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Abstract

The instabilities of the medial axis of a shape under deformations have long been recog-

nized as a major obstacle to its use in recognition and other applications. These instabilities,

or transitions, occur when the structure of the medial axis graph changes abruptly under

deformations of shape. The recent classification of these transitions in 2D for the medial axis

and for the shock graph was a key factor both in the development of an object recognition

system where the classified instabilities were utilized to represent deformation paths. The

classification of generic transitions of the 3D medial axis could likewise potentially lead to a

similar representation in 3D. In this paper, these transitions are classified, by examining the

order of contact of spheres with the surface, leading to an enumeration of possible transitions,

which are then examined on a case by case basis. Some cases are ruled out as never occurring

in any family of deformations, while others are shown to be non-generic in a one-parameter

family of deformations. Finally, the remaining cases are shown to be viable by developing a

specific example for each. Our work is inspired by that of Bogaevsky who obtained the tran-

sitions as part of an investigation of viscosity solutions of Hamilton-Jacobi equations. Our

contribution is to give a more down-to-earth approach, bringing this work to the attention of

the computer vision community, and to provide explicit constructions for the various transi-

tions using simple surfaces. We believe that the classification of these transitions is vital to

the successful regularization of the medial axis in its use in real applications.

1 Introduction

The practical use of the Medial Axis (MA) in visual tasks such as object recognition, percep-

tual grouping, shape modeling, shape tracking, etc, is adversely affected by the omni-present

instabilities of the MA under deformations of shape. This inherent instability of the MA
is illustrated for 2D MA in Figure 1 and is also prominent in 3D. Previous approaches have

either embedded an implicit regularization in the MA detection process [19, 28] or have ex-

plicitly included a post-processing “pruning” mechanism [23, 26]. An alternative to reducing
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Figure 1: This figure illustrates the importance of MA transitions for object recognition and
shape smoothing. (a) The two instabilities of the MA, namely, the A1A3 (e.g., often arising
from noise on the boundary) and A4

1, generalized to six transitions of the shock graph, (b) A
deformation path between two shapes is characterized by a sequence of transitions. Sebastian
et al. [25] search for the geodesic path by searching among all sequences of transitions that
bring two shapes’ MA in register, as shown here. (c) The smoothing of noise with blurring
discontinuities such as the corner of the L-figure is challenging, but can be achieved through
a sequence of transitions, effecting structural smoothing [29].

the effect of the MA instability is to utilize this instability itself as the key representation

of a shape deformation. Sebastian et al. [25] use the full classification of the shock graph

(MA endowed with a finer classification based on dynamics of flow) [13]. Specifically, they

define shapes with identical shock graph topology as equivalent and observe that paths of

deformation between two shapes undergo a distinct set of instabilities or transitions. They

define deformation paths having the same transition sequence as equivalent and then develop

an edit distance algorithm [17, 18] to search for the geodesic paths, an example of which

is shown in Figure 1(b) The cost of this optimal path defines the dissimilarity between two

shapes and is used to index into a database of shapes with excellent recognition rates: for a

1032 shape database the recognition rate is 97%, remaining impressively flat in the precision-

recall curve [25]. The use of transitions is also significant in shape modeling [30], smoothing

shape [29], Figure 1(c) and perceptual grouping [16, 27].

In fact, based on an early version of this paper [12], we have already used this classification

2



for smoothing shape [21] as shown in Figure 3, and for registration of shapes with different

samplings but with overlap [8]. See also an overview of a MA application in [22] and the

recent work of [7].

The transitions of the 2D Medial Axis under a one-parameter family of deformations were

derived in [13] using results from transitions of the symmetry set [4]. The former comprise two

transitions, as shown in Figure 1a, labeled as A1A3 and A4
1. The notation An

k implies k-fold

tangency at n places between a circle and the curve being studied (silhouette of a shape),

Figure 7. Thus A2
1 indicates the most generic situation of a circle, centered on the medial axis

and tangent at two places each with regular tangency to the curve (that is ‘1-fold’ tangency

at each contact point, meaning that each tangency results from the coincidence of exactly

two intersection points between the circle and curve). Similarly A3
1 indicates a circle tangent

at three places each with regular tangency, and A3 indicates a circle tangent at a curvature

extremum. This is ‘3-fold’ tangency because instead of two coincident intersections between

a circle and the curve we have four coincident intersections. The three types A2
1, A3

1, and A3

are the only generic forms of the medial axis in 2D. Similarly, it has been shown that generic

transitions under a one-parameter family of deformations are the A1A3 (tangency of types

A1 and A3 at distinct points) and A4
1 transitions [13]. The A1A3 transition occurs frequently

due to boundary noise and is recognized as one of the classical instabilities of the medial

axis. This transition is the result of formation of a bump on the boundary of the shape which

initially bends the medial axis, but when it grows in size it will eventually ‘break’ the axis

leading to the growth of a new branch, Figure 1(a). The second medial axis transition, the

A4
1 transition, occurs when a smooth A2

1 curve segment on the medial axis between two A3
1

points shrinks to a point so that the combination of two three-contact A3
1 points leads to a

single four-contact A4
1 point (this is generic only in a family of curves), Figure 1(a). As the

shape is compressed along the direction of the central A2
1 curve, this curve shrinks so that

eventually its A3
1 end-points overlap, as in the central figure in the top row of Figure 1, the

A4
1 transition. Additional deformations of the shape will form a new A2

1 axis by swapping the

pairing of the four branches coming into the A4
1 points.

An entirely analogous approach on 3D object recognition, 3D shape smoothing, etc. can

be developed if the structural instabilities, or the transitions, of the medial axis for 3D shape

are classified. The local form of the 3D MA has already been derived [14] and is summarized

below. This paper investigates the transitions of the medial axis in 3D, seven in total, following

3



Figure 2: The seven cases of MA transitions across a one-parameter family of shape defor-
mations.

the work of Bogaevksy on a more general problem [2, 3, 1]. Our contribution is threefold:

we derive the transitions by appealing to some general principles of singularity theory and

by a close inspection of the geometry of the medial axis; we give an idea of recent practical

applications of these results, and we give explicit examples of the transitions for families of

surfaces, thereby showing that these transitions do occur in the generic setting. It should be

noted that from a geometrical and practical point of view, there are potentially 2 × 7 = 14

transitions, since they may take place in either direction. We summarize the contribution

of this paper, the classification of MA transitions in Figure 2. When presented with two

‘nearby’ medial axes (e.g., obtained from different scans of the same object or closely similar

objects) it is important to be able to see transitions which are ‘about to happen’ in either

direction. The paper is organized as follows. First we describe the 3D local form of the MA
and give an overview of how the classifications of the transitions of the 3D MA are obtained

in Section 2. In Section 3 we present a geometric view of how the transition of the MA can

arise from collision of MA points, curves, and surfaces. In Section 4, we relate this approach

to the work of Bogaevsky. In Section 5 we show that each of the MA transition in fact does

occur by constructing an example for each and also simulating the transition process. Section

6 conclude the paper.

Recently James Damon has highlighted the importance of the transitions on the 3D medial
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Figure 3: From [21], (a) Example of a rectangular box uniformly sampled, but perturbed by
5 protrusions (4 on top, 1 on a side). (b) Medial scaffold with the three types of transitions
due to surface perturbations. (c) Regularized medial scaffold after transition removal. (d)
The “cut off” patches (in yellow) corresponding to the removed transitions. (e) A pot sherd
and (f) its medial scaffold. (g) medial scaffold after regularization.

axis in his analysis of the contraction of regions of 3-space onto their medial axis, and in

particular in the codification of the 3D medial axis as a multi-tree structure [10, 9].

2 The Local Form of 3D Medial Axis for a generic sur-

face

The goal of this paper is to study the transitions of the Medial Axis (MA) of the smooth

boundary S of a 3D shape as the shape evolves. The MA of S consists of the centers of

‘maximal spheres’ that is spheres which are tangent to S in more than one point and contained

entirely inside the region bounded by S, together with limit points of this set (where the two

or more contact points coincide).

The transitions are based on changes in the local form of the medial axis points of a smooth

surface S in 3-space; there are five such local forms corresponding to the order of contact of

the corresponding sphere of tangency (see for example [14]). We proceed to describe these

types; see Figure 4.

A2
1: ordinary tangency between a sphere and S is referred to as A1. The center of a sphere

5



tangent in this way at two distinct points—a ‘bitangent sphere’—is an A2
1 point of the MA

and these are organized into sheets with other neighboring A2
1 points. (See A in Figure 4.)

A3
1 or Y-junction point: this is the center of a sphere which is tangent at three distinct points

of S. They organize into curves (A3
1 curves or ‘axes’ or ‘Y-junction curves’) with neighboring

A3
1 points. For a tubular surface this represents a ‘central axis’. Each A3

1 curve is at the

intersection of three A2
1 sheets. (See B in Figure 4.)

A3 point: here, two contact points of a sphere with S come into coincidence; see the movement

from (a) to (b) in the lower row of Figure 5. The sphere is then said to have contact A3 with

S (and to be a sphere of type A3), while the center is an A3 point of the MA. These MA
points form an A3 curve, also called a rim or rib curve, which locally bounds a single A2

1 sheet.

The contact points of these spheres form a ridge or crest line on the surface. (For an extensive

discussion of ridges, see [15].) (See C in Figure 4.)

A4
1 point: isolated spheres may have four ordinary (A1) points of tangency with S. The center

of such a sphere is an A4
1 point of the MA. These are generic, in contrast with five points of

tangency or higher which disappear with small perturbations of the shape. The A4
1 points lie

at the intersection points of six A2
1 sheets and four A3

1 curves. For this reason, they are also

called ‘6-junction points’. (See D in Figure 4.)

A1A3 or fin point: the center of a sphere having ordinary (A1) contact at one point and

double (A3) contact at another. These points are isolated from other A1A3 points, but, most

significantly, both A3
1 curves (Y-junction curves) and A3 curves (rims or ribs) end at an A1A3

point. (See E in Figure 4.)

These five types of MA points, namely A2
1 (sheets), A3

1 and A3 (curves), and, A4
1 and

A1A3 (points) are the only generic types of MA points in 3D. However, certain non-generic

types such as A5
1 (five ordinary tangency points) can occur when the surface changes shape in

a generic way. A goal of this paper is to examine these cases.

In § 3 we examine how transitions, that is ‘higher singularities’ on the medial axis, can

be understood by the ‘collision’ of medial axis points of the types described above, except

for a few cases which are ‘invisible’ until the moment of transition. The possible collisions

are limited by the geometry of the situation and also by some ideas from singularity theory.

Thus we approach the problem from the opposite direction to Bogaevsky in [2, 3]: we ask

how, from a geometrical viewpoint, the medial axis points can become more degenerate—
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Figure 4: Left: A ‘closed bin’ with elliptical cross-sections, a top and a bottom, is indicated by
contour lines only. The MA contains sheets of A2

1 points (e.g. A: this is the center of a sphere
tangent to front and top); curves of A3

1 or Y-junction points (solid lines, e.g. B: tangency points top,
bottom and front); curves of A3 points (dashed lines, e.g. C: two tangency points coinciding at the
left); isolated A4

1 or 6-junction points (e.g. D: tangency points top, bottom, front and back); and
isolated A1A3 or fin points (e.g. E: tangency points top and two coinciding at the right). Right: a
close-up of the region around the A4

1 point D showing the six sheets of the MA which meet there.
One of these, a ‘horizontal’ sheet which consists of the centers of spheres which are tangent to the
bin at the top and the bottom, is occluded in the left-hand figure. Note that four A3

1 curves (dark
lines) meet at D, one of them containing the point B.

more special—by means of ‘events’ such as collisions. The strict mathematical approach of

Bogaevsky, which we describe briefly in § 4, starts from these degenerate situations and shows

what they must look like if they arise in a generic family of surfaces. Finally, in § 5 we take the

possible transitions one by one and construct an explicit example of each, which in addition

is illustrated with computer drawn pictures, some for parametrized surfaces and some for

point clouds extracted from images, and giving details of genericity requirements and other

geometrical data to aid the understanding.

3 Description of the transitions of medial axes in 3D

3.1 Singularities

The distance function d from a point P in 3-space to a smooth surface S will have a minimum

(indeed an absolute minimum) at X on the surface when P is the center of a sphere which

is entirely inside the region enclosed by S and tangent to S at X: that is, X is the nearest

point of S to P . The function d will have two equal (absolute) minima when P is the center

of a bitangent sphere, tangent to S at two points X1 and X2 say. The value of d at X1 and

X2 is equal to the radius of this sphere. Figure 5(a) illustrates this situation.

Singularity theory tells us which combinations of minima we can expect, both for a single
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generic surface and in the situation where a surface evolves in shape in a generic way. In fact

the meaning of the Ak notation (referred to as ‘a singularity of d of type Ak’) is that, in a

suitable local system of coordinates (u, v) at X on the surface S, the distance function from

the point P in 3-space takes the form d(u, v) = u2 + vk+1. Only odd values of k can make this

a minimum; k = 1 is a nondegenerate minimum.

Now two minima can tend to coincidence, and this is what happens when two ordinary tan-

gency points coincide at an A3 point (A2
1 → A3). Consider the family of functions parametrized

by λ: dλ(u, v) = u2 + v4 − 2λv2. For each λ > 0 this has an A1 saddle at (u, v) = (0, 0) and

two A1 minima at (0,±√λ). All three merge into one A3 minimum for λ = 0 and for λ < 0

there is just one local minimum at (u, v) = (0, 0). In an analogous way, as an A2
1 point P on

the MA approaches the A3 curve, the two A1 contact points between the sphere centered at

P and the surface S merge (in Figure 4, a point just to the right of C having limit C). After

the merger, there is only one local A1 contact point, which does not contribute to the MA.

See Figure 5.

P

X

XX 1 2

S

(a) (b) (c)

Figure 5: Top: graphs of the functions d = u2+v4−2λv2 for (a) λ > 0: two minima (A2
1) at the same

height and an A1 saddle; (b) λ = 0: one degenerate (A3) minimum; (c) λ < 0: one A1 minimum.
Bottom: (a) diagrammatic representation of a sphere tangent to a surface S in two points X1, X2,
the distance function from the center P resembling the figure above, one minimum corresponding
to each contact point. Similarly in (b) the two contact points have just coincided and the distance
function has an A3 minimum, and in (c) the sphere has ordinary A1 contact just in one point X.

Similarly, moving along an A3
1 curve we can encounter an A1A3 or fin point when two of

the contact points merge: A1(A1A1) → A1(A3). In Figure 4, this occurs as a point on the

solid line south-west of E tends to E). We can also, of course, move directly on a path from

A to E in Figure 4: A2
1 → A1A3.
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Let us think of the four local coordinates on S of two points X1 and X2 and the three

space coordinates of P as making up altogether 7 variables. To say that the sphere center P

is tangent to S at X1 and X2 imposes 5 conditions: the distances from X1 and X2 to P are

equal (1 condition) and the normals to S at X1 and X2 pass through P (2 conditions each).

So we expect a 7− 5 = 2-dimensional solution, and indeed P moves on a 2-dimensional sheet

of the MA. The A2
1 singularity is referred to as codimension one since P is confined to a set

one dimension less than that of the ambient 3-space. For an introduction to these ideas of

singularity theory see [5].

Singularity theory makes precise the notion of codimension for functions and also allows

one to check that A3
1 = A1A1A1 and A3 have codimension 2 (P is confined to curves) while A4

1

and A1A3 have codimension 3 (P is confined to points). In general AkA` · · · has codimension

k+`+· · ·−1. The theory predicts which kinds of singularities can merge together to form more

degenerate ones. Also it predicts which additional singularities can occur when the surface

is permitted to change shape in a generic way, governed by a new parameter t (time) say:

this provides an extra variable so for example A5
1 has codimension 4 and can now occur for

isolated points P and moments of time t since together these give us four degrees of freedom.

There are certain geometrical situations where codimension can increase. For example,

A4
1—a sphere tangent in four places to S—usually has codimension 3, so occurs for isolated

points of the MA of a generic surface, such as D of Figure 4. But if these four points are

special, in fact if they are coplanar, then the codimension goes up to 4, and we expect to

meet this only at isolated points and moments of time. This is the ‘A4
1 transition’ which we

will meet below; see Figure 15. There is one other case where this increase of codimension

occurs, namely A1A3, which can also have codimension 4 in special configurations. These

‘A1A3 transitions’ are illustrated in Figures 17,18.

In principle we expect to meet all combinations of singularities whose codimension is ≤ 4,

when studying distance functions on a family of surfaces evolving with one ‘time’ parameter

t. (Only those giving minima are of interest for the MA1.) In addition, the ways in which

singularities can merge (e.g. A3
1 → A1A3) is limited by general considerations from singularity

theory: for a start, the codimension must strictly increase. See Figure 2.

However, in any special geometrical situation, such as that of distance functions, as opposed

1This rules out the so-called umbilic singularities, D±
4 , whose normal form is u3 ± uv2 which is not a

minimum.
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to abstract families of functions, we have to check that all the ‘expected’ combinations actually

occur. This is done, for example in [11] for the MA of a generic surface, and in the present

article for families of surfaces. That is, the singularity theory limits what can possibly occur

to a definite list, but it is then necessary to check explicitly which items in the list actually

occur in the situation at hand. It is also desirable to explain their occurrence in a geometrical

way, and our aim here is to do just that.

Codim- Original Singularities available
ension singularity type close to it

4 A5 A1A3, A3
1, A3, A2

1

4 A2
1A3 A1A3, A4

1, A3
1, A3, A2

1

4 A5
1 A4

1, A3
1, A2

1

3* A4
1 A3

1, A2
1

3* A1A3 A3
1, A3, A2

1

2 A3
1 A2

1

2 A3 A2
1

A5
1 A2

1A3 A5

↖ ↗ ↖ ↗
A4

1 A1A3

↖ ↗ ↖
A3

1 A3

↖ ↗
A2

1

Figure 6: The table on the left lists the combinations of singularities which in principle can occur
for distance functions on a surface evolving with one parameter (time t), and, in the third column,
the singularity combinations which can exist in a neighbourhood. Thus in any row, the singularity
combinations in the third column are available to merge into the singularity combination in the
second column. (The two singularities with codimension marked with an asterisk * are those which
have special configurations of codimension one higher; see the text.) The diagram on the right
summarizes this information.

3.2 A geometrical view of the MA transitions

In this section, we shall systematically treat the various local transitions on the medial axis,

using a number of geometrical principles to guide us, as well as the singularity-theoretic

principles outlined in the preceding section. In §3.2.1 we consider those few cases in which

a contact sphere can acquire an additional or more degenerate contact without effecting any

change in the local topology of the medial axis; we call these ‘invisible’ since the change only

occurs at the transitional moment itself. The remaining cases, in which singularities can be

considered as visibly colliding on the medial axis, are covered in §3.2.2-3.2.5. All the visible

cases are summarized in Tables 2 and 3.

3.2.1 ‘Invisible’ transitions: Consider spheres with contact of the three types A2
1 (on a

sheet of the medial axis), A3
1 (axis, Y-junction curve) and A3 (rib line). In a perturbation of

the surface it is possible for these three to acquire an additional point of contact in such a way

that the connectivity of the medial axis is unaffected. This can only happen if the additional
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A A A A A1 1 12 3
2 3

Figure 7: This figure illustrates the notation An
k in the context of the order of contacts with

circles in 2D.

contact coincides (as a limit) with one of the existing contacts, turning an A1 into an A3 and

an A3 into an A5; see Table 1.

Starting point Event Result Figure
A2

1 one A1 becomes A3 A1A3 17
A3

1 one A1 becomes A3 A2
1A3 20

A3 third contact coincides with A3 A5 23

Table 1: “Invisible” transitions.

No other possibilities yield generic singularities from the Table of Figure 2; it is note-

worthy that the above three cases all correspond to ‘double specializations’ in the diagram

of Figure 2. For a 1-parameter family of surfaces, the additional degree of freedom allows

additional specializations beyond those expected for generic shapes; the latter make up the

last three rows of the diagram. The transitions number seven two-step specializations in total,

namely, A2
1 → A4

1, A2
1 → A1A3, A3

1 → A5
1, A3

1 → A2
1A3, A3

1 → A5, A3 → A2
1A3, A3 → A5.

We can expect to observe all the two-step specializations, but the four not in Table 1, namely

A2
1 → A4

1, A3
1 → A5

1, A3
1 → A5, A3 → A2

1A3, require the addition of a contact point away

from the pre-existing ones, which will change the connectivity of the medial axis. These are

covered below.

3.2.2 Collisions of singularities: The five types of medial axis points can potentially give

rise to 25 different ‘collisions’ where one singularity approaches another and they coalesce. A

crucial ingredient of our enumeration of cases is the following proposition which states that

singularities can only approach one another in a sheet of the medial axis.

Proposition 3.1 Let P be a point of the medial axis of the surface S at which the singularity

is of the simplest kind, A2
1, so that the medial axis is smooth at P . We can therefore consider

a sufficiently small neighborhood U of P in 3-space, contained inside the region D bounded by

the maximal sphere whose center is P , and intersecting the medial axis in a smooth surface
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patch M . Then U does not contain any points of the medial axis of S besides those in M .

Proof. Let P+ be one of the points of contact of the maximal (bitangent) sphere centered

at P with S and let p be a point on the radius of this sphere from P to P+ other than P

itself. Suppose p is on the medial axis; then it is the center of a maximal sphere which bounds

a solid ball D′. This ball D′ cannot have the point P+ in its interior since D′ would then

contain points outside S. In that case D′ must be small enough to be entirely inside D, and of

radius strictly smaller than the radius r of D. It follows that the points where the boundary

sphere of D′ is tangent to S must also be strictly inside D, which is impossible for a maximal

sphere. It now follows that all the radii outwards from smooth points of the medial axis near

P fail to contain points of the medial axis other than the points of the smooth A2
1 sheet near

P . But over a smooth piece of the medial axis the boundary retracts to the medial axis along

the radii, so these radii fill out a neighborhood of P in the surrounding 3-space, and this

completes the proof. ¤

The significance of this result is that in a transition, a branch of the medial axis does not

approach a point of a smooth A2
1 sheet except along the smooth sheet itself. It cannot approach

through the ‘empty space’ between the sheets of the medial axis.

The key ingredient of the proof above is that the radial lines fill out a region of space.

This also holds at A3
1 and A3 points, so we have:

Corollary 3.2 The result of Proposition 3.1 holds also for the A3
1 and A3 cases, so that other

points of the medial axis cannot approach these curves through the ‘empty space’ between the

sheets, but only along the sheets or curves themselves. ¤
Thus two A3

1 curves cannot normally meet, but they can if they lie on the same sheet of

the medial axis: they can then approach and become tangential. Again, A3, A1A3 and A4
1

points can only be ‘approached’ along sheets of the medial axis through them, not through

the ‘empty space’ between the sheets.

When discussing the possible collisions of singularities, it will be useful to adopt a schematic

approach. We shall consider two spheres, centered at points P and Q on a particular A2
1

sheet Σ of the medial axis, namely (following Proposition 3.1) the sheet along which these

singularities approach each other in the transition. These spheres are of types whose collision

is being considered.

As an example, consider two different types A4
1 and A1A3 (Figure 8). Suppose that they

have contact with the boundary surface S at named points such as A,B, C, D for the A4
1 and
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E = F, G for the A1A3, the symbol E = F indicating that two contact points have coincided

in an A3. Each pair such as A,B corresponds to a sheet of the medial axis through P and

we denote this sheet by AB: it consists of centers of spheres whose tangency points move

away from A and B . Note that EF also legitimately denotes a sheet whose boundary, which

we denote by rib(EF ), is the A3 curve (rib line) through Q. Let the family of surfaces St

be parametrized by a ‘time parameter’ t, starting at t = 0, with t = 1 corresponding to the

collision of the singularities. The two contact spheres will move continuously towards each

other as t changes, making P , Q and the contact points functions of t. In the limit as t → 1

the contact points on the first sphere must come into coincidence with those on the second

sphere. There will be a number of ways in which this can happen, and we shall list these

ways when considering a particular case. Suppose in the example that the sheet in which P

and Q lie is AB = EF . Thus, for each point in time t, there is a path from P to Q in this

sheet, and corresponding ‘contact curves’ on each St which are the traces of A,B,E = F on

St. Further, as t → 1 and the path PQ shrinks to a point, these contact curves shrink to

points, identifying A and B with the common limit of E and F .

The triple A,B, C defines an A3
1 curve which we will label ABC; it lies in the medial sheet

AB, as does the A3
1 curve EFG; if one of the points C, D coincides with G at t = 1 then we

can relabel if necessary so that it is C which does this. The sheet AB then contains two A3
1

curves.

Proposition 3.3 Whenever two A3
1 curves lie in the same sheet AB, each having an endpoint,

P and Q, respectively, and if P collides with Q, then either (1) at t = 1 the A3
1 curves become

aligned, that is have the same tangent, and merge into a single A3
1 curve; or (2) the A3

1 curves

are in fact the same one, that is the points P and Q are connected by an A3
1 curve in the sheet

AB, and this A3
1 curve shrinks to a point.

To see this, note that the tangent line to an A3
1 curve is determined by the positions of the

three contact points on the sphere: the rule is that for distinct contact points the tangent to

the A3
1 curve is perpendicular to the plane of those points; and for points of the form E = F, G,

it is perpendicular to the plane spanned by G and the principal direction at the ridge point

E = F corresponding to the ridge. See [14]. The result follows from this and the fact that

these two triples of points on the two spheres have become identical at t = 1. (Note that the

A3
1 curves cannot become tangent pointing in the same direction (making a cusp) since the

two spheres are both maximal.) ¤
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Note that, in contrast, A3 curves, which are boundary rib-lines of sheets of the medial

axis, cannot align as in (2) of the above proposition. If our points P and Q are endpoints of

A3 curves then, as t → 1, the A3 curve will shrink to a point.

3.2.3 Collision of points with points: Since there are two kinds of generic point singular-

ities for a surface S, namely A4
1 and A1A3, there are three cases to consider.

(a) Collisions of A4
1 with A1A3 (Figure 8) As in the above discussion we can label the

contact points for A4
1 (center of sphere P ) by A,B, C, D and those for A1A3 (center of sphere

Q) by E = F,G. Then we can first use genericity to limit the possibilities as follows:

• Three of A,B, C, D cannot have the same limiting position as t → 1 since this would

produce a singularity A5A1 at least, hence not generic;

• If only one of A,B,C,D had the same limit as E = F then we would have A3
1A3 at least,

hence not generic;

• Hence, at least two, and hence exactly two of A,B, C, D have limit E = F as t → 1.

• Of the remaining two from A, B, C, D, one must have limit G and the other remain free, since

other possibilities lead to non-generic singularities A2
3 or A3

1A3. Hence the limiting singularity

must be A2
1A3.

There is a further observation which, though not crucial, does help to reduce to two

possible outcomes. Through Q, as through any A1A3 point, there is one A3
1 curve and one

A3 curve. Through P , as through any A4
1 point, there are four A3

1 curves. On the other

hand an A2
1A3 singularity will have at most four A3

1 curves. (If the contact points of the

A1s are at X,Y say and the A3 at Z then there are A3
1 curves corresponding to contacts near

(X,Y ), (X,Z), (Y, Z) and (Z, Z).) Hence one A3
1 curve certainly disappears in the transition,

and there must therefore be such a curve joining P and Q. (Since this counts for both P and

Q, in fact two A3
1 curves will disappear.) There are three sheets through this (as through

any) A3
1 curve, so let us choose the sheet which also contains the A3 curve at Q. Finally,

let this sheet correspond with contact points A,B for the sphere centered at P . The sheet

will contain A3
1 curves ABC, ABD as well as the A3 curve EF . The situation is illustrated

schematically in Figure 8. Note that since the sheet AB is also the sheet EF , we have, as in

Proposition 3.3, that the A3
1 curves ACD, BCD, which are outside this sheet, must line up to

have a common tangent as the singularities collide.

There are two possibilities: the curves ABD and rib(EF ) can collide at another A1A3

before t = 1, or they can stay separate, depending on the angles in the figure. These lead

14



P Q
A B = E F

A B D

A B C

r i b ( E F )
A B

CD

E = F

G
P Q

A C D

B C D
Figure 8: (§3.2.3(a)) A schematic representation of an A4

1 at P and A1A3 at Q, before collision.
The contact points are A,B, C, D for the first sphere and E = F, G for the second. The A3

1 curves
are indicated by thick lines in the right-hand figure, those which are dashed being outside the sheet
represented by the plane of the figure. The thin curve is the A3 curve, rib(EF ) which forms the
boundary of the EF sheet. The thin dashed lines on the left indicate contact points which come
together at the transition t = 1. The curves ABC and rib(EF ) might collide in a further A1A3 or
they might remain separate, giving two cases (a1) and (a2) as in the text.

respectively to (a1) A2
1A3-I ↑ (that is, in the upward direction of Figure 13); and to (a2)

A2
1A3-II ↑. These are further illustrated in Figures 20 (right to center), 21 (right to center);

see also Figure 19.

(b) Collisions of A4
1 with A4

1 (Figure 9) Let the contact points be A,B,C,D on the sphere

center P and E, F,G, H on the sphere center Q, as in the schematic Figure 9. Using genericity,

it follows that all of the points A,B, C, D must have different limits as t → 1. For example, if

A and B had the same limit then the result would be A3
1A3 at least. So there are two cases:

(b1) A, B, C, D have limits at the same points as E, F,G, H (we can assume they are in that

order). Since the result is an A4
1 singularity, four A3

1 curves must disappear in the transition,

that is, P and Q must be connected by two such curves. Choose one of the three sheets

through one of these curves; without loss of generality we may assume this sheet is AB and

EF , so that A and E become identified as t → 1 and likewise B and F . We can then assume

that the A3
1 curve joining P and Q is ABC, and that the pairs (C, G) and (D,H) become

identified. We therefore build up the diagram of Figure 9(a). In order for two A3
1 curves

to connect P and Q, two of the remaining A3
1 curves must be identical and without loss of

generality we can take these as ABD and EFH. Finally, we note that, using Proposition 3.3,

the remaining A3
1 curves, ACD and EGH must become tangent, and BCD,FGH likewise.

But ACD, BCD become part of the same A3
1 curve in the limit, so they must become tangent

too and likewise EGH and FGH. So all four are tangent, which has the further consequence

that the four contact points A,B,C,D (or E, F, G, H) are coplanar at t = 1. This corresponds

to A4
1 ↑ in Figure 13, and is further illustrated in Figures 15, 16, right to center.

(b2) Three of A,B,C have the same limits as E, F, G (say), and D and F remain free. This
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(a) (b)

Figure 9: (§3.2.3(b)) A schematic representation of A4
1s at P and Q, before collision. The contact

points are A, B,C, D for the first sphere and E,F, G,H for the second. The thick lines are A3
1 curves,

dashed if they are not in the sheet represented by the plane of the diagram. Thin dashed lines are
contact points which coincide at t = 1. (a) Represents the Case 3.2.3(b1) in the text, resulting in
an A4

1 singularity where all the contact points are coplanar. (b) Represents Case 3.2.3(b2), where
the result is A5

1, but, depending on the angles, the A3
1 curves ABD, EFH might or might not meet.

results in A5
1. In this case, two A3

1 curves must disappear in the transition, to leave the six

expected at an A5
1, so that P and Q are connected by such a curve in a sheet containing both

of them. Since this curve shrinks to a point, the A3
1s in question must be ABC and EFG and

we can assume that the sheet is AB = EF . The figure is therefore the same as Figure 9(b)

but now the two curves ABD,EFH will not be the same curve. Instead, there are two cases

according as these curves collide, creating an A4
1, or not. These are the two cases of A5

1 ↑ and

A5
1 ↓, respectively in Figure 13, also illustrated in Figure 14.

(c) Collisions of A1A3 with A1A3 (Figures 10, 11) In this case there are a number of

possible outcomes of the process of identifying the three contact points A = B,C for the

sphere centered at P with the three contact points D = E, F for the sphere centered at Q, as

t → 1.

(c1) A = B, C can all have limits at the same point, resulting in A5; the only generic case

then is for D = E, F to have the same limit.

(c2) The points A = B could identify with D = E, leaving C and F free; this results in

A2
1A3.

(c3) The points A = B could identify with D = E and the points C and F could identify,

resulting in A1A3 in the limit.

Case (c1) (Figure 10) In the case of A5 there is no A3
1 curve in the limit (this will be further

studied in § 5; compare Remark 5.1). Hence the A3
1 curves from P and Q must disappear,

that is, P and Q are joined by such a curve, which as usual lies in three sheets of the medial

axis, two of which are AB, with A3 curve rib(AB), and DE, with A3 curve rib(DE). The

remaining sheet of those surrounding the A3
1 curve can be labelled AC,BC, DF or EF . The

situation is as in Figure 10(a). This is A5 ↑ in Figure 13, which is also illustrated in Figure 23,
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(a)

A = B

C

D = E

F
P Q P QA B C = D E F

r i b ( A B ) r i b ( D E )
D EA B

A C = B C = D F = E F (b)

A = B

C

D = E

F
P Q A B C

r i b ( A B ) = r i b ( D E )P Q

D E F
A B = D E

A B C

r i b ( A B ) = r i b ( D E )P Q

D E F
A B = D E

R

Figure 10: A1A3 collision with A1A3. (a) This represents Case 3.2.3(c1) in the text, which results
in an A5 singularity. A schematic representation of A1A3s at P and Q, before collision, is shown (b).
This represents Case 3.2.3(c2) in the text, which results in an A2

1A3-II singularity. The A3
1 curves

ABC and DEF intersect at a further A4
1 point R.

right to center.

Case (c2) (Figure 10) In this case, the A3 contact curves AB and DE must connect since

these are the only ones which shrink to a point as t → 1. Thus we can use the common sheet

AB = DE for our diagram. This sheet will also contain the A3
1 curves ABC and DEF , as in

Figure 10(b). There is an interesting phenomenon at work here: by a general result on A1A3

points [14, §4.5], the tangents to the A3 and A3
1 curves at an A1A3 point are always coplanar

with the normal to the surface and on the same side of it. Since the normals to the surface

at contact points A = B and E = F coincide in the limit as t → 1, the A3
1 curves ABC and

DEF are in fact forced to intersect, giving a further A4
1 point R say as in Figure 10(b) right.

Furthermore, as in Proposition 3.3, as the triangle formed shrinks to a point, the A3
1 curves

at R will align to become a single A3
1 curve at t = 1. This is the situation of A2

1A3-II ↑ in

Figure 13, which is also illustrated in Figure 21, right to center.

Case (c3) (Figure 11) The two A1A3 singularities at P and Q approach along a common

sheet which could be AB = DE or AC = DF . In either case this sheet contains the A3
1 curve

ABC = DEF . Hence, as in Proposition 3.3, P and Q either approach along an A3
1 curve or

are end-points of A3
1 curves which align themselves as t → 1. We draw the diagram using the

sheet AB which because of the identifications of this case, will equal the sheet DE. There

are essentially two cases, depicted in Figure 11. In the first case (left diagram), the two rib

lines rib(AB) and rib(DE) must join since the curve PQ shrinks to a point. This is A1A3-I↑
in Figure 13, also illustrated in Figure 17, right to left in (a). The second case (right diagram

of Figure 11) is A1A3-II↑ in Figure 13, also illustrated in Figure 18, right to center.

3.2.4 Collision of curves with curves: There are two kinds of curves, namely A3
1 and A3

curves. The fact that a collision must take place in a sheet of the medial axis containing both

curves (Proposition 3.1 and Corollary 3.2) shows that, at the transition moment (called t = 1
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A = B

C

D = E

F
P Q

P Q P QA B C = D E F A B C D E F
o rA B = D E

r i b ( A B ) r i b ( D E )
r i b ( A B ) = r i b ( D E )

A B = D E

Figure 11: A1A3 collision with A1A3. This represents Case 3.2.3(c3) in the text, which results in
an A1A3-I (left) and A1A3-II (right) singularity.

in the discussion above), the curves must be tangential.

(a) In particular, when two A3
1 curves collide, there will be a loss of two contact points,

resulting in an A4
1. In the notation used above, we have contact points A,B,C and D, E, F

say, and collision takes place in (say) the sheet AB = DE, the two A3
1 curves being ABC and

DEF . Then at the transition, the points A and D coincide, and B and E coincide, leaving

C and F free and making four contact points. Furthermore, since the tangents to ABC and

DEF are the same at the collision point, the triangles ABC and DEF have the same normal2,

so that the four contact points are coplanar. This is the transition A4
1 ↓ in Figure 13; compare

Case (b1) in §3.2.3. See also Figures 15 and 16, left to center.

(b) When an A3
1 and an A3 curve collide. moving in a sheet of the medial axis, the curves

become tangential at the transition moment. With contact points A,B, C and D = E, F , the

sheet is DE, and this must equal one of the sheets obtained from A,B, C, say AB. So A

and B both have the same limit as D = E, and since the A3
1 curve ABC and the A3 curve

rib(DE) become tangential, we must have C,F having the same limit. The result is therefore

an A1A3 singularity, as in A1A3- II↓ of Figure 13. See also Figure 18, left to center.

The collision of two A3 curves in one sheet is not generically possible since the points of

contact of the corresponding maximal spheres must be on opposite sides of the sheet and

therefore the result will be a non-generic A2
3 singularity. It is worth remarking here that

generic evolution of A3 curves (ridges crest lines) in a 1-parameter family of surfaces has been

examined in detail in [6]. Two ridges can indeed collide, but this event always involves A4

points (‘turning points’), that is spheres where the contact is of a type which cannot occur for

the medial axis since it does not represent a minimum of the distance function (compare § 3.1).

Thus as far as the medial axis is concerned, the events are not visible. The A5 transition,

described in Case (c1) of §3.2.3 and in §5, also involves A4 points but here two of them come

together and disappear in the transition, making it visible on the medial axis.

2The rule for determining the tangent to an A3
1 curve is recalled in the proof of Proposition 3.3 above.
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3.2.5 Collisions of curves with points: There are four cases to consider. Cases (a) and

(b) below are illustrated in Figure 12.

(a) A3
1 and A4

1 Let the contact points be A, B, C and D, E, F,G and let the common sheet be

AB = DE; see Figure 12(a) for a schematic picture. However, the angle between any two A3
1

branches at an A4
1 is less than 180◦ in the sheet in which they lie3. So what actually happens

is that the two A3
1 branches DEF,DEG meet the branch ABC before the transition, making

generic A4
1 singularities via an A4

1 transition; the result is a ‘triangle’ of A4
1s which disappears

in the transition, as in A5
1 ↑ of Figure 13, also Figure 14, right to center.

(a)

A B

C

D E

G

P

Q
F A B C

D E F

D E G
A B = D EA B = D E

A B C

D E F

D E G
(b)

Figure 12: See §3.2.5. (a) The collision of an A3
1 curve and an A4

1 point actually produces a ‘triangle’
of A4

1 points which collapses during the transition to an A5
1. (b) The collision of an A3 curve and an

A4
1 point actually produces a ‘triangle’ of two A1A3 points and an A4

1 point which collapses during
the transition to an A2

1A3. Thick lines are A3
1 curves and thin ones are A3 curves.

(b) A3 and A4
1 This is a analogous to the case just considered. Working in the sheet containing

the A3 curve, the angle property of A4
1 points ensures that, before the transition, there will be

tangency between the A3 curve and two A3
1 branches in the same sheet, as in (a) above. The

result is a ‘triangle’, two of whose vertices are A1A3 points and the other one an A4
1 point,

which collapses in the transition, Figure 12(b). This corresponds with A2
1A3-II↑ of Figure 13

and has in fact been met above, as Case (a2) of §3.2.3, see also Figure 21, right to center.

(c) A3
1 and A1A3 This one is straightforward to analyse by the same means; the result is

A2
1A3-I↓ in Figure 13. See also Figures 20, left to center and 19, center to right.

(d) A3 and A1A3. Let the contact points be A = B and C = D,E. To avoid a non-generic A2
3

singularity, the common sheet must be AB = CE (rather than AB = CD), and the A3
1 curve

CDE lies in this sheet. But this implies that all of A = B,C = D,E have the same limit

point at the collision, that is, the sphere has A5 contact. But the A5 singularity has no A3
1

curve (compare Remark 5.1) so in fact the A3
1 curve CDE must shrink to a point, hence there

must be another A1A3 point which collapses at the same time. This is the A5 ↑ transition of

Figure 13, already encountered in Case (c1) of §3.2.3, Figure 23, right to center.3For a detailed analysis of the A4
1 configuration, see [14].
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Reference Collision of Transition Figures illustrating transitions
singularities (Fig. 13)

§3.2.3(a1) A4
1 with A1A3 A2

1A3-I↑ Fig. 20 right to center; Fig. 19, right to center
§3.2.3(a2) A4

1 with A1A3 A2
1A3-II↑ Fig. 21 right to center; Fig. 19, center to left

§3.2.3(b1) A4
1 with A4

1 A4
1 ↑ Fig. 16 right to center; Fig. 15 right to center

§3.2.3(b2) A4
1 with A4

1 A5
1 ↑ Fig. 14 right to center

§3.2.3(b2) A4
1 with A4

1 A5
1 ↓ Fig. 14 left to center

§3.2.3(c1) A1A3 with A1A3 A5 ↑ Fig. 23 right to center
§3.2.3(c2) A1A3 with A1A3 A2

1A3-II↑ Fig. 21 right to center; Fig. 19, center to left
§3.2.3(c3) A1A3 with A1A3 A1A3-I↑ Fig. 17 right to left
§3.2.3(c3) A1A3 with A1A3 A1A3-II↑ Fig. 18 right to center
§3.2.4(a) A3

1 with A3
1 A4

1 ↓ Fig. 15 left to center; Fig. 16 left to center
§3.2.4(b) A3

1 with A3 A1A3-II↓ Fig. 18 left to center
A3 with A3 not possible ——

§3.2.5(a) A3
1 with A4

1 A5
1 ↑ Fig. 14 right to center

§3.2.5(b) A3 with A4
1 A2

1A3-II↑ Fig. 21 right to center; Fig. 19, center to left
§3.2.5(c) A3

1 with A1A3 A2
1A3-I↓ Fig. 20 left to center; Fig. 19, center to right

§3.2.5(d) A3 with A1A3 A5 ↑ Fig. 23 right to center

Table 2: A summary of transitions arising from collision of point and curve singularities. §3.2.3 is
point with point; §3.2.4 is curve with curve and §3.2.5 is point with curve.

4 Relationship with the work of Bogaevsky

In [2, 3], I.A. Bogaevsky examines several related problems connected with the classification

of transitions (perestroikas) of ‘minimum functions’. That is, we consider a local family of

functions of the form F (t,x) = minf(t,x,y) where t is a ‘time’ parameter (so a single real

parameter), x ∈ R3 and y, over which the minimum is taken, is in a Euclidean space which

for the medial axis application would be 2-dimensional, corresponding to the 2-dimensional

surface S whose medial axis is being considered. For each value of t close to some t0 (the

moment of transition) we can consider the set X of points x for which F is not differentiable.

Bogaevsky provides a complete list of these transitions, provided the function f is generic.

There are also two special cases considered. The first one, described as ‘shocks’ (these are

not the same as the shocks which we associate with a dynamical construction of the medial

axis) is one to which an ‘arrow of time’ can be associated, where in fact the local topology of

the set X as above is ‘trivial’ (homotopic to a point) for all t ≥ t0: we might say loosely that

moving through the transition from t < t0 to t > t0 ‘simplifies the topology.’

The second special case is the one which concerns us most closely. Here, the topology of

X is trivial for all t close to t0, and this corresponds to the well-known fact that the medial

axis of a smooth compact connected surface is locally contractible to a point. The resulting

transitions are shown in Figure 13, reproduced from Bogaevsky’s work, in which he has used
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Transitions Collision of singularities Figures
in Figure 13

A1A3-I (A1A3, A1A3) 17←
A1A3-II (A1A3, A1A3) 18←
A1A3-II (A3

1, A3) 18→
A4

1 (A4
1, A4

1) 15←, 16←
A4

1 (A3
1, A3

1) 15→, 16→
A5

1 (A4
1, A4

1) 14←
A5

1 (A4
1, A4

1) 14→
A5

1 (A3
1, A4

1) 14←
A5 (A1A3, A1A3) 23←
A5 (A3, A1A3) 23←

A2
1A3-I (A4

1, A1A3) 20←
A2

1A3-I (A3
1, A1A3) 20→

A2
1A3-II (A4

1, A1A3) 21←
A2

1A3-II (A1A3, A1A3) 21←
A2

1A3-II (A3, A4
1) 21←

Table 3: A summary of the generic ways transitions can arise from collision of point and curve
singularities.

topological and some algebraic constraints to narrow down the list from a larger one. In

principle these might still include some extras which cannot occur for surfaces (there might

in principle be other constraints), but in §5 we in fact exhibit an explicit family of surfaces

for which the medial axis undergoes each transition in turn. There is also the assumption

that the family of distance functions is generic4. Thus in our situation we have a family of

surfaces parametrized say by Γ(t,y) where t is the 1-dimensional time parameter and y is

2-dimensional. We then define f(t,x,y) = ||x − Γ(t,y)||2. The usual medial axis is simply

the set of points for which the corresponding minimum function (minimum over y) is not

differentiable.

5 Examples and Illustrations

In this section we shall present explicit examples of the transitions described in §3. This serves

two purposes. One is to show that the theoretically derived transitions can actually occur—

this does not follow from either our geometrical arguments or from the results of Bogaevsky

in §4. Note that in order to show that the theoretical transitions really occur we need to verify

4A technical difficulty that has so far not been resolved is whether this is equivalent to studying the

transitions of the medial axis for a generic 1-parameter family of generic surfaces. Previous examples where

this problem has arisen (e.g., the study of caustics by reflection) have been answered positively, but each case

needs a separate and rather lengthy investigation.
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A1A3-I A5
1 A4

1 A5 A1A3-II A2
1A3-I A2

1A3-II

Figure 13: A summary figure of those singularities (perestroikas) that relate to the transitions
of the medial axis in 3D, as presented by Bogaevsky in [2, 3]. Double lines represent A3 curves,
triple lines represent A3

1 curves (Y-junction curves), small circles represent A1A3 (fin) points,
and double circles represent higher singularities.

that our models satisfy certain technical genericity conditions. This is done in [24]; here we

shall merely mention from time to time the result of checking these conditions. The second

equally important purpose is to guide the intuition in understanding what is happening during

the transitions by exhibiting a simple occurrence of each one.

1) The A5
1 transition: This can be generated quite easily by taking five planes tangent to

a sphere, for example making a triangular prism. One of the sides of the triangle can now

be moved so that the sphere remains tangent to four planes but loses contact with the fifth.

Depending on which way the side moves, either two or three A4
1 points are created on the medial

axis. This is illustrated in Figure 14, where the five planes are x = 0, y = 0, z = 0, z = 1

and ax + 4y = 12. The transition is obtained by allowing a to pass through the value 3.

The first figure shows just the A3
1 lines, drawn exactly, and the second shows a simulation by

F. Leymarie, using the techniques of [20].

2) The A4
1 Transition: There are a number of ways of generating this transition. One is by

starting with a surface S whose horizontal sections are ellipses, say 2x2 +y2 = z +1, which we

cut by planes z = 0, z = k > 0 forming a ‘lid’ and ‘base’ to the object. As k decreases, there

will come a critical moment at which there exists a sphere tangent to both lid and base and

tangent twice to the elliptical cylinder S, at ‘front and back’, and entirely contained within

the closed object. Calculation shows this to occur at k =
√

2 + 1
2
. These four contact points

will automatically be coplanar, and the transition is observed as the ends continue to come

closer together.

Figure 15, left, shows the curved surface of S (without the lid and base) and the medial

axis for a value of k large enough that there is no sphere tangent to the lid and the base which
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(a)

(b)

Figure 14: (a) An A5
1 transition is illustrated through the change in the A3

1 lines. This left to right
direction here corresponds to the downwards direction of A5

1 in Figure 13. In this model, the outer
straight edges of the ‘wedge of cheese’ count as A3 lines. (b) A different simulation of the same shape.
Both directions have been described as a collision of A4

1 points in §3.2.3(b2). The right-to-center
transition has also been described as a collision of an A3

1 curve and an A4
1 point in §3.2.5(a).

fits inside. This figure was produced by means of exact calculation and a Maple program. The

next three parts of this figure show, using the program of F. Leymarie, the A3 and A3
1 curves

of the medial axis through the transition. When the lid and base are close enough, there is a

horizontal A2
1 sheet containing centers of spheres tangent to the lid and the base. An exact

figure is in Figure 15, extreme right and also in Figure ??. Another example, the squeezed

tube, is shown in Figure 16.

Note on genericity In order to generate this transition we need the four contact points of the

A4
1 sphere to be coplanar. In a family of surfaces these contact points will move continuously.

To generate a generic transition we need also this movement to have the effect that (i) the

points become non-coplanar, (ii) each contact point moves in a direction that is not tangential

to the sphere at that point. For more details, see [24].

3) The A1A3-I Transition : Consider a medial axis sheet (A2
1 points) arising from two

boundary surfaces. An analogous perturbation to the planar example in Figure 1 occurs when

one of the boundary surfaces is protruded to form a bump. A good example of a generic bump

is a two-dimensional Gaussian with asymmetric sigmas, that is,

z = f(x, y) = A exp

(−x2

2σ2
x

)
exp

(−y2

2σ2
y

)
where σx < σy. (1)
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Figure 15: Illustration of the A4
1 transition. Far left: an ‘elliptical cylinder with flat ends’ (the ends

are not drawn) and its medial axis, plotted using MAPLE and exact calculation. The next three
figures show the A3 and A3

1 curves evolving through the transition, as the ends of the cylinder become
closer together. Left to right is the downwards transition in Figure 13. Two A4

1 points are created
in this transition, visible in the figure on the right as crossings of the A3

1 curve; see also §3.2.4(a).
Right to center has been described in §3.2.3(b1). Far right: an exact calculation of the medial axis
after the creation of A4

1 points, with three of the A2
1 sheets drawn in black and the other two larger

sheets in wireframe.

Figure 16: Another realization of an A4
1 transition, obtained by ‘squeezing’ a tube. Left to right

is the transition in the downward direction in Figure 13, and left to center has been described as a
collision of two A3

1 curves in §3.2.4(a). The transition right to center has been described as a collision
of two A4

1 points in §3.2.3(b1).

Since the larger principal curvature is along the yz plane, the medial axis sheet arises from

the centers of curvature of the curve z = f(x, 0), whose curvature κ(x) given by

κ(x) =
f ′′(x, 0)

(1 + f ′(x, 0)2)
3
2

=
A

σ4
x

exp

(−x2

2σ2
x

) (
x2 − σ2

x

)
.

In particular, κ(0) = −A/σ2
x. This implies that in the absence of additional structure, the

Gaussian bump will form an A3 point at
(
0, 0, f(0, 0) + 1

κ(0)
= A− σ2

x

A

)
. For a bump which is

barely visible, the ratio of σ2
x to A is very high, that is the spread of the protrusion is much

larger than its magnitude. Thus, the center of curvature forms very far from the peak and

the presence of any other structure typically prevents the formation of the A3 point. As the

salience of the bump increases in a one parameter family of perturbations, i.e., as the ratio
σ2

x

A
decreases, at some point the (thus far non-maximal) sphere of curvature of the bump also

forms a contact elsewhere, forming an A1A3 transition. This is parallel to the 2D case shown

24



in Figure 1(a). From this point onward, the sphere is maximal and the corresponding medial

point emerges, undisturbed by other structure. Figure 17 shows a simulation with σy = 2.5,

σx = 1.

(a)

(b)

Figure 17: The A1A3-I transition during which a ‘fin’ passes through another sheet of the medial
axis, caused by a rising bulge in the upper boundary surface. The moment of appearance of the fin
is described as an invisible transition in §3.2.1, and the reverse transition, where the fin disappears,
as a collision of two A1A3 points in §3.2.3(c3). (b) A different view of the figure on the right in (a).

4) The A1A3-II transition: In this transition two curves, one A3 and one A3
1, approach

each other, become tangent, and then split into two portions each, grouped at two new A1A3

points. It is rather straightforward to generate examples for this transition: by ‘flattening’ a

ridge, its A3 (rim or rib) curve on the medial axis moves away from the ridge and into the A2
1

sheet it is on. If this sheet is bounded by an A3
1 curve elsewhere, the A3 and A3

1 curves can

eventually collide. Alternatively, the ridge can be fixed and the ‘width’ of the shape can be

reduced, thus moving the A3
1 curve closer to the A3 curve, with the same effect. In the first

case, we sweep a parabola along the z axis, widening it at z = 0, and closing it up with a

‘top’ at y = 1. Note that the parabola y = ax2 has curvature 2a at its vertex, so that when

swept it generates a ridge and a corresponding A3 curve (rib). By a modification, we can

make this parabola bulge in the middle while keeping z = ±1 sections constant, for example

by y = [a1(1− z2) + a2z
2] x2, so that at z = 0 the curvature of the cross section is 2a1, while

at z = ±1 the curvature of the section is 2a2. This is illustrated in Figure 18.
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Figure 18: Computation of an A1A3-II transition. This can be regarded, left to center, as the
collision of an A3

1 curve with an A3 curve, as in §3.2.4(b), and, right to center, as the collision of two
A1A3 points, as in §3.2.3(c3). The down direction in Figure 13 is left to right in this figure.
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Figure 19: The ‘parabolic gutter with two ends and a roof’ used in the text to describe the two
A2

1A3 transitions. The figures show the 1-dimensional strata of the medial axis: the A3
1 curves which

are drawn thinly, and the A3 curve C1C2 in (b) and a similar curve in (c) which are drawn thickly.
Note that all the sharp corners of the gutter—along four straight edges defining the ‘roof’ C4C5C7C6

and along two parabolic edges at the ends—also count as A3 curves in this model. The points C1, C2

(and also C4, C5, C6 and C7) are A1A3 points, while C3 and the similar point in (c) are A4
1 points.

For A2
1A3-II take (a) and (b) and ignore the right-hand ends which remain fixed in the deformation

process. From (a) to (b) is the transition downwards in Figure 13. For A2
1A3-I take (b) and (c)

and ignore the left-hand ends which remain fixed in the deformation process. From (b) to (c) is the
transition downwards in Figure 13.

5,6) The A2
1A3 Transitions

Both of these can be illustrated in the same way. In fact consider a surface (Figure 19(b))

made up of four sheets (i) a parabolic ‘gutter’: a sheet z = ay2, of constant curvature along

the ridge which coincides with the x-axis; (ii) an end plane x = p for some p > 0 say; (iii) an

end plane x = q for some q < 0; (iv) a sloping ‘roof’ given by a plane z = bx + c where b and

c are > 0. We shall want to avoid the sloping roof cutting the x, y plane so we need to have

bq + c > 0. We can arrange for the A2
1A3-II transition to occur by keeping q fixed and moving

p from large to small positive values, and for the A2
1A3-I transition to occur by keeping p fixed

and moving q from large to small negative values. We now proceed to explain the details.

A2
1A3-I Case For this case we ignore the x = p end (the left-hand end in Figure 19(b)).

The A1A3 point C2 (the coordinates are given in (5) below) remains in place. There is an

A3
1 curve connecting the corners C6, C7 at the top of the x = q end where this end meets the
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Figure 20: Computation of an A2
1A3-I transition. The down direction in Figure 13 is left to right in

this figure. Left to center has been described as a collision between an A1A3 point and an A3
1 curve

in §3.2.5(c), and right to center as a collision between A4
1 and A1A3 points in §3.2.3(a1).

roof. This A3
1 curve consists of centers of spheres tangent once to the gutter and tangent to

the roof and to the x = q end. It crosses the plane of symmetry y = 0 at (q + λ, 0, λ), where

λ = (c + bq)/(1 − b +
√

1 + b2). This point is on the medial axis provided the radius of the

sphere (which is the z-coordinate λ of the center) is ≤ 1/2a. This requires

q ≤ 1− b +
√

1 + b2 − 2ac

2ab
. (2)

In this case the A3
1 curve passes uninterrupted from C6 to C7; when y = 0 on this A3

1 curve the

sphere is tangent to the ridge curve on the gutter and is smaller than the sphere of curvature

there, so contributes to the medial axis. If λ takes the value 1/2a, making equality in (2) then

the point C6 is an A2
1A3 point, the sphere having A3 tangency to the gutter and A1 tangency

to the roof and to the end x = q. Furthermore substituting for λ we find that the A3 line (the

rib) has reached the A3
1 curve from C6 to C7 and pierced it to produce an A2

1A3-I transition.

For values of q making ≥ in (2) there will be an A4
1 point as in Figure 19(c): a sphere is

tangent twice to the gutter and tangent to the roof and the x = q end. See also Figure 20 for

a different example of this transition.

A2
1A3-II Case For this let us ignore the x = q end—the right-hand end in Figure 19. There

is an A3 (rib) curve consisting of points of the form (t, 0, 1
2a

), but only part of this will lie on

the medial axis: the sphere centered at this point and of radius 1/2a must avoid bumping into

the ends and the roof. Since the sphere has constant radius and the roof slopes down from

the ‘left’ x = p end to the ‘right’ x = q end, we need only prevent the sphere from bumping

into the x = p end and into the roof. This requires

1 +
√

1 + b2 − 2ac

2ab
≤ t ≤ p− 1

2a
. (3)
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Figure 21: Computation of an A2
1A3-II transition. The down direction in Figure 13 is left to right in

this figure. Right to center is also described as a collision of points in §3.2.3(a2,c2), and as a collision
of an A3 curve and an A4

1 point in §3.2.5(b). Left to center is an ‘invisible’ transition as in §3.2.1.

For solutions we require that

p ≥ 1 + b +
√

1 + b2 − 2ac

2ab
. (4)

If there is < in (4) then there is no A3 curve on the medial axis, as in Figure 19(a). If there is

= then at this transitional moment a unique t exists, the corresponding center being an A2
1A3

point; and with > there is a finite length of A3 curve, as in Figure 19(b). By allowing p to

pass through the value giving = in (4) the A2
1A3-II transition is realised. With > in (4) the

two ends of the A3
1 curve are A1A3 points, given by taking t to have the extreme values in (3),

say C1 is the medial axis point given by the higher extreme value and C2 that given by the

lower:

C1 =

(
p− 1

2a
, 0, ay2

)
, C2 =

(
1 +

√
1 + b2 − 2ac

2ab
, 0,

1

2a

)
. (5)

From each of these an A3
1 curve will emanate: from C1 this corresponds to spheres having

contact in three points: twice with the parabolic gutter and maintaining contact with the end

x = p; from C2 the A3
1 curve corresponds to spheres having contact twice with the parabolic

gutter and maintaining contact with the sloping roof. These A3
1 curves will end in the center

C3 of the sphere having contact twice with the gutter and with both flat end and roof. With

< in (4) there is no A3 curve and these A3
1 curves have disappeared too. What is left is an A3

1

curve joining the top corners, C4 and C5 say, of the end x = p, where this meets the roof, as

in Figure 19(a). A different example is given in Figure 21.

Notes on genericity The geometrical conditions for the A2
1A3 singularities to occur, and

to be generic transitions, can be expressed in terms of the osculating plane Ω of the line of

curvature at the ridge (A3) point. They have been determined in [24] and are as follows.
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(The above examples satisfy these conditions.) Denote by x1 and x2 the two ordinary contact

points of the A2
1A3 sphere and by x0 the A3 contact point. Let e1 denote the principal direction

corresponding to the ridge, at x0. Then we require: (1) e1 is not in the plane of the three

points x0,x1,x2, and (2) x1 and x2 are not in Ω, and the chord x1x2 is not parallel to Ω. In

fact if x1 and x2 are on the same side of Ω then we get transition A2
1A3-I and otherwise we

get A2
1A3-II.

7) The A5 Transition: This transition is particularly interesting in that it is entirely

local in nature. There is no interference between parts of the surface which are far from each

other. The A5 transition on ridges has been described in [6] and in [15, §7.2.8]. ‘Before’ this

transition, a ridge has two turning points where the contact of the sphere of curvature rises

from the usual A3 to A4. At a turning point—invisible on the medial axis since A4 does not

represent a minimum of distance—the ridge is tangent to the corresponding line of curvature.

See Figure 22. The turning point also marks a change in the ridge from ‘hyperbolic’ to ‘elliptic’.

The contact between the sphere of curvature and the surface is A3 for both types of ridge;

the difference is as follows. At hyperbolic ridge points, the sphere of curvature intersects the

surface locally in two intersecting curves; the center of this sphere contributes to the symmetry

set but never to the medial axis. At an elliptic ridge point the sphere of curvature intersects

the surface locally in a single point. If the sphere has no further intersection with the surface

then its center is on the medial axis. If the sphere has ordinary tangency with the surface at

one other point then its center is an A1A3 point.

At the moment of A5 transition, the ridge becomes wholly elliptic or wholly hyperbolic

nearby, and remains so ‘after’ the transition. When the ridge becomes wholly elliptic, then

on the medial axis two ribs can combine into a single rib (A3 curve). Before the transition

they are connected on the medial axis by a short piece of A3
1 curve, which shrinks to a point.

This is simulated in Figure 23, which is based on a surface such as that shown in Figure 24,

left; see Method 2 below for more details.

Remark 5.1 It is important to note that, at the moment when the surface has an A5-contact

sphere, reached through a generic 1-parameter family of surfaces, there is no A3
1 curve present.

This is only possible ‘on one side’ of the transition, as above.

In the ‘opposite’ case, it is two pieces of hyperbolic ridge which join together on the surface.

Before they join, on the surface there is a short piece of elliptic ridge terminating in two A4
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Figure 22: Ridges evolving through an A5 transition, against a background of the corresponding
principal direction field; the example is that of Equation (9). The ridge curve on the right of each
figure is of interest: before the medial axis goes through the A5 transition, the ridge curve loses two A4

points (marked by open circles), that is points at which the ridge has a turning point and is tangent
to the corresponding principal direction. The solid black dots are the contact points corresponding to
the A1A3 points. Left, t > 0: there are two turning points, flanked by two A1A3 contact points; the
part of the ridge between A1A3 contact points does not contribute at all to the medial axis. Center,
t = 0: the ridge has degenerate tangency with the principal direction at x = y = 0, corresponding to
the A5 point. Both turning and A1A3 points have coalesced in this point, marked with a single black
dot. Right, t < 0: there are no turning points (and no A1A3 contact points), and the whole ridge
contributes to the medial axis. Note that if we run time backwards from the left figure, another ridge
(left) is about to interact with the ridge of interest. This kind of interaction can never happen on
the part of the ridge which contributes to the medial axis since turning points are involved. (Figure
drawn with the Singsurf package of Richard Morris.)

points. But this piece of elliptic ridge cannot contribute to the medial axis since it can be

shown that it cannot contain the required A1A3 points. Without these, the A3 curve cannot

form part of the medial axis. (A full analysis of the symmetry set during an A5 transition is

given in [24]; see also [1, p.106].)

There are a number of ways of generating a surface where a sphere of curvature has A5

contact and then perturbing it to give the transition. We shall describe two of these ways.

Method 1 Consider a surface S given locally in Monge form,

z = f(x, y) = a0x
2+a2y

2+b0x
3+b1x

2y+b2xy2+b3y
3+c0x

4+ . . .+d0x
5+ . . .+e0x

6+ . . . . (6)

Thus the principal directions at the origin are along the x- and y-axes and the principal

curvatures at the origin are κ1(0, 0) = 2a0, κ2(0, 0) = 2a2. We can assume that the origin is

not an umbilic point on S, say a0 > a2, and also that a0 > 0. To make the origin a ridge point

corresponding to the first principal direction (that is, κ1 has an extremum at the origin in the

direction of the x-axis) we require b0 = 0; the full conditions for an A5 point at the origin are

as follows (adapted and extended from [15]).

b0 = 0, c0 = a3
0 −

b2
1

4(a0 − a2)
, d0 = − b1c1

2(a0 − a2)
− b2

1b2

4(a0 − a2)2
(7)

and three ‘non-equalities’
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Figure 23: The A5 transition. Right to left: in the upper part of each figure, two ribs on the medial
axis of a surface such as that in Figure 24(a), initially connected by a short piece of A3

1 curve, join
together to form a continuous rib (A3 curve). This is described as the collision of an A3 curve and
an A1A3 point in §3.2.5(d). The left to center transition is described as an invisible transition in
§3.2.1.

Figure 24: Left: a cylindrical surface with bumps of the kind used to produce the A5 transition by
Method 2. Right: two A5 points, one where the intersection of the surface S and a sphere of curvature
is isolated (left) and the other where the intersection consists of two curves having inflexional contact
(drawn heavily). This is analogous to the situation at an ordinary (A3) ridge point, where an elliptic
ridge gives isolated intersection but a hyperbolic ridge gives an intersection with two crossing curves.
The sphere on the right cannot be maximal, so that a hyperbolic ridge cannot contribute to the MA.

a0 6= a2 (not an umbilic point);

(a0 − a2)c1 6= −b1b2 (the ridge needs to be a smooth curve)

e0 6= 2a5
0 −

c2
1 + 2b1d1

4(a0 − a2)
+

b1(2a
3
0b1 − b1c2 − 2b2c1)

4(a0 − a2)2
− b2

1(2b
2
2 + b1b3)

8(a0 − a2)3
(8)

(the contact is not higher than A5)

If (8) is changed to e0 < . . . then the A5 point is elliptic: the local intersection of S with

the sphere of curvature of radius 1/κ1 is a single point. This means that the center lies on

the medial axis so long as the sphere does not intersect S ‘far away’ from the origin. With

e0 > . . . in (8) the A5 is hyperbolic, and the local intersection of S and its sphere of curvature

is a pair of curves having inflexional contact at the origin. These two cases are illustrated in

Figure 24, right.

31



Notes on genericity Let us assume that the sphere of curvature at a ridge point p has

exactly A5 contact with the surface. Then it can be shown [24] that for a family of surfaces

to exhibit a generic A5 transition we also require that the line of curvature corresponding to

the ridge does not have a torsion zero at p. This says that the osculating plane of this line

of curvature has the normal (3-point) contact with the line of curvature at p and not higher

contact.

As an example satisfying this condition we can take z = f(x, y) where

f(x, y) = 1
2
x2 + 1

8
y2 + 1

2
x2y + 3

10
xy2 − 1

5
y3 − 1

24
x4 − 2

15
x5 + 283

10800
x6, (9)

where we can add tx4 to f to obtain our family of surfaces (the argument showing that this

is a suitable monomial to add is in [24]). Figure 22 shows the ridges of this surface against a

background of the principal direction field, whose integral curves are the lines of curvature.

Method 2 For illustrating the transition we start with a cylindrical surface having two long

bumps and merge them into one. We construct a surface parametrized in cylindrical polar

coordinates by θ and z: let

ρ := ρ0 + ρ0 c1 exp

(
− 0.5 (θ − θ1)

2

((1− z
l
) k1 + z

l
k2)2

)
+ ρ0 c2 exp

(
− 0.5 (θ − θ2)

2

( z k1

l
+ (1− z

l
) k2)2

)
(10)

so that the surface has parametrization (ρ cos θ, ρ sin θ, z). The idea is that there will be two

bumps, centered on θ = θ1, θ2, and between z = 0 and z = l one bump diminishes and the

other increases in spread. The constants ρ0, c1, c2, k1, k2 govern the radius of the cylinder,

the size of the bumps and their spread. A typical such surface is shown in Figure 24, left.

For the example used to produce Figure 23, the following values were taken: 3 ≤ z ≤
7, θ1 = 1.3, θ2 = 1.7 (both in radians), k1 = 0.1, k2 from 0.33 to 0.38. The formation of a

segment of A3
1 curve can be seen between the two pieces of A3 curve on the medial axis.

6 Conclusions

We have investigated the instabilities of the medial axis from a geometrical viewpoint. We

have shown that these instabilities or transitions arise in several ways. A contact point with a

sphere can acquire an additional degree of contact, giving an invisible transition, in which case

the topology of the medial axis does not change. Alternatively the medial axis experiences

a self-intersection, which does change the topology of the medial axis; these are the various

collision of singularity transitions. First, we demonstrated that there are only three generic

invisible transitions, A2
1 → A1A3, A3

1 → A2
1A3, and A3 → A5. Second, we have shown that
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collisions within the medial axis can only occur between points and curves (point-point, point-

curve, curve-curve), not involving sheets (point-sheet, curve-sheet, sheet-sheet), and that there

are eleven such cases. Altogether, these fourteen cases enumerate the two directions for each

of seven types of transitions in both direction that can generically occur in a one-parameter

family of perturbations, a result consistent with Bogaevsky’s work. 5
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