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Abstract

The singularities of the midlpoint map associated to a smooth plane curve, which is
a map from the plane to the plane, are classified. The midlocus associated to a regular
space curve is introduced. The geometric conditions for the midlocus of a space curve
to have a crosscap or an S±

1 singularities are investigated. A more general map, the λ-
point map, associated to a space curve is introduced; many known surface singularities
are realized by means of this simple construction.
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1 Introduction

The “midlocus” of a plane curve (the locus of midpoints of chords joining the points of con-
tact of circles bitangent to the curve) was introduced by Brady under the name “smoothed
local symmetry” (cf. [2]). In [6] the second author and Brassett give the condition for the
midlocus of a plane curve to be a regular curve and study the midpoint map, which associates
to each pair of points on the curve the midpoint of the chord joining them. In [8] the second
author and Warder present a method to recover the original plane curve using the informa-
tion provided by the midlocus and the radii of the bitangent circles. This method consists
in creating a system of ordinary differential equations using the midlocus and the radius
function: the solution of this system is the symmetry set of the original curve (the locus of
centres of the bitangent circles) and the curve is recovered as the envelope of circles centred
on the symmetry set. For more details on envelopes we refer the reader to [3, 4, 5, 6, 7].
This method has been generalized to higher dimensions by the first author [1].

This paper is divided into seven main sections. In §2 we classify the midpoint map as a
map from the plane to the plane and give the geometric conditions for the midpoint map to
have cusp, fold, lips, beaks and swallowtail singularities. In §3 we provide some examples
illustrating these results. In §4 we introduce the midpoint surface associated to a smooth
regular space curve, using the midpoints of all chords of the space curve, and give the
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geometric conditions for this surface to have a crosscap or an S±
1 singularity. In §5, we give

some examples to illustrate the results in §4. In §6 we study the singularities of the λ-point
map which associates to each chord of the space curve the point at a fixed ratio λ : 1 − λ
between the endpoints. Special values of λ are introduced at which the λ-point map has a
more degenerate singularity, and in this way many standard singularities of maps from the
plane to the plane can be realized, The last section is the appendix, and in this section we
give a geometric interpretation of the coefficients which occur in our results in §6.

2 Singularity of the midpoint map associated to a plane
curve as a map from R2 to R2

In this section we investigate the singularity of the midpoint map of a plane curve as a
map from R2 to R2. Recall that the midpoint map of a smooth plane curve γ is defined by
m : (I ⊂ R)× (J ⊂ R) −→ R2 such that m(t1, t2) =

1
2
(γ1(t1) + γ2(t2)), where γ1 and γ2 are

two smooth parts of γ parametrized by t1 and t2 respectively. We conventionally take I, J
to be neighbourhoods of 0 in R.
Before the discussion of the singularities of the midpoint map, we review some basic concepts
related to the singularity of a smooth map from the plane into the plane.

Definition 2.1. Two map-germs fi : (Rn, 0) → (Rp, 0) (i = 1, 2) are A-equivalent if there
exist germs of C∞-diffeomorphisms ϑ and φ such that φ ◦ f1 = f2 ◦ ϑ holds, where ϑ :
(Rn, 0) → (Rn, 0) and φ : (Rp, 0) → (Rp, 0).

The map germs (R2, 0) −→ (R2, 0) with corank one singularity (a map germ f : (Rn, 0) −→
(Rm, 0) has a corank one singularity at p if the rank of the Jacobian matrix of f at p is equal
to min(n,m)− 1) and Ae-codimension ≤ 6 were classified up to A-equivalence by J. Rieger
[14] using the technique of complete transversals and finite determinacy [18].

The main purpose of this section is to give geometric conditions for the midpoint map of a
plane curve to have fold, cusp, beaks, lips and swallowtail singularities. The normal forms
of these singularities are (x, y2), (x, xy + y3), (x, y3 − x2y), (x, y3 + x2y) and (x, y4 + xy)
respectively.

The second author and S. Janeczko found the conditions for the midpoint map to have cusp,
beaks, lips and swallowtail singularities. The conditions they found are related to the centre
symmetry set (CSS) and the inflexion points of the boundary curve [10]. In our results we
give more precise conditions related specifically to the geometry of the boundary curve.

To give the geometric conditions for the midpoint map to have the mentioned singularities we
use the criteria in [16, 19]. It is straightforward to check that the mapm : (R2, 0) → (R2, 0) is
singular at 0 if and only if the tangents at the two chosen points are parallel: T1(0) = ±T2(0).
Thus in the corank one case there exists a neighbourhood U of 0, and non-vanishing vector
field η such that dmp(η) = 0 for all p ∈ S(m)

∩
U , where S(m) is the singular set of m. The

vector field η is called the null vector field. The discriminant function which plays a central
role in the criteria which we are going to use is defined by

Λ(t1, t2) = det

(
∂m

∂t1
,
∂m

∂t2

)
.

The expression ηΛ is the directional derivative of Λ by η. For more detail on the discriminant
function and the null vector field we refer reader to [12, 16]. Now we state the criteria.

Criteria 2.2. [16, 19] For a map germ f : (U ⊂ R2, p) → (R2, 0), the following hold.
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1. f is A-equivalent to fold if and only if ηΛ(p) ̸= 0.

2. f is A-equivalent to cusp if and only if p is non-degenerate, ηΛ(p) = 0 and ηηΛ(p) ̸= 0.

3. f is A-equivalent to lips if and only if p is of corank one, dΛ(p) = 0 and Λ has a Morse
type critical point of index 0 or 2 at p, namely det(HessΛ(p)) > 0.

4. f is A-equivalent to beaks if and only if p is of corank one dΛ(p) = 0 and Λ has a
Morse type critical point of index 1 at p, namely det(HessΛ(p)) < 0 and ηηΛ(p) ̸= 0 .

5. f is A-equivalent to swallowtail if and only if dΛ(p) ̸= 0, ηΛ(p) = ηηΛ(p) = 0 and
ηηηΛ(p) ̸= 0.

Remark 2.3. It is easy to observe that ηηΛ(p) ̸= 0 is automatically satisfied in part 3 of
Criteria 2.2 and this is because of the inequality det(HessΛ(p)) > 0 and the symmetry of
HessΛ.

Let γ1 and γ2 be two segments of γ around given points γ(t1) and γ(t1) respectively. We
parametrize γ1 and γ2 by their arc-lengths s1 and s2 respectively such that s1 = s2 = 0 at the
given points. The unit tangents of γ1 and γ2 are denoted by T1 and T2 respectively and the
corresponding unit normals by N1, N2. We can now state the main theorem of this section.

Theorem 2.4. Let m be the midpoint map of a smooth plane curve. Suppose that the
tangents to the two boundary segments are parallel, i.e. T1(0) = ±T2(0) . Then at (0, 0)
we have the following, where ′ indicates derivative with respect to the appropriate arc-length
parameter.

1. m is A-equivalent to fold if and only if κ1(0) ̸= ∓κ2(0).

2. m is A-equivalent to cusp if and only if κ1(0) = ∓κ2(0) ̸= 0 and κ′
1(0) ̸= κ′

2(0).

3. m is A-equivalent to lips if and only if κ1(0) = κ2(0) = 0 and κ′
1(0)κ

′
2(0) < 0.

4. m is A-equivalent to beaks if and only if κ1(0) = κ2(0) = 0, κ′
1(0)κ

′
2(0) > 0 and

κ′
1(0) ̸= κ′

2(0).

5. m is A-equivalent to swallowtail if and only if κ1(0) = ∓κ2(0) ̸= 0, κ′
1(0) = κ′

2(0) and
κ′′
1(0) ̸= ∓κ′′

2(0).

Proof. We have m(s1, s2) =
1
2
(γ1(s1) + γ2(s2)). This map is singular at (0, 0) if and only if

T1(0) = ±T2(0). Now we will use Criteria 2.2 to prove the theorem. Let T1(0) = −T2(0),
we choose η such that dm(0,0)(η) = 0, thus we take η = ∂

∂s1
+ ∂

∂s2
. Calculations show that

Λ(s1, s2) = −T1(s1).N2(s2). For the purpose of calculations we omit s1 and s2, writing
Λ = −T1.N2. Parts 1 and 2 in Theorem 2.4 were proved by the second author in [6], but
here we present a new proof of their result using the Criteria 2.2. Calculations show that

Λs = −κ1N1 ·N2, Λt = κ2T1 · T2,

ηΛ = (κ2 − κ1)T1 · T2, ηηΛ = (κ′
2 − κ′

1)T1 · T2 + (κ2 − κ1)
2T1 ·N2,

ηηηΛ = [(κ′′
2 − κ′′

1)− (κ2 − κ1)
3]T1 · T2 + 3(κ2 − κ1)(κ

′
2 − κ′

1)T1 ·N2

and

HessΛ =

(
−κ′

1N1 ·N2 + κ2
1T1 ·N2 κ1κ2N1 · T2

κ1κ2N1 · T2 κ′
2T1 · T2 + κ2

2T1 ·N2

)
.

3



At (0, 0) we have Λs(0, 0) = κ1(0),Λt(0, 0) = −κ2(0), ηΛ(0, 0) = κ1(0) − κ2(0), ηηΛ(0, 0) =
κ′
1(0)−κ′

2(0), ηηηΛ(0, 0) = κ′′
1(0)−κ′′

2(0)+(κ2(0)− κ1(0))
3 and det(HessΛ(0, 0)) = −κ′

1(0)κ
′
2(0).

Thus applying the Criteria 2.2 the results hold. Similarly, we prove the results when
T1(0) = T2(0), and in this case we choose η = ∂

∂s1
− ∂

∂s2
.

In [9, §4] the second author and Graham Reeve study the λ-equidistant ,associated to a
smooth plane curve γ, which is the set of all points of the form (1−λ)p+λq for fixed λ and
parallel tangents at p and q.

3 Examples

In this section we give examples of the last three parts of theorem 2.4. To do so it is easier
to work locally by considering two segments of curve, oriented by their t parameters, as in
the following, where ′ denotes differentiation with respect to the appropriate arc-length.).

(1) For lips we choose γ1(t1) = (t1, 3t
3
1 + t41) and γ2(t2) = (t2, 1 − 2t32 + t42), both defined

close to 0. Direct calculations show that T1(0) = T2(0), κ1(0) = κ2(0) = 0, κ′
1(0) = 18

and κ′
2(0) = −12. Therefore, m is A-equivalent to lips. See Figure 1 for a perturbation

resulting from the addition of a small term (0, εt2), ε > 0 to γ2, thereby “opening out”
the lips.

(2) For beaks we choose γ1(t1) = (t1, t
3
1 +

1
8
t41) and γ2(t2) = (t2, 1 + 2t32). In this case we

have T1(0) = T2(0), κ1(0) = κ2(0) = 0, κ′
1(0) = 6 and κ′

2(0) = 12. Therefore, m is
A-equivalent to beaks. See Figure 2 for a perturbation resulting from the addition of
a small term (0, εt2), ε > 0 to γ2 (for ε < 0 there are two smooth curve branches).

(3) For swallowtail we take γ1(t1) = (t1, 2t
2
1−3t31+4t41) and γ2(t2) = (t2, 1−2t22−3t32+ t42).

We have T1(0) = T2(0), κ1(0) = 4, κ2(0) = −4, κ′
1(0) = κ′

2(0) = −18, κ′′
1(0) = −96 and

κ′′
2(0) = 216. Therefore, m is A-equivalent to swallowtail.

Figure 1: An example of a
perturbed midlocus in the
case of a lips singularity

Figure 2: An example of a
perturbed midlocus in the
case of a beaks singularity
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4 Singularity of the midlocus map associated to a space
curve as a map from R2 to R3

In this section we define the midlocus associated to a smooth space curve γ to be the image
of the midpoint map where in this situation we use all pairs of points of γ. The geometric
conditions for the midlocus of a space curve to have a crosscap or an S±

1 singularity will be
investigated.

Proposition 4.1. Let γ : I → R3 be a smooth space curve embedded in R3 (where I is an
open interval or a circle), and let p1 = γ(t1) and p2 = γ(t2) be two distinct points of the
curve. Then there is a sphere or plane in R3 tangent to γ at these two points (a bitangent
sphere or plane). There are infinitely many such spheres or planes if and only if there is a
plane containing both p1 and p2 and perpendicular to the tangent lines at those points.

Proof. The centres of spheres tangent to γ at p1 all lie on the plane π1 through p1 perpendic-
ular to the tangent vector γ′(t1) there; similarly there is a plane π2 perpendicular to γ′(t2)
at p2. The remaining condition, that one sphere should be tangent at both points requires
the centre to lie on the perpendicular bisector plane π12 of the chord joining p1 and p2. We
require the condition that these three planes meet in a single point, which will then be the
centre of the unique bitangent sphere. The three normals to the planes are the two tangents
to γ at p1, p2 and the chord between these two points; the three planes meet in a single point
if and only if the two tangents and the chord are not coplanar.

It remains to examine the case where this fails. Suppose first that the tangent lines at p1
and p2 are parallel but distinct, so that π1 and π2 are also parallel. If π1 and π2 are distinct
then the unique plane containing the tangent lines at p1 and p2 is a bitangent plane and
there are no bitangent spheres. If π1 = π2 then there are infinitely many bitangent spheres
with centres on the intersection of π1 = π2 with π12.

If the tangent lines at p1 and p2 coincide then any plane through the common tangent line
is a bitangent plane, and there are no bitangent spheres.
Finally if the tangent lines at p1 and p2 are coplanar with the chord joining these two points,
but the tangent lines are not parallel, then the plane containing them is a bitangent plane
and there are no bitangent spheres.

Proposition 4.1 motivates the following definition of the midlocus associated to a smooth
space curve.

Definition 4.2. When constructing the midlocus of a space curve γ we use all the pairs of
points p1, p2: the midlocus M is the image of the midpoint map m : I×J → R3, where I and
J are open intervals of real numbers, if we consider two disjoint curves γ1, γ2, or I = J = S1

if we consider a single closed curve γ. In this case we call M the midpoint surface.

Note that, for the case of a single closed space curve γ, M is a compact closed surface M with
boundary on γ, and that M will in general have singularities. Note also that the construction
of M , unlike that of the midlocus of a plane curve, is affinely invariant.

Remark 4.3. When p2 → p1 in the Proposition 4.1 the bitangent sphere, if there is one, will
in the limit have (at least) 4-point contact with γ at p1 and hence will be the unique sphere
of curvature with centre

γ(t1) +
1

κ(t1)
N(t1)−

κ′(t1)

κ2(t1)τ(t1)
B(t1),

provided the curvature κ(t1) and the torsion τ(t1) are nonzero. (See for example [4, §2.34].)
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The simple singularities of map germs (R2, 0) −→ (R3, 0) have been classified by Mond [13].
As an application of Mond’s classification we give the geometric conditions for the midpoint
surface to have a crosscap singularity ( resp. S±

1 singularity) with normal form (x, xy, y2)
(resp. (x, y2, y(x2 ± y2))). We present the criteria for a surface in R3 to have such singulari-
ties and for more details we refer reader to [15].

If a map germ f : (R2, 0) → (R3, 0) has a corank one singularity at 0, then there exist two
independent vector fields ξ and η near the origin satisfying df0(η0) = 0 and ξ0, η0 ∈ T0R2.
The function which plays a central role for the criteria is defined by φ : (R2, 0) → R such
that φ = det(ξf, ηf, ηηf) = (ξf ∧ ηf) · ηηf , where ζf is the directional derivative of f by ζ.

Criteria 4.4. [15] Let f : (R2, 0) → (R3, 0) be a map germ and 0 a corank one singular
point. Then

1. f at 0 is A-equivalent to the crosscap if and only if ξφ(0) ̸= 0.

2. f at 0 is A-equivalent to S−
1 if and only if φ has a critical point at 0, and det(Hessφ(0)) >

0.

3. f at 0 is A equivalent to S+
1 if and only if φ has a critical point at 0 and det(Hessφ(0)) <

0 and the vectors ξf(0) and ηηf(0) are linearly independent.

Throughout the rest of this article the curvature and torsion of the curve γi are denoted by
κi and τi respectively. Moreover, the Serret- Frenet frame of γi is denoted by {Ti, Ni, Bi},
where Ti, Ni and Bi are the unit tangent, the unit principal normal and the unit binormal
respectively. The following two lemmas are straightforward.

Lemma 4.5. Let γ1 and γ2 be two regular space curves. If T1 = ±T2, then N1 ·B2 = ∓N2 ·B1

and N1 ·N2 = ±B1 ·B2, where {Ti, Ni, Bi} is the Serret - Frenet frame of γi, i = 1, 2. �

Lemma 4.6. Let M be the midpoint surface associated to a smooth space curve γ with
non-vanishing curvature.

1. The midpoint surface is smooth at M(t1, t2) if and only if the tangents of γ at γ(t1)
and γ(t2) are not parallel.

2. The midpoint surface is parametrized by a corank one singularity at M(t1, t2) if and
only if the tangents of γ at γ(t1) and γ(t2) are parallel. �

We can now state and prove the main results of this section, which describe the singularities
of the midpoint surface of a space curve. We shall consider two pieces γ1 and γ2 of γ around
the chosen points t1 and t2. To avoid excessive use of subscripts we shall, until the end of
this section, write s for the arc-length parameter on γ1 and t for that on γ2, with s = t = 0
at the chosen points.

Theorem 4.7. Let M be the midpoint surface associated to a smooth space curve γ with
non-vanishing curvature. Suppose γ has parallel tangents at t1 and t2. Then the midpoint
surface has a crosscap singularity at the mid-point of the the chord joining γ(t1) and γ(t2)
if and only if N(t1) ·B(t2) ̸= 0. That means γ does not have parallel Serret - Frenet frames
at γ(t1) and γ(t2).

Proof. To prove this theorem we use Criteria 4.4. Suppose T1(0) = −T2(0). The midpoint
surface associated to γ1 and γ2 is defined by M = 1

2
(γ1(s) + γ2(t)) and is singular at (0, 0).

Since dM0(η0) = 0 we can choose η = ∂
∂s

+ ∂
∂t

and ξ = ∂
∂s

− ∂
∂t
. We define the function
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φ = det(ξM, ηM, ηηM). Direct calculations show that ξM = 1
2
(T1 − T2), ηM = 1

2
(T1 + T2)

and ηηM = 1
2
(κ1N1 + κ2N2). Thus

φ = det(ξM, ηM, ηηM)

= (ξM ∧ ηM) · ηηM

=
1

4
(κ2T1 ·B2 − κ1T2 ·B1).

M has a crosscap singularity at (0, 0) if and only if ξφ ̸= 0. ξφ =
∂φ

∂s
− ∂φ

∂t
and direct

calculations show that

ξφ =
1

4
(κ1κ2N1 ·B2 − κ′

1T2 ·B1 + κ1τ1T2 ·N1)−
1

4
(κ′

2T1 ·B2 − κ2τ2T1 ·N2 − κ1κ2N2 ·B1).

At s = 0 and t = 0 we have T1 = −T2 thus

ξφ|(0,0) =
κ1κ2

4
(N1 ·B2 +N2 ·B1)

and from Lemma 4.5 we have N1 · B2 = N2 · B1. Therefore, ξφ|(0,0) ̸= 0 if and only if
N1 · B2 ̸= 0. Similarly, we prove the results when T1(0) = T2(0), in this case we choose
η = ∂

∂s
− ∂

∂t
, and ξ = ∂

∂s
+ ∂

∂t
.

Remark 4.8. From the Theorem 4.7 and its proof it can be easily shown that if the space
curve γ has a parallel tangents at γ(t1) and γ(t2) and γ has zero curvature at γ(t1) or at
γ(t2), then the midpoint surface does not have a crosscap singularity.

Now assume that γ has non-vanishing curvature and the midpoint surface does not have
a crosscap singularity. In this case we have N(t1) · B(t2) = 0. We will give the geometric
conditions for the midpoint surface to have S±

1 singularities and to do so we are going to
use Criteria 4.4. Before starting our aim in the rest of this section we state the following
elementary lemma.

Lemma 4.9. Let γ1 and γ2 be two regular space curves. Suffix 1 or 2 refers to the curve γ1
or γ2 respectively.

1. If T1 = −T2 and N1 ·B2 = 0, then one and only one of the following is true
(a) N1 = −N2 and B1 = B2. (b) N1 = N2 and B1 = −B2.

2. If T1 = T2 and N1 ·B2 = 0, then one and only one of the following is true
(c) N1 = N2 and B1 = B2. (d) N1 = −N2 and B1 = −B2. �

Now we state the main theorem of the rest of this section.

Theorem 4.10. Let M be the midpoint surface associated to a smooth space curve γ with
curvature κ and torsion τ . Suppose that γ has parallel tangents at t1 and t2 and N(t1) ·
B(t2) = 0.

1. If T1 = −T2, then M has an S+
1 singularity if and only if

τ1τ2(κ
2
1 + κ2

2)B1 ·B2 + κ1κ2(τ
2
1 + τ 22 ) > 0.
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2. If T1 = T2, then M has an S+
1 singularity if and only if

τ1τ2(κ
2
1 + κ2

2)B1 ·B2 − κ1κ2(τ
2
1 + τ 22 ) < 0.

3. If T1 = −T2, then M has an S−
1 singularity if and only if

τ1τ2(κ
2
1 + κ2

2)B1 ·B2 + κ1κ2(τ
2
1 + τ 22 ) < 0.

4. If T1 = T2, then M has an S−
1 singularity if and only if

τ1τ2(κ
2
1 + κ2

2)B1 ·B2 − κ1κ2(τ
2
1 + τ 22 ) > 0.

Proof. We will follow the same procedure of the proof of Theorem 4.7. Let T1 = −T2, then
we have
φ = 1

4
(κ2T1 ·B2 − κ1T2 ·B1). Direct calculations show the following, where as usual ′ stands

for derivative with respect to the appropriate arc-length.

φs =
1

4
(κ1κ2N1 ·B2 − κ′

1T2 ·B1 + κ1τ1T2 ·N1),

and

φt =
1

4
(κ′

2T1 ·B2 − κ2τ2T1 ·N2 − κ1κ2N2 ·B1).

Now at (0, 0) we have T1 = −T2 and N1 · B2 = N2 · B1 = 0. Thus φ has a critical point at
(0, 0). Also, we have

φss =
1

4
{κ2κ

′
1N1 ·B2 − κ2κ

2
1T1 ·B2 + κ2κ1τ1B1 ·B2

− κ′′
1T2 ·B1 + 2κ′

1τ1T2 ·N1 + κ1τ
′
1T2 ·N1

− κ2
1τ1T1 · T2 + κ1τ

2
1T2 ·B1},

φts =
1

4
{κ1κ

′
2N1 ·B2 − κ1κ2τ2N1 ·N2 − κ2κ

′
1N2 ·B1 + κ1κ2τ1N1 ·N2},

and

φtt =
1

4
{κ′′

2T1 ·B2 − 2κ′
2τ2T1 ·N2 − κ2τ

′
2T1 ·N2

+ κ2
2τ2T1 · T2 − κ2τ

2
2T1 ·B2 − κ1κ

′
2N2 ·B1

+ κ1κ
2
2T2 ·B1 − κ1κ2τ2B1 ·B2},

where Z ′
1 =

dZ1

ds
and Z ′

2 =
dZ2

dt
. Now at s = 0, t = 0 we have T1 = −T2 and B1 · N2 =

B2 ·N1 = 0, thus we have

φss =
κ1τ1
4

(κ2B1·B2−κ1T1·T2), φts =
κ1κ2

4
(τ1−τ2)N1·N2 and φtt =

κ2τ2
4

(κ2T1·T2−κ1B1·B2).

Therefore, φss =
κ1τ1
4

(κ2B1 ·B2 + κ1), and φtt =
−κ2τ2

4
(κ2 + κ1B1 ·B2). The necessary and

sufficient condition for the midpoint surface to have an S+
1 singularity is φssφtt − φ2

ts < 0 if
and only if

−κ1κ2{τ1τ2(κ2B1 ·B2 + κ1)(κ2 + κ1B1 ·B2) + κ1κ2(τ1 − τ2)
2} < 0
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if and only if

κ1κ2{τ1τ2(κ2B1 ·B2 + κ1)(κ2 + κ1B1 ·B2) + κ1κ2(τ1 − τ2)
2} > 0.

Also, the condition for the midpoint surface to have an S−
1 singularity is φssφtt − φ2

ts > 0 if
and only if

κ1κ2{τ1τ2(κ2B1 ·B2 + κ1)(κ2 + κ1B1 ·B2) + κ1κ2(τ1 − τ2)
2} < 0.

Similarly we prove the results when T1 = T2 and in this case η = ∂
∂s

− ∂
∂t

and ξ = ∂
∂s

+ ∂
∂t
.

Thus φ = 1
4
(κ1T2 · B1 − κ2T1 · B2). Therefore, by the same procedure of the first case we

prove the results.

5 Examples

In this section we give examples to illustrate our results in section 4.

(1) This is a globally defined space curve. It can be changed by any affine transformation
of R3 without affecting the result. Let γ(t) = (cos t, sin t, sin 2t). Then it is easy to show
that parallel tangents occur exactly for (t1, t2) = (±1

4
π,∓3

4
π), and that the binormals

at these four points are parallel to:

t = ±1
4
π : (∓2

√
2,−2

√
2, 1); t = ±3

4
π : (±2

√
2, 2

√
2, 1).

Hence the binormals at the parallel tangent pairs are not parallel and using Theorem
4.7 M will have a crosscap singularity at each point. The midpoint surface M is shown
in Figure 3.

(2) In order to give examples of the non-crosscap cases it is easier to work locally, that is
consider two segments of curve, say

γ1(t1) = (x, y, z) = (t1, t
2
1, t

3
1); γ2(t2) = (x, y, z) = (at2, bt

2
2, 1 + ct32),

for t1, t2 close to 0. These curves have parallel tangent lines y = z = 0 and parallel
osculating planes z = 0. The binormals, curvature and torsion at the basepoints
t1 = 0, t2 = 0 are:

B1 = (0, 0, 1), κ1 = 2, τ1 = 3;B2 = (0, 0, sign(ab)), κ2 =
2|b|
a2

, τ2 =
3c

ab
.

Therefore, If we take γ1(t1) = (t1, t
2
1, t

3
1) and γ2(t2) = (2t2,−t22,−1

9
t32 + 1), then the

associated midpoint of γ1 and γ2 has an S+
1 singularity at (0, 0). If we take γ1(t1) =

(t1, t
2
1, t

3
1) and γ2(t2) = (1

2
t2, t

2
2,

1
2
t32 + 1), then the associated midpoint of γ1 and γ2 has

an S−
1 singularity at (0, 0) see Figure 4.

9



Figure 3: The midpoint surface for the curve
in Example (1) which has two crosscaps.
Two crosscaps marked by a white circle.

Figure 4: The midpoint surface for the
curves in Example (2) which has an S−

1 sin-
gularity. The self-intersection curve is em-
phasized by a dark line.

6 λ-point map

In this section we study the “λ-point map” associated to space curves which is more general
than the midpoint map. We shall show that many singularities can be realized by this
construction, using in some cases “special values” of λ which we define in Definition 6.2
below. The λ-point map associated to two regular space curves γ1 and γ2 (or one curve) is
a map from R2 to R3 defined for a given λ by

M(t1, t2) = (1− λ)γ1(t1) + λγ2(t2). (1)

In [17] the author classifies the local singularities of the envelope of this 2-parameter family
of chords, calling it the chord set. Away from γ1 and γ2 themselves this is the ruled surface
consisting of lines joining points p1 and p2 of γ1 and γ2 for which the tangents at p1 and p2
and the chord are coplanar. This contrasts with our investigation which studies the locus of
points at a fixed ratio along the chords.

It is clear that the image of the λ-point map is γ1 when λ = 0 and γ2 when λ = 1. In our
case we assume that λ ̸= 0, 1 and this will be taken in the rest of this section. Without
loss of generality we may assume that γ1 and γ2 are parametrized by their arc-lengths s and
t respectively. It is clear that M is singular at M(s0, t0) if and only T1(s0) and T2(t0) are
parallel. By similar calculations to those in section 4 we have the following result.

Theorem 6.1. Let γ1 and γ2 be two regular space curves with non-vanishing curvatures such
that T1(0) = ±T2(0). The λ- point map given by equation (1) is A-equivalent to crosscap if
and only if the osculating planes of γ1 and γ2 at γ1(0) and γ2(0) are not parallel. �

This theorem tells us that when the osculating planes are not parallel then all values of λ
(̸= 0, 1) give the same map up to A-equivalence.

In the following we study the case when T1(0) = −T2(0) and the osculating planes are
parallel; the case T1(0) = T2(0) is similar. If γ1 and γ2 have non-vanishing curvatures and
torsion, then by a similar method used in Theorem 4.10, the determinant of the Hessian of

10



the function φ at (0, 0) is given by

ρ = −
(
1− λ

λ

)2

κ1κ2

{
τ1τ2

(
κ2
1 + κ2

2

(
1− λ

λ

)2
)
B1 ·B2 + κ1κ2

(
τ 21 + τ 22

(
1− λ

λ

)2
)}

.

(2)
Using criteria 4.4, the λ-point map is A-equivalent to S±

1 if and only if ρ ̸= 0. The interesting
question rises now when ρ = 0 is, which type of singularity can occur? It is obvious from
equation (2) that ρ = 0 if and only if(

1− λ

λ

)2

= −δ
κ1τ1
κ2τ2

, (3)

where δ is the sign of (B1 ·B2).

Definition 6.2. Suppose the osculating planes to the two curves are parallel at the chosen
points. Then the values of λ given by equation (3) are, when they are real, be called special
values of λ.

From Lemma (4.9), when the osculating planes are parallel, B1 = ±B2. Therefore, the
existence of the special values of λ depends on the signs of τ1 and τ2. The following remark
gives the situation when the special values of λ exist.

Remark 6.3. Let γ1 and γ2 be two regular space curves with non-vanishing curvatures and
torsions. Let T1(0) = −T2(0) and γ1 and γ2 have parallel osculating planes at γ1(0) and
γ2(0).

1. If B1(0) = B2(0), then the special values of λ exist if and only if τ1(0) and τ2(0) have
opposite signs.

2. If B1(0) = −B2(0), then the special values of λ exist if and only if τ1(0) and τ2(0) have
the same sign.

Now we have the following theorem.

Theorem 6.4. Let γ1 and γ2 be two regular space curves with non-vanishing curvatures and
torsions at the chosen points. If T1(0) = −T2(0) and the two curves have parallel osculating
planes at γ1(0) and γ2(0), then away from the special values of λ the λ-point map at M(0, 0)
is A-equivalent to S±

1 . �
This theorem tells us that the type of singularity of the λ-point map, when T1(0) = −T2(0
and the two curves have parallel osculating planes at γ1(0) and γ2(0), is always S±

1 at all
values of λ except at values of λ satisfying equation (3). For this reason we call the values
of λ satisfy equation (3), the special values of λ. In the rest of this section our task is to
classify the type of singularity of the λ-point map when λ reaches its special values. Now
we use the results of Mond ([13]) to classify the type of singularity of the λ-point map at
the special values of λ. Consider two curves γ1 and γ2. By an affine transformation we may
assume that γ1 and γ2 have the form

γ1(t1) = (t1, a
2
2t

2
1 + a3t

3
1 + a4t

4
1 + . . . , b23t

3
1 + b4t

4
1 + b5t

5
1 + . . .) (4)

γ2(t2) = (p− t2, q + c22t
2
2 + c3t

3
2 + v4t

4
2 + . . . , r − d23t

3
2 + d4t

4
2 + d5t

5
2 + . . .). (5)

Direct calculations show that T1(0) = −T2(0), B1(0) = −B2(0). For the purpose of calcula-
tion we may assume that b3 > 0, d3 > 0, and d3 ̸= b3. In this case the special values of λ are
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given by λ =
d3

d3 ± b3
. In the following we study the case when λ =

d3
d3 + b3

. By appropriate

variable changes in the source and suitable coordinates changes in the target, we find the
following proposition.

Proposition 6.5. Assume that γ1 and γ2 are as in equations (4) and (5). If λ =
d3

d3 + b3
,

then the 5-jet of the λ-point map is A-equivalent to

j5M = (x, y2, a21x
2y + a13xy

3 + a31x
3y + a41x

4y + a23x
2y3 + a05y

5). � (6)

In the appendix we will give a geometric interpretation of the coefficients of the third com-
ponent of j5M in terms of curvatures and torsions of γ1 and γ2. Now we state the following
theorem which was proved by Mond ([13]).

Theorem 6.6. [13] A map germ Ω : (R2, 0) −→ (R3, 0) with j2Ω = (x, y2, 0) is A-equivalent
to a germ of the form (x, y2, yF (x, y2)), for smooth F (x, y2). �
The following corollary gives the normal form of the λ-point map at the special values of λ.

Corollary 6.7. Let γ1 and γ2 be two regular space curves with non-vanishing curvatures
and torsions. Let T1(0) = −T2(0) and γ1 and γ2 have parallel osculating planes at γ1(0)
and γ2(0). The λ-point map at the special values of λ is A-equivalent to a germ of the form
(x, y2, yF (x, y2)), for smooth F (x, y2).

Proof. From equation (6), the second jet of the λ-point map is given by j2M = (x, y2, 0).
Therefore, using Theorem (6.6) the result holds.

The coefficient a21 plays a central role in the classification of the λ-point map. We use
equation (6) to give the normal form of the λ-point map. Precisely, we give the condition
for this map to be A-equivalent to B±

2 , C
±
3 , F4, and C±

4 with normal forms (x, y2, x2y± y5),
(x, y2, xy3 ± x3y), (x, y2, x3y + y5), and (x, y2, xy3 ± x4y) respectively. Recall that C±

3 is
4-determined, and the others are 5-determined. For more details in this subject we refer the
reader to ([11, 13]).

Case 1 a21 ̸= 0
If a21 ̸= 0, then after suitable coordinates change in the target j5M can be transformed to
j5M = (x, y2, a21x

2y + a13xy
3 + a05y

5). Therefore, j5M is A-equivalent to B±
2 if and only if

4a05a21 − a213 ̸= 0.

Case 2 a21 = 0
In this case the fourth jet of the λ-point map is given by j4M = (x, y2, a13xy

3 + a31x
3y).

Therefore, j4M is A-equivalent to C±
3 if and only if a13 ̸= 0 and a31 ̸= 0. Thus M is

A-equivalent to C±
3 if and only if a13 ̸= 0 and a31 ̸= 0. Now assume that a13 = 0, then

the fifth jet of M is given by j5M = (x, y2, a31x
3y + a41x

4y + a23x
2y3 + a05y

5). If a31 ̸= 0,
then j5M can be transformed to j5M = (x, y2, a31x

3y + a23x
2y3 + a05y

5). Therefore, j5M is
A-equivalent to F4 if and only if a05 ̸= 0. Now assume that a31 = 0. If a13 ̸= 0, then j5M can
be transformed to j5M = (x, y2, a13xy

3 + a41x
4y + a05y

5). Therefore, j5M is A-equivalent
to C±

4 if and only if a41 ̸= 0. We summarize this discussion in the following theorem.

Theorem 6.8. Let γ1 and γ2 be two regular space curves with non-vanishing curvatures and
torsions at t1 = 0 and t2 = 0. If T1(0) = −T2(0) and the two curves have parallel osculating
planes at γ1(0) and γ2(0). At the special values of λ, we have the following, in the notation
of (4) and (5).
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1. If a21 ̸= 0, then M is A-equivalent to B±
2 if and only if 4a05a21 − a213 ̸= 0.

2. If a21 = 0, then M is A-equivalent to C±
3 if and only if a13 ̸= 0 and a31 ̸= 0.

3. If a21 = a13 = 0, then M is A-equivalent to F4 if and only if a31 ̸= 0 and a05 ̸= 0.

4. If a21 = a31 = 0, then M is A-equivalent to C±
4 if and only if a13 ̸= 0 and a41 ̸= 0. �

In the appendix we give the geometric interpretations of the coefficients aij in terms of the
curvatures and torsions of γ1 and γ2. In the previous we discuss the possible singularities of
the λ-point map when τ1(0) ̸= 0 and τ2(0) ̸= 0. The interesting question now is that what
is the type of singularity does the λ-point map may have when τ1(0) = 0 or τ2(0) = 0 or
τ1(0) = τ2(0) = 0?

Proposition 6.9. Let γ1 and γ2 be two regular space curves with non-vanishing curvatures
such that T1(0) = ±T2(0), and γ1 and γ2 have parallel osculating planes at γ1(0) and γ2(0) .
If τ1(0) = 0 or τ2(0) = 0, but not both zero, then the λ-point map is A-equivalent to S+

1 .

Proof. The proof of this proposition comes directly from equation (2) and Criteria (4.4).

The following table is a summary of our results when the torsions are not both zero.

Type of sin-
gularity

Osculating
planes

Special
values

a21 a13 a31 τ1,τ2 a41 a05 4a21a05 − a213

Crosscap No — — — — — — — —
S±
1 Yes No — — — Not

both
zero

— — —

B±
2 Yes Yes ̸= 0 — — — — — ̸= 0

C±
3 Yes Yes = 0 ̸= 0 ̸= 0 — — — —

C±
4 Yes Yes = 0 ̸= 0 = 0 — ̸= 0 — —

F4 Yes Yes = 0 = 0 ̸= 0 — — ̸= 0 —

Table 1: This table is the summary of the classifications of λ-point map. The dash — means
this term is not involved.

Remark 6.10. If τ1(0) = τ2(0) = 0 that means b3 = d3 = 0 in equations (4) and (5). In

this case there is another special values of λ. If
1− λ

λ
̸= κ1

κ2

, then by appropriate variable

changes in the source and suitable coordinates changes in the target, it can be shown that the
fifth jet of the λ-point map is given by

j5M = (x, y2, A13xy
3 + A31x

3y + A41x
4y + A23x

2y3 + A05y
5). (7)

From this equation it is clear that the B±
2 singularity is not possible for λ-point map when

both torsions are zero, whereas the C±
3 , C

±
4 and F4 singularities are possible.

Example 6.11. Consider the two curves γ1(t) = (t, 4t2 + 3t3 − 2t4 − 5t5 + 2t6, 4t4 − 8t5 −
2t6+6t7) and γ2(u) = (3−u, 2+9u2−6u3−7u4+3u5+12u6+4u7, 1+6u4+u5−u6+5u7).
The associated λ-point map to these curves M(t, u) = (1 − λ)γ1(t) + λγ2(u) at M(0, 0) is
A-equivalent to C+

3 when λ = 1
2
and to C−

3 when λ = 1
3
.
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Figure 5: The λ-point map in example 6.11 when λ = 1
3
. The self-intersection curve is

emphasized by a dark line.

7 Appendix

In this appendix we express the coefficients of the 5-jet of the λ-point map appear in Theorem
(6.8) in terms of the curvatures, torsions and their derivatives. Calculations show that the
Taylor expansion of the curvature and torsion of γ1 in terms of the arc-length are given by.

κ1(s1) = 2a22 + 6a3s1 − 3(4a82−3b43−2a22a4)

a22
s21 −

27a3b43−36a22b
2
3b4−20a42a5−76a82a3
a42

s31 + . . .

τ1(s1) =
3b23
a22

+
6(2a22b4−3a3b23)

a42
s+

3(10a42b5−18b4a3a22−18a4b23a
2
2+27a23b

2
3−9b63)

a62
s2 + . . .

(8)

Also, Taylor expansion of the curvature and torsion of γ2 in terms of the arc-length are given
by. 

κ2(s2) = 2c22 + 6c3s2 +
3(4c22c4+3d43−4c82)

c22
s22 −

(76c82c3−20c42c5+36c22d
2
3d4+27c3d43)

c42
s32 + . . .

τ2(s2) =
3d23
c22

− 6(2c22d4+3c3d23)

c42
s2 − 3(18c22c4d

2
3−18c22c3d4+10c42d5+9d63−27c23d

2
3)

c62
s22 + . . .

(9)

Using equation (8) we have the following expressions for the coefficients a2, a3, a4, a5, b3, b4
and b5. All values are calculated at s1 = 0

a22 =
κ1

2
, a3 =

κ′
1

6
, a4 =

κ′′
1 − κ1τ

2
1 + 3κ3

1

24
, a5 =

κ′′′
1 + 19κ2

1κ
′
1 − 3κ1τ1τ

′
1 − 3κ′

1τ
2
1

120
.

b23 =
κ1τ1
6

, b4 =
κ1τ

′
1 + 2κ′

1τ1
24

, b5 =
κ1τ

′′
1 + 3κ′

1τ
′
1 + 3κ′′

1τ1 + 9κ3
1τ1 − κ1τ

3
1

120
.

(10)
Also, from equation (9) at s2 = 0, we have

c22 =
κ2

2
, c3 =

κ′
2

6
, c4 =

κ′′
2 − κ2τ

2
2 + 3κ3

2

24
, c5 =

κ′′′
2 + 19κ2

2κ
′
2

120
− κ2

2τ2τ
′
2 + κ′

2τ
2
2

80
.

d23 =
κ2τ2
6

, d4 =
−κ2

2τ
′
2 − 4κ′

2τ2
48

, d5 =
κ2τ

3
2 − κ2τ

′′
2 − 3κ′′

2τ2 − 9κ3
2τ2

120
− κ2κ

′
2τ

′
2

80
.

(11)
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In calculating j5M we use the Maple, and the coefficients of j5M are given by

a21 = −3
(d3+b3)d3(a22d3−c22b3)

a22d3+c22b3
.

a13 = −d3(−4 b4d3
2c22+4 a22d4b3

2+3 d3b3
3c3+3 d3

3b3a3)
b3

2(a22d3+c22b3)
.

a31 = −1
2

(d3+b3)
2d3(−9 a22c3c22b3

2+27 b3a24c3d3+27 b3a3c24d3+8 a26d4−9 a3d3
2c22a22−8 b4c26)

(a22d3+c22b3)
3 .

a05 =
d3(d5b34a22d3+d5b3

5c22+b5d3
5a22+b5d3

4c22b3−2 d4b3
5c3−2 d4b3

3a3d3
2−2 b4d3

3c3b3
2−2 b4d3

5a3)
b3

4(d3+b3)(a22d3+c22b3)
.

(12)

Calculations show that the coefficient a41 is a long equation, but when a21 = 0, then a41 can
be simplified to

a41 =
1

64

(c2
2 + a2

2)
3

a210c210
[27 a2

10c3
2d3

2 + 48 a2
10d3

2c4c2
2

+ 20 a2
10d5c2

4 + 162 c3a3d3
2c2

4a2
6

− 72 a2
4b4c3c2

8 − 48 a2
4a4d3

2c2
8

+ 135 a2
2a3

2d3
2c2

8 + 20 a2
2b5c2

12

− 72 b4c2
12a3].

(13)

Using equations (10) and (11), a21, a13, a31, a41 and a05 can be expressed in terms of κ1, κ2

τ1, τ2 and their derivatives.
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