimic the study of the perpendicular bisector map to probe the structure
of the dual-AESS, and then relate our results back to the AESS itself.

2.4.1 Introducing the ‘Mzidline Map’

We define an affine-invariant replacement for the Perpendicular Bisector Map
as follows. For any two distinct points y(¢1),y(¢2) on an oval vy, we will call

the line joining m and p (by adopted convention, respectively the midpoint of



the chord joining 7(#1) and 7(¢2) and the point of intersection of the tangents
to v at these points) the ‘midline’. Furthermore, for a repeated pair of points,
v(t), we will define the midline to be the affine normal to v at y(¢). The
geometric justification for this will be explained presently.

Definition 2.4.1. For a smooth, simple closed curve v, the Midline Map
M:S'xS'> L,

where St is a circle parametrising vy, and L is the dual-plane (whose points
are the lines of the ordinary affine plane), is defined by

o {1 # to: M(t1,t) is the midline of y(t1) and y(t2), that is the line
joining the point of intersection of the tangents to v at v(t1),v(t2) to
the midpoint of the chord between ~y(t1),y(t2);

ot =ty: M(t1,t2) is the affine normal line to v at (7).

Remark 2.4.2.

(i) When the tangents at y(t1),v(t2) are parallel, then we take the midline
to be the unique line through the midpoint of the chord joining ~y(t1)
and y(t2), and parallel to the tangent lines.

(#i) This definition of the Midline Map seems suitable for any generic sim-
ple, smooth plane curve, remembering that, at an inflexion of v, we
define the affine normal to be in the same direction as the affine tan-
gent, and of infinite length (see §1.3.1). However, for simplicity we will
continue to assume that the curve v is an oval. The study of the Mid-
line Map for non-ovals is undertaken in §2.5, where it becomes clear

that a slightly different approach is required.

For a fixed and distinct pair ¢y, to, the line M (1, t2) is the locus of centres
of conics having (at least) 2-point contact with v at (1), v(t2) (the reader
is referred to Proposition 1.4.10 for a justification of this statement). When
to — t1, we shall obtain the locus of centres of conics having (at least) 4-point
contact with « at 7(¢;), which is precisely the affine normal at this point.
Thus the Midline Map M is continuous at points (¢, ).



2.4.2 The dual-AESS as (a subset of) the critical locus
of the Midline Map

The original exposition of some of this work can be found in [GS96] and
[GS98]. Here we present a summary of the methods and conclusions of these
articles, and also extend the results where noted.

For an oval 7, and two fixed points 7(t1),v(t2) on it, consider the pencil
of conics C which are tangent to v at these two points. From §1.4.1, we
know that the general conic of the pencil is 7775 + A% = 0, for some real
parameter A, extended as usual by A = oo, where 77 = 0 and 75, = 0 are
equations of the tangent lines to v at (¢1) and 7(¢2), and £ = 0 is the line
joining these two points. Let M = 0 denote the equation of the line passing
through p and m. Then by Proposition 1.4.10, the locus of centres of the
conics in the pencil 7175+ AL% = 0 is the line pair LM = 0, consisting of two
components, namely the line M = 0, passing through the intersection of 7;
and 73 and the midpoint of the chord from v(¢;) to y(t2), and a degenerate
component, namely the line £ = 0, taken as a repeated line £? = 0 of the
pencil, whose centre is indeterminate on £ = 0. Thus for each pair (¢1,ts),
the locus of centres of the pencil of conics thus prescribed defines the midline
M(t1,t3) = 0, and it is this locus of points which we will study in more
detail.

To link the M = 0 component of the locus of centres to the Midline Map

M, consider the conic C of the form
az? + by? + 2hay + 29z + 2fy + ¢ =0, (2.16)

for homogeneous coefficients a, b, h, g, f,c € R. We write y(t) = (X (¢), Y (2)),
and introduce some abbreviations in order to write down our later results

succinctly. By C(t;) we will mean the vector
(X?,Y?2XY,2X,2Y,1)
evaluated at t = ¢; (i = 1,2), and by Ci(¢;) we mean the vector

2X X', 2YY, 2(XY' + X'Y), 2X’,2Y",0)



evaluated at ¢t = t;, where ' (prime) denotes the derivative with respect to t.
Now C is tangent to 7 at y(¢;), and we can express this with the following

two equations:

C(tl) ) (CL, b7 h7 g, f; C)T = 07
Ct(tl) : (a7 ba haga f’ C)T =0.

Similarly, the fact that C is tangent to v at y(t2) can be expressed by the

pair of linear equations below:

C(t2) ) (aa ba haga f: C)T = Oa
Ct(tQ) ) (CL, ba haga f: C)T =0.

We also introduce vectors C;, C, which are given by

Ci(z,y) = (22,0,2y,2,0,0),
Cy(z,y) = (0,2y,22,0,2,0),

obtained by differentiating (2.16) with respect to x and y and writing the
coefficients of a, b, h, g, f,c in vector form. The coordinates of the centre
(p,q) of conic C satisfy the two linear equations obtained by differentiating
(2.16) w.r.t.  and y and substituting z = p,y = ¢, and these equations can

be expressed as

Cz(pa Q) ) (CL, b7 hag: f7 C)T = 07
Cy(p7 Q) : (CL, b7 hagvfa C)T =0.

Thus we have six linear equations which must hold for C to have 2-point
contact with v at y(¢;) and 7(t2) and centre at (z,y) = (p,q), from which
we may eliminate a, b, h, g, f, c. The determinant condition that there should
exist a conic C as in (2.16), with these properties (and with not all coefficients



zero) is

g(p: q, t17t2) = =0. (217)

Expression (2.17) is the equation, in (p, ¢)-coordinates, for the locus of cen-
tres of conics C having 2-point contact with v at «(¢1) and (¢3). Then
Proposition 1.4.10 tells us that

g=ML.

Suppose that G(p, q,t1,t2) = 0, that is suppose that (p, ¢) is the centre of a
conic tangent to v at y(t1),7(t2). So long as (p,q) is not at the midpoint
of the chord joining these points on 7 (i.e. the intersection of M = 0 and
L = 0), we can deduce that

L(pa q, tla t2) 7£ 0.

Now chord £ = 0 is a diameter of the conic, and since tangents to a conic at
opposite ends of a diameter are parallel, the only case that causes problems
here is where the tangents to vy at y(¢;) and 7(¢3) are parallel. Away from this
situation, the zeros of G coincide with those of M = 0, and the same holds
for derivatives: for example, G = G; = 0 is equivalent, away from £ = 0, to
M=M,;=0.

The function M defines for us a 2-parameter family of lines in the plane,
parametrised by pairs of (distinct) points of v. We now ask: Can M be
extended smoothly to all pairs of points? The answer is that it can, by defining
M(p,q,t,t) = 0 to be an equation of the affine normal to v at y(t). The
geometric reason for the continuity of M at (¢,t) was outlined in §2.4.1, and
the smoothness of M is proved in §2.5.1. In this way, M naturally gives rise
to the Midline Map as defined in §2.4.1 (Definition 2.4.1), where M (ty,t2) is
the line whose equation in the current coordinates (p, ¢) is M(p, ¢, t1,t2) = 0.



We can view M (or M) as defining two envelopes of lines, one by fixing
t; and the other by fixing t,. We use the function G to measure the contact
between conic C and v, and use the relation G = ML to compare this contact
with the properties of the two envelopes. The Midline Map M is the affine-
invariant analogue of the Perpendicular Bisector Map. Since M is a map
from the plane to the plane (at least locally), its critical points are given by
the vanishing of a (2 x 2) Jacobian determinant. The critical locus of M is
then the image under M of this critical set, and is a set of lines in the plane,
the dual-AESS.

2.4.3 The Midline Map for an oval

We now link the Midline Map M with the AESS, or more accurately the
dual-AESS, the set of tangents to the AESS. In what follows in this section,
C will always denote the conic tangent to v at y(¢;) and (¢2), and having
centre at (p,q). Using the notation of §2.4.2, we have the following series of
results:

Proposition 2.4.3.

(1) G = Gy, = 0 if and only if the conic C has (at least) 3-point contact
with v at y(t1).

(ii) M =My, =0 if and only if G = G;, = 0 or the tangent lines to v at
v(t1) and y(t2) are parallel.

(iii) Let E = {(t1,t2,p,q) : M = My, = My, = 0}. The projection of E
onto the (p, q)-plane consists of the AESS together with the affine evo-
lute (corresponding to t1 = t3) and another affine-invariant symmetry
set, the MPTL, defined to be the set midpoints of the chords joining
points of contact of parallel tangent pairs (see Definition 2.4.8).

(iv) The tangent to the AESS is the line M = 0, which passes through
the midpoint of the chord joining the points of v where C has 3-point
contact, and through the intersection of the tangents to v at these two

points.



(v) The set of critical values of the Midline Map M consists of the tangents
to the AESS and to the affine evolute, together with the lines lying half-

way between pairs of parallel tangents of vy, that is, the set of tangents
to the MPTL.

(vi) Fizing ta,p, q, the function G is zero and has a singularity of type Ay at
ty (i.e. the first k derivatives with respect to t; vanish but the (k + 1)-
th derivative is non-zero), if and only if the conic C has (k + 2)-point
contact with v at y(ty).

Proof. Without loss of generality, we fix y(¢2) at the origin, and the tangent
there as the z-axis. Conic C then has the special form

az® + 2hxy + by? + 2fy = 0,

with four homogeneous coefficients a,b, f,h € R. The line M joins the
intersection of the tangent at y(t1) = (X(¢1),Y (¢1)) and the z-axis to the
midpoint of the segment from the origin to y(¢;). The function G is given by
eliminating a, b, f, h, and is the (4 x 4) determinant (omitting the columns

consisting only of zeros)

C(t1)
Ci(t1)
Cz(p,q)
Cy(p; q)

G(t1,p,q) = : (2.18)

As noted earlier, G = 0 is the equation (in (p,¢) coordinates) of the locus
of centres of conics tangent to v at (¢;) and tangent to the z-axis at the

origin.

(i) We need to connect the number of vanishing derivatives of G to the

order of contact of conic C with v at y(¢1). By differentiating G w.r.t.



t we get

Ci(th) C(t) C(t)
_| Gt) Cir(t1) _ Cit(11)

Gulh,p, ) = C:(p, q) i C.(p, q) Co(p,q) | (219)
Cy(p,q) Cy(p,q) Cy(p,q)

Suppose that G = G, = 0 at (t1,p,q). Then G = 0 tells us that C(¢;)
is a linear combination of linearly independent vectors C(t1), C.(p, q)
and Cy(p,q) (from (2.18)). Similarly, G, = 0 tells us that Cy(t1) is a
linear combination of C(¢;), C;(p,q) and Cy(p, q) (from (2.19)). Thus

the matrix

Cit(t1) (2.20)

has rank < 3. However, the rank of matrix (2.20) being < 3 is precisely
the condition for conic C to have 3-point contact with 7 at (¢1), that
is, that the same values of a, b, f, h should allow C =C; = C;; = 0. The
result then follows.

(ii) By Proposition 1.4.10, we can write G(¢1,p, ¢) from (2.18) as
G = M(Xq-Yp),

for some suitable equation M = 0 of the line M. Suppose the second
factor is non-zero, that is, (p, ¢) is not the midpoint of the chord, which
corresponds to saying that the tangent to v at (1) is not parallel to
the z-axis. Then G and its first k& derivatives w.r.t. ¢ vanish at (¢1,p, q)
if and only if the same applies to M, that is, the functions G and M
have the same singularity type so long as M = 0 and (p, ¢) is not on
the line L.

Naturally, both (i) and (ii) hold when t, is replaced everywhere by t,.

(iii) This follows from (i) and (ii), except for the case where the tangents to



v at y(t1) and y(t2) are parallel. In this case, we may, without loss of
generality, perform an initial affine transformation so that the points
of contact of the parallel tangents are at (0,0) and (0, f(0)), where
y = f(z) is the equation of v near y(¢;), the parallel tangents are
respectively the z-axis and the line y = f(0), and f'(0) = 0. Fixing ¢,
to give the origin, the equation of the line M(%1, t9, p, ¢) = 0 joining the
intersection of the z-axis and the tangent to v at y(¢;) to the midpoint

of the chord joining the origin to ~y(¢;), is given by

SO (G)p + (tf' () — 2f(t))g — tf(81) ' (t1) + f(t2)* = 0.

It then follows that
1
M(anapa Q) = Mt1 (07 O:p7 Q) =0+ (pa Q) = (07 Ef(o)) .

By symmetry, the same holds when the roles of ¢; and ¢, are reversed.

(iv) This follows immediately from (i) and (ii), except the case where the
tangents to y at y(¢;) and (¢2) are parallel, which follows from (iii):
here, the limiting tangent to the AESS at the midpoint (0, f(0)/2) will
be the line M, by continuity.

(v) This follows from the observation that the set of critical values of M is
the line M for which there exists ¢y, to, p, ¢ such M = M, = M;, =0.

(vi) Follows by repeating the argument of (i) with more derivatives of G.
]

Remark 2.4.4. Regarding Proposition 2.4.3(iii), the appearance of the MPTL
in the projection of the set E is due to the fact that, although the three condi-
tions defining E are usually enough to guarantee that there is a 3+3 conic at
v(t1) and y(t2), we find that when the tangents are parallel then the three con-
ditions are automatically satisfied by the midpoint of the chord of contact. Of
course it could be happen that there is a 3+38 conic at parallel tangent points,
and in this case it is indeed true that the midpoint of the chord is the centre

of that conic.



Proposition 2.4.3(iv) asserts the following:

Proposition 2.4.5 (Concurrent Tangents Condition). The tangents to
the curve at points of contact of a 3+3 conic are concurrent with the tangent
to the AESS at the centre of this conic.

Part (v) of Proposition 2.4.3 is crucial, since it asserts that the critical
locus of the Midline Map is the dual of the union of the AESS, the MPTL
and the affine evolute. It allows us to redefine the AESS.

Definition 2.4.6. The AESS U MPTL U affine evolute is the dual of the
critical locus of the Midline Map M.

We are now in a position to prove the following:

Proposition 2.4.7. The AESS of a generic smooth plane curve vy through
points y(t1) and y(t2), where neither point is an inflexion, exhibits a cusp
singularity (that is, the dual-AESS exhibits an inflexion) when either of the
following happen:

(a) The conic C has 4-point contact with v at either vy(t1) or y(ts).

(b) The tangents to v at y(t1) and y(t2) are parallel.
(See §2.5 for the excluded cases where one or more point is an inflexion.)
Proof. (outline)

(a) Let us suppose we do not have parallel tangents, and consider the set F
in Proposition 2.4.3(iii). We are looking for points where the tangent
line to E projects to a point under the projection from (1,2, p, q) to
(p,q). Writing down the Jacobian matrix of the equations defining E
we find that that this happens precisely when M ;, = 0 or My, =0,
and the result follows from Proposition 2.4.3(vi).

(b) This is proved in §2.5.7, where we will see that, at parallel tangent
points, it is natural to study the AESS augmented by the MPTL, as
introduced in Proposition 2.4.3(iii), and discussed again in §2.4.4 and
§2.7. We show in Proposition 2.5.9 that the dual-AESS U dual-MPTL
exhibits a dual beaks singularity at points of contact of 3+3 conics

which also have parallel tangents.



O

Earlier work in [GS96] and [GS98] omitted the consideration of the MPTL
in Proposition 2.4.3(iii) and (v), and part (b) of the above Proposition 2.4.7.
These amendments demonstrate the important and unexpected role that
parallel tangents play in this construction of the AESS. The MPTL will
prove to be a very important affine-invariant set, and it will often provide a
neat geometrical link between numerous apparently unrelated affine-invariant
symmetry sets, in particular linking the AESS and the AASS of §2.7.

The pre-AESS revisited

In §2.2.3 it is shown that horizontal and vertical tangents to the pre-AESS
correspond with cusps on the AESS, enabling us to spot cusps on the AESS
by studying at the pre-AESS. However, we have just shown that cusps of the
AESS can appear in another situation, namely when we have parallel tangent
lines at the corresponding curve points, and these cusps cannot (presently)
be identified by looking at the pre-AESS. We will require also the pre-MPTL,
defined to be the set of parameter values for pairs of points which share a
tangent direction. This type of cusp will then correspond to points which lie
on both the pre-AESS and the pre-MPTL.

We will see in §2.5.4, when we consider the Midline Map for non-ovals,
that there is another situation in which a cusp may appear on the AESS.

2.4.4 The Mid-Parallel-Tangents Locus

Definition 2.4.8. The MPTL of a smooth plane curve v is the locus of

midpoints of chords joining points of contact of parallel tangents to .

The MPTL is an interesting set in its own right, but its true value to us
is in its relationship with the AESS. We will see that studying the AESS and
the MPTL together aids our analysis, since we are often able to deduce or
explain facts about the AESS with reference to the MPTL. On a visual level,
it is interesting to see how neatly the AESS and the MPTL fit together (see
Figure 2.7 for an example), and this strengthens our assertion that these two
sets should be studied together. We begin our analysis of the MPTL with a



Figure 2.7: The AESS U MPTL for an oval. The original curve is shown
grey, the thinner, 3-cusped closed curve is the MPTL, and the thicker curve
the AESS.

view to probing its links with the AESS.

Proposition 2.4.9. The MPTL generically has an ordinary cusp at the cen-
tre of a 3+38 conic.

Proof. We must revert to coordinate-wise calculations, using the standard
coordinate system as set up in §2.3, and where we take ¢ = 0, without loss of
generality, to make calculations simpler. If ; and -, have parallel tangents
at parameter values t; = t3 = 0, then b; = 0. Taking

f(tl) = agt%-i-a,gt?-i-...,
g(tg) = bgtg-i-bgtg-i-,

" (prime) denotes

the parallel tangents condition is f'(t1) = ¢'(t2), where
differentiation with respect to the corresponding parameter ¢; or t5. We

solve this for £, as a function of ¢;, say

ty = u(t1) = urty + ugt] +ust + . ...
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So we are now able to parametrise the MPTL by parameter ¢;. We will
denote the MPTL by M(t;), where
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— N |

= —(ti+ults),d+ f(t) + g(u(tr)))

— N

_ a2 3 2 2142

[\V]

1
+b_5 (2[)2(@4[); — b4ag) - gagbg(agbg — bgag)) t:{’ + ... y
2

361,2

CL2 61,3
@ﬁ+%ﬁ+d+m(§ﬁ+<ﬁ4%@—m@0ﬁ)+%§ﬁ+”)
2 2 2

and thus

a2
1+-—=,0
+b2,)

1
2
= (0,0) <= a9 = —by.

So the MPTL is smooth near t; = 0 unless a3 = —bs, which is precisely the
condition (2.15) of the corollary to the ‘3+3 Conic Condition’ for there to be
a 343 conic at parameter values t; = to, = 0. Hence the MPTL is singular
at the centre of a 3+3 conic.

To show that this singularity is an ordinary cusp, we must check that
the vectors M"(0), M"(0) are linearly independent when as = —by, and a
short calculation tells us that this is true so long as as # b3, assuming that
as = by # 0. So the MPTL fails to have an ordinary cusp if and only if

a3 = b, i.e. if and only if {(0) = k5(0), which is a non-generic occurence.



Hence the MPTL generically has a cusp at the centre of a 3+3 conic. O
Remark 2.4.10. It is interesting to note that the condition for the MPTL

to have an ordinary cusp can be expressed in terms of Fuclidean curvatures,
even though the condition itself should be affine. Although Fuclidean curva-
ture, and the rate of change of Fuclidean curvature, are not affine-invariants,
equality of Fuclidean curvature and its rate of change are affine-invariants
between two pairs of points on a curve having parallel tangents since, if two
points with parallel tangents have k1 = —Ko, and K| = kb, then this will re-
main true after an affine transformation. Thus the Euclidean interpretation

of this affine condition makes sense.

The observant reader will have noted the interesting duality of this sit-
uation. In §2.4.3 (Proposition 2.4.7), we showed that the AESS has a cusp
when we have parallel tangents at the points of contact of a 3+3 conic, and
here we have shown that the MPTL has a cusp at the centre of a 3+3 conic.
Hence the AESS and the MPTL exhibit cusps at the points where they meet.
We will show later, in §2.5.7 that the (dual-) AESS and the (dual-) MPTL
taken together here form a (dual-) beaks singularity.

In §2.7, we consider the MPTL again, showing that it can also be defined
as the bifurcation set of a two parameter family of smooth ‘Area’ functions
defined on the curve, and studying it as part of a full bifurcation set in
conjunction with another affine symmetry set, the AASS. Thus we have the
interesting fact that the MPTL can be defined as part of the dual of the
critical locus of a map from the plane to the plane (together with the AESS
and the affine evolute), and also as part of a full bifurcation set (along with
the AASS). This is reminiscent of the multiple definitions of the Euclidean
Symmetry Set. This dual definition of the MPTL allows us to link two

affine-invariant symmetry sets, and increases our understanding of both.

2.5 The Local Structure of the AESS and
MPTL for Non-Ovals

In this section we will consider how the Midline Map behaves when we move

away from studying strictly convex curves, and allow our curve to exhibit



non-oval structures, namely inflezions and double tangents.
We approach the Midline Map from an alternative angle. This conceptual
change is necessary to modify the definition of the Midline Map for certain

non-oval situations.

Convention:
e [ will always denote the line through m and p;
e v will always denote the direction of /; and

e ' (prime) will always denote the derivative w.r.t. the corresponding

parameter along 7y, Ya-

Consider two smooth curve segments v; and 7,. We have

1
m = _(71"'72)’

2
and
p = i+ for \; € R
= Y+ )\2’)/5 for A, € R

which gives
Y= Y2 = Ay — A7)

Bracketing this expression with 4} and 7}, we have

(71 = 72,71l = A2[vo, 1l (2.21)
[v1 — 72, 73] = —Ai[y1, 74l (2.22)

We see that (2.21) and (2.22) are valid expressions for A\; and A, as long as
[71,75] # 0, that is, as long as the tangents to the two curve segments are
not parallel, and therefore p is a finite point. We may assume generically
that this is the case. So

[ =727l =72l

P=N——F N =" V2
v, ! v,vl "



and therefore we may write

_1 1 1.1 AW
p—2(71+72) TR [y = v, vl + i — v, 71l72) -

Thus we have

_ 1 AN 11
pmm= o ([v1 =2, va)t + [ — 2. ml) -

Now the line [ consists of points x which satisfy
[ —m,p—m|=0. (2.23)

Note that this expression is valid for any parametrisation of the curve seg-

ments 1, 2. Let vector v be given by

v =1 — Yo, Yl + [ — e Ml

Then v is parallel to p — m, since we are assuming that [y}, v5] # 0. Then
(2.23) can be rewritten as

[.T—m,’l)]:(),

which in turn can be re-written as
[z,0] =r € R (2.24)
So the line [ is defined by the pair
vo= [y =2 vl v — e e (2.25)
o 1 AN AN
ro= gln e b = el I = e mbel,

1
= 5[71 + 72, ’U], (2'26)

with equivalence relation (v,7) ~ (Av,Ar) for A € R\{0}. We see that
v = (0,0) only in the following two situations:

(i) 71 = 72, which occurs when we are considering the Midline Map on a

single curve segment;



(ii) 71 — 72,7} and ~4 are parallel, which is the situation where there exists
a double tangent to the curve segment.

These are the two cases in which the Midline Map, as presently defined, is
not immediately suitable, namely at a single curve segment, and at a double
tangent to the curve segment. Geometrically, v determines the direction of
line [, and in both of the above cases it is not clear what the limit of the
direction v should be, and hence the Midline Map as it is presently expressed
is unsuitable. We will now consider the limiting value of vector v in each of
these two cases, with the aim of finding a suitable expression for the Midline

Map in any situation.

2.5.1 Single curve segment

To find a suitable expression for the direction of vector v in the situation
where we have a single curve segment, consider ; and 7, to be identical

curve segments given by

() = (4, f(t1)),
Ya(t2) = (L2, f(t2)),

where f(0) = f'(0) = 0. We will consider the limiting value of the vector v
at (t1,t2) = (0,0). From (2.25) we have

tr—to f(t1) = f(ta)
1 f'(t2)

tr—to f(t1) — f(t2)

1 fl(tl) (17fl(t2))a

(L, f'(t)+

and splitting this into coordinates v; and vy of v gives us

v = (t1 —to)f'(te) — f(t1) + f(ta) + (1 — t2) f'(t1) — f(t1) + f(t2),
vy = ((t1—t2) f'(ta) — f(t1) + f(t2)) f'(t1)
+((t = t2) f'(t1) = f(t1) + f(t2)) f'(t2)-

Clearly v(0,0) = (0,0). The idea is to remove factors of (¢; —t5) from v(¢y, )
until we are left with factors of v; and vy which are non-zero at (0,0). By



Hadamard’s lemma, we can write

f(t1) — f(ta) = (t1 — t2)h(t1, ta), (2.27)

where h is a smooth function of ¢; and ¢,. Differentiating (2.27) w.r.t. ¢; and

to in turn gives us

f'(t1) = h(ts,ta) + (b1 — t2)ha(t1, t2), (2.28)
f'(t2) = h(ts,ta) — (t1 — ta)ha(t1, t2), (2.29)

where h; denotes 0h/0t;. Note that f'(0) = 0 implies that A(0,0) = 0, and
shows that A is of order > 1 in %1, t5. From now on we will omit the variables
(t1,t2) in the expressions for h and its derivatives. We will also need the sum
and product of expressions (2.28) and (2.29), respectively

fl(tl) + fl(t2) = 2h+ (tl - tZ)(hl - hz), (2.30)
2fl(t1)fl(t2) = 2h2 - 2h(t1 - t2)(h2 - hl) - thhg(tl - t2)2. (231)

We are now in a position to remove factors of (¢t; — t3) from wv:

vi(t,te) = (t—t2)(f'(t2) + /(1)) — 2(f(t1) — f(t2)),
= (t; —to)(f'(t2) + f'(t1)) — 2(t1 — t2)h, by (2.27),
= (tl — t2)2(h1 — hg), by (230),

f
f

and similarly
’U2(t1,t2) = (tl — t2)2(h(h/1 — hg) — 2h1h2(t1 — tg))

Thus we can remove a factor of (£, — ¢3)? from vector v. However, differen-
tiating expressions (2.28) and (2.29) w.r.t. ¢; and ¢, gives us

fi(t) = 2k + (tr — t2)hay, (2.32)
["(ta) = 2hy — (t1 — t2)hoo,



respectively, and thus

71(0,0) = hs(0,0) = % £1(0). (2.33)
Thus we must reduce v further. Differentiating (2.28) w.r.t. ¢, gives us

0= ho — hy + (11 — ta) s, (2.34)
and substituting (2.34) into v we can write

v = (t, — t3)* (h1, hhis — 2h1hy) . (2.35)

Now differentiating (2.34) w.r.t. t; we see that

2h1g — h11 + (t1 — t2)h112 = 0,

and thus .
hlg(o, O) == §h11(0, 0)

Furthermore, differentiating (2.32) w.r.t. ¢; we have

" (t1) = 3hay + (t1 — t2) b1,

and thus .
h11(0,0) = gfm(o),

and therefore .
h12(0,0) = éf'"(O).

Using this, and (2.33), the limiting value of v as t; — 0,3 — 0 is

1 1
v(0,0) = { Zf"(0), —5f"(0)* ),
6 2
and of course this is (0, 0) if and only if we have f”(0) = f"(0) = 0, that is,
there is a higher inflexion on the curve. Furthermore, from §1.3.3, we know
that this is in the direction of the affine normal vector to the curve at the

origin.



Expression (2.35) shows that v is of the form (¢; —t2)(c(t1, t2), B(t1, t2)),
where o and 8 are smooth functions of ¢;,#, and generically are not both

zero at t; = to = 0. Thus we have shown:

Proposition 2.5.1. The limiting midline at a diagonal point (t,t) is in the
direction of the affine normal to the curve at t, and the Midline Map is

smooth there.

Note that this is true even when there is an inflexion on the curve, in
which case f”(0) = 0, and the limiting value of v is along the inflexional
tangent line, which of course is also in the direction of the affine normal
there. Thus we have:

Proposition 2.5.2. In the case of a single inflexional curve segment, the
limiting value of v at the inflexion is in the direction of the inflexional tangent,

and thus the limiting midline is the inflexional tangent line.

By symmetry, the limiting point of the AESS at an inflexion on the
original curve is at the inflexion itself, and we have shown above that the

AESS approaches this point tangentially (see Figure 2.8). Thus we have:

Proposition 2.5.3. The AESS approaches an inflexion tangentially and has
an endpoint there.

Figure 2.8: Illustrating the conclusions of §2.5.1. The AESS is dashed.

2.5.2 Double tangent to the original curve segment

It is natural to ask whether we can apply a similar procedure to derive the
limiting value of v in the case of a double tangent, reducing v in such a way



to find the limiting midline in this case. However, it can be shown that the
Midline Map is discontinuous in this situation, and that there is no unique
limiting direction for the midline [ at a double tangent. Although no unique
limiting midline exists, we can see that all possible limiting midlines pass
through the midpoint of the chord joining the points of contact of the double
tangent. It is thus possible to use the technique of ‘blowing up’ this point
in the plane, thus changing the domain of definition of the Midline Map in
such a way as to make it well defined.

However, we are able to deduce structure of AESS at a double tangent
using a different method. Let ; and 7, be two smooth curve segments
parametrised by s; and s, respectively, given by

71(s1) = (X1(s1), Ya(s1)),
Y2(82) = (Xa(s2), Ya(s2)),
where
X1(s1) = s1, Yi(s1) = ags? +azss + ...

XQ(SQ) =1 + S92, YQ(SQ) = bgsg —+ 6383 =+ ...

The double tangent is thus along the x-axis. We will assume that asby # 0,
so that neither point of contact is an inflexion. Then

ki(s1) = Xi(s1)Yi(s1) — Xi(s1)Ya(s1),
= 2&2 + 6&381 + 12&48% + ...

and similarly
k2(82) = 2b2 + 6b382 + 12648% + ...

Then the condition (2.2) for s;, s2 to be on the pre-AESS can be written as
: S\ 3 : S\ 3
(= XV = (= ¥) K1) e+ (X0 = Xo)Ya = (Vi = V) X) hy =0,

where we have assumed that k1k, # 0, and have have just written X1, Y; for

Xi(s1),Yi(s1), etc. for brevity. We would like to solve this equation for s,



as a function of s, say
59(81) = u1s1 + ugss + . .. (2.36)
Now we can write

3a 6a
/{1(81) = 2@2 (1 + —381 + —48% =+ .. > .
a9 a9

Then

2 2
ki(s)? = (2a9)'/3 (1 + B+ <%) s+ .. ) :
2

a2

Similarly,

bs 2boby — b2
ko(s2)Y/? = (2by)Y/3 (1+b 52+<%)s§+...).

2

So the equation for the pre-AESS is, up to degree 2,

((s1 —1—s9) (2a2s1 + 3agsf) — ags% + 6253) (2b9) 1/3 (1 + = )

+ ((81 = 1 — 59)(2bsg + 3b353) — ags? + bysi) (2az)*/? (1 + a—Sz) +...=0.

Substituting (2.36) into this expression, and collecting terms, we find that

Uy = _a§/3b2_2/3:

1 _ _ _ 13,

Uy = 3 (ag/?’b2 43 _ a§/3b2 23 _ a;l/?’b2 7/3b3 —a, 1/31)2 2/3a3> .
We now have a suitable expression for the pre-AESS, the set of parameter
values which give 3+3 conics. We calculate the centres of these 343 conics
using the expression given in Proposition 2.2.6 which maps two points on
a curve to the centre of the conic having 3+3 contact at these two points.
Of course, this was originally derived to find the centre of a central 343
conic, and so we will have to amend it so as to be able to use it in this case.
This will then give us the locus of centres of 343 conics, that is, the AESS.



We then show that this locus is parametrised by s;, and therefore smooth.
From Proposition 2.2.6, we know that the centre of the conic having 3-point

contact at both v;(s1) and y2(s9) is at

[’Yl - ’Y%’Yﬂ[%: ’Yé] ( ! l))

1 1
s+ o\ o - T

where 71,7, denote 71 (s1),72(s2), etc. Using identity i = ki_l/?’f'yi, we see
that the centre is given by

1 L2y, T ) )
. 2( 1 2 I = e, 1l el (k 1/3*)/2—k11/371) ,

1
—(m+72)+3 - ) —573. 273 . 2
2k, 1/3[% — Y2, 1] — ki 2/3/€2 2/3[’Yb Fo)?

We can rewrite this as

1 (7 . ) + 1 k1—1/3[71 - 72,71][71,’3/2] (k1/3,_.}/2 kl/3’h)> (2 37)
QVILTR2) T . y 1 — F2 :
2 2 \ 281K (71 — 2, ] = [, Aol

Now
2/3
.. s
[71,72] = — (252[)2? +2a2) S+ ...
2

using the the fact that we have sy as a function of s; from (2.36). Thus
[¥1,42] is first order in s, assuming as 7# —bo, which is condition that the
Euclidean curvatures of the two curve segments are not equal and opposite
at the points of contact of the double tangent. We may assume generically

that this is true. Furthermore, calculation gives us

o2/3 %
71— 72, 51] = —2a281 + (ag — 2as (—ﬁ) - @#) s% + ...,
2 2

and thus [y; — 79, %] is first order in s;, since we assume that as # 0. Thus

kP Im = e, ][ o)
Zk}/?’ki/?’[% — Yo, Y1] — [F1, Ye)?

is of first order in sy, and thus expression (2.37) is smooth. Finally, we see



that

1 k1_1/3[71 — 72, Yl el 1/3 . 1/3 .
92 1/3;,2/3 . . 2(]‘71 Yo — ky'"n) | — 0as sy — 0.
2k kS [ — v2, M) — [, el

Hence the centre, given in expression (2.37), tends to

$(1(0) +2(0)),

as s; — 0, which is the midpoint of the chord joining the points of contact
of the double tangent with v, and .

Proposition 2.5.4. The AESS at a double tangent is a smooth curve passing
through the midpoint of the chord joining the points of contact of the double

tangent.

2.5.3 Degenerate 343 Conic Situations

We now consider the following degenerate 3+3 conic situations using the
methods developed in previous sections to probe the resulting geometry of
the AESS:

(i) The inflexional tangent to the curve cuts the curve again. The 3+3
conic is the inflexional tangent together with the tangent at the point

of intersection, and the centre of the conic is at the intersection point.

(i1) Two inflexional tangents meet. The 3+3 conic is the two inflexional
tangents, and its centre is at the intersection of these tangents.

Each of these situations occur generically for a non-oval plane curve. In
Case (i), any inflexional tangent will cut the curve again, and this crossing
will generically be transversal. In Case (ii), since inflexions are created in
pairs, any two inflexions will contribute a finite point to the AESS, since
generically these inflexional tangents will not be parallel and will intersect

at a finite point.



Outline of Method

We will analyse Cases (i) and (ii) in turn. The procedure is as follows:

e We develop a local formula for the Midline Map as redefined in §2.5,
given in terms of v (¢1, t3) and vy (1, t2), the components of the direction
of the midline, and denoted by B(t1,ts).

e We calculate the partial derivatives of v; and vy up to third order (these
are listed in Appendix A). We require these to define and analyse the

structure of the critical set of B, denoted X g, and given by
Yp = {(t1,t2): det(JB) = 0},

where JB denotes the (2 x 2) Jacobian matrix of B.

e We consider the structure of the locus of points in (¢, t2)-space defined

by an equation for the critical set ¥ p. This locus is the pre-dual-AESS.

e The dual-AESS is then the image of B(Xp), and from this we can
deduce the local structure of the AESS itself in each of the Cases (i)
and (ii) listed above.

We begin by deriving a local form for the Midline Map. Consider the

curve segments y;, 7, to be given by

T(t) = (1, f(t1)), 1a(te) = (c+1t2,d + g(ta)),
where
f(tl) = azt% -+ agt? + ... s g(tg) = bltg + bgt% + bgtg =+ ...

From (2.25) we calculate the direction v = (vq, v2) of the ‘midline’ to be given
by

vi(ti,ta) = (b —c—t)(f'(t) +4'(t2)) — 2(f(t1) — d — g(t2)),(2.38)
va(t1,t2) = (2(t1 —c—1t2) f'(t1)g' (ta)
— (f(tr) —d — g(t2))(f'(t1) + g'(t2))- (2.39)



We are interested in vy, v, and their derivatives w.r.t. ti,%¢s, evaluated at

t; =ty = 0, so we will use the following convention:

Convention: The superscript ‘0" will represent an expression evaluated at

t1 =ty = 0. For example

v) = v1(0,0) = —cg'(0) + 2d, vs = v,(0,0) = dg'(0).

Thus we see that v = (v9,049) = (0,0) when (¢,d) = (0,0) (the case of a
single inflexional curve segment), or d = ¢'(0) = 0 (the case of the double
tangent). We will assume from now on that we have v? # 0 (this holds
generically for Cases (i) and (ii)), and we have the local Midline Map, which
we will denote by B, given locally as

Vo T

(tr, t2) > (—,—) - (2,(@ Fet )2 — (f(t) +d+g(t2))) . (2.40)

U1 U1 (%1 U1

where vy, vy are functions of ¢,%, as given in (2.38) and (2.39), and where
the expression for 7 comes from (2.26), after omitting the factor of 1/2. We
will use the shorthand

B(tl,tQ) = (a(tl,tg),b(tl,tg)), (241)
to express B in terms of functions a and b given by

vo(t1, t2)
vy (t1, ta)’

b(tl,tg) = (t1+0+t2)

CL(t1, tg)

vo(t1, t2)

nltt) (f(t1) +d+g(t2))-

During the analysis of §§2.5.4-2.5.7, we will require expressions for the
partial derivatives of v; and vy with respect to t; and ¢, up to the third
order derivative, and then evaluate each of these expressions at t; = t, = 0.
This amounts to a list of forty expressions, which is contained in Appendix A
for easy reference. We will denote derivatives by subscripts: for example, the
second partial derivative of v; with respect to ¢; and then ¢, will be denoted



U1y, W will omit the parameters ¢y, t5 for brevity.

The critical set ¥ of the local Midline Map B is given by the vanishing
of the determinant of the Jacobian matrix of B. This requires us to calculate
the derivatives of the coordinates of B as shown in expression (2.40), which

are
V1V, — UV
a, = 1%1—221‘51 (2.42)
vy
V1V2,, — V2V,
ag, =-—"—g—" (2.43)
U1
v V1V, — UV
b =2 4o+ ) (—) _p (244)
1
v V1V, — UV
b, :v—j+(t1+c+t2) < — 02 - 1t2> -9 (2.45)
i

We can now write down the Jacobian matrix,

U,tl

JB =
(;

t1

which is

V12, —U2U1,

2
vy

V1V, —U2V1y

Z—f+(t1+c+t2)( )-f'

A
which becomes

U1’02t1 - 'UQIUItl

v1v2,, —VaVL,,

2
vy

V12, —U2VL,

)-

Z—f+(t1+c+t2)(

vy

U1U2t2 - ’U2’Ult2

vivg + (t1 +c+ tg)(vlvgtl — ’UQ’Ultl) — f'v? vwe+ (t1 +c+ tg)(’vl’Ugtz — Ugvth) —g'v?

upon removing a factor of 1/v? from each entry. We are able to do this
since we are taking v; to be non-zero at t; = t; = 0, and therefore in a
neighbourhood of (1,%2) = (0,0). We then calculate that

v} det(JB) = (vivg,, — vovy,, ) (va — g'v1) — (V1ve,, — vav1,,) (V2 — fv1).



Thus we are able to define the critical set of the mapping B, which we will
denote Y g, to be

Y = {(t1,t2): det(JB) =0},

= {(t1,t2): (v1vg, —vov1, )(va — g'v1) = (v1vg, — vov1,,)(va — f'v1)},

If we define

F(ty,t2) = (viva,, — vovy, ) (va — g'v1) — (v1va,, — vovy,, ) (ve — fv1), (2.46)

then F'(t1,t2) = 0 is an equation for the set ¥, which defines the pre-dual-
AESS as a subset of (t1,t2)-space. We are interested in the structure of this
curve at t; = {9 = 0, and thus require expressions for F}, and F},. Calculation
shows that

F (t,t) = (U1U2t1t1 - U2U1t1t1) (v2 = g'v1)
+ (U1U2t1 - 02U1t1) (U2t1 - glvltl)
— (vltht2 + V1V, ,, — V2, V1, — 02U1t1t2) (ve — f'v1)
- (U1U2t2 - U2U1t2) (U2t1 - f”U1 - flvltl) ) (2-47)
Fi,(t1,t2) = (Uu2 Vg, + V1V2,, — V2,01, — U2U1t1t2) (v2 — g'v1)
+ (U1U2t1 - U27)1t1) (Uztz —g"v — 9’U1t2)
- (U1U2t2t2 - Uzvhm) (v — flvl)

- (U1U2t2 — ’1)2’1)1t2) (U2t2 — fl’l)1t2) . (248)

In the following sections, we continually refer to the expressions for X5, F, F},
and F;,. We will consider Case (i) and Case (ii) in turn, in each case deducing
the structure of the pre-dual-AESS given by the critical set of the local
Midline Map B, which will give us the local structure of the dual-AESS,
and in turn leads to the local structure of the AESS itself using the ideas of
[R87] (see also [T90]).



2.5.4 Case (i): Inflexional tangent cuts the curve again

Consider two curve segments 7, and v, given by

1(t1) = (t1, f(t1)), "2(te) = (c+t2, 9(t2)),

where
f(t) = ast? +agt] +..., g(ty) =bitg+bota+....

We will assume a3 # 0, so v; has an ordinary inflexion at the origin, and
that b1by # 0, which means that the tangent to 7, at t, = 0 is not parallel to
the tangent to 7; at the origin and that <y, is non-inflexional at 42(0). These

are all generic assumptions. So we have

f(0) = f'(0) = f"(0) = 0, f"(0) = 6as # 0,

and
g(0) =0,¢'(0) = b, #0,4"(0) = 2by # 0.

To find X, we require (from the expressions listed in Appendix A):

v) = —cg'(0),vs = O,U?t1 = g'(O),vgtl = O,v?t2 =4'(0) — cg”(O),v(Q)t2 = ¢'(0)2

Substituting these expressions into the expression for the Jacobian of B we

get

7B(0,0) — (0 (e 0)(5/0)) )

_ [0 —cd(0)?

Lo —2¢2¢(0? )
As expected, JB(0,0) is a singular matrix, and we can see that JB(0,0) has
rank 1 unless ¢ = 0 or ¢’(0) = 0, and thus we have a corank 1 singularity here

unless ¢'(0) = 0 (recall that we are assuming otherwise). Thus (¢,%2) = (0, 0)

lies on X 5.



From (2.47) we have
F,,(0,0) = 2¢° " (0)¢'(0)".

Since we are assuming that there is an ordinary inflexion on ~; at the ori-
gin, we have f”(0) # 0, and ¢'(0) # 0 is a running assumption, and thus
F;,(0,0) # 0. Thus the pre-dual-AESS (i.e. the critical set Xp) is smooth
in a neighbourhood of (¢1,t2) = (0,0), and we can parametrise the pre-dual-
AESS by t5 in a neighbourhood of (t1,t2) = (0,0), that is, write t; = 1 (¢2)
in a neighbourhood of (t1, ) = (0,0), with #{(0) = 0.

Hence we deduce the structure of the dual-AESS. From [LSMP] plots,
we suspect that the AESS should exhibit an ordinary cusp in this situa-
tion, and we would like to confirm this by showing that the dual-AESS
exhibits an inflexion, that is, that Im(B(Xp)) has an inflexion at B(0,0) =
(a(0,0),5(0,0)). Critical set S is given by F (0), where F = ay, by, — az, by, ,
and ay, , ar,, by, and by, are given in (2.42), (2.43), (2.44) and (2.45). We define

6(t2) = B(ti(t2), t2) = (a(ti(ts), t2), b(t1(t2), t2)),

which is a parametrisation of the image of ¥ g under B, that is, the dual-
AESS. Then the condition for this to have an inflexion is that §'(¢s), 6" (t2)

are not independent at t, = 0. Now

5l(t2) = (atl tll (tQ) + Aty s btl tll (tQ) + bt2)7
8"(t2) = (a1 (t2)® + an, 1] (t2) + 200,11 (t2) + Gryy,
btltltll (t2)2 + btl tlll(tQ) + 2bt1t2t,1 (t2) + btztz) :

The condition for these two vectors ¢'(0),6"(0) to be dependent is that
[5I(O)a 5”(0)] = 0= at,(0)bs,t,(0) — by, (0)at,e, (0) = 0.

Using the list of expressions in Appendix A, we calculate that

!

11,(0) = =7, a1, (0) = — 10 — 200,

/

bt2 (O) = _291(0)7 btth(O) = 3 29”7

c



and so

4¢'(0)*> | 2¢'(0)g"(0)

030

atzbtztz = 02 + c ’
2¢'(0)g"(0) | 4¢'(0)*

bg2af‘,)2t2 = c + 02 )

and hence af,b?, — b a?, = 0 as required. Thus we have shown that the
dual-AESS, I'm(B(Xp)), has an inflexion at ¢t; =t = 0.

We deduce ([R87], [T90]) that the AESS exhibits a cusp at t; =t = 0.
The cusp point is at (c,0) on the 7, curve segment and, since v;(0,0) # 0
and v9(0,0) = 0, this tells us the direction of the tangent to the AESS at

this point is along the inflexional tangent line.

Proposition 2.5.5. The AESS generically exhibits an ordinary cusp at the
intersection of an inflexional tangent with the original curve, and the tangent

at the cusp is the inflexional tangent line itself.

2.5.5 Case (ii): Two inflexional tangents meet

We will follow the same procedure as given in §2.5.3. Consider two curve
segments y; and 7, given by

T (t) = (1, f(t1)), a(te) = (c+t2,d + g(ta)),

where
f(tl) = a;;t? —+ ... (a3 7é 0), g(tg) = bltg + bgtg + ...

We may assume that b; # 0, that is, that the inflexional tangents are not
parallel, and also, without loss of generality, that ¢ = 0 and d # 0. We may
also assume that the tangent line to v, at ¢t = 0 does not pass through 7, (0).
We find that, under these assumptions, the (2 x 2) matrix JB(0,0), which
we expect to be singular, has precisely rank 1. Evaluating the expressions
(2.47) and (2.48) at t; = to = 0 we deduce that ¥z is smooth if and only if
at least one of F3,(0,0) or F3,(0,0) is non-zero, that is, at least one of the
inflexions on curve segments y; and 7, is ordinary, and generically we may
assume this to be the case.



Consideration of the dual-AESS leads us to deduce that the dual-AESS is
smooth if both inflexions are ordinary, and exhibits an inflexion (generically
an ordinary inflexion) if one of the inflexions is a higher inflexion. We may
deduce ([R87], [T90]) the following.

Proposition 2.5.6. The AESS is smooth at the intersection of two inflexional
tangents if both inflexions are ordinary, and generically has a cusp singularity

when one of the inflexions is a higher inflexion.

We are also able to use the local form of the Midline Map as derived in
§2.5.3 to deduce the condition for a cusp on the AESS (as previously found in
Proposition 2.4.7), and also to analyse the structure of the AESS U MPTL at
points where these two sets meet, which corresponds to the situation where
there exists a 3+3 conic having contact with a curve in two points which share
tangent directions: §2.5.6 and §2.5.7 respectively contain this analysis. Then
in §2.5.8 we use the local form of the Midline Map to deduce the condition

for an inflexion to appear on the AESS.

2.5.6 Condition for a cusp on the AESS

Following the procedure given in §2.5.3, we may show that the existence of a
4+38 conic implies the existence of a cusp on the AESS. Consider two curve
segments y; and 7y, given by

() = (b, f(1)), 72(te) = (c+ba,d + g(t2)),

where
ft) = agt? +astd + ... g(ty) = bty + byta + bsts + ...

We will assume that ay # 0 and b; # 0, and that ¢ = 0. The 3+3 Conic
Condition of Corollary 2.3.2 tells us that we must take ay = —by in order for
there to exist a conic having 3-point contact with ; and v at ¢; = 0 and ¢, =
0 respectively. Furthermore, the /+38 Conic Condition of Proposition 2.3.4
tells us that we must take a3 = —% for the conic to have 4-point contact
with v, at ¢; = 0. This ensures the existence of a conic having 4-point contact



with v, at ¢; = 0 and 3-point contact with v, at ¢, = 0. From (2.48) we are
able to deduce that

F,,(0,0) =0 < f"(0) + ¢"(0) = 0.
So the pre-dual-AESS F'(t1,t3) = 0 is smooth at (Z1,t2) = (0,0) as long as
g"'(0) # —f"(0), which holds generically.

Remark 2.5.7. The situation ¢"(0) = —f"(0) (along with the 3+3 Conic
Condition f"(0) = —g"(0)) corresponds to the affine normals to 1 and o at
t1 =ty = 0 being parallel, the affine normals being in the direction

<—%f’”(0), f”(0)2> and (%g'"(()), —g"(0)2) :

respectively (see §1.3.3).

A short calculation shows that the dual-AESS exhibits an inflexion in
this case. We can thus deduce:

Proposition 2.5.8. The AESS ezhibits a cusp at the centre of a 4+3 conic.
This confirms part (a) of Proposition 2.4.7. In §2.5.7, we will prove part

(b) of this proposition.

2.5.7 Structure of the AESS U MPTL at parallel tan-

gents

We will now show that the AESS U MPTL exhibits a beaks singularity when
the condition for a 34+3 conic holds at points of contact of parallel tangents,
which proves the assertion of Proposition 2.4.7. Consider two curve segments
~v1 and 7, given by

Y(t) = (1, f(t1)), 7e(te) = (t2, d + g(t2)),

where

f(t) = aot? +ast] + ..., g(ts) = bots +bsts + ...,



and we will assume that as # 0. The 3+38 Conic Condition of Corollary 2.3.2
tells us that we must take ay = —by for there to exist a conic having 3-point
contact with 7, and v, at ¢; = 0 and 3 = 0 respectively. Doing so ensures
that the curve segments have parallel tangents at non-inflexional points, and
that there exists a 3+3 conic there. Under these assumptions, the Jacobian
matrix JB(0,0) has rank 1. From expressions (2.47), (2.48) we may deduce
that the critical set X g is non-smooth, and thus the {pre-dual-AESS} U {pre-
dual-MPTL} is non-smooth when we have parallel tangents and the 3+3
Conic Condition holds.

To determine the structure of the {dual-AESS} U {dual-MPTL} in this
case, we require expressions for Fy,y, (t1,12), Fy,1,(t1,t2) and Fy,;, (t1,t2). These
expressions are given in Appendix A. Evaluating these expressions at t; =

to = 0 gives us

,0) = 2d*f"(0)(3f"(0) + ¢"(0)),
Fi,1,(0,0) = —2d°¢" (0)(£"(0) + 39"(0)),
Fy1,(0,0) = 2d*(f"(0)g" (0) — f"(0)g" (0))-

The Midline Map B has a beaks singularity (for details, see [R87]) if
Ftltl (05 0)Ft2t2 (0’ 0) < Ftltz (Oa 0)2'

It follows that the {dual-AESS} U {dual-MPTL} exhibits a cusp singularity
if and only if
0< (f///(o) _ gI”(O))2-

This holds generically, since f”(0) # ¢"(0) in general. Thus the {dual-
AESS} U {dual-MPTL} generically has a beaks singularity when the condi-
tions for a 3+3 conic hold at parallel tangents.

We deduce the following:

Proposition 2.5.9. The AESS U MPTL has a dual-beaks singularity when
the condition for a 3+38 conic holds at parallel tangents.

Remark 2.5.10. The dual of a beaks singularity is in fact two ordinary cusps
with the same cuspidal tangent line. We have already deduced that the MPTL



has an ordinary cusp in this situation (see Proposition 2.4.9 of §2.4.4), and
so Proposition 2.5.9 tallies with this fact.

2.5.8 Condition for an inflexion on the AESS

Consider two curve segments 7; and v, given by
Ti(t) = (t1, f(t1)), 72(te) = (t2,d + g(t2)),
where
f(t) = agt? +ast? + ..., g(ty) = byt + bots + bsts + . ..
We will assume that asb; # 0. A short calculation shows that
det(JB(0,0)) = 0 < f"(0) + ¢"(0) = 0,

which is simply the 3+3 Condition as = —bs of Corollary 2.3.2, as expected.
Assume this holds. Then a short calculation shows that

F,,(0,0) = —2d°¢'(0) (3f"(0)g'(0) + df"(0)),
F,(0,0) = 2d°'(0) (34'(0)g" (0) + dg"(0)) .

Substituting ¢”(0) = —f"(0), we deduce that

F,(0,0)=0 <= f"(0)= _wjg'(o),
F,(0,0)=0 <= g¢"(0)= M'
Note that
£"(0) = _w}q'(o) — 6az =0 <= ashy +azd =0,

which is precisely the condition for the 343 conic to have /-point contact
with v, at t; = 0 (see the 4+3 Conic Condition of Proposition 2.3.4) and we
assume generically that this does not happen. We will also assume the same



for ~o, and thus both F;, and F}, are generically non-zero at (¢1,t2) = (0,0).
A short calculation shows that the dual-AESS has a cusp in this situation if
and only if ag = —bs.

Now consider the expression

[Y(t1) = y(t2), 7" (t1) — 7" (t2)] = 0.

This defines the pre-set for the Affine Distance Symmetry Set (ADSS), con-
sidered in Chapter 3. In this case, it is equivalent to
t1 — to —%k1_5/3i€1 + %k‘2_5/3i§2

_ _ ) _ _ . =0,
Ft1) —d—glta) kP p(tn) — STk (01) — By 22" (b) + Sk ™ kg (22)

(0,0)

where k; = [ki, kz] Upon expansion, this reduces to
k1 (0) "1 (0) — ka(0) =k, (0) = 0,

and thus this is the condition for ¢t; = 5 = 0 to give an ADSS point in this
situation. Now k1(0) = 2ag, k2(0) = 2by, k1 (0) = 6as, k2(0) = 6bs and, along
with the 3+3 Conic Condition as = —bs, the condition for t; = t; = 0 to
give an ADSS point is

(2(12)_5/3(6(13 + 6[)3) = 0, i.e. as + bg = 0,

which is precisely the condition for the dual-AESS to exhibit a cusp in this
situation.

The dual of a cusp is an inflexion (see [R87]), and thus we may deduce:

Proposition 2.5.11. The AESS of a curve v has an inflexion at the centre
of a conic having 8+8 contact with v at y(t1) and y(t2) if and only if

[v(t1) = v(t2), Y (t1) — " (t2)] = 0,

that is, if and only if the points y(t1) and y(t3) also contribute to the ADSS
of .

Remark 2.5.12. The importance of this result is as follows: we have proved



that the AESS ezhibits an inflezion when the ADSS Condition also holds.
Geometrically, we can interpret this result in terms of the pre-sets of both
symmetry sets. Referring back to Remark 2.2.11, we saw that Morse sin-
gularities on the pre-AESS lie on the pre-ADSS, and in §2.2.3 we saw that
horizontal and vertical tangents to the pre-AESS correspond to cusps on the
AESS. Under perturbation of the curve, an isolated point an the pre-AESS
expands to form a smooth closed loop on the pre-AESS which crosses the
pre-ADSS twice and has two vertical and two horizontal tangents (see Fig-
ure 2.9(a)). The corresponding AESS segment is thus a closed curve with

two inflexions and four cusps, as illustrated in Figure 2.9(b).

(a) (b)

Figure 2.9: See Remark 2.5.12.

2.6 The AESS for non-simple curves

Until now, we have had the running assumption that the curves for which we
are finding the AESS (and MPTL) are simple, that is, do not self-intersect.
However, we will extend this now to study the local structure of the AESS
at a crossing on the original curve. Consider two curve segments y; and 7,

given by

71(s) = (s, f(5), 1(t) = (¢, 9(¢)),
where

f(s) =ays® +azs® +..., g(t) = byt + bot* +bst® + ...,



and where we will assume that a2b; # 0, that is, y; is non-inflexional at s = 0,
and v; and v, intersect but are not tangent at the origin. The pre-AESS is
defined by solutions (s, t) to

[71(8) = 72(t), 1(s) +75()] = 0, (2.49)

(from (2.1)). Expanding (2.49) as a power series in s, and, setting K = 2%/3,
A= aé/ *and B = bé/ ® we can write the equation of the pre-AESS as

K (Abl(s —#) + (B — A)(aps® + 2AB(A + B)st + bot?) + byt (@s + b—3t> +.. > = 0.

as bo
(2.50)

Note that the left-hand side of (2.50) is zero at s = ¢ = 0, which confirms
that the intersection point of the curves v; and 7, contributes to the AESS.
Furthermore, the pre-AESS is smooth, unless the first degree terms in (2.50)
vanish, which happens if and only if asb; = 0. Since generically we assume

otherwise, we have:

Proposition 2.6.1. The AESS passes smoothly through the self-intersection

points of a non-simple plane curve (see Figure 2.10(a)).

@ . (®

V2

\/71 > /ngs

\ AESS
Y2

Figure 2.10: Illustrating the conclusions of §2.6.

AESS

If by = 0, then the original curve segments are tangent at the origin, and
the pre-AESS exhibits a Morse singularity. Then, assuming that ay # by
(that is, that the affine tangents to the curve segments at the origin are not

equal), the pre-AESS is given by the equation

K(B — A)(A*s* + 2AB(A +b)st + B**) + ... =0,



with A # B, and the discriminant is
A’B%*(A? + AB + B?),
which is always positive. Thus we have:

Proposition 2.6.2. When the branches of the original curve are tangent,
the pre-AESS erhibits a crossing and the AESS comprises two tangential
branches through the origin (see Figure 2.10(b)).

2.7 The MPTL (Reprise)

In §2.4.4, we defined the Mid-Parallel-Tangents Locus (MPTL), and analysed
the local structure of the MPTL, together with the AESS, as part of the dual
of the critical locus of the Midline Map as defined in Definition 2.4.1. In this
way, we saw that it is natural to study the MPTL and the AESS together.
In this section, we will consider an alternative definition of the MPTL for
an oval v, showing that it can be considered as part of the full bifurcation
set of a 2-parameter family of functions defined on +, together with another
set, the Affine Area Symmetry Set (AASS). In §2.7.1, we define the family

of area functions A on an oval, parametrised by points in the plane.

2.7.1 The family of Area functions A on an oval

Consider a positively oriented oval 7, parametrised by ¢, as illustrated in
Figure 2.11(a). (For example, t could be the affine-arclength parameter
along v.) Suppose we fix a point x inside 7, and take a point (¢;) on 7.
Then the unique line through ~(¢;) and x cuts - again in an unique point
v(t2). Now, for small 6t we have

vt +6t) —v(t) = 7' (t)ot.

So the elemental area shown shaded in Figure 2.11(b) is

[v(t:) — x,7'(t1)d1]. (2.51)

DN |



Thus the area shown shaded in Figure 2.11(a) is

ééﬂﬂo—mwmwt (2.52)

Fixing x, we define the Area Function on the curve vy to be

to

Aw) = [ bo-xy o),
t1

where we take t5 to be determined by ¢; and x. (We remove the factor of

1/2 since this does not change things conceptually.) Now, suppose we vary
(o) )

v(t1)
t1 —+ (5t
() t1

Figure 2.11: [llustrating the construction of the family of Area functions
defined on an oval, outlined in §2.7.1.

parameter t; and point x inside . Then the parameter value ¢, of the point
where the line through x and «(¢;) cuts y again is a function of ¢; (and x).

Consider the 2-parameter family of area functions defined on the oval v by

ta(t1)
At = [ 10 —x. 0l
where 5(t1) denotes that ¢, is considered to be a function of ¢;. In §2.7.2, we
will show that the Critical points of A(t1,x) occur when x is the midpoint
of the chord joining 7(¢;) and 7(t2(¢1)) (see Proposition 2.7.1), a critical
point of A(t;,x) is degenerate if the tangents to v at y(¢;) and 7 (t2(¢;)) are
parallel (see Proposition 2.7.2), and that A(¢;,x) has a higher degenerate
critical point if the condition for v(¢;) and v(¢2(t1)) to give an AESS point
also holds (see Proposition 2.7.3). Thus the bifurcation set of A is the MPTL,
which is singular when the AESS Condition holds, and generically has a cusp

at the centre of the corresponding 343 conic.



2.7.2 Singularities of A

Consider an oval v and a point x inside v, and suppose that y is parametrised
by t;. The line L through x and ; = ~(¢;) is the set of points p such that

[p—x,p—7]=0.
So, for a point v, = 7(¢3) to lie on L we need
[Y2 — %x,7% —n] =0,
Thus, to find parameter t5 as a function of t;, we take
[v(t2) =%, 7(t2) =~ (t2)] = 0, (2-53)

to hold identically for all ¢;. This defines our point y(¢2) in terms of ¢,
for fixed x. We thus have to = t5(f1). We will require expressions for the
derivatives of t5 w.r.t. t;. Denote by ' (prime) derivatives w.r.t. ¢;, and by
" (dot) derivatives w.r.t. to. Differentiating (2.53) w.r.t ¢; we deduce that

132,72 — ] + [v2 — X, ty%e — 71| = 0,

= o — %% — [ —x,71]=0. (2.54)
So [ A
72 — X, ’71

th(t)) = ——211 2.55

A (255)

Furthermore, since (2.54) holds identically for all #;, we may deduce that

d . . .
i (254)} =0 <= [y — %, 5o] + t7[71 — x, %] + 2t5[71, %) — [12 — x,7{] =0,
(2.56)
o - BR= B -ty

[71 — X, /YQ]



Also, since (2.56) holds identically, we can differentiate w.r.t. ¢, and some
calculation then shows that

Statalmn — %, %] 313 (11, 5ol L Wit

t”’(tl) _ ' : .
2 [X - Y1, 72] [X - 1, '72] [X - M, 72]

3ta[71, Vel n ol =%, Yol 2 —x,91"]

+ - - -
[X - 71 72] [X - 71 72] [X -7 72]

(2.58)

We are now in a position to prove:

Proposition 2.7.1.

dA
praie 0 <= x is the midpoint of the chord joining y(t1),y(t2(t1))-
1

Proof. We have

dA

Pl talve — %, %) — [ — x, 71, (2.59)
t

[v2 — %, 7]

m[% =%, 9] — [71 — x, 7,

using the expression for ¢, from (2.55), and thus

dA . .
g =0 = br=xln =% 9] = e = x,9ille - x, %] = 0,

= x—vm ==*(x—7),

1
> M=V 0rX= 5(717“72)-

The former is ruled out, since we assume that (¢;) and y(¢2(¢1)) are distinct
points (since x is taken to be inside 7). The latter is the midpoint of the

chord joining ~; and 7y, as required. O

Thus A(t;) has a critical point if and only if x is the midpoint of the
chord joining 7y(¢1) and (¢2(¢1)). Furthermore, we have:

Proposition 2.7.2.

dA _ d’A ) ex is the midpoint of the chord joining y(t1),v(t2(t1)),
dt,  dt?

e v has parallel tangents at these two points.



Proof. By Proposition 2.7.1, we may assume that x is the midpoint of the
chord joining 7(¢1) and y(¢2(t1)), that is, x = (71 +2)/2. Differentiating the
expression for dA/dt; in (2.59) w.r.t. t;, we get

d?A . .
o talye — X, Jo] + t5[ve — x, %2 — [11 — x, %], (2.60)
1

Substituting x as the midpoint of the chord in (2.54) we have

Y2 — 71, V)22 — 71, 32

t” t :
2( 1) [’Yl - ’72a’Y2]3
Ay =yl — 2 9l el
(71 = 72, ¥l
D2 =yl =, Yo]?
[71 - 72, 72]3 ’
(2.61)
using the fact that
[’72 - M1, 71]
() = 20 1 2.62
2( 1) [71 _ 72’72] ( )

from (2.55) with x = (71 4+ 72)/2. Then calculation shows that

d2A . 2[72_7157”

a2 T — e el

!

[V, 92] = 0 <= [71,92] =0,

since [y1 — 72,71] # 0 and [y1 — 72, 2] # 0 for an oval. Thus 42 = ‘fi%“ =0
if an only if x = %(’yl + 72) and we have parallel tangents at v; and 7, as

required. O

Thus we have shown that the Bifurcation Set of the family of area func-
tions defined on an oval v and parametrised by points in the plane is identical
to the set of midpoints of chords joining points of v that have parallel tan-
gents, the MPTL of ~.

Calculating further derivatives of A and ¢, we may also deduce:



Proposition 2.7.3.

aA PA ) PA e x is the midpoint of the chord joining vy, and s,

T d—t% = d—t‘? =0 <= { e the tangents to v at v1 and 2 are parallel,

e the AESS Condition holds for v1 and ;.

Proof. By Proposition 2.7.2, we may assume that

1 .
X = 5(71 +72), and [}, 2] = 0.
Calculation gives us

d*A [v2 = 71,712

2=l n o7 [e—7,%)°
o [71,71’1—3[% N 3L, o] - —

[’715’72]— - y Y2l — . ["72,"5’2]-
' [71 - 72,72] ! [71 - 72,73]2

Now [}, 42] is identically zero, so we can differentiate w.r.t. ¢; to get

h/ila ’72] + tl2 h/ia 72] = Oa

which (using expression (2.62) for ¢, at x = (71 + 72)/2) gives us

n o - [72 — 71, 71] T
] = — 2L T s 2.63
(71 72l P [71: F2] (2.63)

and using (2.63) we can show that

d3A 1o [’72 - 71, ’7”3

d—tf’ = [ —m[%;%]-

Now to link this with the AESS, we must introduce the affine-arclength
parametrisation. Without loss of generality, we may suppose ¢, is the affine-

arclength parameter along 7. Then [v],7]] = 1, and we have the identity

d

() =rn= k;l/3f'y2. Using this, we see that

¢PA_ - el .
dt} kolyvi — ya, a3




and thus

d*A

d—tff:O = [y — 7,7+ 7] =0,

which is precisely the ‘AESS Condition’ of Proposition 2.2.2, the condition
for (t1) and 7(t2(¢1)) to give an AESS point. Thus if x is the midpoint of
the chord joining parallel tangent pairs, then d®*A/dt? = 0 if and only if the
AESS Condition holds, as required. O

Remark 2.7.4. Since

dA_ @A _dPA_
dt, dt?  dt?

is the condition for the bifurcation set of A to have a singularity (which
we expect to be an ordinary cusp). Thus we have shown that the MPTL
exhibits a cusp, or worse, when the AESS Condition holds, that is, when
there exists a conic having 3-point contact with the curve at two points with

parallel tangents, and hence we have re-proved Proposition 2.4.9.

2.7.3 The Affine Area Symmetry Set (AASS)

Definition 2.7.5. The Affine Area Symmetry Set (AASS) of an oval 7y
s the levels bifurcation set of the family of area functions A defined on 7,
that 1s,

AASS(’}/) = {X €R: Hti,tj S.1. A(tz) = A(t]) and Al(t,) = A,(tj) = 0} .

We have shown in Proposition 2.7.1 that A has a singularity for ¢t = ¢; if
and only if point x lies at the midpoint of a chord with one end at v(¢;), the
other end being at some point y(g(¢;)). Thus, for x to be on the AASS of v
corresponding to parameter values ¢; and ¢;, then it must lie at the common
midpoint of two chords, one based at (¢;) and the other based at y(¢;), with
the added condition that A(t;) = A(t;), that is, that these chords ‘cut off’
equal areas of the oval. See Figure 2.12(a). It is then trivial to note that the

vectors
v(t:) —(t;) and y(g(t:)) — v(g(t;))



are parallel and of the same length, as are the vectors

v(ti) — v(g(t:)) and y(t;) — v(g(t;))-

Thus the points y(t;), v(¢;), v(g(t;)) and y(g(t;)) are vertices of a parallelo-
gram (see Figure 2.12(b)). This observation provides us with an approximate
method of constructing the AASS.

(@) o |
1(9(t,) 19D ) 1{(t)
> 0N ()

Figure 2.12: (a) A point x lies on the AASS of oval v if it is the midpoint of
two chords which ‘cut off” equal areas. The two equal areas A(t;) and A(t;)
are shown shaded and hatched respectively. (b) If v(t;) and y(t;) contribute
to the AASS, then the four points v(t:),v(g9(t:)),v(t;) and v(g(t;)) form a
parallelogram.

Remark 2.7.6. It is also worth noting that when ~(t;),v(g(t:)),v(t;) and
v(g(t;)) form a parallelogram on an oval vy, then the areas A(t;) and A(t;)
are equal if and only if the area bounded by v and the chord joining v(t;) and
v(t;) is equal to the area bounded by the chord joining v(g(t:)) and v(g(t;))
(see Figure 2.13).

(9(%5)) 7(g(t:))
Figure 2.13: If 7y(t;) and ~(t;) contribute to the AASS, then the two hatched
areas are equal.



Constructing the AASS

To construct the AASS, consider a positively oriented parametrised oval 7.
For a given point y(¢1) on 7, let £; be the parameter value of the unique point
of v with tangent parallel to the tangent at y(¢1). To construct the AASS of
~ we apply the procedure as follows (note that we use s; in the role of ¢(#;)
here):

e For each parameter value £; do:

e For each parameter value ¢, between ¢; and ¢; do:

e Find parameter values s; and sy (ordered such that s; < s9)
such that the chord (s1) — v(s2) is parallel to y(t1) — v(ts)

and has the same length.
e Calculate areas A; and As.

e If Ay = A, then point

1
5 (1(s1) +(10)),
is on the AASS of 7.

In practice, we must increment s, between s; and 351, and then find suitable
approximate values of ¢; and ¢3. Then, for this to give an AASS point, the
difference in areas A; and A, must be less than some chosen small constant.
We need only consider s, between s; and §; due to the symmetry of the
construction: considering all s, simply results in the AASS being covered
twice. This procedure was followed to create a [MAPLE] program used to
make the plots contained in §2.7.4.

To calculate the direction of the tangent to the AASS, consider an oval
7, and suppose 7y(t1) and 7(t2) contribute a point to the AASS, that is, the
chords through ~(¢;) and some point x = (z, y) both have x as their midpoint

and the areas cut off by these chords are equal.

Proposition 2.7.7. The tangent to the AASS through x is parallel to the
chord from y(t1) to y(ts).



Proof. Consider the set

S = {(t1,t2,%) : x is the midpoint of the chords
based at y(t1),y(t2) with A(t1) = A(tse)}.

Then the AASS is the projection of S to the (x,y)-plane, and the tangent
to S in R* projects to the tangent to the AASS in R?. The conditions on
(tl, tQ, X) are

L% =0, 1o x= L (3(1) +7(0(0)),
%) = 0, e x = L (3(t2) +7(0(02))

We will use the shorthand A; to denote A(t;,x), %4t to denote 22(¢;,x), etc.
Consider the map F' given by

0A; 0A;

t1,t9,X) —y ——, ——, A — As.
( 1,02, ) 8t ’ at 5 411 2
The kernel of the Jacobian matrix of F', projected to x-space, is the tangent

line to the AASS. We calculate:

924, 0 824 8% A
ot? ozt Oyot
_ Ay %Ay 9% Ay
J(F ) - 0 ot2 oz ot dyot ’
0 0 QA1 _ 0As 0A1 _ 0A»
ox ox oy oy

using aa‘i" = 0. We assume generically that

024,

which is equivalent to assuming that x is not an endpoint of the AASS.
Suppose that (¢i,¢2,Cry ()T € ker(JF). Then the first two rows of JF
determine (i, (> uniquely, and the tangent to the AASS is (¢, ;)" where

8A1 OAQ aAl 8142 _
(5;‘65)@+(5;‘35)@—Q



and so the tangent vector to the AASS is parallel to the vector

oA 0y 0A 0
oy oy Ox or )~

Let us write v(s) = (X(s),Y(s)). Then

[v(5) = %,7'(s)] = (X(s) — 2)Y"(s) — (Y(s) —y) X'(s),

and so
w2 lg(tl)h(s) T
_ /:“” D (X)) (5) = (V (5) = ) X'(s)) s
_ /:(tl) _Y'(s)ds = —Y (g(t2)) + Y ().
Similarly 94
S = X(a(t) - X(t),
and thus

<_@é.@ﬁ) = (=X(g(t)) + X (), =Y (g(t:)) + Y (t:))

oy Oz
= (1) —(g(tr)),
and hence this vector is along the chord joining ~y(¢1) to y(g(¢1)). Similarly,

(%3,%%>:_q@y+wmh»

and thus ((;, ¢,) is parallel to the vector

(v(t) = 7(t2)) + (v(9(t2)) = v(9(tr))) -

But the vectors in the brackets of the above expression are parallel and
equal. Thus the tangent to the AASS is parallel to the chord ~(t1) — (t2)



(or equivalently v(g(t2)) — v(g(t1)))- d

2.7.4 MPTL and AASS in terms of Area Parallels

The following interpretation of the MPTL and AASS is a simple but inter-
esting application of the general theory of bifurcation sets.

Area-Parallels are the level-sets of the family of Area Functions A(t,x)
defined on an oval . The area-parallels of an ellipse are themselves ellipses,
or exceptionally the point at the centre of the ellipse, which is the area-
parallel at level equal to a half of the total area of the ellipse. The cusps
of the area-parallels to «y lie on the MPTL of v (see Figure 2.14(a)). The
self-intersections of the area-parallels lie on the Affine Area Symmetry Set
(see Figure 2.14(b)).

()

v

Figure 2.14: (a) Two area parallels to v are shown: one is smooth (for small
negative distance dy), the other is singular, with sixz cusps and three crossings.
(b) The cusps of the singular area parallels lie on the MPTL of . (¢) The
self-intersections of the area parallels lie on the AASS of v (which is not
shown).

()

Figure 2.15: (a) Some area-parallels for an oval. (b) An AASS for an oval.



Figure 2.16: Two AASS plots. Three branches of the AASS are clearly shown.

2.7.5 Further Research

Question 1: How does the concept of the family of area functions defined

on a curve 7y generalise for

(i) x outside the v, and

(ii) v as a non-oval?

Question 2: How does the AASS capture the local affine symmetry of a
plane curve? Does a straight line AASS imply that the curve is affine
symmetric?

Question 3: How can we improve our method of plotting the AASS?

Question 4: How does the AASS fit with other affine-invariant symmetry
sets?



2.8 Examples

>§

Figure 2.17: The thick grey curve is the original curve, which has an inflexion.
The thin dark curve is the MPTL, and the thick dark curve the truncated
AESS. Since the curve is only just non-oval, it is difficult to determine what
1s happening on the AESS. Below the curve is the pre-sets for the AESS and
MPTL, the thicker curve being the pre-AESS. The AESS near the inflexion
corresponds with the triple crossing on the pre-AESS, towards the top right-
hand corner of parameter-space.



Figure 2.18: Above is the untruncated AESS (thick dark curve) and MPTL
(thin dark curve) for a non-simple curve (thick grey curve). Note that the
AESS passes through the self-intersection point of the original curve. It is

not easy to see what is happening, and so below is an enlargement of the area
around the self-intersection.



Chapter 3
Affine Distance Symmetry Sets

In this chapter we will consider an alternative affine-invariant symmetry set
to the AESS, the subject of Chapter 2 and Chapter 4. This set is defined
analogously to the Euclidean Symmetry Set, as was the AESS, but uses an
alternative definition. This leads to a genuinely different affine-invariant
symmetry set, which we will see can be expressed as (part of) the Full Bifur-
cation Set of the family of affine distance functions defined on a plane curve

(parametrised by points in the plane) as introduced in §1.3.2.

Outline of Chapter 3

§3.1: We begin by introducing the Fuclidean Symmetry Set (SS), defined
in Definition 3.1.1 as the bifurcation set of the family of Euclidean
distance functions. We briefly summarise some results concerning the
local structure of this set from [BGG85].

§3.2: We introduce the Affine Distance Symmetry Set (ADSS), the affine-
invariant analogue of the Symmetry Set as defined in Definition 3.1.1.
This set was studied in [GS96], [GS98] for owvals only, and we present
the conclusions here, along with some other useful results.

§3.3: We then extend this study by considering the ADSS in non-oval situ-
ations. Theorem 3.3.3 presents the full list of generic structures of the

ADSS of a plane curve.

100



§3.4: The main part of this chapter concerns the study of 1-parameter fam-
ilies of Affine Distance Symmetry Sets, with the aim of classifying
the transitions which may occur on the ADSS of a plane curve as it
is deformed through a 1-parameter family. A full list of transitions
on generic 1-parameter families of full bifurcation sets was obtained
in [BG86], and furthermore the transitions which are realised on 1-
parameter families of Euclidean Symmetry Sets were highlighted. In
§63.5-3.9, we carry out this same procedure for the ADSS. The con-
clusions are interesting and unexpected, exposing a distinct difference
between those transitions which may occur on the ADSS of a family of
ovals and those which may occur on the ADSS of any generic family of

curves.

§3.10: We consider the structure of the ADSS at self-intersections on the orig-

inal curve.

§3.11: This section contains numerous plots of the ADSS, to illustrate the
results of §§3.5-3.9.

3.1 The Euclidean Symmetry Set (SS)

We begin by giving a brief exposition of the analogous definition of the
Euclidean Symmetry Set. Let f denote the family of Euclidean distance
(squared) functions defined on a curve (), given by

fxt) = llx =y = (x = (1) - (x = 1(1),
where x € R? is the family parameter. We have the following:

Definition 3.1.1. The Euclidean Symmetry Set (SS) of a simple, smooth
plane curve is the closure of the locus of points x € R? on (at least) two Eu-

clidean normals and equidistant from the corresponding points on the curve.

This definition of the Euclidean Symmetry Set is entirely equivalent to
that given in Definition 1.1.1. To rephrase this in terms of the Euclidean

distance function, we consider a curve 7(t), where ¢ denotes the Euclidean



arclength parameter. Then a point x € R? lies on the SS of (¢) if and only
if there exist two distinct points 7(t1), y(t2) such that the Euclidean distance
function f has

f(x,t1) = f(x,t2), and f'(x,t1) = f'(x,t2) =0,

or if x is the limit of such points, where ' (prime) denotes 0/0t. In this case,
we say that f has two distinct critical points on the same level (that is, the
corresponding values of f at these critical points are equal), or, in the limit,
that the first three derivatives of f vanish for some parameter value ¢. The
set of points x for which this holds forms the Levels Bifurcation Set of the
Euclidean distance function f, the closure of the set of x € R? for which f
has two distinct critical points on the same level. It is well-known that the
Euclidean ewvolute of a plane curve «y is the set of points x for which f has
a degenerate critical point, that is for which there exists some point 7(t)
such that f'(x,t1) = f"(x,t1) = 0, and the evolute and the Symmetry Set
together form the Full Bifurcation Set of the family of Euclidean distance
functions defined on the curve 7(t) and parametrised by points in the plane.
It is thus more natural to study the Symmetry Set and the evolute together,
using the powerful and well-developed theory of bifurcation sets. In this way,
the local structure of the Symmetry Set of a generic plane curve, as (part
of) a full bifurcation set, can be deduced, and the possible local structures
of the SS are listed as follows:

Theorem 3.1.2 ([BGGS85]). The five possible local structures for the SS
(and evolute) of a generic plane curve are shown in Figure 8.1 as (i) smooth
SS; (ii) cusp on the SS (at a smooth point of the evolute); (iii) triple crossing
on the SS; (iv) endpoint of the SS (at a cusp of the evolute); (v) crossing on
the SS.

Notation: We use a variant of Arnold’s Ay notation to express the singu-
larity types of each of the local structures of the SS, denoting the type of

singularity that the Euclidean distance function f exhibits:

e A?-points occur when f has two distinct ordinary (or A;) critical points

on the same level,;



e

(77) A1 A (ii7) A3 (i) As  (v) A7/A?
Figure 3.1. (z) (v) illustrate the possible local structures of the SS (with the
evolute shown dashed), along with their corresponding singularity types.

e A, Aj-points occur when f has two critical points on the same level,

one of which is a degenerate (or As,) critical point;
e A-points occur when f has three critical points on the same level;

e Asz-points occur when three derivatives of f vanish for some parameter

value; and finally,

e A?2/A? is used to denote the fact that we have a point which lies on
two separate A? branches of the SS. Thus an A%/A?-point occurs when
f has two distinct critical points on the same level, and two other
distinct critical points on the same level, with the ¢/’ denoting the fact
that these levels need not be the same.

Remark 3.1.3. The last case is inherently different from the preceeding
cases, since an A% /A2-point is at the centre of two distinct circles tangent to
the curve, whereas the other types correspond to centres of single circles with
varying degrees of contact with the curve. The A?/A%-point can be thought

of as the accidental intersection of two smooth (A?) SS segments.

3.2 Introducing the Affine Distance Symme-
try Set

Constructing an affine-invariant symmetry set analogous to the Euclidean
Symmetry Set defined begins with the concept of affine distance. In §1.3.2,
we introduce the family of affine distance functions, d, defined on a curve
7(s) as

d(x,s) = [x = (s),7(s)],



where x € R? is the family parameter. The analogous symmetry set in the
affine case is defined as follows:

Definition 3.2.1. The Affine Distance Symmetry Set (ADSS) of a sim-
ple, smooth plane curve is the closure of the locus of points x € R? on (at
least) two affine normals and affine-equidistant from the corresponding points
on the curve.

For a curve 7(s), a point x € R? is on the Affine Distance Symmetry Set

of v(s) if and only if there exist two different points y(s1),v(s2) such that
d(x,s1) = d(x, s2), and d'(x,s1) = d'(x,82) = 0,

or if x is the limit of such points. The ADSS of a curve (s) is the Levels
Bifurcation Set of the family of affine distance functions defined on 7(s) and
parametrised by points in the plane, that is, the closure of the set of points
x € R? for which d has two distinct critical points on the same level. This can
be considered as part of the Full Bifurcation Set along with the affine evolute,
which is of course defined to be the closure of the set of points x € R? for
which d has a degenerate singularity, that is, x € R? such that there exists
s1 with d'(x, s1) = d"(x, s1) = 0. We use this bifurcation set structure of the
ADSS to deduce the local structure of the ADSS of a generic plane curve,
in the same way that we can deduce the structure of the SS of any generic
plane curve. The results are entirely analogous, and are set out in the §3.2.5
for oval curves, and extended in §3.3 to include non-oval curves.

3.2.1 The ADSS Condition and the pre-ADSS

Proposition 3.2.2 (ADSS Condition [GS98]). Given a smooth, simple
curve y(s), the necessary and sufficient condition for distinct sq, s3 to give a

point of the ADSS is

1

[7(51) = v(52),7"(51) = 7" (52)] = 0,

where affine-arclength parametrisation is assumed.



Proof. If s; and ss contribute to the ADSS, then

d'(xq, 81) = d'(x¢, 52) = 0, (3.1)
<= [xo—7(s1),7"(s1)] = [x0 — 7(52),7"(s2)] = 0,
= x0—7(s1) = M7 (51), (3:2)
and xo — (s2) = A27"(s2), (3:3)

for some A, Ay € R, and

d(xg, s1) = d(xo, $2),
= [xo—(s1),7(51)] = [x0 — ¥(s52),7(s2)],
= [M7"(51),7(s1)] = [A27"(52), 7 (s2)],
<= A\ = X = Asay, using (3.2), (3.3) and [¥'(s;),7"(s:)] = 1.

Thus (3.2) and (3.3) tell us that

Y(s1) + X" (s1) = v(s2) + A" (s2),
= (s1) = 7(s2) = A(Y"(s2) = 7" (51)), (3.4)
= [v(s51) = 7(52),7"(51) = 7"(52)] = 0,
as required. O

This expression picks out pairs of parameter values (si,$3) which con-
tribute to the ADSS, and provides us with what we will call the ‘ADSS

Condition’. 1t leads to the following, which will be of use to us presently.

Corollary 3.2.3. If two points v(s1),7v(s2) contribute point xo to the ADSS
of a smooth, simple plane curve vy, then

(1) = v(s2) = —do(7"(52) —7"(s1)),

where dy is the common affine distance from xq to the curve vy through the
points y(s1) and y(sg) (that is, dy = [xo — Y(8:), 7 (s:)])-



Proof. From above:

dy = [xo—7(s1),7(51)],
= [A"(s1),7(s1)], using (3.2),
= =)\, since [7/(s1),7"(s1)] = 1.

Thus the result follows from (3.4). O

The locus of the points picked out by Proposition 3.2.2, as a set of points
in parameter-space, is called the pre-ADSS. Note that we have made the
implicit assumption that the curve 7(s) is an owal, since affine-arclength is
not defined at an inflexion point on the curve. To apply this definition of
the ADSS to any generic plane curve, we must consider carefully how this
condition should be interpreted at double tangents and inflexions: §3.2.2 and

§3.2.3 contain discussions of these cases.

3.2.2 The ADSS Condition at a double tangent

Consider two curve segments 71 (s1), 72($2), parametrised by affine-arclength,
and having a double tangent at s; = s, = 0. Then the vectors 7, (0) — 72(0),
~1(0) and ~4(0) are in the same direction (being along the double tangent),
and thus

[71(0) = 72(0), 1 (0)] = [71(0) — 72(0),72(0)] = 0.
Then the ADSS Condition holds at s; = s = 0 if and only if

[71(0),71(0) = 72(0)] = 0,

which in turn hold if and only if [y{(0),75(0)] = 1, using the fact that
[71(0),77(0)] = 1. Now ~{(0) and ~5(0) are in the same direction, and so
v1(0) = av4(0) for some a € R. Substituting this into the above, we see that

a[75(0), 73 (0)] = 1,

and hence a = 1, since we know that [75(0),75(0)] = 1. Thus the ADSS

Condition can hold at a double tangent if and only if the affine tangents at



the points of contact of the curve with the double tangent are identical. This
is a non-generic occurence, and so a double tangent does not contribute to the
ADSS of a generic plane curve. (This is in contrast to the AESS, where the
double tangent always contributes to the AESS, which is shown a smooth

curve tangential to the double tangent. See Proposition 2.5.4.)

3.2.3 The ADSS Condition at inflexions

To apply the ADSS Condition (given in Proposition 3.2.2) to situations in-

volving inflexional curve segments, we must consider the following cases.

The ADSS Condition at a single ordinary inflexion

Consider a single inflexional curve segment v as shown in Figure 3.2, with
the inflexion at (0). Either side of the inflexion, the affine normals are
in opposite directions, and this means that the affine distance from the in-
tersection of these normals to each of the corresponding points must be of
opposite sign. Hence points on either side of the inflexion point cannot con-
tribute to the ADSS. (This is in contrast to the AESS, which is shown to
approach an ordinary inflexion tangentially and have an endpoint there. See
Proposition 2.5.3.)

affine normal +"(s;)

~

v
(31) 7/(81)

(52 7(0)
7 (55) ~_affine normal 7" (s2)

Figure 3.2: The ADSS Condition at a single ordinary inflexion.

The ADSS Condition where the tangent at an ordinary inflexion

cuts the curve again

Consider two curve segments 7, (s1) and 7,(s2), with an ordinary inflexion at

71(0) (see Figure 3.3), and the tangent line there cutting 7y, at v,(0). As s;



tends to 0, 71 (s1) tends to a vector of infinite length in the direction of the
inflexional tangent to y; at 1(0) (see §1.3.1). Since 4(0) is finite for s, = 0,
we see that the direction of vector +{(s1) — 74 (s2) approaches the direction
of the inflexional tangent as si, sy tend to zero, which is in the direction of
vector 71(0) — 72(0). Hence the ADSS Condition is satisfied for s; = s, = 0.
The ADSS point is at curve point ,(0), since this point is at affine distance
zero from the inflexion (see §1.3.2) and along the affine normal there, and
also at distance zero along the affine normal to v, at 72(0). The structure of
the ADSS local to this point is deduced in §3.3.1.

72 (0)

71
(s1) \/72(82)
/ 71(0) direction of 72(0)
71(0),77(0)

Figure 3.3: The ADSS point is on the 7y, curve segment, at the point v2(0)
where the inflexional tangent crosses.

The ADSS Condition where two inflexional tangents intersect

The reason why this situation should contribute to the ADSS is better ex-
plained using the idea of a 4+4 conic pair’, developed in §3.2.5. The local
structure of the ADSS in this situation is derived in §3.3.2.

3.2.4 From the pre-ADSS to the ADSS

Once we have found the pre-ADSS for a given curve, the next task is to
map this set of points in parameter-space to the ADSS itself. Suppose two
points y(s;) and 7y(sz) contribute a point to the ADSS of a curve v, that
is, (81, s2) lies on the pre-ADSS. Bracketing both sides of the expression in
Corollary 3.2.3 with 7"(s1), we can deduce that

e = [v(s1) —7(s2),7"(51)]
’ (s2),7"(s1)]




The ADSS point x; is given by

X = Y(s1) — do¥"(51)-

Thus, once we have found a pair of points 7(s1),7y(s2) which satisfy the
ADSS condition, then we can plot the corresponding ADSS point xq using
the mapping

[y(s0) = (527" ()]

PPN (3:5)

xo = v(s1) +
This enables us to produce computer plots of the ADSS using, for example,
the graphics package [LSMP]. For a given curve -y (expressed parametrically),
the zeros of the equation in Proposition 3.2.2 are found to give the pre-ADSS,
and for each point (sq, s9) of the pre-ADSS we use the map (3.5) to plot the
ADSS itself. Some examples of these plots are found in §3.2.5,83.11, and
throughout Chapter 6.

3.2.5 The local structure of the ADSS

For a point x to lie on the ADSS of a smooth plane curve it must lie at the
intersection of two distinct affine normals to the curve, and affine-equidistant
from the corresponding curve points. Geometrically, this is equivalent to x
being at the common centre of two distinct conics having 4-point contact with
the curve and sharing the same affine radius. Such a pair of conics we will
refer to as a ‘4+4 conic pair’.

It is with reference to this geometric interpretation of the ADSS that
we shall phrase our results concerning the local structure of the ADSS of a
generic plane curve. We begin by stating the following result from [GS98],

which assumes that plane curve « is an oval.

Theorem 3.2.4 ([GS98]). A point x lies on the ADSS of a plane curve
v if there exist two (or more) distinct conics with common centre x having
> 4-point contact with v in two (or more) distinct points, and having the
same affine radius. Locally, the Affine Distance Symmetry Set of a generic

plane curve v at such a point X 1s:



e smooth when both conics have exactly 4-point contact with ;

e an ordinary cusp when one of the conics has 5-point contact with ~y

(x is then on the affine evolute of vy too, at a smooth point of it);

e an endpoint when x is the centre of a 6-point contact conic, that is, a
conic tangent to vy at a sextactic point: the endpoint is then in a cusp
of the affine evolute;

e ¢ triple crossing when there are three conics centred at x having equal

affine radius and 4-point contact with .

We will use a variant of Arnold’s A notation to express the type of
singularity that the affine distance function has at a point x. For a generic
plane curve, we should expect the distance function to have A? singularities,
that is, to have two A; singularities with the same value of d. We refer to
such a point x for which this is true as an A%-point, and the first part of
Theorem 3.2.4 above then says that the ADSS of a plane curve is smooth
at an A%-point. We should also expect to find isolated A; As-points, where
the distance function has two singularities on the same level, one of which
is a degenerate singularity. The second part of Theorem 3.2.4 says that the
ADSS generically has an ordinary cusp at these points. Similarly, we should
also expect to find isolated Az-points, where three derivatives of the distance
function vanish, and these are the endpoints of the ADSS as mentioned in
the third part of Theorem 3.2.4. Finally, we should expect to find isolated
A3_points, and by Theorem 3.2.4 this gives us a triple crossing on the ADSS,
formed by taking the three pairs of A; singularities in turn to give us three
smooth (A?) branches of the ADSS. This is the complete series of singularities
that we should expect to observe on the ADSS of a generic oval: a formal
reason for this is outlined in [BGG85] (p.169). Note that do not include
the A2 /A? case here, since this is simply the accidental intersection of two
branches of the ADSS and of no interest to this local analysis.

In §3.3 we extend this classification to include any generic plane curve.
Furthermore, in §3.4 this analysis will be extended to the study of 1-parameter

families of Affine Distance Symmetry Sets, that is, we will consider the tran-



sitions that may occur on the ADSS of a plane curve as it is deformed through
a l-parameter family.

Before moving on to the analysis of non-oval situations and the study
of 1-parameter families of the ADSS, we state a result which will be of use

presently. We will refer to this result as the Concurrent Tangents Condition
for the ADSS.

Proposition 3.2.5 (Concurrent Tangents Condition, [GS98]). Sup-
pose two points y(s1), v(se) contribute point x to the ADSS of a curve 7,
parametrised by affine-arclength s. Then the tangent line to the ADSS at
X 1is in the direction v'(s1) — 7'(s2), and concurrent with the corresponding
tangent lines at y(s1),v(s2). (See Figure 3.4.)

tangent line to
7 at 7(s2)

tangent line to

ADSS at x
concurrency of

tangent lines ~(s,) tangent line to v at y(s;)

Figure 3.4: Illustration of the Concurrent Tangents Condition for the ADSS.

Remark 3.2.6. Proposition 3.2.5 is reminiscent of Proposition 2.4.5, the
Concurrent Tangents Condition for the AESS, which concerns the direction
of the tangent line to the AESS.

3.3 The local structure of the ADSS for non-

ovals

We now consider the two generic occurrences on a non-oval plane curve which
contribute points to the ADSS, and which are not covered by the result of
Theorem 3.2.4.



Figure 3.5: The ADSS of an oval. The grey curve is the oval, the thicker
dark curve the affine evolute, and the thinner dark curve the ADSS. Note
that the cusps of the ADSS lie on the affine evolute, and the endpoints of the
ADSS lie at the cusps of the affine evolute.

3.3.1 Inflexional tangent cuts curve

Consider two curve segments 7; and 7y, given by

71(8) = (X1(8),Y1(8)) = (s,a38> + ass* +...),
Yo(t) = (Xa(t), Ya(t)) = (¢ + bt + bot* + ..., 1).

For parameter values (s,t) = (0,0), we have an inflexional tangent to vy, at
71(0) cutting the curve segment v, at y2(0).

We begin by finding the equation for the pre-ADSS for this situation.
The pre-ADSS is defined to be the set of parameter pairs (s,t) for which

[71(s) = 72(t), 7 (s) =% (1) = 0.

Since we are assuming that neither s nor ¢ are affine-arclength parameters
along the respective curve segments, we must use the formulae from §1.3.3.
The above becomes (omitting the parameters s, t)

Y TR - YRR V: SR Sy
Y1 — Y2 ks 2/371 B §k1k1 5/3’)’1 — ky 2/3')’2 + §k2k2 5/372 =0.

5/3kg/3

If we multiply the right-hand vector by & , disregarding the fact that



k1(0) = 0, then we get

. 1. ) . 1. .
Y — Y2, k1k3/371 - gklkg/?”h — k?/:;kﬂz + gkzk?ﬁ’%} =0, (3.6)

and this defines the pre-ADSS. Calculation shows that

1
k? = (6a3)%%s (1+ 2a4s+...),
3

where we have denoted s%3 by 5. We will also denote k/* by K; and k3

by K,. Expanding (3.6) can rewrite it as
C1 = CQ§,
where ¢y, ¢y are functions of s, ¢ given by

. 1
= (X; — X,) <k1k5/3Y1 - §k1k5/3Y1) — (V1 - Ya) <k1k2/3X1 - §k1k5/3X1> ,

10 . 1. .
Cy = (6CL3)5/3 (1 + (1,—30’48 +. > <(X1 — XQ) <k2}/2 — gkgyvg))

-1 - Y3) <k2X2 - %@Xﬁ) -

This is the equation of the pre-ADSS, and it defines precisely the same set
of points as the equation ¢} = ¢3s°. Calculation shows that the lowest terms
in the equation ¢ — ¢3s° = 0 are s° and ¢* (this is true under the generic
condition that the inflexional tangent is not along the affine normal to 7, at
v2(0)) — if we set weight(s) = 1/5, weight(t) = 1/3, then all other terms in
this expression are of weight > 1). Thus we can parametrise the pre-ADSS

by
s=u’ t=csu’ + cu’ + cru” + O(s).
We can substitute this into the equation for the pre-ADSS to find that

3(9a§b2)1/3b30

5 , cg = —1dasc, ¢; = 0.
bs

Cy = —



Hence we have shown that the pre-ADSS has a (3, 5)-singularity in this sit-
uation (see Figure 3.6(a)).

We now use the standard formula for mapping the pre-ADSS to the ADSS
itself, as outlined in §3.2.4. Calculation shows that the ADSS curve (X,Y)
is given by

X(u),Y(u) = 0—2><35/3a2/361/3cu5—|—...,—15a30u6+... .
3 0y

Thus the ADSS in this situation is singular (see Figure 3.6(b) for a schematic
illustration of this singularity).

t

(a) (b) 2(t)
71 (3)\

s x
pre-ADSS ADSS ﬂ\

Figure 3.6: Schematic representations of the pre-ADSS and the ADSS for the
case where an inflexional tangent cuts the curve again. See §3.3.1.

Remark 3.3.1.

(i) Note that the singularity is higher than we might expect, being a (5,6)-
singularity rather than a (3,4)-singularity (a swallowtail). However,
although this situation is highly singular, it is stable in this setting.
The (5, 6)-singularity will not vanish under perturbation of the original

curve.

(#) Phrasing this in terms of conic pairs, this situation corresponds to
the case of the 6+4 conic pair comprising the repeated line-pair of the
inflexional tangent to v, and the tangent to v, at the point where the

inflexional tangent crosses 7o, both counted twice.



3.3.2 Two inflexional tangents meet

Consider two curve segments 7, and v, given by

m(s) = (Xi(s), Yi(s5)) = (5, 038" +ass* +...),
Yo(t) = (Xa(t), Ya(t)) = (t,d + byt + bst® + ...),

where we will assume that asbibsd # 0. For parameter values (s,t) =
(0,0), we have inflexions on 7; and 7., and the inflexional tangents meet
at (—d/by,0).

The pre-ADSS is given by

1
3

1

3/%2/(;;5/372 = 0.

T =2 by = ik — e+
In this case both k; and ks are zero at s =t = 0. We use the same sleight-
of-hand as in §3.3.1 to remove these zeros, and after some calculation we are
able to show that the initial terms of the equation of the pre-ADSS are given
by

a3b3d®s® and a3b3d*t’.

Thus we deduce that the pre-ADSS has a smooth branch passing through
the origin in parameter-space, and we can write ¢ as a function of s local to

s =1t =0 as follows:
(a3b3)'/°

bs
We now use the standard formula for mapping the pre-ADSS to the ADSS
itself, as outlined in §3.2.4. Calculation shows that the ADSS (X,Y) itself

is given by

t= s+ O(s)

(X,Y)=(eo+eas”+e35° +..., fos”+ f3s° +...),

where



21312/5
ey = @(ag_(asbs) )}

5 by
40t 12a4b§/5d+2 al/® 6™ 18a§/5b§/5 8a§/5b4d
es = —4d—o == - ;
bi ay/°b? biby/® by by b205/°
15asd
fo = &32,
by
d
f3 = 4(40,3—ai>
by

Thus the ADSS exhibits an ordinary cusp at (—d/b;, 0), where the inflexional
tangents meet, provided that ey f3 —es fo # 0, which will hold generically. See
Figure 3.7.

t Y
(a) (®) = ()

S xz

pre-ADSS 7(s) ADSS

Figure 3.7: Schematic representations of the pre-ADSS and the ADSS for the
case where two inflexional tangents meet. See §3.3.2.

Remark 3.3.2. Phrasing this in terms of conics pairs, this situation corre-
sponds to the case of the 4+4 conic pair comprising the line-pair of inflexional
tangents, both counted twice. It is in fact a 6+6 conic pair, with centre at
the intersection of the tangents. It is interesting to note that this 6+6 conic
pair leads to a less singular ADSS than the 6+4 conic pair corresponding to

the ‘“inflexional tangent cuts curve’ situation considered in §3.3.1.

We have now classified all the generic structures that may appear on the

ADSS of a generic plane curve.

Theorem 3.3.3. A point x lies on the ADSS of a plane curve vy if there
exists a 4+4 conic pair with common centre X. Locally, the Affine Distance

Symmetry Set of a generic plane curve v at such a point x is:

e one of the normal forms listed in Theorem 3.2.4 if the conic pair is

non-degenerate.



e an ordinary cusp if the conic pair is the repeated line-pair comprising
two inflexional tangents to v counted twice;

e a (5,6)-singularity if the conic pair is the repeated line-pair comprising
an inflexional tangent to v together with the tangent to v at a point

where this inflexional tangent cuts the curve again, both counted twice.

Figure 3.8: An [LSMP] plot of the ADSS of a non-oval. The lightest curve
is the non-oval plane curve, the thicker dark curve the (truncated) affine
evolute, and the thinner dark curve the ADSS. Note that: two cusps of the
ADSS lie on the affine evolute, the other cusp occuring at the point where
the two inflexional tangents to the curve meet; the endpoints of the ADSS lie
at the cusps of the evolute; the evolute inflects the curve at inflexions of the
latter; the ADSS exhibits a singularity where the inflexional tangents to the
curve cut the curve again. (The structure of the truncated evolute at the top
of the picture is a crossing, not a cusp.)



3.4 Families of Affine Distance Symmetry Sets

The singularities we should expect to observe on a 1-parameter family of
Affine Distance Symmetry Sets, as well as those listed in §3.2.5, are Af,
A2A,, AjAs, A% and A,.

In the study of l-parameter families of Euclidean Symmetry Sets in
[BG86], a full list of all the possible transitions that may occur on the full bi-
furcation set of a generic family of functions is obtained using the well-known
theory of discriminants. For reference, Figure 3.9 illustrates the transitions
that will be considered in this thesis. In [BG86], it is shown that, although
two distinct transitions are generically possible for (most of) the various
singularity types, the specific geometrical situation rules out some of the
transitions from actually occurring on the Symmetry Set. For example, in
the A% case, two transitions are generally possible for generic full bifurca-
tion sets, but only one (labelled A%(a)) may actually occur (and has been
observed) on the SS.

We would like to carry out a similar analysis of the transitions on 1-
parameter families of Affine Distance Symmetry Sets, that is, we would like
to classify the transitions which may actually occur on the ADSS of a smooth
plane curve as this curve is deformed through a 1-parameter family. The de-
tails of the method used are contained in [BG86]. Here, we will highlight, the
important aspects of the theory by working through the simplest situation,
the A} case, in detail. Readers who require a more analytical exposition
of the methods used in the next section are encouraged to read the article
[BG86].

The conclusions can be summarised as follows.

Theorem 3.4.1. The transitions of Figure 3.9 that may occur on the Affine
Distance Symmetry Set of a generic oval are precisely those transitions which

may occur on the Euclidean Symmetry Set of a generic plane curve, namely
Ai(a), A2Ay(a), A1As(a), A3(a), A3(b) and A4 as illustrated in Figure 3.9.

Theorem 3.4.2. The transitions of Figure 3.9 that may occur on the ADSS
of a generic plane curve are A}(a), A1(b), A2Az(a), A1 As(a), A1 A3(b), A2A5(b),
A%(a), A2(b) and A4 as illustrated in Figure 3.9.



Figure 3.9: Some generic transitions that occur on 1-parameter families of
full bifurcation sets in the plane (from [BG86]).



3.5 The A] transitions

In this section, we will use the simplest case, that of the A} transitions, to
illustrate the methods of [BG86] by which we will to classify the transitions
that may occur on 1-parameter families of Affine Distance Symmetry Sets.
We begin by considering the standard multi-versal unfolding of an A}
singularity, given by
G:RY xR 5 R,

where R® denotes the set of parameters t1, to, t3, ta, R® denotes the (Y1, Yo, Y3)-
space of unfolding parameters, and multi-versal unfolding G is given by the
four unfoldings

Gi: (t,y) = 11+ 1,
Gy: (ta,y) = t2 + yo,
Gs: (t3,y) > 12 + ys,
Gy: (ts,y) = t2,

where y denotes the unfolding parameters (yi, y2, y3). Following the method
as outlined in [BG86], the first task is to find the Big Bifurcation Set (BBS)
of standard unfolding GG, which sits in y-space. This object contains all the
possible bifurcation sets in a neighbourhood of the A} singularity of which
G is a multi-versal unfolding. The Af-point itself sits at the origin in this
space. The individual bifurcation sets can be recovered by ‘slicing’ this BBS
with (non-singular) surfaces near to the origin in y-space: the intersection
of the BBS with a surface will (locally) produce one such bifurcation set.
We then consider a generic family of these ‘slicing surfaces’ passing through
the origin, which gives us a family of bifurcation sets passing through the
Af-point, precisely the transitions we wish to study.

The BBS comprises subsets of y-space corresponding to the A2-sets of G,
defined to be the set of values of ¢;(i = 1,2, 3,4) for which G (considered as
a function of t;, with parameters y) has an A%-singularity. Now G has an
A2-singularity if and only if any two of its defining functions are singular and
have the same value. The set of values of ¢;( = 1,...,4) for which G has an



A?-singularity will be called the A%-set.

0G;/0t; = 0G,;/dt; = 0 G; =G, A?-sets of the BBS
t1=1t=0 T+ =13+ Y1 =Y
t1=1t3=0 i+ =1t3+ys Y1 =13
lh=1=0 i+ =13 y1=0
lo=13=0 5+ y2 =15+ ys Yo = Y3
to=1ts=0 t3+yo =13 Yo =0
ty =ts=0 t3+ys =13 y3 =0

The six equations listed in the right-hand column define six planes in y-space,
and these six planes constitute the BBS for the standard A}-singularity (see
Figure 3.10). These planes intersect in the lines given in (3.7), and these are
the 1-dimensional strata of the BBS.

Y1 =Y2 = Ys, )

1 =y2=0,
Y1 =1y2,y3 =0,

n=ys=0, p (3.7)
Y1 =Ys3,Y2 =0,
Yo = Y3, 41 = 0,

Yy2=ys=0.

The 2-dimensional strata of the BBS are the A? subsets of the BBS listed
in the table. We will call a plane through the origin in R3y a bad plane if
it contains the limit of tangent spaces to a stratum of the BBS at points
tending to the origin. Our task is to find all of these bad planes, as we wish
to avoid them as tangent planes to the slicing surfaces at the origin, since
these bad planes correspond to non-generic slices. Now the tangent plane to

a slicing surface at the origin in y-space is given by
a1y1 + agys + azys = 0,

which corresponds to a function with linear part h = a1y +as2y2+asys on the
BBS. The special nature of the BBS in this case is important when finding

these bad planes, since the 1- and 2-dimensional strata of the BBS are lines



Y3

Y1 = Y2 Yo = Y3
A
y3 =0
Y1 = Y3
Y2
y1 =20
Y1

Yo =0
Figure 3.10: The Big Bifurcation Set for the standard A} singularity.

and planes respectively, and the limit of the tangent space to each stratum
at points tending towards the origin is the corresponding line or plane itself.
Thus a bad plane is one which contains any of the 1- or 2-dimensional strata
of the BBS. However, it is clear that any plane which contains one of the
latter will automatically contain one of the former, and thus we can see that
the set of bad planes will be precisely those which contain a line in (3.7). A
plane a;y; + asys + azys = 0 is represented by a point (a;: az: az) € RP?.
Then, for example, the plane contains the line y; = ys = y3 if and only if
a1 + as + a3 = 0, and contains the line y; = y = 0 if and only if a3 = 0, and

so on for all the lines in (3.7). In this way, we get a collection of lines

a1 +as +az =0, )
a3 =0,
a; +as =0,
as =10, » (3.8)
a; +a3 =0,
as + ag =0,
a; = 0. )

in RP? whose points represent bad planes. The lines in (3.8) constitute the
set of all bad planes, which we denote by A in RP?, shown in Figure 3.11.

The components of RP2 — A represent collections of normals to planes which,



as kernels of dh(0), give stratified C%-equivalent functions h, that is, each
component in the region swept out by normals to planes giving C%-equivalent
families of sections. For remarks on stratified C° equivalence, and a discussion
of why this is the correct equivalence to use here, the reader is referred to
[BG86] (p.199) and [Bru86).

a1+a2+a3:0

CL1+CL2:0 a3=0

Figure 3.11: The shaded regions have aiasaz(a; + as + az) < 0.

Calculation shows that the shaded regions of Figure 3.11 give one type
of section, and the non-shaded regions give another. We are able to deduce

the following:

Proposition 3.5.1 (A} condition). A point (a,: ay: as) is in a shaded /unshaded
region of Figure 3.11 depending upon whether

CL16L2G3(CL1 + a9 + ag),

is negative/positive, and the corresponding full bifurcation set exhibits a tran-
sition of type A}(a)/A}(D).

The ‘A] condition’ is found by multiplying the equations of the lines,
noting that the function changes sign when crossing any of the lines. It gives
us a means of distinguishing between the two different possible transitions
for an A} singularity of a generic function. Note that, as a family of parallel
planes passes through the origin, the configuration of the intersections of the
planes with the BBS stays the same (due to the symmetrical structure of the
BBS, illustrated in Figure 3.10).



3.5.1 Interpretation of A} condition

We now link this general analysis of a multi-versal unfolding of an A$ singu-
larity to the family of affine distance functions on a curve v, whose bifurcation
sets give us the ADSS of ~.

Consider four simple, smooth plane curve segments v, 72, v3 and 74, with
parameters si, So, s3 and s4 respectively, which we assume to be the affine-
arclength parameter along the corresponding curve segment. Suppose there
exist four distinct non-degenerate conics C1, Cs, C3 and Cy having four point
contact with 1, 2,73 and 74 at 1(0), 2(0), v3(0) and ~4(0) respectively, and
all sharing the same centre, xg, and affine radius, dq. The common centre x,
of these conics is the Af-point, the point at which the affine distance function
defined on the curve has four singularities at the same level. The ADSS has
six branches passing through xg,, formed by taking pairs of curve segments
71, Y2,7Y3 and 4 in turn, each pair contributing one branch to the ADSS.

Our first task is to link the family of affine distance functions to the
standard unfolding G. We will consider four families of curve segments close
to 71,72, 73, Y4 With family parameter u, we will denote these segments
as Yiu(si)) = (Xiu(si),Yiu(si)), where the parameters s; are all taken in a
neighbourhood of zero. We will take x = (z1,7,) € R?, and denote by xq
the Af-point on the ADSS. Then the family of affine distance functions on
the family of curve segments consists of four germs

Fi: Rx R xR? (0,0,%x0) — R,
given by

E(Sia U, X) = [X - /Yu,i(si)a fy;,i(si)]a
x1 — Xu,i(S:) X«Q,z’(si)

Ty — Yui(si)  Yyi(s:)

where ' (prime) will always denote 0/0s;. Since we are assuming that each F;
is a multi-versal unfolding, then by the uniqueness of multi-versal unfoldings
each of the unfoldings G; in the standard multi-versal unfolding G' can be



induced from the affine distance functions F; by

where each A4;: RxR® — R is a germ at (0,0), and B, C denote respectively
the germs B: (R*,0) — (R x R?,(0,xp)) and C: (R?,0) — (R, dy).

RxR — %3 RxR — s R "4 R
(AixB)l (—CxB)l Bl lidentity
RxR —2 3 RxR —— R —™ 4 R

From the commutative diagram we see that h = m; o B, where m; denotes
projection onto the first coordinate. Thus B; is the map h on the standard
Af-set (the BBS), which corresponds to the plane through the origin in y-
space representing the tangent plane to the surface with which we are slicing
the BBS. This tangent plane thus corresponds to the kernel of the map h on
the BBS, i.e.

ker dB;: R* — R, with matrix (831 OB 331>

oy ’ 0y ’ 0ys

y=0
Hence the kernel plane has equation

0B,
oy

0B,

Y1+ —
0 ay2

0B,

Yo+ —

ys = 0.
0 ay?) ’

We are now able to re-interpret the A} condition from Proposition 3.5.1.

Proposition 3.5.2. The ADSS ezhibits a transition of type Af(a)/A}(b)
depending on whether

0B, 0B, 0B, (831 N 0B, N 8B1>
O0y1 Oya Oys o 0y 0ys

is negative/positive respectively (where everything is evaluated at'y =0).

To interpret this condition in terms of the affine distance function, we
need some further analysis in order to link the function B; to our original



F;, using the relationship given in (3.9). Considering the case 7 = 1 to begin
with, we see that

9G1 9Gy 9G1 9G: _
(8?51 dy1 gz Oys ) ‘(tl,o) = (2t 100),
041 0A1 0A1 9A;
oty dy1 dy2 dy3

0 9B1 9By 9B;

0s1 Ou 0Ox1 Ox2 ) ‘(Al (tl ,0),}(0) 8

_ <6F1 OFL OF1 8F

0 0B> 0B> 0B>
Ay1 Oy2 dys

0 OBs 9By 0By
dy1  Ody2  Oys (t1,0)
where the second row comes from using the chain rule for derivatives. We
can do the same for G5, G3 and G4, which have the right-hand side of the
first line as (2t 0 1 0), (2¢3 0 0 1) and (24 0 0 0) respectively. Now
OF;

6—31(0’ X()) = 0,

since by definition F; has an A; singularity at (0,x). Also, we calculate that

9 X! (s).
aIQ z,u( ’L)
We may put ¢; = 0, since only the O-jets are required. For brevity, we will
assume the shorthand way of denoting the matrices

OBy 0B1 0By
oy Y2 Y3

oCc oC oC
B | 93 o om dJo = (29 9 o¢
J 9y1 9y2 9ys an JC (ayl ay2 ay?))

y=0

OBs 0B3 0B3
oyr Ody2  Oys y=0

ot O Ous aC aC aC
+
( dyr Oy2 Oys

)

0



Taking all of the G; together leads to the system

o O o =

oS O = O

o = O O

(

\

OF;
ou

oF,
ou

aF;
ou

oFy
ou

OF
or1

oF,
ox1

aFs
ox1

OFy
ox1

OF;
o)

oF,
Oxo

oF;
Oxa

oFy
Oxo

)

/

xJB +

(A(ti,O),xo)

[ JC )
JC

JC

\ /€'

Subtracting the bottom row from each of the other rows we get

S O O =
o O = O
O = O O

\

OF, _ 0F,

ou ou

OFy _ 0Fy

ou ou

OF3 _ 0Fy

ou ou
OFy
ou

OF
or1

OFy
ozx1

OF3
or1

_9Fy OF
o1 Oxo

_OFy 0OF
ox1 Oxo

_ OFy 0F3
o1 Oxo

OFy

or1

OFy

~ s 0
OF,
~ 9os 0
xJB +
OF,
~ us 0
OFy 0
dx2 (A(tiao)’x())

ocC

Iy

Substituting in our expressions for 0F;/0z1, OF;/0xs, and deleting the last
row, leads us to the final system, which is written in full:

OF
ou

OF,

13 ou

OF3

ou

oFy
ou

OFy
ou

OFy
ou

Y50(0) = Y{4(0) —X5,(0) + X[ 4(0)

Y70(0) = Yi4(0) —X]4(0) + X44(0)

X

Y30(0) = Yi4(0) —X3,4(0) + X ,(0)

9B,

dy1  Oya
dB> 0By
oy Y2
0Bs 0Bs
o1 Y2

9By
Jys

9B3
Jy3

0 0
0 0
0 0
oc  oC
dy2 Oy
y=0

where I3 denotes the (3 x 3) identity matrix. Now we only require the

partial derivatives of B; with respect to y1,y2 and y3, in order to interpret

the expression in Proposition 3.5.2. These partial derivatives are present in

the top row of JB, and so using the above expression, we can find them in

terms of their cofactors in the other matrix. For example, using 5 to denote




det(JB),

9B Y50(0) = Y{,(0) —X5,(0) + X} ,4(0)
8—1 = ﬁ det s
Y
Lo ¥70(0) = Y14(0) —X34(0) + X}0(0)

and similarly for 0B;/0y,, 0B;/dys; evaluated at y = 0. Since we are now

considering only y = 0 and u = 0, we will omit the subscripts. Now

0B, _ﬁi$%2—£+ﬁ‘
1 Yi-Y] —X3+ X
_ o XD XX
vi-vl  Yi-Y]
_ g Xi-X X- X
Y{-Y] Y{-Y]

= Bl — 71372 — Val-

Similarly, we find:

0B,
et S —ﬁ 1 /, 1 /,
% [va — 73,71 — Vdl
0B,

— 5 1 /, VA
—3y3 [’74 Y35 Yo 74]

These expressions have a cyclic nature, for example

0B,

VD1 P
Em Blvs Y3, V2 Yal,
= B[ 7] + [ vl + [vas 7)) »

= Blvi— 727 — 7l
In this way, we can use the shorthand

0B,

L = B(2,3,4),
o B(2,3,4)



where

/

= [ —%% =7l (= (%4,75)),

for pairwise distinct 4, j, k € {1,2,3,4}. Similarly,

oB;

—ZL = _B(1,3,4) = 5(3,1,4),
7, B(1,3,4) = B(3,1,4)
dB;

=21 = B(1,2,4),

7, B(1,2,4)

and the sum of all three expressions is

0B, 0B, 0B
1, 95 OB

By, | Oys | Oys BI74(0) — 73(0),72(0) — 73(0)]

~B[71(0) = 71(0),11(0) — 75(0)]
+6[74(0) = 71(0), 71 (0) — 75(0)],
= Bl — 77 — 1) = B(1,2,3).

Thus, omitting the positive power of 3, we can denote the expression that we
wish to interpret as (1,2,3)-(2,3,4)-(4,3,1)-(1,2,4), which can be rewritten
‘cyclicly’ itself as —(1,2,3) - (2,3,4) - (3,4,1) - (4,1, 2).

Proposition 3.5.3 (A} condition for the ADSS). The ADSS at an A}-
point ezhibits a transition of the form A}(a)/A}(b) depending on whether

—(1,2,3)-(2,3,4) - (3,4,1) - (4,1, 2), (3.10)
is negative/positive respectively, i.e. whether
=M =% =l e =95 — Al [ — Y e — Al e — v — vl

is negative/positive respectively.



3.5.2 Interpreting the A} condition for ovals

The first thing to note is that the expression of Proposition 3.5.3 is inde-
pendent of the ordering of the points 74, 79, 73, 74, meaning that if we swap
any two points and the corresponding affine tangent vectors, the expression
remains unchanged. For example, if we swap the points v, and 74, and the

vectors v, and ~4, then the expression (3.10) becomes

—(1,4,3) - (4,3,2) - (3,2,1) - (2, 1,4),
= —(=(3:41)) - (=(2,3,4) - (=(1,2,3)) - (=(4,1,2)),
= =(341)-(234)-(1,2,3)-(4,1,2),
= —(1,2,3)(2,3,4)-(3,4,1) - (4,1,2).

This means that we may assume that the points v, 7s,7vs, 74 are ordered

around the oval.

Notation: We will use vi; to denote the vector v; — 7;, and w;; to denote

the vector ~y; — ;.

Now we know from the Concurrent Tangents Condition (Proposition 3.2.5)
that the vector v;; is in the direction of the line passing through the ADSS

point x, and the intersection of the tangent lines at +;, ;. So the line in which

=% =

Figure 3.12: Interpreting the A} condition for ovals.

vector ; — ; lies is known. However, we also require the orientation of this
vector (i.e. its oriented direction), which depends on the relative orientations
of 7;,7;- We note that if we were to reverse the orientation of vector ; in
Figure 3.12(a), then the direction of ; — 7} would change, but the direction
of v;; would remain the same, since it only depends upon the positions of

xo and the intersection of the tangent lines. However, x, cannot then be



the corresponding ADSS point, since the opposite sign to the affine distance
from x, to 7;. For the distances to remain equal, we must move x, to a
position such as that shown in Figure 3.12(b), in which case the directions
and orientations of v;; and ;] — ; tally.

This leads us to the idea of allowable positions for the ADSS point X,
given the four corresponding points and the directions and orientations of the
affine tangent vectors. Consider Figure 3.13(a), where we have four points
and the corresponding four affine tangents oriented consistently around the
curve. If these points are to contribute to an A}-point Xq, then x, must
be at an equal affine distance from them. Now the tangent lines associated
to the four points divide the plane into six regions. However, only one of
these regions contains allowable positions for xy, namely the central region
shown shaded. For x; in every other region, we cannot have xq at the same
affine distance from each of the four points, since the signs of the distances
d(xg, ;) will not all be the same. Thus we can define ‘allowable’ positions for
X, given four points and four affine tangent vectors. The allowable positions
for x¢ will be the region R where the affine distances from x; € R to each of
the points ; have the same sign. In fact, we will make the same definition
for an ADSS point corresponding to any number of curve points.

Definition 3.5.4. Given n points 7; and n corresponding affine tangent
vectors, the region of allowable positions for xq will be the region R where
the affine distances from the ADSS point Xy € R to each of the points y; have
the same sign.

Figure 3.13: Allowable positions for the ADSS point. See §3.5.2.

As another example, in Figure 3.13(b), with the affine tangent vectors



oriented as shown, the region of allowable positions for x; is shown shaded.
Thus for points 71, s, v3 and 7y, on an oval, with corresponding affine tangent
vectors 7}, 7,74 and 4, the only allowable position for A}-point xo will be

in the region shown shaded in Figure 3.13(a). Hence for the oval case we

Vig V12 V23

Va3

Figure 3.14: (a) Using the Concurrent Tangents Condition of Proposi-
tion 3.2.5, we know the directions of the vectors v;; = ~; — 7;-, but not their
orientations. (b) Using Corollary 8.5.7, we are able to deduce the orientations
of the vectors v;; from the vectors w;; = v; — ;.

know the directions of each of the lines via, Vo3, V34 and vy, as shown in
Figure 3.14(a). Furthermore, we are able to deduce the orientations of these

vectors in the following way. First of all we require:

Lemma 3.5.5 (Oval Condition). If ~;, v, are two distinct points on an

oval parametrised by affine-arclength, then

[vi = 3,71 > 0,
where as usual’ (prime) denotes derivative w.r.t. affine-arclength.

Proof. Since the affine-arclength parametrisation induces a counter-clockwise
orientation on the oval, the result follows immediately. See Figure 3.15 for
an illustration. O

Remark 3.5.6. In essence, the Oval Condition captures the simple geomet-

rical fact that on oval lies entirely to one side of any of its tangent lines.

Two applications of Lemma 3.5.5 immediately gives us:
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Figure 3.15: Illustration of the Oval Condition. v is parametrised by affine-
arclength, which induces an anti-clockwise orientation (see §1.3.4).

Corollary 3.5.7. For any two distinct i,j € {1,2, 3,4},

[Yi — 75,7 — ;] > 0.

The above corollary completely defines the orientations of the vectors
v;;. For example, Figure 3.14(a) illustrates the four points 71, 72, 73 and
74 along with the tangent lines at each point, the corresponding A%-point
Xo, and the vectors y; — 7;, which we denote u;;. (This situation is entirely
general, since we have shown that the ordering of the points around the oval
is immaterial.) The directions of the vectors via, Va3, V34 and v4; are known,

and their orientations are deduced from Corollary 3.5.7, which says that
[u;, vi;] > 0 for all distinct 7, j € {1,2,3,4}.

These orientations are illustrated in Figure 3.14(b), and from this it is clear

that the expression
_(17 2, 3)'(2, 3, 4)'(3; 4, 1)'(4, 1, 2) = —[V12; V23]'[V23,V34]'[V347V41]'[V41,V12],

always takes the same sign, namely negative. We deduce the following:

Proposition 3.5.8. The transition Af(a) occurs on the ADSS of a family
of ovals, but the transition A1(b) does not (see Figure 3.9).

Remark 3.5.9. In Figure 3.13 and Figure 3.1j the tangent lines through

the four points are illustrated as forming a closed quadrangle. Similarly,



in subsequent analysis when we consider the tangent lines at a set of three
points, they will be illustrated as forming a closed triangle (see Figure 3.18 for
example). In all cases, the arguments apply just as well when the quadrangle

or triangle is open.

3.5.3 Interpreting the A] condition for non-ovals

Disregarding the oval restriction, we use a process similar to that used in
§3.5.2 to construct situations where expression (3.10) of Proposition 3.5.3 is
positive. Without the oval condition, there is less restriction on the possible
orientations of the affine tangents, and it can be seen that for any combina-
tion of orientations for these affine tangents, there is an allowable region for
ADSS point x¢. Figure 3.16 shows the six regions with a symbol denoting
the sign of the expression (3.10) for xq in that region. (The sign depends
upon the fact that 7} is oriented as shown.) Thus we have shown that both

A? transitions may occur on the ADSS of a generic plane curve.

Proposition 3.5.10. The ADSS of a generic family of plane curves may
ezhibit transitions of type A}(a) and A}(D).

Figure 3.16: The sign in each region denotes the sign of the expression (3.10)
for ADSS point x, in the corresponding region, predicting which A} transition
will occur.



3.6 The A?A, transitions

Following the procedure outlined in §3.5 we deduce:

Proposition 3.6.1 (4?4, condition for the ADSS). The ADSS at an
A2 Ay-point exhibits a transition of the form A2A,(a)/A2Ay(b) depending on
whether

[ =T =l (3.11)

is negative/positive respectively.

Note that this condition is independent of the ordering of v, and ~3, since
once 7y, is fixed, it is immaterial where 5 or 3 are situated on the oval. Thus

we may assume that the points 7;, v, and 3 appear in that order.

3.6.1 Interpreting the A2A, condition for ovals

For an oval, the allowable positions of the A?Aj-point is as shown in Fig-
ure 3.17. The Oval Condition of Lemma 3.5.5 and Corollary 3.2.3 combine

to give the condition,
do[71 — 7, N1 >0, (3.12)

for i = 2,3, where dj is the common affine distance from the A2 A,-point x, to
the points 7; (do = [x0 — i, 7}]). In this case, since we have an Ay-singularity
of the distance function at -y, we know that

do = [x0 — 71,71 = 1

v /1 ,ul’

where p; is the affine curvature of the curve at the point v, (so xg = 71 +
u—llq/{' ). Thus [y{ — 7%,7]] and [y} — 74, 7]] always have the same sign, and
hence expression (3.11) is negative for any choice of 1, 74, 74 (and 1,72, 73),
which tells us that the transition A?A,(b) may not occur on the ADSS of a
family of ovals. The transition A?A,(a) is allowed, and has been observed
using [LSMP].

Proposition 3.6.2. The transition A2As(a) occurs generically on the ADSS
of a family of ovals, but the transition A2Ay(b) does not.



V2

Figure 3.17: The allowable region for xy is shown shaded.

3.6.2 Interpreting the A?4, condition for non-ovals

Disregarding the condition that the curve is an oval, we are able to use a
similar analysis to show that expression (3.11) may take positive values. As
for the A} non-oval case, we see that there is an allowable region for ADSS
point x, for any orientations of the affine tangents, and for any combination
of orientations for these affine tangents, there is an allowable region for ADSS
point xy. Figure 3.18 shows the four regions with a symbol denoting the sign
of the expression (3.11) for x¢ in that region. (The sign depends upon the
fact that ~} is oriented as shown.) Thus we have shown that the A%A,(b)
transition is not ruled out from occurring on the ADSS of a generic plane
curve. Using [LSMP], we are able to observe this transition, and thus we

have:

Proposition 3.6.3. The ADSS of a generic family of plane curves may
ezhibit transitions of type A2As(a) and A2 As(b).

3.7 The A;A; transitions

Following the procedure outlined in §3.5 we deduce:

Proposition 3.7.1 (A;A; condition for the ADSS). The ADSS at an
Ay Az-point exhibits a transition of type A;As(a)/A1As(b) depending upon
whether

—H2[" = 73, 75] (3.13)

is positive/negative respectively.



Figure 3.18: The sign in each region denotes the sign of the expression (3.11)
for ADSS point xq in the corresponding region, predicting which AAy tran-
sition will occur.

3.7.1 Interpretation of A;A3 condition for ovals

We will assume that our curve points v; and 7, lie on the same oval, with
corresponding affine tangents 7], 75, and thus we can use the Oval Condition
of Lemma 3.5.5 and the corollary of the ADSS Condition in §3.2. Since
we have an Ajs singularity of the affine distance function at o, we know
that the A; A3 ADSS point xy can be expressed as xq = 7, + “1—275’ (see
Proposition 1.3.5), and the fact that y; and 7, must be the same affine
distance dy from xq implies that dy = —1/us, and therefore xo = 1 + H—Z%’ )
We substitute this into the Oval Condition [y; — 72,7;] > 0 to get

1
[E(%’ — 71’),71] > 0,

1

=  —([n.nl+1)>0,
%)
1

= —(1-PML%)>0,
2

1
— E(hé - ’yia/yg ) > 07 since [’}éaf}é’] = 1a

which proves that the expression (3.13) takes only positive values for ovals.
Thus the transition A;As(b) will not occur on the ADSS of a family of ovals.
The transition A; Az(a) may occur, and has been observed using the graphics
package [LSMP] (see §3.11), and thus we have:



Proposition 3.7.2. The transition A;As(a) occurs generically on the ADSS
of a family of ovals, but the transition A1As(b) does not.

3.7.2 Interpretation of A;A3 condition for non-ovals

We will now show that, if we disregard the assumption that the points v; and
72 lie on the same oval, then the expression (3.13) may take negative values.

Consider Figure 3.19(a), where without loss of generality we have fixed s,

i p

Figure 3.19: Interpreting the A1 As condition for non-ovals.

X0

~4 and xg, and also the point y; and the corresponding tangent line through
this point. Since [v},75] = 1, we can deduce the direction and length of 74
as shown. Then, since the 7, point corresponds with the A3 singularity of
the affine distance function, we know that xo = v+ ul—?fyé’ , and hence uy < 0.
Also, since xy must be the same affine distance from ~; as it is from 7y,
we can deduce that +; has direction and length as shown in Figure 3.19(b),
and from this it follows that vio = ] — 74 has orientation as shown. (The

Concurrent Tangent Condition tells us the direction of vi5.) Thus

[V12, ’Yg] < Oa

and therefore (3.13) is negative. Note that in this case 3 and 7, cannot lie
on the same oval with corresponding affine tangent vectors ] and ~5.

Proposition 3.7.3. The ADSS of a generic family of plane curves may
exhibit transitions of type A1 As(a) and Ay As(b).

We can follow this procedure to find the sign of expression (3.13) for xg
in each of the other regions in turn. Figure 3.20 shows the two regions with

a symbol denoting the sign of the expression for x, in that region.
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Figure 3.20: The sign in each region denotes the sign of the expression (3.13)
for ADSS point x¢ in the corresponding region (assuming 1,7y, and Yo are
fized as shown), and thus predicts which A;As transition should occur.

3.8 The A3 transitions

Following the procedure outlined in §3.5 we deduce:

Proposition 3.8.1 (A2 condition for the ADSS). The ADSS at an A2-
point ezhibits a transition of type A%(a)/A3(b) depending upon whether

1
1

(71 = v2,m] - [ — 72,7l (3.14)

is positive/negative respectively (assuming u} + ph #0).

3.8.1 Interpretation of the A3 condition

We express the A2 Condition for the ADSS in this way since the two expres-
sions [y; —¥2,7;] and [y; — 72, 74| are familiar to us from the Oval Condition
of Lemma 3.5.5. This result then tells us that, if we restrict our points 7,
and 7, to lie on the same oval with corresponding affine tangents 7] and ~5,
then

(1 =72, ml - [ = 72, 7] <0
Proposition 3.8.2. At an A2-point on the ADSS of a family of ovals, the
ADSS exhibits a transition of type A%(a)/A3(b) depending on whether u' i

is positive/negative respectively.

Thus neither of the A2 transitions are ruled out from occurring on the

ADSS of a family of ovals, since there is no restriction on the sign that the



product iy may take. Thus, even for a family of ovals, both A3 transitions
may occur, the type of transition depending upon the sign of puf, with the
added assumption that p} + ub # 0.

Proposition 3.8.3. The ADSS of a generic family of plane curves may
ezhibit transitions of type A%(a) and A3(b).

Remark 3.8.4. This result is strikingly similar to the analogous A% situation
for the Fuclidean Symmetry Set. In this case, we recall that the two transi-
tions are distinguished by the sign of the product k' kY, where k; denotes the
Euclidean curvature at vy;, with the added condition that k| + k), # 0. Again,

both A2 transitions occur on the SS of a generic family of plane curves.

3.9 Conclusion

Thus Propositions 3.5.8, 3.6.2, 3.7.2, and 3.8.3 prove Theorem 3.4.1 and
Propositions 3.5.10, 3.6.3, 3.7.3, and 3.8.3 prove Theorem 3.4.2. It should
be added that there are other transitions that may occur on the ADSS of a
generic family of plane curves. For example, a double tangent does not gener-
ically contribute to the ADSS of a single plane curve, but, as we showed in
§3.2.2, it does contribute if the affine tangents to the curve at the corre-
sponding points of contact are identical, and thus this situation could result
in a transition on the ADSS different from those listed in Theorem 3.4.2.
Similarly, there are numerous other situations which are generic for a fam-
ily of plane curves, involving higher inflexions for example, which could also
result in other transitions on the ADSS. Thus the list of transitions in Theo-
rem 3.4.2 is by no means an exhaustive list of all transitions on 1-parameter

families of Affine Distance Symmetry Sets.

3.10 The ADSS for non-simple curves

Until now, we have assumed that the curves for which we are finding the
ADSS are simple, that is, have no self-intersections. We will now extend this
by studying the local structure of the ADSS at a crossing on the original



curve. Consider two smooth curve segments v; and v, given by

n(s) = (s,f(s), () = 9(),

where
f(8) = aps® +azgs® + ..., g(t) = bit + baot® + bst® + ...,

and where we will assume that asb; # 0 (that is, that v, and -y, cross transver-
sally at the origin, with no inflexion on ; there). The pre-ADSS is defined
by solutions (s,t) to

[v1(s) = 72(2), 7 (s) =2 ()] = 0, (3.15)

where ' (prime) denotes derivative w.r.t. the affine-arclength parameter along
v, and 7,. Using v, = k;1/3%’ where " (dot) denotes derivative w.r.t. the
corresponding parameter s or ¢, k1(s) = f(s), and ko(¢) = §j(t), then we can

expand (3.15) near s =%t =0 as

s—t L 4 1553
=0
f(s)—g(t) F=3ff B =g+ 595°7
s—t _%§5/3'J'c' + %f5/3'g‘
= =0.

F(s) = g(t) FP3°F° — 5 J§°F — JPg* + 59/°1°9

Substituting in for f and g as power series in s and ¢ we find that the equation
of the pre-ADSS is

(2 (agbg/s — ag/3b§)) s+ (blbg/?’ay, - (agbg/?’ - ag/?’bg)) t+ O(2) =0.

Thus if by # 0, then the pre-ADSS is always smooth, and the ADSS is

generically a smooth curve.

Proposition 3.10.1. The ADSS passes smoothly through the self-intersection

points of a non-simple plane curve.



Remark 3.10.2. If by = 0, then the segments 1 and 7y are tangent at the
origin. The pre-ADSS however is still smooth, so long as ay # bywhich is
the condition for the Euclidean curvatures of v, and vo to be different at the

oTigIn.

3.11 Examples

The following plots were made using [LSMP]. In the case of the A; A3z tran-
sitions, we used [MAPLE] to calculate the equations of the local curve seg-
ments which correspond to an A;As transition, and also to predict which
Ay Aj transition should occur. Similarly, we may construct similar programs
which predict which of the A2A4,, Al and A3 transitions occur, and output
suitable curve segments which can then be put into [LSMP] in order to view

the transitions.

-

Figure 3.21: An [LSMP] plot of the ADSS (thin dark curve) and the affine
evolute (thick dark curve) for a non-simple plane curve (grey curve). Note
that the ADSS passes through the self-intersection point of the curve.



]

Figure 3.22: On this page is shown an A;As(a) transition. From left to
right: The two local curve segments are shown as thzck curves, the two ADSS
branches as thin dark curves, and the affine evolute as a thin grey curve;
we can see the end of one branch of the ADSS in the cusp of the affine
evolute approaching the other branch of the ADSS; the ADSS branches then
intersect and a swallowtail is formed, as shown enlarged in the right-hand
plot. Figure 3.23 overleaf shows another AyAsz(a) transition.
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Figure 3.23: An A;As(a) transition.
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Figure 3.24: An A, A;(b) transition. From left to right: The two local curve
segments are shown as thick grey curves, the two ADSS branches as thin dark
curves, and the affine evolute as a thin grey curve. We are interested in the
locality where the end of one branch of the ADSS in the cusp of the affine
evolute approaches another branch of the ADSS; the ADSS branches then
intersect and a swallowtail is formed, as shown enlarged in the right-hand

plot. Note that the two local curve segments cannot be contained in the same
oval curve.



Chapter 4

The Reconstruction Problem
For The AESS

4.1 Introduction

In [BG86], the following problem connected with the Symmetry Set (SS) is
considered. Suppose we are given a smooth curve segment which we know
to be the SS of some original curve (not necessarily closed — it may consist
of two or more disjoint segments). We ask the question: What additional
information do we require to enable us to reconstruct the original curve? We
will refer to this as The Reconstruction Problem for the SS. The answer is
that we must be given the radii of the individual bitangent circles, that is, we
require a radius function which, for each point of the SS, tells us the radius
of the bitangent circle at that point. The original curve is then reconstructed
as the envelope of these circles.

We may rephrase this in the following way: given a curve segment S,
parametrised by ¢, at each point of S there is a 1-parameter family of circles
with this point as centre. Geometrically, this parameter is the radius of the
circle. If we were to choose this parameter as a smooth function of ¢, say
radius 7 = r(t), then this would define uniquely each of the circles centred on
S, and by construction the envelope of these circles would be a curve having
S as its Symmetry Set. We will keep this in mind as we begin to study the

analogous Reconstruction Problem for the Affine Envelope Symmetry Set.
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Remark 4.1.1. As an aside, this geometrical construction can be used to
justify a statement concerning the ‘infinitesimal azes of reflexional symmetry’
stated in §2.1.2. For a given curve S, consider a fired member C of a 1-
parameter family of circles with centre on S. The envelope of this family is
a curve having S as its Symmetry Set, and the characteristic points on C
will clearly be symmetric in the tangent line L to S at the centre of C, that
18, the points will be reflexions of each other in L, and it follows that the
midpoints of the chord joining these two points, and the intersection of the

tangent lines to C' at these two points, will lie on L, as claimed.

We use the definition of the AESS as given in Definition 2.1.1, as op-
posed to the dual of the discriminant of the midline map definition (see
Definition 2.4.6), since it supplies us with a more geometric approach. The

problem we will consider is:

The Reconstruction Problem: Given a smooth curve segment E, con-

struct a smooth plane curve which has E as its AESS.

For a curve segment F, at each point of E there is a 3-parameter family
of conics having this point as centre. If the segment E' is parametrised by ¢
then we would like to choose these three parameters as smooth functions of
t, so as to uniquely define a conic at each of the points of E. However, the
envelope of these conics would in general have only 2-point contact with each
of its constituent conics, and thus the envelope curve would not have E as
its AESS. In the Reconstruction Problem for the AESS, we must choose the
three parameters as functions of ¢ in such a way that the conics thus defined
have 3-point contact with their envelope curve. Then, by construction, the
envelope curve will have F asits AESS. This is a more complicated procedure
than the analogous problem for the SS, and so instead we take a sideways

step and consider the following connected, but simpler, problem.

The Semi-Reconstruction Problem (SRP): Given a smooth curve seg-
ment v1, and a smooth curve segment E, what choice do we have in con-
structing a corresponding smooth curve segment 7y, such that the composite
curve v, Uy has E as its AESS?

The answer to this question is found at the end of §4.3. Here we outline



how we will tackle the Semi-Reconstruction Problem for the AESS. Consider
the 2-parameter family of conics C(s,t) having 3-point contact with a given
smooth plane curve segment y; (parametrised by t) and having centre on a
smooth plane curve segment E (parametrised by s). Taking s as a function of
t defines a 1-parameter sub-family of this 2-parameter family. The envelope
of this family will contain =, and each of the constituent curves of the sub-
family will have 3-point contact with v, that is, v; will be a 3-point contact

envelope segment (see Definition 1.5.1). The problem we will consider is this:

How do we choose s = s(t) (in a neighbourhood of t = ty) in such a way that
the resulting envelope also has 3-point contact with ils constituent curves

away from v,7

Outline of Chapter 4

84.2: We develop some general analysis concerning the construction of 3-

point contact envelopes from general 2-parameter families of curves.

§4.3: We apply the theory developed in §4.2 to the Semi-Reconstruction
Problem for the AESS. We will show that, given two smooth curve
segments ; and E, and two corresponding points on these two curves,
we can, at least locally, find an unique curve segment , such that the
composite curve y; Uy, has E as its AESS. This answers the SRP for
the AESS.

§4.4: Here we consider an example of the Semi-Reconstruction Problem for
the AESS as a straight line segment, using [MAPLE].

84.5: Finally, we use the ideas developed in §8§4.2-§4.3 to solve the Recon-
struction Problem for the AESS.

4.2 3-Point Contact Envelopes

Consider a general 2-parameter family of smooth plane curves given by

F(x7 y7 S’ t) = 07



where s,t are the family parameters. Take a 1-parameter sub-family defined
by s = s(t) for ¢ near ¢y, giving F'(z,y, s(t),t) = 0 as our 1-parameter family.
Its envelope (z,y) is given by solving

F(z,y,s(t),t) =0,
o AP (@,y,5(1), )} = Fu(x,y,5(1),8)'(t) + Fy(,y, 5(t),t) = 0.

for x = z(t),y = y(t) close to xg = x(ty), Yo = y(to), where ' (prime) denotes
d/dt. We denote s(ty) by so, and s'(tp) by sj. Suppose that this envelope is
smooth at ¢t = ¢y, that is, (2'(¢9),¥'(t0)) # (0,0). Then our envelope satisfies

Expressions (4.1) and (4.2) are identities in ¢, and thus we can differentiate
them w.r.t. ¢. Differentiating (4.1) w.r.t. ¢ gives us

Fo(z(t),y(t), s(t), t)z'(t) + Fy(z(t), y(t), s(t),
+F(z(t), y(t), s(t),1)s'(t) + Fy(z(t), y(t
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which holds for all ¢, and then (4.2) tells us that

Fp(z(t),y(t), s(t), t)z"(t) + Fy(z(t),y(t), s(t), t)y'(t) = 0, (4.4)

for all t. Differentiating (4.4) w.r.t. ¢ we get

Foo(x(t),y(t), (1), )2 (t)* + 2Fay (2(2), y (1), s
+Fyy (), y (1), s(8), )y’ (8)* + Fas (2(8), y(2),
+Fys(2(t),y(t), s(1), D)y (1) ' (1) + Fru(2(1), y(1), 5(2), 1)2'(¢)

+Ey(w(t), y(1), s(), )y (1) + Fu(z(t), y(2), (1), ) = 0, (4.5)



and differentiating (4.2) w.r.t. ¢ we get

Fys(2(1), y(2), s(1), )2 ()s'(

+F5s(x(t), y (1), s(8), 8)s'( Y (),
(), y(t), s(t), £)2' () + Fye((t), y(t), s(t), £)y/ (1)

+Fy(x(t), y(t), s(t),t) = 0. (4.6)

Now initial curve F(z,y, so, to) = 0 which intersects the envelope where

F(z(t), y(t), (1), 1) = 0. (4.7)

We measure the contact between the initial curve and the envelope by finding
conditions on the vanishing at ¢ = ¢, of the derivatives of (4.7) w.r.t. t.
Differentiating (4.7) we find that the condition for > 2-point contact between

the initial curve and the envelope at t =t is that

Fz(x(t)’ y(t)’ 50, tO)xl(t) + Fy(x(t)a y(t), S0, tO)yl(t) =0, (4'8)

holds at ¢ = t,, and this is true by (4.4). (Of course, we should expect at least
2-point contact between the initial curve and the envelope, by construction.)
Furthermore, for > 3-point contact between the initial curve and the envelope

we require that the derivative of (4.8) w.r.t. ¢ vanishes at ¢ = ty:

Foa(2(2), y(t), 50, 0)2" (1)* + 2F2y (2(2), y(2), 50, t0)2" (1) (t)
+Fyy(x(t),y(t),80,to)y() Fy(2(1), y(1), 50, o) " (£)
Fy(z(t), y(t), s0,0)y" () = 0,

\_/\_/

and this holds at ¢ = t; if and only if

Frs(w0, Yo, S0, to) T4 + Fy (%0, Yo, S0, o) YoSh
+Fyi(20, Yo, S0, t0)Tg + Fye(To, Yo, S0, to)yy =0,  (4.9)

using the expression (4.5) evaluated at ¢ = ¢y,. Thus the 2-point contact
condition (4.8) (evaluated at ¢ = ¢3) and the 3-point contact condition (4.9)



together are
Fpxy+ Fyyp =0
(Fesso + Fur) 7o + (Fysso + Fye) yp = 0

where everything is evaluated at (zg, yo, So,to). This system has (xy,y)) =
(0,0) as one solution. However, if we know that the envelope (z(t),y(t)) is

non-singular at ¢t = ¢y, then the 3-point contact envelope condition becomes

F, E,
Fwssl+Fwt Fyssl+Fyt

Y

where everything in the above determinant is evaluated at (o, Yo, So, to). This
is the condition for the initial curve to have 3-point contact with the envelope
curve at t = ty. If we require that every member of the family of curves
has 3-point contact with the envelope curve, then we simply require this
determinant condition to hold for all (z(t),y(¢),s(t),t) in a neighbourhood
of t = ty. Thus we have:

Proposition 4.2.1 (3-Point Contact Envelope Condition).

Let F(z,y,s,t) = 0 be a 2-parameter family of smooth plane curves in (z,y)-
space, parametrised by s,t. Suppose we define a 1-parameter sub-family of
this family by taking s as a smooth function of t, and suppose that the envelope
(z,y) = (z(t),y(t)) of this sub-family F(x,y,s(t),t) = 0 is smooth near
some point (xg,yo) = (z(to), y(to)). Then, in a neighbourhood of t = ty, this
envelope has 3-point contact with each of its constituent curves if, for all

values of t close to tg,

F, F,
Y =0, (4.10)
Fwssl+Fwt Fyssl+Fyt

where everything in the above determinant is evaluated at (x(t),y(t), s(t),1).

We will use the 3-Point Contact Envelope Condition of Proposition 4.2.1
in the following way:

e Take a 1-parameter sub-family of F(z,y, s,t) = 0 by choosing s = s(t),



with an arbitrary initial correspondence (sg,%) between the parame-
ters. Call the fixed curve F'(z,y, so, ty) = 0 the ‘initial curve’.

e Suppose the 1-parameter family defined by s(¢) in a neighbourhood of
(s0, to) in parameter-space has a smooth envelope segment (it may have
many such segments). Then Proposition 4.2.1 tells us that the initial
curve has 3-point contact with its envelope segment if the determinant
condition stated holds at ¢ = ¢.

e This determinant condition in effect tells us the value of s'(ty) we must
have in order for there to be a 3-point contact between the initial curve
and a segment of its envelope. There may be numerous such values,

just as there may be numerous possible 3-point envelope segments.

e This leads us to a wvector field (perhaps many-valued) in parameter-
space. Through each point (sg,%y), we acquire at least one direction,
namely s, in which we must move in order to create a 3-point contact

envelope.

The creation of this vector field will give a solution for each (sg, o), and the
local solution(s) in a neighbourhood of each (s, tg) may be constructed from

the corresponding integral curve(s).

4.3 Solving The SRP For The AESS

We now apply the results of §4.2 to the Semi-Reconstruction Problem (SRP)
for the AESS. Suppose we are given a smooth curve segment ;, parametrised
by ¢, and a corresponding smooth AESS segment F, parametrised by s. Let

C(.T/" y7 S’ t) = 07

be the equation of the 2-parameter family of conics having 3-point contact
with 7, at v,(¢) and having centre on the AESS at E(s). We take a 1-
parameter sub-family by choosing s = s(t) in a neighbourhood of some ¢ = .

Since we are assuming that both v; and E are smooth, there is no natural

restriction on which value of s should correspond to t = t;. Thus we are able



to choose any sg to correspond with to, that is, we may choose sq = s(to)-
This amounts to choosing an initial correspondence between two points on
the curve segments v, and E. We will assume an initial correspondence is
given between the two curve segments v; and E, and consider the problem
of finding a suitable 7, segment. The choice of initial correspondence is

equivalent to choosing the ‘initial conic given by C(z,y, so,%0) = 0.

Notation: For brevity, we will use superscript ‘0’ to denote evaluation at
s = So,t = to. For example, the initial conic C(x,y, So, to) = 0 will be denoted
C°% =0, and Cy(x,y, s0,t0) = 0 will be denoted C? = 0, and so on.

The envelope (z,y) of the family is given by the system

(4.11)

C(a,y, 5(t),1) = }
Cs(z,y,s(t),t)s'(t) + Cy(z,y,s(t),t) =0

" (prime) denotes derivative with respect to t. We solve this for

where
x = xz(t), y = y(t) for ¢ close to t,. We will assume that the envelope curve
(x(t),y(t)) is smooth near t = ¢y, that is (z'(t),y'(to)) # (0,0). Proposi-
tion 4.2.1 tells us that, in a neighbourhood of ¢ = %, this envelope has 3-point

contact with each of its constituent curves if, for all values of ¢ close to %, if

Ca G =0. (4.12)
Cs:csl + Cm Csysl + Cty

From §1.5.3, we can interpret this geometrically: the 3-point contact envelope
condition says that, at a solution (g, yo) of the system (4.11) for which (4.12)
holds, the curves in (4.11) are tangential. Now, for a given t,

e C% =0 is a conic (the ‘nitial conic’);
e (Vs +CP = 0is a pencil of conics (the ‘“nitial pencil’) with parameter
!
80-

We know that ; itself forms part of the 3-point contact envelope, that is C° =
0 and any member of the pencil C?s, + C? = 0 are tangent at ~;(to). Thus
we are looking for values of sf, for which the conics C° = 0 and C?s{+C? =0

are bitangent.



Proposition 4.3.1. The initial conic is bitangent to a member of the initial

pencil for precisely two values of s, one of which is always zero.

Proof. Consider two smooth curve segments v(t) = (¢, «(t)) and E(s) =
(s, 8(s)) where

alt) = aot® +azt® + ...,
ﬁ(8)250+ﬂ18+5282+...,

and where we assume ay8; # 0. Without loss of generality, we take t5 = 0
and s(ty) = sp = 0, and by an affine transformation of the plane we may

assume that F(0) lies on the y-axis. Consider conic C' given by
C(z,y,s,t) = az® + 2hxy + by® + 29z + 2fy + ¢ = 0,

where a, b, ¢, f, g, h are all homogeneous functions of s,t. We know that C'
has its centre on the AESS at the point F(s), and 3-point contact with vy at
the point (¢). From these two properties, we are able to derive the equation

of the initial conic, which is
209807% + y* — 2By = 0. (4.13)

and the equation of the initial pencil, which is

<—@y2 - 4a2xy) sh + <—3a3y2 + 60‘36‘)@/) =0. (4.14)

Bo (&%) (6%)]

Note that y is a factor of C?sfy 4+ C; = 0 for all s, and thus the initial pencil
is reducible in this coordinate system, with each member being tangent to
C? = 0 at the origin.

We now ask: What values of sy make C2sy + CY = 0 tangent to C° =0
somewhere else? That is, when is the other line factor of the reducible conic
tangent to C° = 0?7 Now we can write C%s, + C? = 0 as ToL = 0, where
To = 0 is the tangent to C° = 0 at the origin (the line y = 0), and L = 0
is the pencil of lines (parametrized by s;,) through the point (—51/2as,20;).

A simple calculation shows that precisely two of the lines in this pencil are



tangent to C° = 0. They are:

e the line y = 20, parallel to 7y = 0, which corresponds to the solution

sy = 0, when the tangents to the initial conic are parallel.

e the line )
2617 + ( b —1>y—1—2ﬁ0:0,
2003
which meets line Ty = 0 at (—5y/51,0). This corresponds to the solu-
tion s, = —3;‘351, which is generally non-zero. We note that this line

meets Ty = 0 in the same point that 75 = 0 meets the tangent to the
AESS at E(0), and hence this solution satisfies the condition on the
concurrency of the tangents to the two curve segments and the tangent
to the AESS (see Proposition 2.4.5 for details).

O

Thus we have, in parameter space, two vector fields: one is ‘degener-
ate’, being always along the direction parallel to the t-axis, and the other
is in the required direction which leads to a 3-point contact envelope. This
solves the problem by defining a vector field in (s,t)-space, and the local
solutions are given by the integral curves of this vector field, which are the
lines s = constant, along with the other curves s = s(t) (with s = —%)
corresponding to ‘proper’ solutions.

In §2.5.9, we showed that the AESS has a cusp at the centre of a 343 conic
with parallel tangents to the curve at the points of contact, and therefore
solution sj = 0 corresponds to a non-smooth AESS point. Hence we conclude
that at each (sg,tp) in parameter-space there is an unique value of s, which
we must choose in order for the family thus defined to have a smooth 3-point

contact envelope. In conclusion, this result says the following:

Solution to Semi-Reconstruction Problem: Given two smooth curve
segments 1 and E, and two corresponding points on these two curves (an
initial correspondence), we can (at least locally) find an unique 7y, such that

the composite curve v1 Uy has E as its AESS.

This answers the question posed in the Semi-Reconstruction Problem: the

information that we require is the initial correspondence between a point on



~v1 and a point on E, and once that has been chosen, there is an unique ‘other
side’ 7, with the property that v, U, has E as its AESS. Tt is enlightening
to restate the conclusion in the following way:

Proposition 4.3.2. Given smooth curve segments 1, E there is a 1-parameter

famaly of curve segments vy such that v; U ¥y has E as its AESS.

4.4 Example

We would now like to use the results of §4.3 to re-examine an example from
[GS96] where we are given a straight line AESS segment E, one side of our
original curve, 7, and we wish to reconstruct the other side 7, such that the
AESS of yy Uy is E.

Suppose we are given a smooth curve segment v, (s) = (X(s),Y(s)), and
a straight line AESS segment F which we will take to be along the z-axis.
Suppose also that £ is the AESS of 7, and some other curve segment .. We
then ask: How can we derive an expression for v ?

We construct the other side v = (U(s),V(s)) such that the AESS of
v1 U 79 is E using the fact that the tangent line to F at each point is the
x-axis, and that the z-axis contains the midpoint of the chord joining ~;(s)
and 7(s), and the intersection of the tangent lines to vy, and 7, at ~(s)
and 7(s). The tangent to 7, at 7;(s) meets the z-axis at the point with
z-coordinate (XY’ — X'Y)/Y’, where we have omitted the variable s; the
tangent to the other side v, at the corresponding point 2 (s) meets the z-axis
at (UV' —U'V)/V', and therefore we have that

X(5)Y'(s) = X'(s)Y'(s) _ U(s)V'(s) = U'(s)V (s)
Y(s) V'(s) ’

(4.15)

holds for all values of s. Now the midpoint of the chord joining v;(s) and

v2(s) lies on the z-axis, so that
Y(s)+V(s) =0, (4.16)

for all s. This gives Y'(s) + V'(s) = 0 for all s, and substituting into (4.15)



we get
X (s)Y'(s) = X'(s)Y(s) = U(s)Y'(s) = U'(s)Y (s).

We will assume that Y(s) # 0 for all s, since we do not want to allow 7,
to cross the AESS segment, and we will also assume that Y’(s) # 0 for
all s, so that the tangent line to ; is never parallel to the AESS: these

assumptions will not affect the result. Under these assumptions, the above
d (X(s)) _ d (U(s)
ds \Y(s)) ds\V(s))’

X(s) =U(s) + AY (s), for some A € R. (4.17)

can be rewritten as

which implies that

Thus the other side v2(s) = (U(s), V(s)) is given by

Uis) N [ 1 =X X(s)
Vis) ]\ 0 -1 Y(s) )’

Thus there is, as predicted, a 1-parameter family of other sides 75, and each
of these v, segments if affine symmetric with 7, about the x-axis, since the
matrix of the affine transformation which links (U(s), V (s)) to (X(s), Y (s))
is an affine reflexion. The parameter corresponds to the choice of initial

correspondence between a point of v, and a point of E

Remark 4.4.1. With reference to the geometrical interpretation of the AESS
in §2.1.2, the fact that the curve segments v and 7y, are affine symmetric fol-
lows from the observation that each pair of corresponding points of v1 and 7o
are locally affine symmetric about the tangent to the AESS at the correspond-
ing point, and since each of these tangents are identically the same, these azes

of infinitesimal symmetry constitute a global axis of affine symmetry.

4.5 The Reconstruction Problem

Returning to the Reconstruction Problem of §4.1, we use the analysis of §4.3

to tell us what freedom we will have in the construction of the original curve



. The solution to the Semi-Reconstruction Problem says that, given a fixed
segment y; of 7, and an AESS segment F, then there is a 1-parameter family
of other sides v, such that v; U~ has E as its AESS. Thus, given a smooth
curve segment F, suppose we choose a curve segment v;. By ‘degree of
freedom’ arguments, there will generically be a smooth 1-parameter family
of conics centred on E and having 3-point contact with ;. If we choose a
point 79 in the plane (away from ~;, F), then there will be an unique curve
segment -y, through 79 such that v, U, has E as its AESS. This choice of
point represents the choice of initial conic as discussed earlier.
We can thus state:

Proposition 4.5.1. Given a smooth curve segment E, choose a smooth curve
segment 1 and a point 73 away from i, E. Then there is an unique curve

v containing v1 and 3 having E as its AESS.



Chapter 5

The Reconstruction Problem
For The ADSS

5.1 Introduction

In this chapter we consider the Reconstruction Problem for the ADSS.

The Reconstruction Problem: Given a smooth curve segment D, con-

struct a smooth plane curve which has D as its ADSS.

We begin by refreshing our memory as to the definition of the ADSS,
which we will state as:

Definition 5.1.1. The ADSS of a smooth plane curve v s the closure of
the locus of centres of pairs of conics having 4-point contact with v at two

distinct points and sharing the same centre and affine radius.

We choose this definition of the ADSS, as opposed to the ‘bifurcation set’
definition, because of its geometric nature. We will be interested, not in the
critical points of the affine distance function, but in these pairs of 4-point
contact conics. As for the AESS in Chapter 4, we will first of all consider
a simpler connected problem. The idea is that, given two smooth curve
segments v; and D, we construct another segment of smooth curve, say s,
in such a way that the composite curve v; U~ has D as its ADSS. It should be
noted that this other side of the curve will not be unique (see Remark 5.2.1 at
the end of §5.2.1). In effect, this other side 7, will be recovered as part of the
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envelope of the pairs of conics (as in Definition 5.1.1) centred on D, where
these conics are chosen in such a way as to have a 4-point contact envelope.
(Of course, the other part of the 4-point contact envelope of conic pairs will
contain the curve segment -;.) We state this simpler Reconstruction Problem

as follows:

The Semi-Reconstruction Problem (SRP): Given a smooth curve seg-
ment vy, and a smooth curve segment D, what choice do we have in con-
structing a corresponding smooth curve segment 7, such that the composite
curve y1 Uy has D as its ADSS?

5.2 The SRP for the ADSS

Consider two smooth curve segments v; and D, and suppose that parameter ¢
is the affine-arclength parameter along ;. At each point v, (t), there exists an
unique conic K(t) = 0, with affine radius o(t) = [y1(t) —D(t), ¥ (t)] having 4-
point contact with v at 71 (¢) and having centre on D at D(t). Now the affine

71(t)

4!

K(t)=0
Figure 5.1: Two smooth curve segments v, D, and non-degenerate conic
KC(t) = 0 having 4-point contact with v at v1(t) and centre at D(t). The
dashed line represents the affine normal to curve segment v, at v1(t).

normal to y; at 7 (¢) ‘transfers’ parameter ¢ onto the ADSS segment D, since
(at least locally) there is an unique point of D lying on a given affine normal
to 1 (see Figure 5.1). Thus we have a natural correspondence between points
of 71 and points of D. Of course, ¢ is not the affine-arclength parameter along
D. For a fixed ty, there is a 2-parameter family of conics having centre at
D(ty) and radius o(t). Allowing ¢ to vary in a neighbourhood of ¢, we have



a 3-parameter family of conics
C(z,y,t,u,v) =0, (5.1)

having centre at D(¢) and radius o(t), where u and v represent the two other
family parameters. We define a 1-parameter sub-family of this 3-parameter
family of conics by taking u = u(t) and v = v(¢) in a neighbourhood of t = .
The envelope of this 1-parameter sub-family will, for arbitrary choices of u =
u(t),v = v(t), have normal 2-point contact with each of its constituent curves.
In general, an envelope of conics will have four distinct envelope segments
having 2-point contact with its constituent curves, since ‘consecutive’ conics
intersect in four distinct points. We must choose v = u(t) and v = v(t)
in such a way that three of these intersection points coincide to fom a 4-
point contact envelope segment (of course, there will remain another 2-point

contact envelope segment). The problem we will consider is this:

How do we choose u = u(t),v = v(t) (in a neighbourhood of t = ty) in such a
way that the resulting envelope has 4-point contact with its constituent curves

away from v, ¢

In this way, we construct our other side 75, which will (under some minor
conditions outlined in §5.2.1) have been constructed so that v; U+, has D as
its ADSS.

5.2.1 Geometrical conditions on the choice of the In:-

tial Conic

We will call the conic C(z,y, to, ug,v9) = 0 the ‘initial conic’, and denote it
by C° = 0, where uy = u(ty),vo = v(tp) are arbitrarily chosen under some
geometrical conditions outlined below. We will assume throughout that the
initial conic is an ellipse or an hyperbola.

We require the Concurrent Tangents Condition of Corollary 3.2.5 to hold,
that is, we require that the tangent line to ; at 7;(¢), the tangent line to D
at D(t), and the tangent line to the other side v, (the segment that we are
reconstructing) at the corresponding point are all concurrent. In the case of

the initial conic C° = 0 being an ellipse, this implies that the two known



tangents, to 7; and D at parameter value ¢, must intersect ‘outside’ C° = 0,
in order for there to exist a tangent to C° = 0 through this intersection
point. Thus the initial conic must be chosen such that the intersection of the
tangent to y; at () and the tangent to D at D(t) lies outside it. A similar
geometrical condition applies to the choice of initial hyperbola.

We note that the conics (t) = 0 are always members of the 3-parameter
family C'(z,y,t,u,v) = 0. We would like to always choose ug, vy such that the
initial conic C° = 0 is different from K(¢y) = 0, since we will be interested in
studying the envelope of conics in some neighbourhood of our initial conic,
which we will manipulate in order to be a 4-point contact envelope and
therefore a suitable other side. However, if we choose initial conic to be
KC(ts) = 0, then this ‘other side’ will be identical to i, and we will have
failed to construct an appropriate 7s.

Thus there is some restriction on the initial conic, and therefore some
restriction on our choice of ug,vg. We will assume from now on that wug
and vy have been chosen appropriately, so that a suitable other side can be
constructed. Under this natural restriction on our choice of initial conic,
we begin our attempt to study how a suitable 7, curve segment might be
constructed.

Remark 5.2.1. This (almost) arbitrary choice of initial values ug, vy justifies
our claim that the other side v, will generally not be unique. The fact that
we have two degrees of freedom in our choice of initial conic implies that, for
fized v1 and D, there is a 2-parameter family of suitable v, curves for which
Y1U~s has D as its ADSS. We will show that, once the choice of initial conic

1s made, there are precisely two possible other sides ys.

Outline of Chapter 5

§5.3: We relate the problem in hand, namely that of choosing u = u(t),v =
v(t) (locally, near t = ty) so that the resulting envelope has 4-point
contact with its constituent curves, to finding 3-point contact between
the initial conic and a given initial net (2-parameter family) of conics,
using results of §1.5. The parameters of the net of conics will be the

values of u/(t),v'(t) evaluated at t = ¢y, which we will denote as uy, vy.



§5.4: We set up a local coordinate system containing two curve segments
~v1 and D, and calculate explicit expressions for the initial conic and
initial net in this coordinate system. We then consider the relationship

between these objects, and explain how this leads to a solution to the
SRP for the ADSS.

§5.5: We consider examples of the SRP for the ADSS, using [MAPLE]. In
§5.5.1, we consider the situation where we have a straight line ADSS
segment and a given 7y, curve segment, and we construct a suitable v,

segment. In §5.5.2, we consider this same construction for a general
ADSS segment.

§5.6: Finally, we use the ideas developed in §§5.3-5.4 to solve the Reconstruc-
tion Problem for the ADSS.

5.3 Choosing a 1-parameter family of conics

Suppose we have chosen suitable ug, vg as discussed in §5.2.1, and furthermore
have chosen u,v as functions of ¢ in a neighbourhood of ¢t = t;. Then the
envelope of the resulting 1-parameter family (in a neighbourhood of ¢ = ;)
is defined by the intersections of the curves

{ Oz, y, t,u(t), v(t) =0,
Cil@, y, t,ult), v(t) + Culz, y, t,u(t), v(t))! (£) + Cylz,y, t, u(t), (1)) (£) = 0,

where the subscripts denote the partial derivative w.r.t. the corresponding

variable ¢,u,v, and ' (prime) denotes derivative w.r.t. t.

Notation: We will denote Cy(z,y, to, ug,vo) = 0 simply by CY(z,y) = 0 or
CP =0, and similarly for Cy(z,y, to, ug,vo) = 0, etc.

The envelope segment is given by solving the above system simultaneously
(in a neighbourhood of t = t;) for x = z(t),y = y(t). We require a condition
on the choice of u = u(t), v = v(t) for C° = 0 to have 4-point contact with the
envelope segment near ¢t = t3. From Proposition 1.5.4 and Corollary 1.5.8,
which showed that > 4-point contact envelopes occur when ‘consecutive’

conics have > 3-point contact, we have the following:



Corollary 5.3.1. Finding conditions on u(t),v(t) at t = ty for the initial
conic to have 4-point contact with the envelope segment at t = t, amounts to

finding conditions for there to be 3-point contact between the curves

C(xayat()au()a UO) = 07
Cy(z, Y, to, to, vo) + Cul®, Y, to, Uo, vo)ug + Cu(, Y, to, Uo, vo)vy = 0,

where uy = u'(to), vy = v'(to).

Now the first of these curves is a fized conic, the initial conic. The second
expression is a net of conics with parameters uy, v, and we will refer to this

as the initial net of conics. Thus the SRP can be expressed as follows:

Problem: How can we choose parameters ugy,v| such that the initial net
CP + uyCL + vy CY = 0 has 3-point contact with initial conic C° =09

We answer the above Problem in §5.4, setting up a coordinate system
containing a 3-parameter family of conics C(¢, u,v) = 0, and finding explicit
expressions for C; = 0,C, = 0,C, = 0 at t = %y in this coordinate system.
We will deduce that there are precisely two different ways in which to choose
upy, vy in order to get 3-point contact between the initial net, C? + ujC? +
vyCY = 0, and the initial conic, C° = 0. This will prove the following:

Proposition 5.3.2. Consider the 3-parameter family of conics defined in
(5.1). Suppose we take u,v to be functions of t in a neighbourhood of t = t,.
Then, for an arbitrary choice of ug, vy, there exrists precisely two values for
the pair {ugy, vy} such that the initial net CY + uyCL 4+ vjC? = 0 has 3-point
contact with the initial conic C° = 0.

Thus there are two distinct elements (that is, two distinct conics) in the
initial net of conics that have 3-point contact with initial conic C° = 0 which
implies that there are two values for the pair {uy, v} for which the initial

conic has 4-point contact with its envelope. Hence we are able to state:

Proposition 5.3.3. Given a smooth curve segment 1, a smooth curve seg-
ment D, and an initial conic (chosen under geometrical restrictions outlined
in §5.2.1), we can construct two smooth curve segments vy such that the com-
posite curve y1 Uy, has D as its ADSS. (See Figure 5.2 for an illustration.)



4!

ADSS

initial conic

Figure 5.2: The dashed curves represent the two possible other sides y,.

Proposition 5.3.3 is the solution to the SRP for the ADSS: the choice
we have is the choice of initial conic. Since there is a 2-parameter family
of possible initial conics, and each choice leads to two ‘other sides’, we may
state the following:

Corollary 5.3.4. Given a smooth curve segment 1, and a smooth curve
segment D, there are two distinct 2-parameter families of curve segments 7o
with the property that v, U vy has D as its ADSS.

5.4 Reconstructing the ‘other side’ v,

71 (t) = (X(2),Y(?)) D(t) = (p(t),q())
C%z,y)=0

Figure 5.3: C%(z,y) = 0 is the initial conic, and the ADSS segment is D(t),
which passes through the centre of C°(x,y) = 0 at parameter value t = 0.

In this section, we prove Proposition 5.3.2. Consider the local coordinate

system set up as illustrated in Figure 5.3, with initial conic C%(z,y) = 0



centred at (0,1) and tangent to the z-axis at the origin, and smooth curve
segment v, (t) = (X(¢),Y(t)). The ADSS segment D(t) = (p(t), q(t)) will
pass through (0, 1) for parameter value ¢t = to = 0. A short calculation shows
that the equation of the initial conic C°(x,y) = 0 in this coordinate system
can be written as

2’ + oy(y — 1)* = op, (5.2)

where 0y = 0(0), and o(t) is the affine radius function (Definition 1.4.2).
This is an ellipse if 0g > 0, in which case it is always real (since (0, 0) lies on
it), and an hyperbola if oy < 0. We will assume, without loss of generality,
that og # 0.

In this coordinate system, we may also derive an expression for the 3-
parameter family of conics having centre at D(t) and affine radius o(¢), using

Proposition 1.4.5. With parameters u, v and ¢, this family is given by

2®+ 2wy +uy®—2(p+vq)z—2(vp+uq)y+p*+2vpg+ug’ —/|o[*(u — v?) =0,

(5.3)
where p, g and o are functions of ¢. From this we calculate the equation for
C} = 0, which is the line

3
—2p1T — QJS’qu + 203’(]1 — 50(2)01 =0,

the equation C° = 0,which is the line-pair

1
(y_l)z_izoa

and the equation C° = 0 which is the line-pair
2z(y — 1) =0.
The initial net of conics is then given by CP+ufCl+v,C! = 0, where uf, v} are

the parameters we are trying to find. Writing o (t) = ¢+ 01t +09t? +. . ., we

calculate that the intersection point (o, o) of the tangent to curve segment



~1(t) at 1(0) and the tangent to the ADSS segment D(t) at D(0) is

o o
(0, Yo) = <—P1—0, —q— + 1) . (5.4)
01 01
By the assumptions made in §5.2.1, precisely two lines through the point
(x0, yo) are tangent to the initial conic. The line through the points of contact
of these tangents and the initial conic is the polar line of the point (z,yo)

w.r.t. the conic, and it has equation
o + 0gyyo — 05 (y + yo) = 0.

Substituting the expressions for zy and yo from (5.4), we find that the polar

line of the point (xg,yo) w.r.t. the initial conic is
—p1z — ogquy + ogq1 — o401 = 0.

Note that this line is parallel to the line CP = 0.

By considering the cases of gy > 0 and 0y < 0 in turn, we are able to
measure the contact between the initial conic and the initial net of conics
using the usual parametrisations (z(t),y(t)) = (02 cost,1 + o2sint) and
(z(t),y(t)) = (|o|2 sinht, 1 + |o|3 cosh t) respectively. We are able to deduce
that the initial conic and the initial net have 3-point contact at precisely
the places where the polar line of the point (zg,%o) w.r.t. the initial conic
intersects the initial conic. Since we know that, by the assumptions made
in §5.2.1, the polar line of a finite point intersects the initial conic in two
points, it follows that there are precisly two points on the initial conic where
an element of the net has 3-point contact. We deduce that there exists
precisly two elements of the initial net which have 3-point contact with the
initial conic, and therefore two suitable pairs of values for {ug, vj}.

Hence we have proved Proposition 5.3.2, which leads to a solution to the
SRP for the ADSS. We now ask: Is this solution geometrically plausible? In
§5.4.1, we answer this in the affirmative.



5.4.1 (Geometrical interpretation

To interpret the result of the previous section, we use the Concurrent Tan-
gents Condition of Proposition 3.2.5. Given a curve segment ;, and a curve
segment D, then any other side 7, must satisfy the Concurrent Tangents
Condition. Since y; and D are fixed, this means that once we have chosen
a point y1(t1) on y; (and therefore x = D(t;) is fixed), then the intersection
point ¢ of the corresponding tangent lines to the curves at these points is
fixed. Thus, upon choosing an initial conic, there are precisely two tangents
to the initial conic passing through ¢. The points of intersection of the conic
and the tangents will be at the intersection of the conic and the polar line of
the conic with respect to 4, as discussed (see Figure 5.4). These are precisely
the points that the analysis of §5.4 tells us are the possible v, points. Thus
we know that the two solutions for the other side, v and 7, will satisfy the
Concurrent Tangents Condition. This geometrical interpretation justifies the
solution to the SRP.

polar line of i
w.r.t. initial conic

initial
conic

Figure 5.4: Curve segments vo and ¥ are the two possible ‘other side’ points
corresponding to 1, meeting the initial conic at the points where the polar line
of © meets the initial conic. The Concurrent Tangents Condition is satisfied
for both o and 7, .

5.5 Examples

We will now use the results of §§5.2-5.4 to analyse some examples where we
are given an ADSS segment D, and one side of our original curve, ~;, and

we wish to reconstruct the other side v, such that the ADSS of v, U~y is D.



5.5.1 The straight-line ADSS

This example was considered in [GS96]. Suppose we are given curve segment
71(8) = (X(s),Y(s)), where s is affine-arclength, and a straight-line ADSS
segment which we will take to be the x-axis. We wish to construct another
segment of curve y,(s) = (U(s), V (s)) such that the ADSS of v, (s) U7a(s) is

along the z-axis. Calculation shows that ,(s) is given by solving the system

Y2=V2+e, for arbitrary ¢ € R,
(XY = X'YV)V' = (UV' = U'V)Y",

for (U, V) as functions of (X, Y), that is, for U,V as functions of s. The first
equation gives us
YY'=VV' forall s

and we substitute this (and V? = Y2 — ¢) into the second equation to give
UYY' —U'(V2—¢) = (XY' - X'Y)Y,

which can be re-written as

) R)aE) e

Casec=0

In this case (5.5) can be rewritten as

w(7)-a(5)

X
Y=?+E, for some ¢ € R.

Since we are assuming that Y # 0 (that is, that the 7, curve segment does

which has solution

| =

not cross the z-axis near s = 0), we have solution

U(s) = X(s) +¢Y(s), for some ¢ € R,



which along with
V(s) = £4/Y(s)?2 = Y (s)

defines the other side v2(s) = (U(s), V(s)). We write this in matrix form as

(U(s)>:<1 g >.<X(s)>
V(s) 0 +1 Y(s) )

(1 e ) [ X(s)
Y2(s) = ( 0 —1 ) ( Y (s) ) ’
) B Le) (X)) (10 (1 2\ (X
Yo(s) = (01) (Y(s)>_(0—1> (0 —1) (Y(8)>.

Thus we are able to produce explicit expressions for the other sides (U, V)
in the case ¢ = 0, and we get two 1-parameter families of other sides: if ¢ is
fixed too, then there will be precisely two other sides 7, ¥,. Figure 5.5 shows
an example executed in [MAPLE] where we construct the two families s, 7o
given a 7, curve segment and a straight line ADSS as shown.

5% § S el

Y, family seglment

straight line
ADSS segment

Y,family

LA E ] T VAR

Figure 5.5: ¢ = 0: Given v, and a straight line ADSS, we use [MAPLE] to
construct the two 1-parameter families of curve segments vz, ¥a.-

Remark 5.5.1. Curve segment v, s affine symmetric with v; about the x-
azis (the ADSS segment), since the matriz

(05)



is an affine reflexion in the x-axis (see §1.2.1). However, curve segment 7o
s not affine symmetric with v, about the x-axis, but is affine symmetric with

Yo about the x-axis.

Case c # 0

For the case ¢ # 0, we must solve the system

VP =Y(P—c (56
05 (v) VO (v - vi) = G) - ©7

for U,V as functions of X, Y, where parameter c¢ is non-zero. There will still

be two possible other sides, neither of which will be affine-symmetric with 7,
about the z-axis. Suppose we fix ¢ to be some non-zero number. Then (5.6)
gives us two values for V(s), namely V(s) = £4/Y(s)? — ¢, and (5.7) is a
first order differential equation for U(s), the solution of which will introduce
another arbitrary variable, say ¢ € R. We may solve this using an integrating
factor, and we plot the solution curves (U(s), V (s)) for various values of the
two parameters ¢ and ¢ using [MAPLE|. These parameters represent the
two parameters that we may choose, as predicted, and once they are chosen,

there will be precisely two other sides s, 2.

S XM Y LU b G E R
s S T O S| t [ S
T Twer Bao ke M e t s
Rl I R VR A T
R R N \\7 A
seg%wmt

straight line

ADSS segment

AT AT T AR R T
T S L D T T
I S S I [ T
S L S A r § L SN
P S S S S § LA SR
P A A | ; [N

Figure 5.6: ¢ # 0: Given v, and a straight line ADSS, we use [MAPLE]
to construct the two 2-parameter families of curve segments Yo, ¥2. The ¥
family lies below the ADSS segment, and the Yo family lies above the ADSS

segment.



5.5.2 General ADSS

The analysis of the straight-line case of §5.5.1 can be generalised to con-
sider the construction of the other side v, = (U, V) given curve segment
71(s) = (X(s),Y(s)) and a general ADSS segment D(s) = (A(s), B(s)). We
begin by using the following geometrical facts, both of which follow from
Corollary 3.2.5:

(i) The tangent lines to the two curve segments y; and v, at v;(s) and
v2(s) meet on the tangent line to the ADSS at the corresponding point
D(s), that is

(X + XX, Y+ XY')= (A4 pA", B+ uB') = (U +vU",V + vV,
for some \, y, v € R. This gives us the condition
V'(aX'+B(X —U))+U'(BV +6Y'+€B'), = 0,

where

a = A(Y -B)-B(X - A),
B = X'B'—Y'A',

§ = A'B— AB,

e = XY'-X'.

We can rewrite this condition as
V'(a—bU)+U'(BV + ¢) =0, (5.8)

where a = a X'+ X, b=, and c = 6Y' + €¢B'.

(ii) The tangent to the ADSS at D(s) is in the direction of v{(s) — 75(s),
where ' (prime) denotes derivative with respect to the affine-arclength
parameter along the respective curve segments. We will assume that s is
affine-arclength along neither v; nor 5. Thus, with k; = X'Y" — X"Y’



and ko = U'V" = U"V’, we have

v, — 4 = wD', for some w € R
— kl_l/3(Xl, YI) _ k;l/?)(U,, VI) — UJ(A,, B,),
B' kl_l/3Y' . k2_1/3V'
E = k1_1/3X, _ k2—1/3U,7
= kaf =k(AV' = BU), (5.9)

—

where f is the known function (Y'A’ — B'X")3, equal to — 3.

Together, (5.8), (5.9) give the system

V'(a=bU) +U'(bV +¢) =0, } (5.10)

Ulvll o U”VIf — kl (Alvl _ BIUI)3,

a system of ordinary differential equations that we wish to solve for U(s), V (s)
to give an other side y2(s) = (U(s), V(s)). We expect two arbitrary constants
to appear in the solution to this system, and these are the two parameters as
predicted in the solution to the SRP. Figure 5.7 shows [MAPLE] plots of the
reconstruction of the other side, given curve segment v; and ADSS segment
D as shown.

/' V.segment /", segment

\_/ ADSS sgmen ~— ADSS sgment
Pt g B Te G o= o R S0 Ol A B B S
FaAEE ] FERRSNED, #FHF T L AR
AALF ) FRNNYS A0F EL L AR
LV YRNSNY ACF T LD R RNNNN
A7y A0 UV

Figure 5.7: Two examples of the reconstruction of the ‘other side’ given 7,
and ADSS segment, implemented in [MAPLE].



5.6 The Reconstruction Problem

We now return to the Reconstruction Problem as stated in §5.1, utilising the
analysis contained in §§5.2-5.4. The Reconstruction Problem for the ADSS

was stated as follows:

Given a smooth curve segment D, construct a smooth curve v which has D
as its ADSS.

Suppose we are given a smooth curve segment ;. By ‘degree of freedom’
arguments, there will generically be a smooth 1-parameter family of conics
centred on D having 4-point contact with ;. Then, if we choose a point 73
in the plane (away from ; and D) and a correspondence between 73 and a
fixed point 7? of ;, then there will be an unique curve segment 7, passing
through 79 such that v, U~ has D as its ADSS and such that the points +?
and 79 together give a point of the ADSS (that is, 7 and 73 ‘correspond’).
The choice of correspondence between 7? and 73 is equivalent to choosing
the direction of the affine normal at 79, or alternatively choosing the affine
tangent at 7. These two choices represent the two parameters that appeared
in the SRP.

Proposition 5.6.1. Given a smooth curve segment D, choose any smooth
curve v1, any point v away from v and D, and a correspondence between
¥ and a point V9 of 1. Then there is an unique curve 7y containing v, and
¥9 having D as its ADSS and such that v? and 3 correspond.



Chapter 6

Affine-Invariant Symmetry Sets

for a Union of Ellipses

6.1 Introduction

In [GBan93], a study of the Euclidean Symmetry Set was made for piecewise-
circular curves, that is, for curves comprising segments of circles. The mo-
tivation for this study relates to the practicalities of plotting the symmetry
sets on a computer. For a computer to be able to ‘capture’ a curve, it must
often approximate it using some simpler curves, for example line segments,
circles or conics, and a small number of circular arcs can approximate an
Euclidean curve to an acceptably high degree (see also [BanG87], [BanG94]).
In this way, an approximation to an Euclidean plane curve is constructed by
splining together segments of circles (or, exceptionally, straight lines) in such
a way that the curve is sufficiently smooth at the joins. (In fact, we simply
insist that the tangent line to the curve turns continuously.)

To carry out an analogous study for affine-invariant symmetry sets, we
should consider curves which are constructed by splining together segments
of conics. In this chapter, we will take the first step towards the study of
the structure of the ADSS and the AESS for piecewise-conic curves, that is,
for closed curves comprising segments of conics®, joined in such a way that
the resulting affine plane curve is sufficiently smooth. In practice, it may be

!Thank you to Prof.A.M.Bruckstein for originally suggesting this interesting problem.
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possible to aproximate an affine plane curve to an acceptably high degree

using ellipses only. However, in this thesis we will not consider piecewise-

conic curves, or even piecewise-elliptical curves, but instead will consider the
ADSS and AESS for a curve which is the union of two whole ellipses. The
analysis of the possible structures on the ADSS and AESS of this composite

curve will be the first small step towards studying the structure of the ADSS

and AESS for truly piecewise-conic curves.

Outline of Chapter 6

§6.2:

§6.3:

§6.4:

§6.5:

We begin our study of the ADSS and AESS of two complete ellipses £
and U. We set up a suitable coordinate system, and begin the analysis
common to both the ADSS and AESS cases.

The analysis of §6.2 then diverges. We first of all consider the ADSS.
In §6.3.1, we study the nature of the singularities of the ADSS of EUU,
studying at the Morse singularities of the pre-ADSS and relating these
phenomena on the pre-ADSS to the crossings and isolated points of
the ADSS. We will see that, under certain conditions, the pre-ADSS
of EUU can contain horizontal or vertical line components, and this
leads naturally to the Collapse-Point Curve of §6.3.4, which aids our
understanding of the singularities of the ADSS of FUU.

Here we consider the AESS of F U U in the same set-up. We find
the condition for the AESS to be an empty set, and interpret this
geometrical condition with reference to the corresponding MPTL of
EUU. In §6.4.3, we study in some detail the ‘birth, death, marriage
and divorce’ of components of the AESS, that is, how segments of
AESS may be created or destroyed, join together or split apart. This
leads to the Singular-Point Curve, which helps us to understand the
singularities of the AESS of F U U.

We conclude with a short discussion of possible further research.



6.2 The ADSS and AESS for a union of ellipses

Here we construct the coordinate system which we will use for the remainder
of this chapter. This coordinate system will be common to the analysis of
both the ADSS and the AESS. We will consider two complete ellipses in the
affine plane, and attempt to construct the ADSS and AESS between them.
By an affine transformation, we are able to scale so that one of the ellipses
is the unit circle, and make a rigid translation and rotation of the plane
so that the other ellipse is centred at the origin, with axes along the x,y
directions. No further simplification of this set-up can be made. We will
denote the unit circle by U, and call the other ellipse E. Let us suppose that
E has major and minor axes of length a and b respectively (so a,b > 0), and
assume without loss of generality that a > b (see Figure 6.1). We will always
denote the centre of U by the coordinates (¢, d). E and U may intersect. We

y ’/’4 U

g b §(t) = (¢ + cos(t),d + sin(t))

P T
\\JG x

v(s) = (acos(s), bsin(s))

Figure 6.1: The coordinate system set up in §6.2. Two affine normals to E
and U are shown dashed.

take E and U to be parametrised curves 7(s) and §(¢) respectively, given by

v(s) = (acos s, bsin ),

d(t) = (¢ + cost,d +sint).

With ' (prime) denoting derivative w.r.t. affine-arclength, and " (dot) denot-



ing derivative w.r.t. the corresponding parameter s or ¢, we have

(s —asin s, bcos s),

)
J
< (s)

)

—sint, cost),

(s

(
(
(
a(t (

—acos s, —bsin s),

cost,—sint).
Now using the identities of §1.3.3, we see that

v'(s) = (ab) Y*(—asins,bcoss),
§'(t) = (—sint,cost).

The analyses of the ADSS and AESS of £ U U now diverge. In §6.3, we
continue the analysis of the ADSS of U U, and in §6.4 we continue the
corresponding analysis of the AESS of F U U.

6.3 The ADSS for FUU

We note first of all that E and U both contribute a single point, namely their
respective centres, to the ADSS of £ U U, since we can consider each of £
and U to be a (repeated) conic having (at least) 4-point contact with EUU.
Apart from these two points, the ADSS of EUU will consist of points which
are the common centre of two distinct conics with the same affine radius,
one of which has (at least) 4-point contact with F, and the other having (at
least) 4-point contact with U. Recall that we call such a pair of conics a
‘4+4 conic pair’ (see §3.2.5).

We begin by deriving an equation for the ADSS of EUU. By the definition
of the ADSS (see Definition 3.2.1), a point (z,y) € R? lies on the ADSS,
corresponding to curve points v(s),d(t), if and only if (x,y) lies on both of
the affine normals to 7, at 7y(s), () respectively, and the affine distances
from (z,y) to curve segments 7, d at y(s),d(t) are equal. The affine normals
to E and U at 7(s) and §(¢) are in the direction of the radii of E and U at



v(s) and 6(t) respectively (see Figure 6.1). This gives us
(z,y) = (Aacos s, Absins) = (¢ + pcost,d + psint). (6.1)
Furthermore, the equal affine distances condition tells us that
[(z,y) = (), (s)] = [(w, ) — 6(2), 8" (2)],
which is
(ab) Y3 (xbcos s + yasins — ab) = ((x — ¢)cost + (y — d)sint — 1). (6.2)

Substituting x = Aacoss,y = Absins into the left-hand side of expression
(6.2), and x = ¢+ pcost, y = d+ usint into the right-hand side of (6.2),

gives us
(ab)?PN=1)=p—1. (6.3)

We also have the equations

.7)2 y2
STE = A2 (6.4)
(@ —c)+(y—d? = p° (6.5)

Expressions (6.3), (6.4), and (6.5) define the ADSS, and together give us:

Proposition 6.3.1. The equation of the ADSS of EUU s

(= + (y—d)? = ((W%/ij—i O (b 1)) .

When rationalised, it is algebraic and of degree 4 in x,y.

We are thus able to plot this ADSS for any values of a and b. In general,
this is a smooth curve in two disjoint parts. Figure 6.2 shows a plot of the
ADSS, shown as the thickest curve, and consisting of two smooth, closed
curves, one outside and one inside E. Note that U is also entirely within

E, which can only happen if we choose a,b > 1. As soon as U is allowed



to intersect F, we should expect some more complicated behaviour near
the intersection points. The ADSS can also be seen to exhibit crossings and
isolated points for certain values of a, b. In §6.3.1 we explore these phenomena

in detail.

©

Figure 6.2: The ellipse E centred at the origin and the unit circle U centred
at (¢,d) = (1,1) are shown as grey curves. The ADSS for EUU is shown as
the two darkest closed curves.

6.3.1 Singularities of the ADSS of FUU

There are two possible ways to approach the study of the singularities of
the ADSS of E U U. The first is to try to use the fact that the ADSS of a
generic plane curve has a singularity (generically a cusp) when there exist two
conics sharing the same centre and affine radius, having respectively 5- and
4-point contact with the curve (so-called 5+4-conic pairs: see Theorem 3.2.4
for a statement of this result). However, we are not considering the ADSS
of a generic plane curve, but instead the ADSS of a curve comprising two
ellipses, £ and U, and hence we must be very careful when attempting to
use this result. Since five points determine a conic uniquely, for a conic to
have 5-point contact with the curve F U U, it must be identical to one of E
or U, and thus have ‘co’-point contact with the corresponding conic. It is
not possible for there to exist a conic pair having ezactly 5+4 contact with
E U U, and this confuses our interpretation of the resulting structure of the



ADSS of EUU. We will instead use the second approach, which involves
studying the structure of the pre-ADSS, and relating it to the ADSS itself.
This approach is a lot clearer, and can then be related to the above ideas

about 5+4 conic pairs in a more transparent way.

6.3.2 Morse singularities of the pre-ADSS

Following on from §6.3, suppose we have ellipse F parametrised as 7y(s), and
unit circle U parametrised as §(t). Now we note that ¢ is the affine-arclength
parameter along J, but that s is not the affine-arclength parameter along 7,
since

d d? )
[% (7(s)), i) (’Y(S)):| = ab # 1 in general.

However, if we reparametrise y as

Ty}

then s is the affine-arclength parameter along . (See §1.3.1 for details. This

parameterisation was used previously in the proof of Lemma 1.3.3.) Now the
pre-ADSS is a subset of (s, t)-space defined by solutions (s, t) to the equation

[v(s) = 6(1),7"(s) = 8"(1)] = O, (6.6)

where ' (prime) denotes derivative w.r.t. the corresponding affine-arclength

parameter along each of v and §. By Corollary 3.2.3, we can write

v(s) = 6(t) = —do (6" (t) = "(s)), (6.7)

where dgy is the common affine distance from ADSS point x to the curves
through ~(s) and §(¢).

There is a Morse singularity (that is, a crossing or an isolated point) on
the pre-ADSS if and only if

0 0
55 16:6)} = 5. {(6:6)} =0,



for some s,¢. This is equivalent to there existing s, ¢ for which

[V (8), 7" () — 8" ()] + [v(s) — 6(2), " (s)] = 0,
(6.8)

[=6"(2),7"(s) = 6"()] + [v(s) = 4(8), =6"(1)] = 0,

From now on we will omit the parameters s and t. Now we also have, from

III] a‘nd

§1.3.3, the identities v = —pu,7" and 0" = —psd’, where p, = [v", v
ps = [6",0™] are the affine curvatures of v and § respectively. Since vy and 0
are conics, we know that their affine curvatures are constant, and calculation

—2/3

shows that u, = (ab) and ps = 1. Then we can rewrite (6.8) as

Y7 = 8l(ky + 35) =0,
(6.9)
= 6,8 (us + 2) =0,

So the pre-ADSS has a Morse singularity at (s,t) if and only if (6.6) and
(6.9) hold. This can be split into three cases, and we find the pre-ADSS and
ADSS for each case in turn.

Case (i): [y —6,7" —¢"] =0, and p, = ps = — -

The ADSS point x can be written as

x:7+i’y":5+i6",
oy 1hs

and thus lies at the centre of two 5-point contact conics, since the affine
radius of each of the conics is equal to the radius of affine curvature of v and
0. The two 5-point contact conics must be identical to v and 4, since they
share a centre and have the same affine radius, which means that v = 4. We
conclude that, apart from this very degenerate case, there are no 5+5 conic
pairs, and thus no corresponding Morse singularities on the pre-ADSS.

The ADSS in this case is the isolated point at the common centre of the

5+5 conic pair.



Case (ii)(a): [y — 6,7 =" =0,[y,y— 9] =0, and p; = —
The fact that dg = —1/us = —1 implies that one of the conics in the 4+4
conic pair has 5-point contact with §, and therefore is identical to ¢ (that
is, identical to U). Then the ADSS point x lies at the centre of U. Thus,
for some fixed sq and any t we have a 4+ conic pair, and hence the whole
vertical line is included in the pre-ADSS.

The parameter s, is fixed for a given a, b and U, having to fulfill the

following conditions:

(i) sp must correspond to a point of v where the affine normal passes
through x. There are precisely two affine normals to v which pass

through x, and thus two possible values of sy, as shown in Figure 6.3;

(ii) sp must also correspond to a point of v at affine distance dy = —1 from
x. This rules out one of the possible values, depending on the values
of a and b and the position of x;

(iii) finally, sop must correspond to a point of  for which there exists real ¢
such that

[7'(s0),7(s0) = 6(t)] = 0.

I

S0 E =1(s)

Figure 6.3: The two possible sy lie on the common affine normal to both
and § through the point x.

Consider the following two situations:

1. Figure 6.4: Parameter s, such that (i) and (ii) hold is shown in Fig-

ure 6.4(a). We can see that in this case there exist two distinct pa-



rameter values t = {t1, ¢} for which (iii) holds, namely the parameter
values of points of § lying on the tangent line to vy at 7(sg). The
pre-ADSS in this case is as shown in Figure 6.4(b), and consists of the
vertical line (so, t) along with two smooth branches crossing it at points
(s0,t1) and (sg, t2).

t=t1 A

t=to o

S=S0

Figure 6.4: (a) The unique parameter value sy such that (i) and (ii) hold is
shown. We can see that there then ezist two distinct t = {t,,t2} such that
(#i) holds. (b) The pre-ADSS in this case consists of the vertical line (sg,t)
along with two branches crossing it transversally at points (sg,t1) and (o, t2).

2. Figure 6.5: Parameter sy such that (i) and (ii) hold is shown in Fig-
ure 6.5(a). However, in this case, there exist no real parameter values
t for which (iii) holds. The pre-ADSS is shown in Figure 6.5(b): it

consists only of the vertical line (s, ), with no extra branches crossing

it.
b
(a) 50 ) ¢
v(s) %

—

S0

$=80

Figure 6.5: (a) The unique parameter value so such that (i) and (ii) hold
1s shown. We can see that there then exist no parameter values t for which
(#i) holds, since the tangent line to v at y(so) does not intersect §. (b) The
pre-ADSS in this case consists of the vertical line (so,t).

Thus only case 1 leads to a Morse singularity on the pre-ADSS, in this case

a pair of smooth branches crossing a vertical line. However, case 2 is still



interesting to us, being as it also corresponds to a vertical line on the pre-
ADSS: we return to these vertical lines in §6.3.3, when we define ‘Collapse-
Points’ on the ADSS, and in §6.3.4, when we consider the ‘Collapse-Point
Curve’.

The structure of the ADSS in each of the two situations is as follows:

1: The vertical line (sg, t) is mapped to a single point on the ADSS, namely
the point x at the centre of the 5-point contact conic U. However, this
is not an isolated point on the ADSS, since the two smooth branches
of the pre-ADSS that cross the vertical line are mapped to two smooth
branches of the ADSS passing through x. Thus, in this case the ADSS

is two smooth branches crossing transversally through the centre of U.

2: Again, the vertical line is mapped to the single point x on the ADSS at
the centre of U. No other branches of the pre-ADSS cross the vertical
line, and thus no other branches of the ADSS pass through x. The

ADSS in this case is an isolated point.

Case (ii)(b): [y —6,7" —48"]=0,[¢",y— 4] =0, and pu, = _i

The fact that dy = —1/p, = —(ab)?? implies that one of the conics of the
4+4 pair has 5-point contact with +, and is therefore identical to ~ (that
is, identical to E). Then the ADSS point x lies at the centre of E. Thus,
for some fixed t; and any s we have a 5+4 conic pair, and hence the whole
horizontal line (s,to) is included in the pre-ADSS.

By symmetry, the analysis of this case mirrors that of Case (ii)(a). We

consider these horizontal lines in §6.3.3.

Case (iii): [y — 6,7 —¢"]=0, and [f/,y—0]=[0',vy =] =0

Geometrically, this is the situation where ', §' and v — ¢ are parallel, the

double tangent situation. Then 7' = A¢’ for some A € R, and the conditions



above give us

h/ B 5/’7// . 5//] =0,

= 2-[0,7"]-[7,0"]=0, using [y',7"] = [¢,0"] = 1,

1

= 2-)A-— 1= 0,
using 7' = A’ and [y/,7"] = [¢',0"] = 1, and this holds if and only if A = 1.
Thus the affine tangents to v and § at v(s) and §(¢) must be identical for
these points to contribute to the ADSS in this case. (Note that we came to
a similar conclusion in §3.2.2.) Since U is the unit circle, we deduce that the
affine tangent to vy at such a point 7(s) must be unit. Now suppose we find
a point y(s) on v having unit affine tangent (see Figure 6.6). Then, for any
position of unit circle U touching the tangent line to 7 at v(s), such that the
corresponding affine tangent ¢’ is in the same direction as 7/(s), the conditions
above are satisfied and the pre-ADSS exhibits a Morse singularity. Thus, for
any (c,d) lying on a line parallel (at Euclidean distance 1) to a tangent line
to v at a point where - has unit affine tangent (and for which 4" and ¢’ are

in the same direction), we will have a Morse singularity on the pre-ADSS.

U
\E @ 75 (1)
\\ 7' (s)

v(s)

Figure 6.6: Unit circle U is tangent to the tangent line to v at y(s), and the
affine tangents v'(s) and +'(t) are identical.

Of course, it is possible that there exists no point of v with unit affine
tangent. Since such a point will have Euclidean curvature of 1, then the
necessary and sufficient condition that there exists such a point is that the

value 1 lies between the maximum and minimum values of the Euclidean



curvature k., of vy, that is,

b
min (k) = 2 <1< 5 = max(k,y),

| 2

S

since k. is continuous and attains its bounds at its (Euclidean) vertices. Since
we are assuming a > b > 0, the necessary and sufficient condition for there

to exist a point of v having unit affine tangent is
ab<1anda22b, or ab>1and a > b°.

Remark 6.3.2. By symmetry arguments, v will generically have zero or four
points with unit affine tangent, and two such points in the special case when

the Euclidean curvature of v at a vertex s 1.

The pre-ADSS in this situation will have an isolated point if and only if
the expression

o & & i
A (6.0}~ (551661 (6.10)

is positive. Differentiating the expressions in (6.9) we get

82 n 1 . !
52166} = [Yr—d] <u7 + d—0> , since pi, =0
0? 1 .
ﬁ{(GG)} = —[§",v—4] (,u(s + d—O) , since p5 =0

82 ! ! . ! !
55186} = [ 8] (uy = ps) =0, since [y, 6] = 0.

Then expression (6.10) is

1 1
—[¥", v —6][6", v — o] (M + d—) (ua + d—) ,
0 0

1 1
_dg[fy”, 5”]2 (/j”Y + d_0> (:U’<5 + d_0> 3

using v — 0 = do(7" — ¢”). Thus the pre-ADSS exhibits an isolated point if

which becomes



and only if

+i +l <0
Hey do Hs do .

Geometrically, this corresponds to the common radius of the 444 conic pair
(which is equal to —1/do) lying between 11, and p5, that is, there is an isolated
point on the pre-ADSS if

e ab>1and .
(ab) 2P < == <1,
do
e ab<1and .
1< —— < (ab) %3,
do
Summary

In Cases (ii)(a) and (ii)(b), we are able to relate the occurrence of vertical
and horizontal line components of the pre-ADSS to the existence of 5+4 conic
pairs (which in fact are co+4 conic pairs), and in this way we are able to link
the method of studying the singularities of the ADSS via the singularities of
the pre-ADSS to the other method mentioned in §6.3.1, which was to apply
the generic result that 5+ 4 conic pairs lead to singularities of the ADSS. In
these cases, we see that it is possible for smooth branches of the pre-ADSS
to cross these vertical and horizontal lines, and this leads to crossings on the
ADSS. Thus we conclude that these cases correspond to a combination of
‘isolated’ points and ‘crossings’ on the ADSS that may occur at the same
point. In §6.3.3 we aim to understand these situations more fully.

Cases (i) and (iii) concern ‘genuine’ isolated points and crossings on the
ADSS. Case (i) is trivial, since it only occurs when E and U share the same
centre. Case (iii) is more interesting: under certain conditions (that is, for
certain values of a and b) it will not occur; otherwise, it leads to a set of
four lines for which, as the centre of U crosses one of the lines, the pre-ADSS
undergoes an isolated point or a crossing transition, as does the ADSS. We

consider this situation again in §6.3.3.



6.3.3 Collapse-Points

The study of the Morse singularities on the pre-ADSS in §6.3.2 suggests a
suitable approach to the study of the singularities of the ADSS for £ U U.
Referring to Cases (ii)(a) and (ii)(b), we saw that horizontal and vertical
lines on the pre-ADSS are mapped to single points of the ADSS, that point
being the centre of the corresponding 5-point contact conic, and these 5-
point contact conics arise when the common affine distance from the ADSS
point to the corresponding points of the ellipse and the circle is equal to
the radius of curvature of either the ellipse or the circle. However, we will
avoid the temptation to label the image of these horizontal and vertical lines
as ‘“solated points’. 1t is true that the whole line is mapped to a single
point, at the centre of the corresponding 5-point contact conic, but other
branches of the ADSS may pass through the point, as we have seen in Case
(ii)(a) of §6.3.1. Instead, we will label the image of horizontal or vertical line
components of the pre-ADSS as ‘Collapse-Points’, since they arise, not from
isolated points of the pre-ADSS, but from horizontal or vertical lines of the
pre-ADSS which collapse to a single point of the ADSS.

Definition 6.3.3. A Collapse-Point on the ADSS of EU U is the image
of a horizontal or vertical line component of the pre-ADSS of E U U.

Thus 5+4 (or 4+5) conic pairs lead to horizontal or vertical lines on the
pre-ADSS, which are mapped to Collapse-Points of the ADSS.

6.3.4 The Collapse-Point Curve

Collapse-Points signal situations in which segments of the AESS are created
or destroyed, join together or split apart. We now consider the question:
When do Collapse-Points occur on the ADSS? We will consider the set of
centres (¢, d) which lead to a Collapse-Point on the ADSS.

Definition 6.3.4. The Collapse-Point Curve (CPC) of EUU is the locus
of points in (¢, d)-space which, as centres of the unit circle U, lead to Collapse-
Points on the ADSS.

To rephrase this, the CPC is the locus of points (c,d) for which the pre-

ADSS exhibits a horizontal or vertical line component. We will consider in



turn the contribution of the vertical and horizontal line components of the
pre-ADSS to the CPC.

Vertical line components of the pre-ADSS

From Case(ii)(a) of §6.3.1, we know that vertical line components of the pre-
ADSS occur when the ADSS Condition holds and the common affine distance
from the corresponding ADSS point to v and ¢ is equal to —1/p;, which is
fixed at —1. Thus we deduce that the component of the CPC corresponding
to vertical line components of the pre-ADSS is the affine parallel to F at
affine distance —1, since this is the locus of points at affine distance —1 from
E along each affine normal to E. Calculation shows that this affine parallel
in (c, d)-space is given by the equation
2 2

% + Z—2 — (1 — (ab) 23, (6.11)
which is generally an ellipse, as expected. Thus if the centre (c,d) of U is
chosen such that (6.11) holds, then the pre-ADSS of FUU exhibits a vertical
line component, and the ADSS of E U U exhibits a Collapse-Point at the
centre of U. Figure 6.7 contains [LSMP] plots illustrating this component
of the CPC, along with the pre-ADSS in this case where the vertical line

components can clearly be seen.

Horizontal line components of the pre-ADSS

Similarly, from Case(ii)(b) of §6.3.1, we know that horizontal line components
of the pre-ADSS occur when the ADSS Condition holds and the common
affine distance from the corresponding ADSS point to v and § is equal to
—1/u., which is fixed at —(ab)?/?. In this case, we find that the component
of the CPC corresponding to horizontal line segments on the pre-ADSS is

2/3

the circle with radius (ab)*/® — 1 centred at the origin, and is given by

A+ d? = ((ab)?? —1)2 (6.12)

Thus if the centre (c,d) of U is chosen such that (6.12) holds, then the pre-
ADSS of FUU contains a horizontal line component, and the ADSS of FUU
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Figure 6.7: The pre-ADSS’s are on the left. The CPC corresponding to
vertical lines on the pre-ADSS is shown as the darkest curve, the ADSS itself
the thinner dark curve, and the ellipses are shown grey. The Collapse-Point
is obscured ‘beneath’ a crossing on the ADSS. (Note that the ADSS has been
truncated in both of these plots.)

exhibits a Collapse-Point at the centre of E. Figure 6.8 contains [LSMP] plots
illustrating this component of the CPC, along with the pre-ADSS in this case
where the horizontal line components can clearly be seen.

Taking expressions (6.11) and (6.12) together we thus have:

Proposition 6.3.5. The Collapse-Point Curve in (c, d)-space consists of
two curves, which we call CPC1,CPC?2 given by

& o an2
:ﬁ—’_b_?:(l_(ab) 2/3) ,

CPC2 : ¢ +d? = ((ab)?? — 1)

CPC1

We can now easily plot the CPC for any given a, b. Figure 6.9 shows an
example.
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Figure 6.8: On the left are the pre-ADSS’s, the horizontal lines clearly visible.
On the right, the corresponding plots of the ADSS (thin dark curve), along
with ellipse E and circle U (grey curves) and the CPC corresponding to the

horizontal line components of the pre-ADSS. The Collapse-Points themselves
are vistble at the centres of E.

/\

Figure 6.9: The thicker dark curves are the two components of the CPC' for
a=>50b=2,c=2,d=1.1. The thinner dark curve is the (truncated) ADSS.

Other Morse singularities on the pre-ADSS

We now briefly consider what we might term ‘genuine’ Morse singularites
on the pre-ADSS, as opposed to those considered above which correspond

to smooth branches crossing a vertical or horizontal line component of the



pre-ADSS. In Case (iii) of the analysis of the pre-ADSS in §6.3.1, we saw
that the pre-ADSS of F U U exhibits a Morse singularity when there exists
a line tangent to both E and U with the further condition that the affine
tangent to E at the point of contact of this double tangent is unit and in
the same direction as the affine tangent to U at the corresponding point of
contact. It follows that if we can find a unit affine tangent to E, then any
position of unit circle U tangent to the tangent line at this point of E (such
that the affine tangents at the points of contact are in the same direction)

will lead to a Morse singularity on the pre-ADSS.

(@) (b) ©
PRI
T e

Figure 6.10: (a) Four points of E have Euclidean curvature equal to unity,
and thus unit affine tangents. (b) Consider one of these points. One of the
parallels to the tangent line to E at distance 1 is shown. When the centre of
U lies on this line, the ADSS of EUU exhibits a Morse singularity. (c) All
such lines described in (b).

In this way, we are able to locate Morse singularities on the pre-ADSS,
and thus on the ADSS itself: first, find all points of v with unit affine tangent
(that is, points of v where the Euclidean curvature is equal to 1) — see Fig-
ure 6.10(a); draw the tangent lines to 7y at these points — see Figure 6.10(b);
draw the Euclidean parallel at distance 1 to each of these lines, on the same
side of the line as E — see Figure 6.10(c). These four lines contain the set of
points which, as centres (¢, d) of unit circle U lead to a Morse singularity on
the pre-ADSS, and thus the corresponding Morse singularity on the ADSS.
See Figures 6.11 and 6.12 for [LSMP] plots of this situation.



Figure 6.11: The dark curve is the (truncated) ADSS for the ellipse and circle,
shown in grey, for a = 1.3,b = 0.5,¢ = 1.6,d = 1.126 (so ab < 1,a® > b).
On the left is the corresponding pre-ADSS.
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Figure 6.12: (above) The dark curve is the (truncated) ADSS for the ellipse
and circle, shown in grey, for a = 5.2,b = 2.2,¢ = 3.0491,d = 4.7 (so
ab > 1,a > b%). (below) The corresponding pre-ADSS.

6.4 The AESS (and MPTL) for a union of

ellipses

We now turn to consider the AESS U MPTL for a curve comprising two
complete ellipses. We use the same coordinate system as set out in §6.2,
illustrated in Figure 6.1. We will assume throughout, without loss of gener-
ality, that 0 < b < a.

The analysis of this situation began in §6.2, since it follows the same line

as the analogous study of the ADSS. We now continue this analysis.

6.4.1 When is the AESS of £ UU non-empty?

As in the case of the ADSS for £ U U, we begin by noting that £ and U
both contribute a single point, namely their respective centres, to the AESS



of EUU, since we can consider each of E and U to be a conic having (at
least) 3-point contact with £ U U. Apart from these two points, the AESS
of EUU will consist of points which are centres of a conic having 3-point
contact with £ and 3-point contact with U. We would like to know when
this component of the AESS of the composite curve EUU (which, following
§6.2, comprises the two parametrized curves (s), §(t)) is non-empty (that is,

has real points). This is equivalent to finding the condition for

[v(s) = 6(1),7(s) + &'(£)] = O, (6.13)

to have any real solutions for s,¢ (this comes from the AESS Condition of
Proposition 2.2.2). If we can show that there exist real (s, t) for which (6.13)
holds, then the non-trivial AESS corresponding to these two curves is non-
empty. Substituting v(s) and §(¢) into expression (6.13) we get

acoss —c—cost —a(ab)~/3sins —sint

bsins —d —sint  b(ab)~'/3 cos s + cost

Expanding this expression and rearranging leads to the following:

Proposition 6.4.1. The necessary and sufficient condition for the non-
trivial component of the AESS of the curve EUU (i.e. yUJ) to be non-empty
15 that

B2 1/3 a2 1/3
(ab)?® =1+ [a— (E) cosscost+ | b— <?> sin ssint

p2\ /3 a2\ /3
— (—) €Ccos s — (F) dsins — ccost — dsint = 0, (6.14)
a

has real solutions for s,t.

From now on we will disregard the two trivial components of the AESS
of F UU, and refer simply to the non-trivial component of as ‘the AESS’
of EUU. The aim is then to derive conditions on parameters a, b, ¢, d for
there to exist real solutions s, to (6.14). In §6.4.2, we will find a condition
on ¢ and b under which there always exists solutions for s and ¢, regardless

of the values of ¢ and d. This condition will necessitate the introduction of



the MPTL. We then suppose that this condition is not satisfied, and deduce
a further condition on ¢ and d for solutions s and ¢ to exist. This leads to
what we will call the ‘Singular-Point Curve’ for the AESS, which we will
define (see Definition 6.4.4) to be the set of points in (¢, d)-space which, as
centres of the unit circle U, lead to an isolated point or a crossing on the
AESS, that is, either to the ‘birth’ or ‘death’ of a component of the AESS,
or the ‘marriage’ or ‘divorce’ of two components (that is, their joining up’
or ‘splitting apart’). We study the Singular-Point Curve in §6.4.3.

As far as this analysis is concerned, we will consider the terms ‘birth’
and ‘death’ to be interchangeable, both relating to the same phenomenon on
the AESS, namely an isolated point. Similarly, we will consider the terms
‘marriage’ and ‘divorce’ to be interchangeable since they both refer to cross-
ings on the AESS. Thus we will reduce our terminology by simply referring
to births and marriages. Of course, births and deaths, and marriages and

divorces, become distinguished in families, which have a direction.

6.4.2 The MPTL for EUU

As in Chapter 2, we will find it more useful to study the union of the AESS
and the MPTL (see Definition 2.4.8), since the structure of the MPTL will
enable us to explain certain phenomena that occur on the AESS.

The MPTL of EUU is always non-empty, since we can always find parallel
tangent pairs between E and U, and the midpoint of the chord joining the
points of contact of these parallel tangents can always be located. Moreover,
the correspondence between a pair of points on F and U, given by the curves
having parallel tangents at these points, is fixed for a given a and b: as (¢, d)
is moved, this correspondence does not change. We also note that moving
the centre, (¢, d), of U does not change the Euclidean curvature of U at any
point. We have the following:

Proposition 6.4.2. Under the assumption that 0 < b < a, the MPTL of
E UU isnon-smooth (that is, exhibits cusps) if and only if

o ab<1 anda®>"b; or
e ab>1 anda > b



Proof. We know (by Proposition 2.4.9) that the condition for the MPTL of
FE UU to exhibit a cusp is that E and U have the same Euclidean curvature
at points which have parallel tangents. Now the Euclidean curvature of U is
fixed at 1, and we know that the Euclidean curvature kg of E is bounded as

follows:

b a
min (kg) = 2 < Euclidean curvature of £ < = max (ke),

since the curvature of F is continuous and attains its maximum and mini-

mum values at its (Euclidean) vertices. Thus, the necessary and sufficient

condition for there to exist a point of E' where the curvature is 1 is that

b a
- <1< =

- 7 (6.15)

If this holds, then there exists a point on E and a point on U having parallel
tangents and equal Euclidean curvatures, and thus, by Proposition 2.4.9, the
MPTL of EUU is non-smooth. Now (6.15) is equivalent to

aZbZandaQZb,

holding simultaneously. Since we are assuming that a > b > 0, the necessary
and sufficient condition for the MPTL to be non-smooth is

ab<1anda®>b, orab>1and a > b’

O

Figures 6.13, 6.14 and 6.15 contain [LSMP] plots illustrating the result
of Proposition 6.4.2.

Figure 6.13: [LSMP] plot for a =3,b=2,c=d =0 (so ab > 1,a < b?): the
MPTL is the dark curve, E and U the grey curves. The MPTL is smooth.
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Figure 6.14: [LSMP] plot for a =3,b=2,c=1,d = 0.5 (so ab > 1,a < b?):
the MPTL remains a smooth curve, regardless of position of (c,d).

==

Figure 6.15: [LSMP] plot fora=7,b=2,c=d =0 (so ab > 1,a > b?): this
time, the MPTL 1is non-smooth, as predicted by Proposition 6.4.2.

Convention: From now on, the term Singular MPTL Condition will be

used to denote the two conditions under which the MPTL is singular, i.e.

ab<1and a®>>b, orab>1and a > b°.

From Proposition 2.4.9 we know that the necessary and sufficient condition
for a singularity to appear on the MPTL is that there exists a conic having
3-point contact with the curve at each of the two points of contact of the
parallel tangents. Thus the Singular MPTL Condition, which implies the
existence of a singularity on the MPTL of FUU, in turn implies the existence
of at least one 3+3 conic. Hence the Singular MPTL Condition is a sufficient
condition for the existence of real AESS points.

Proposition 6.4.3. For a > b > 0, suppose the Singular MPTL Condition
holds. Then the AESS of E UU is non-empty.

From Proposition 6.4.1, a short calculation shows that the Singular MPTL
Condition is a necessary and sufficient condition for the AESS of F U U to
be non-empty in the special case where (¢,d) = (0,0). Figure 6.16 shows
an [LSMP] plots of the AESS U MPTL for ab > 1 and a > b*. We notice
that the AESS segments fit neatly in between the two pairs of cusps on the
MPTL. We also observe that each of the two segments of the AESS exhibit



six cusps, four of which are due to the existence of four 4+3& conics, and
correspond to the four vertical or horizontal tangents on the relevent branch
of the pre-AESS (see Figure 6.16). The two others come from the fact that
we have parallel tangents at the points of contact of a 3 + 3 conic: these
cusp-points are also cusps of the MPTL, and the (dual)-beaks singularity (as
predicted in §2.5.7) can clearly be seen.

Figure 6.16: (above) On the right is an [LSMP] plot of the AESS U MPTL
for a =5,b=1.5 (soab>1 and a > V), and ¢ = d = 0. The AESS is
the thinner dark curve, the MPTL the thicker dark curve, and ellipse E and
circle U are in grey. Note that the two AESS segments fit between the two
cusp pairs on the MPTL. On the left, we have the pre-sets for the AESS and
MPTL, the thicker curve being the pre-MPTL. We can see that the pre-AESS
comprises two closed curves each with four horizontal or vertical tangents,
and each crossing the pre-MPTL twice. This accounts for the siz cusps on
each branch of the AESS. (below) This plot shows the magnification of the
plot above, and clearly illustrates that the AESS (thin) and MPTL (thick)
has two beaks singularities on each branch of the AESS, corresponding to
crossings on the pre-sets.



6.4.3 The Singular-Point Curve

Proposition 6.4.3 tells us nothing about the existence of real AESS points in
the case when the Singular MPTL Condition does not hold, that is, when
the MPTL is smooth. In this case, the AESS will be empty or non-empty
depending on the position of (¢,d). In this section, we will consider the

following two problems:

e Isolated Points on the AESS: Suppose we fix ellipse E (that is,
we fix ¢ and b), and suppose also that the Singular MPTL Condition
does not hold. Then we know that, for (¢,d) = (0,0), the AESS is
empty. Let us allow the centre of U, point (c,d), to vary. Then we
would like to identify the values of (¢, d) which correspond to the birth
of an AESS segment. In effect, we would like to plot the locus of points
in (¢, d)-space for which the AESS has isolated points.

e Crossings on the AESS: Suppose we fix ellipse F, and suppose now
that the Singular MPTL Condition does hold. Then we know that the
AESS has real points for any position of (¢,d). We ask the question:
Can any other components of AESS appear? In other words, can we still
plot a (non-empty) locus of points in (¢, d)-space for which a component
of AESS is ‘born’? Computer experiments using [LSMP]| suggest that
no other components of AESS are created as (c,d) varies. However,
another interesting phenomenon is observed: when the Singular MPTL
Condition holds, the AESS of F U U is in two disjoint components for
(¢,d) = (0,0). Now, as (c, d) is varied, we notice that these two disjoint
components can join together (or split apart), and this leads us to a
similar problem of plotting the curve in (¢, d)-space which, with (¢, d) as
centres of U, correspond to a marriage of two AESS segments: that is,

we require the locus of points (¢, d) for which the AESS has a crossing.

Combining these two problems, we will consider the problem of plotting the
locus of points (c,d) which, as centres of U, lead to an isolated point or a
crossing on the AESS of E U U. We make the following:

Definition 6.4.4. The Singular-Point Curve for the AESS is the set of

points (¢, d) which, as centres of the unit circle U, lead to isolated points or



crossings on the AESS.

Returning to our analysis of §6.4.1, we found that the condition for the
existence of real AESS points was identical to the condition that there exist
any s,t for which (6.14) of Proposition 6.4.1 holds. We will modify this to
suit out current analysis. If we suppose that a and b are fixed, then we can

use the above to deduce a condition on ¢ and d for such an s and ¢ to exist.

Let us set
1/3 1/3
A= (ab)?? -1 B=—c(% = — % =—c
1/3 1/3
E=—d an—(%) G:b—(%)

Then the problem is finding real s,t for which
A+ Bcoss+Csins+Dcost+ Esint+ F cosscost+Gsinssint = 0. (6.16)

This problem can be restated as follows?: for fixed real s, the condition that

there exists real ¢ such that
A+ Bcoss+ Csins = —(D + Fcos s) cost — (E + Gsins)sint,

is equivalent to the inequality

|A + Bcos s+ Csins|| < /(D + Fcos s)2 4 (E + G sin )2,

which follows from the fact that numbers of the form pcost 4 ¢gsint fill
the interval [—/p® + ¢2, /p* + ¢?]. Thus, we have reduced the problem to
solving the equation

(A+ Bcoss+ Dsins)? — (D + Fcoss)? + (E+ Gsins)? <0.  (6.17)
We can re-express the LHS of (6.17) as

fu) = agu* + asu® + apu? + aqu + ag,

2This line of attack was originally suggested by Dr.Mariusz Zajac (Warsaw Technical
University).



where
1 —u? 2u

m and sins = m,

ar = ((a+c)®—1) ((g)%_l) —

. ]
u = tan (§>, COS s =

and where

@ = 4d (b— (ab)'/? (a+c))

ar = 2((a)?*~1)" — 2 4 4d” (%2)2/3
(- (5)") e (5)”

a = 4d (b — (ab)3 (a - c))

a = ((a—c)-1) ((? " 1) —d’.

Thus Proposition 6.4.1 can be rephrased as:

Proposition 6.4.5. The AESS of E' U U s non-empty if and only if there
exists real u such that f(u) < 0.

Remark 6.4.6. Note that f is symmetric under the maps:

c— —c,u— 1/u,

and dw— —d,u+— —u.

We expect, by the reflexional symmetry of the ellipse, that we should have the
same situation if we substitute ¢ for —c or d for —d, and this implies that

the graph of y = f(u) is symmetric about the y-axis.

Now we are no longer interested simply in the existence (or otherwise) of
real points on the AESS: we would also like to know when two components

of the AESS join or split apart. However, the function f(u) gives us all the



information we require. Suppose we fix @ and b. Then f(u) is a degree four
polynomial in u with parameters ¢ and d. The segments of the graph of
f(u) = 0 below the u-axis correspond to real branches of the AESS. We are
thus interested in the values of (¢, d) which result in critical points of f(u) for
which f(u) = 0, that is, critical points of f on its zero-level. These are pre-
cisely the situations in which segments of AESS are born (see Figure 6.17(a))
or marry (see Figure 6.17(b)). Hence we require the discriminant of f, which
is a polynomial of degree twelve in u, and factorises. Some calculation using

[MAPLE] shows that it comprises the three following curves:
Proposition 6.4.7. The Singular-Point Curve consists of three curves:

e the two FEuclidean parallels at distance 1 to the ellipse,

e the (squared) conic

Lt a*3d? 2/312/3
(@23 —B3) (2B +6'3) (a3 — b23) (a3 + 623) b7 -1,

where we have assumed that b # a? and a # b

(a) ()
\ ‘f(U)j\ f(uy

Figure 6.17: (a) The birth of a segment of AESS, as a minimum of the graph
crosses the u-axis. Strictly speaking, a birth corresponds to the graph crossing
the axis moving downwards, and a death to the graph crossing the azis and
moving upwards. (b) The marriage of two segments of AESS, as a mazimum
of the graph of f crosses the u-axis. Strictly speaking, a marriage corresponds
to the graph crossing the axis moving downwards, and a divorce to the graph
crossing the axis moving upwards.

Case (i): a4 <0

In this case, f has two maxima each side of a minimum, and must have at

least two real roots. Thus there will always exist some real range for u for



O

Figure 6.18: The thicker dark curve is a component of the Singular-Point
Curve for the ellipse and circle as shown (a = 5,b = 2,¢ = 6.1,d = 3.8).
The thinner dark curve is the AESS for EUU. The other components of the
Singular-Point Curve, the Fuclidean parallels at distance 1 from the ellipse,
are not shown.

which f(u) < 0, and therefore oy < 0 is a sufficient condition for there to
exist real AESS points. Now, the zero-level of oy in (c, d)-space is

d2
(040 + — e =1,

(-7

which is an ellipse with centre at (—a,0) if @ > b%, and an hyperbola with
centre at (—a,0) if @ < b%.. We can interpret this in the following way,

() <0

Figure 6.19: The zero-levels of oy are (a) an ellipse and (b) an hyperbola
shown as the thickest curves: «y is positive inside the ellipse in (a), and has
the sign shown in the other regions.

referring back to the earlier results concerning the sufficient condition for
real AESS points in terms of the Singular MPTL Condition:

e If we have ab > 1 and a > b% then ay < 0 for (c,d) in the area of
Figure 6.19(a) as shown. Also illustrated are the ellipse E and the



two Euclidean parallels at distance 1. We see that for any unit circle
that is disjoint from the ellipse, its centre (c,d) must lie inside the
inner parallel or outside the outer parallel, and hence in the area with
a4 < 0. Thus for any (c,d) for which the curves are disjoint, there is
some real AESS, since then oy is guaranteed to be negative. (Of course,
if the unit circle intersects the ellipse, then real AESS points exist, for

example at the intersection points.)

e If we have ab > 1 and a < b?, then ay < 0 for (c,d) in the area shown
in Figure 6.19(b). Again, we also illustrate the ellipse E. However, this
time we can position the unit circle such that it is not centred in the
area having ay > 0, and then oy > 0. We may thus deduce nothing
about the existence of real AESS points.

Thus we have confirmed the result of Proposition 6.4.3.

Case (ii): a4 >0

In this case, f has two minima each side of a maximum. By Remark 6.4.6,
the minima are on the same level, and the maximum occurs on the y-axis.
This implies that, at a birth of the AESS (that is, when these minima sit
on the zero-level), two segments are born simultaneously, as the two minima

cross the u-axis. This fact is confirmed by [LSMP] plots.

6.5 Further research

This study of the ADSS and AESS of a curve comprising two ellipses is the
first step towards the consideration of the ADSS and AESS for piecewise-
conic curves. One route towards a fuller understanding of the affine symme-

try sets for genuinely piecewise-conic curves might be:

(i) Mirror the analysis of this chapter for a curve comprising a union of
hyperbolas, or a union of an ellipse (taken to be a circle) and an hy-

perbola.



(i)

(iii)

Consider any exceptional structures which may appear on the affine
symmetry set of a union of conics when one of the conics is a parabola,

or a line-pair.

Consider how two conic segemnts may be splined together. What does
it mean for the resulting curve to be smooth? It may be enough to
insist that the corresponding affine tangent vectors agree at a join, or

alternatively that the affine normal lines to the curve agree at a join.

What structures appear on the affine symmetry sets of such a composite
curve? Are any of the generic structures that may occur on the affine
symmetry sets of a generic plane curve disallowed from occuring on the

affine symmetry sets of piecewise-conic curves?

Consider the transitions on the affine symmetry sets of piecewise-conic

curves.



Appendix A

Partial derivatives of v;(t¢;,t9)
and va(t1, )

During the analysis of §§2.5.4-2.5.7, we need expressions for the partial

derivatives of v; and vy with respect to 1, to, up to the third order derivative,

and each of these evaluated at t; = t, = 0. We denote derivatives by sub-

scripts: for example, the third partial derivative of vy with respect to ¢, t;

and t, will be denoted Vly oty We will omit the parameters 1, ¢, for brevity.
The list is as follows:

vi = (t1 —c—t)(f' +4)—2(f —d—g)
v = —cg' +2d
vy, = —f'+g +({t1—c—ta) f"

0o _ 1 n
Iultl _g _Cf

vy, = —f'+9 + ({1 —c—t2)g"

0o _ 1 "
1, =9 —¢9

v

Ultltl = (t1 —C— t2)flll

0 N
vltltl - Cf

207



_n "
Uity =9 — f

0 __ g
Ultltz =9 f
— "
Vlipty = (tl —C— t2)g
0 "

V1, = €O

Ve, = f/// + (tl - tg)f""

0 _ pmr L pnn
Ultltltl B f cf
_ __fmn
V14089 = f
0 _ __fin
Ultltltz - f

_
Vlgtety — 9

0 _
Ult1t2t2 =9

1

_ "
Vit = 9 + (t1 —c—12)g
0 n nn

U1t2t2t2 -9 49

vg=2(t1 —c—ta)f'g = (f —d—g)(f +4)

va,, = f'g' + 20t —c—t) g — [P~ (f—d—g)f"
'ugtl = —2¢cf"qg" + df"
vy, = —f'9' +2(t1 —c—t2)f'g" + g7 — (f —d —g)g"

Ugt2 — 912 +dgll



Vo, =319 + 20t —c—to) f"g =3 = (f —d—g)f"

vghh = 3f”g/ _ chlllgl + df”’

V2, = 9" = 19+ 2(t1 — ¢ — 1) 9"

2t1t2 fll ! 2Cf”g"

Vo, = —3f'9" 420t —c—12) f'g" +39'9" — (f —d - g)g"

Uthtz - 39’ " —+ ngIIIUZtltltl — 5flllg/ + 2(t1 - t2
fugtltltl — 5fMg — 2cfMg — 3f2 4

V200, = 39" — g +2(th —c—ta) f"g"
09, 10, = 39" — g —2¢f"g"
V24 00, = F19" = 3f"9" +2(t1 —c — ta2) f"g"
U(Q)tltztz = =3f"g" — 2cf"g"

U2t2t2t2 — 5fl mn + Q(tl —c— )fllllgl + 39112 + 49[ "

UO — 2cf”"g'+3g"2-|-4g' /r/_l_dg/,/,

2t2t2i2

)fllllgl _ 3fI12 _ 4flllfl _

(f—d—g)g””

(f—d—g)f””



Fye, (t1,ta) = (v1,, V2, + V12, 0, — V2, V1, — VoVl ) (V2 — g'vy)
+2(v1va, ,, — Vv, ) (V2,, — g'v1,,)
+(v1va,, — vov1,, ) (V2 — G'v1,,,)
—2(v1,, Vo, + V1V, — V2, V1, — VUL, ) (V2 — vy — f’vltl)
_(U1U2t2 - U201t2)(1}2t1t1 — v — quvltl - flvltm),

/
_(v1t1t1 U2t2 + 2U1t1 U2t1t2 + Ulv?tltltz — U2t1t1 U1t2 — 2U2t1 Ult1t2 — ’U2U1t1t1t2)(1}2 - f Ul)

Footy (t1, ta) = 2(v1,,va,, +V10a, ,, — V2, V1, — VoV, ) (V2,, — ¢"v1 — g'v1,,)
+(v1vg,, — vav1, ) (V2,,,, — g" vy — 29"7)1t2 - glvlt2t2)
— (V14 V2,0, F VIV2,,0 = V2,, Uiy, — V2Vl4,,, ) (V2 — fl01)
—2(v1vy,,,, — vov1,,, ) (va,, — flv1,,)
—(U1U2t2 - U2U1t2)(v2t2t2 - flvltm)

'
+(U1t2t2 U2t1 + 2U1t2 U2t1t2 + Ulv?tltztz - v2t2t2 Ult1 - 21}2t2 Ultltz - 1)2vlt1f2t2)(v2 ) Ul)

Fygy (t1,12) = (V1,,V2,,, + V102, 40, — V20, V100, — V2VLy0,) (V2 — g'v1)
+ (010, — Va1, ) (V2y, — g"01 — g'V1,)
+(U1t2 Vg, T V1V2;,, — V2, V1, — U2U1t1t2)(v2t1 - glvltl)
+(v1va,, — vavy, ) (Va,,,, — ¢ V1, — g'V1,,)
_(Ultvatztz + VLV, 10y — V2, Vg, UQU1t1t2t2)(’lJ2 — f'vy)
_(vltIUQtz +v1vy, ,, — V2, V1, — U201t1t2)(7)2t2 - f'01t2)
—(U1“2t2t2 - U2U1t2t2)(v2t1 — [ = flvltl)

—(v1va,, — vav1,, ) (vey,,, — [ o1, — Flon,,)-



Bibliography

[A78] Arnol'd, V.I., Critical Points of Functions on a Manifold With Bound-
ary, The Simple Lie Groups By, Cy, and Fy and Singularities of Evo-
lutes, Russian Math. Surveys 33:5, 99-116, 1978.

[BanG87] Banchoff, T.F. & Giblin, P.J., Global theorems for symmetry sets
of smooth curves and polygons in the plane, Proc. Royal Soc. Edinburgh
106A, 221-231, 1987

[BanG94] Banchoff, T.F. & Giblin, P.J., On the geometry of piecewise-
circular curves, Amer. Math. Monthly 1994.

[Bla23] Blaschke, W., Vorlesungen uber Differentialgeometrie II: Affine dif-
ferentialgeometrie, Springer, Berlin, 1923.

[Blu73] Blum, H., Biological shape and visual science I, Journal of Theoret-
ical Biology 38, 205-287, 1973.

[Bru81] Bruce, J.W., On singularities, envelopes and elementary differential
geometry, Math. Proc. Camb. Phil. Soc 89, 43-48, 1981.

[Bru86] Bruce, J.W., Generic functions on semi-algebraic sets, Quart. J.
Math. Oxford (2) 37, 137-165, 1986.

[Bru89] Bruce, J.W., Geometry of singular sets, Math. Proc. Camb. Phil.
Soc. 106 (part 3), 495-509, 1989.

[BG85] Bruce, J.W. & Giblin, P.J., Outlines and their duals, Proc. London
Math. Soc. (3) 50, 552-570, 1985.

211



[BG86] Bruce, J.W. & Giblin, P.J., Growth, motion and 1-parameter families
of symmetry sets, Proc. Royal Soc. Edinburgh 104A, 179-204, 1986.

[BGI0] Bruce, J.W. & Giblin, P.J., Projections of surfaces with boundary,
Proc. London Math. Soc. (3) 60, 392-416, 1990.

[BG92] Bruce, J.W. & Giblin, P.J., Curves and Singularities, Cambridge
University Press, Cambridge, 1984, 2nd ed. 1992.

[BGG85] Bruce, J.W., Giblin, P.J. & Gibson, C.G., Symmetry Sets, Proc.
Royal Soc. Edinburgh 101A, 163-186, 1985.

[COT96] Calabi, E., Olver, P.J. & Tannenbaum, A., Affine geometry, curve
flows, and invariant numerical approximations, Adv. Math. 124, 154-
196, 1996.

[F84] Fidal, D.L., The existence of sextactic points, Math. Proc. Camb. Phil.
Soc. 96, 433-436, 1984.

[GBan93] Giblin, P.J. & Banchoff, T.F., Symmetry sets of piecewise-circular
curves, Proc. Royal Soc. Edinburgh 123A, 1135-1149, 1993.

[GBra85| Giblin, P.J. & Brassett, S.A., Local symmetry of plane curves,
Amer. Math. Monthly 92, 689-707, 1985.

[GH98] Giblin, P.J. & Holtom, P.A., The centre symmetry set, Geometry
and Topology of Caustics, Caustics ‘98, Banach centre Publications 50,
Warszawa 1999.

[GS96] Giblin & Sapiro, Affine-invariant distances, envelopes and symmetry
sets, Hewlett-Packard Laboratories Technical Report 96:93, Palo Alto,
California, June 1996.

[GS98] Giblin, P.J. & Sapiro, G., Affine-invariant distances, envelopes and
symmetry sets, Geometriae Dedicata 71 237-261, 1998.

[GT89] Giblin, P.J. & Tari, F., Local reflexional and rotational symmetry
in the plane, Lecture Notes in Math. 1462, Singularity theory and its
applications, eds: D.Mond, J.Montaldi, Warwick 1989 Part 1, Springer-
verlag, 1989.



[GT95] Giblin, P.J. & Tari, F., Perpendicular bisectors, duality and local
symmetry of plane curves, Proc. Royal Soc. Edinburgh 125A, 181-194,
1995.

[G90] Goryunov, V.V., Projections of generic surfaces with boundaries, Ad-
vances in Soviet Math. Vol 1 ed. V.I.Arnold, 157-200, 1990

[G95] Goryunov, V.V., Singularities of projections, Singularity Theory,
eds:D.T.Le, K.Saito, B.Teissier, World Scientific Publishing Co Pte Ltd,
1995.

[H97] Holtom, P.A., Local central symmetry for Fuclidean plane curves,
M.Sc. Dissertation, University of Liverpool, Sept. 1997.

[IS95] Izumiya, S. & Sano, T., Generic affine differential geometry of plane
curves, Proc. Royal Soc. Edinburgh

[J96] Janeczko, S., Bifurcations of the center of symmetry, Geom. Dedicata
60, 9-16, 1996.

[LSMP] Morris, R., Liverpool Surface Modelling Package, written by Richard
Morris for Silicon Graphics and X Windows. See R.J.Morris, The use
of computer graphics for solving problems in singularity theory, in Vi-
sualization in Mathematics, H.-C. Hege and K.Polthier (eds.), Springer,
Heidelberg, 53-66, 1997.

[MAPLE] Computer algebra & graphics package, distributed by Waterloo
Maple Software, Waterloo, Ontario, Canada.

[R87] Rieger, J.H., Families of maps from the plane to the plane, J. London
Math. Soc. (2) 36, 351-369, 1987.

[ST93] Sapiro, G. & Tannenbaum, A., On invariant curve evolution and
image analysis, Indiana University Math J. 42:3, 985-1009, 1993.

[ST94] Sapiro, G. & Tannenbaum, A., On affine plane curve evolution, J.
Funct. Anal. 119:1, 79-120, 1994.



[S83] Su, B., Affine Differential Geometry, Science Press, Beijing; Gordon
and Breach, New York, 1983.

[T90] Tari, F., Some Applications of Singularity Theory to the Geometry of
Curves and Surfaces, Ph.D. Thesis, University of Liverpool, 1990.

[W81] Wall, C.T.C., Finite determinacy of smooth map-germs, Bull. London
Math. Soc. 13, 481-539, 1981.

[295] Zakalyukin, V.M, Envelopes of families of wave fronts and control the-
ory, Proc. Steklov Inst. Math. 209, 114-123, 1995.



