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1 Introduction

This is the continuation of our study in [9, 10, 11] of singularities arising from families of
chords intrinsically attached to a hypersurface M ⊂ R

n embedded in an affine space.
The origin of this investigation is the paper [14] of Janeczko. He described a general-

ization of central symmetry in which a single point—the centre of symmetry—is replaced
by the bifurcation set of a certain family of ratios. Then [8] Giblin and Holtom and later
Giblin and Zakalyukin investigated the singularities of the envelope of a family of chords
(called the Centre Symmetry Set or CSS). Here a chord is a straight line passing through
a pair of points on the given hypersurface M ⊂ R

n at which the tangent hyperplanes are
parallel.

The singularities of envelopes of families of chords are examples of Lagrangian and
Legendrean singularities [2, 15]. In fact, the CSS construction generalizes that of the
family of normals of a surface in euclidean space and the family of affine normals of
a surface in affine space. The family of affine equidistants arises as the counterpart of
parallels or offsets in Euclidean geometry. An affine equidistant for us is the set of points
of the above chords which divide the chord segments between the base points with a fixed
ratio λ, also called the affine time. When λ varies the affine equidistant points move along
the chords and their singularities sweep out the CSS. Since λ and 1 − λ give the same
equidistant, the value λ = 1

2
has symmetry and hence is special. The values λ = 0, 1 are

also special in that the equidistant lies in the hypersurface.
In [10, 11] we described a general method for analyzing the local structure of the enve-

lope of chords based on the construction of a generating function depending on parameters
whose bifurcation set is tangent to all these chords. We listed the generic singularities of
CSS for the cases n = 2 and n = 3. In the present paper we study the generic bifurcations
of affine equidistants when the affine time λ varies.

The most interesting case arises when the manifold M is not convex. In particular,
arbitrarily close to an ordinary inflexion (n = 2) or a parabolic point (n = 3), there are
pairs of points of M with parallel tangents. The corresponding chords have an envelope
with a limit point at the inflexion or parabolic point itself. In [8] the first case of this
phenomenon (a simple inflection on a plane curve) was considered; in general the CSS
acquires extra components, and singularities resembling the boundary singularities of
Arnold.

We describe in this article the structure of the equidistants in this ‘local’ case. We find,
in fact, that all the generic cases have explicit normal forms up to a natural equivalence
(‘s-equivalence’ below) preserving the equidistants up to local diffeomorphism. For the
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1



case n = 3, so that M is a smooth surface in R
3, we distinguish ordinary parabolic points

(A2 of the height function), certain other parabolic points which we call A∗

2 points, and
cusps of Gauss (A3 points). In each case λ = 1

2
, 0, 1 behave differently from the other

values of λ, and for A3 points there are also, in certain cases, other special values of λ
which give different normal forms. See Theorems 3.3 and 3.5 for precise statements of
these results.

All constructions are local and all objects are assumed to be C∞-smooth. We base our
study on the methods of [10] where we found normal forms for generic types of singularities
of the CSS in three dimensions. Some of those are not simple—the diffeomorphism types
depend on functional invariants. Nevertheless, as stated above, all the generic families of
equidistants reduce to normal forms without moduli.

Another interesting case, which we shall consider elsewhere, is that of two distinct
surface patches which share a common tangent plane at a0, b0 say. Again we are con-
cerned with chords joining pairs of points a, b close to a0, b0 respectively, at which the
tangent planes are parallel. In [10, 11] we classified the CSS—the envelope of chords—
in this situation, but there are extra difficulties in classifying the evolution of the affine
equidistants.

Bifurcations of affine equidistants are of interest [1, 6] in some applications, for example
in the description of generic singularities of families of equidistants in Finsler geometry.
A translation invariant Finsler metric on an affine space A determines a system of Finsler
geodesics. Since the respective Hamiltonian is translation invariant, the geodesics are
straight lines. Given an initial data hypersurface I ⊂ A a family of Finsler equidistants
It is formed.

For completeness we start with necessary singularity theory background and repeat
some constructions from [10].

2 Affine generating families

Let M, a0 and N, b0 be two germs at points a0 and b0 of smooth hypersurfaces in an
affine space R

n. Let ri : Un−1
i → R

n, i = 1, 2 be local regular parametrizations of M and
N, where Ui are neighbourhoods of the origin in R

n−1 with local coordinates x and y
respectively, r1(0) = a0, r2(0) = b0.

A parallel pair is a pair of points a ∈ M, b ∈ N, a 6= b such that the hyperplane TaM
which is tangent to M at a is parallel to the tangent hyperplane TbN.

A chord is the straight line l(a, b) passing through a parallel pair:

l(a, b) = {q ∈ R
n | q = λa + µb, λ ∈ R, µ ∈ R, λ + µ = 1} .

An affine (λ, µ)–equidistant Eλ of the pair (M, N) is the set of all q ∈ R
n such that

q = λa + µb for given λ ∈ R, µ ∈ R, λ + µ = 1 and all parallel pairs a, b (close to a0, b0).
Note that E0 is contained in the germ of M at a0 and E1 is contained in the germ of N
at b0.

The extended affine space is the space R
n+1
e = R × R

n with barycentric cooordinate
λ ∈ R, µ ∈ R, λ + µ = 1 on the first factor (called affine time). We denote by
π2 : w = (λ, q) 7→ q the projection of R

n+1
e to the second factor.
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An affine extended wave front W (M, N) of the pair (M, N) is the union of all affine
equidistants each embedded into its own slice of the extended affine space: W (M, N) =
{(λ, Eλ)} ⊂ R

n+1
e .

The centre symmetry set CSS(M, N) of a family of affine equidistants (or of the family
of chords) of the pair M, N is the image under π2 of the locus of the critical points of
the restriction πr = π|W (M,N). A point is critical if πr at this point fails to be a regular
projection of a smooth submanifold.

Besides being swept out by the momentary equidistants Eλ, the affine extended wave
front is swept out by the lifts to R

n+1
e of chords. Each of them (except for limiting chords

where the endpoints coincide, as at a parabolic point of a surface or an inflexion point of
a curve) has regular projection to the configuration space R

n. Hence the centre symmetry
set CSS(M, N) is the envelope of the family of chords. Its singularities were studied in
[10, 11].

In this paper we are interested in the equidistants and we consider instead the projec-
tion π1 of R

n+1 to the first factor.

Definition 2.1 We say that two germs of families of affine equidistants have equivalent
bifurcations if there is a diffeomorphism germ θ : R

n+1 → R
n+1 mapping one extended

affine equidistant to the other and respecting the fibers of π1. In other words there is a
diffeomorphism germ θ̃ : R → R of an affine time axis such that π1 ◦ θ = θ̃ ◦ π1.

So families have equivalent bifurcations if via some appropriate reparametrization of
time each affine equidistant of one family is diffeomorphic to the respective equidistant of
the other family. From the theory of Legendre and Lagrange singularities, singularities of
families of equidistants are closely related to singularities of families of functions depending
on two groups of parameters (time-space unfoldings), which will be used below and which
differ from the space-time unfoldings considered in [10]. Compare e.g. [2, 15, 12].

A germ of a family F (u, v) of functions in variables u ∈ R
k with parameters v =

(λ, q) ∈ R
n+1
e where λ ∈ R and q ∈ R

n determines the following collection of varieties:

• The fibrewise critical set is the set CF ⊂ R
k × R × R

n of solutions (u, v) of the
so-called Legendre equations:

F (u, v) = 0,
∂F

∂u
(u, v) = 0.

• The big wave front (or discriminant) is W (F ) = {v = (λ, q) | ∃u : (u, v) ∈ CF } .

• The intersection of the (big) wave front with λ = const is called the momentary
wave front Wλ(F ).

• The Legendre subvariety Λ(F ) is a subvariety of the projectivised cotangent bundle
PT ∗(Rn+1) :

Λ(F ) =

{
(v, v̄)

∣∣∣∣ ∃u, (u, v) ∈ CF , v̄ =

[
∂F

∂v

]}

Here [ ] stands for the projectivisation of a vector.
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The family F is called a generating family for Λ(F ). The germ of Λ(F ) is smooth
provided that the Legendre equations are locally regular, i.e. that the standard Morse
conditions are fulfilled (see e.g. [2]).

Definition 2.2 Two germs of families Fi, i = 1, 2 are contact-equivalent (c-equivalent
for short) if there exist a non-zero function φ(u, v) and a diffeomorphism θ : R

k ×R
n+1 →

R
k × R

n+1, of the form θ : (u, v) 7→ (X(u, v), V (v)) such that φF1 = F2 ◦ θ.
In particular, they are time-space-contact-equivalent (s-equivalent for short) if there

exist a non-zero function φ(u, λ, q) and a diffeomorphism θ : R
k × R

n+1 → R
k × R

n+1, of
the form

θ : (u, λ, q) 7→ (U(u, λ, q), Λ(λ), Q(λ, q))

such that φF1 = F2 ◦ θ.

The sum of the family F (u, λ, q) with a non-degenerate quadratic form in extra vari-
ables y1, . . . , ym is called a stabilization of F. Two germs of families are stably equivalent
if they are equivalent (we mean either c, or s equivalence), to stabilizations of one and
the same family in fewer variables.

We now recall some standard facts.

• The discriminants of stably c-equivalent families are diffeomorphic. The families of
momentary wave fronts of stably s-equivalent families of functions are equivalent.

• Legendre submanifolds LF of c-stable equivalent families are Legendre equivalent:
the germ of θ determines a contactomorphism of the projectivised cotangent bundle
PT ∗

R
n+1 which preserves the fibres and maps one Legendre submanifold onto the

other.

Standard arguments of singularity theory (see e.g. [2]) imply that versality and in-
finitesimal versality conditions for c- or s-groups yield stability of wavefronts or of bifur-
cation of momentary wave fronts: any small perturbation of a versal family produces a
wavefront or bifurcation diffeomorphic to the unperturbed one.

We now specialise to the case at hand, of an affine generating family ([10]) which de-
scribes the affine equidistants and to which we can apply the above results. Let, as above,
λ, µ = 1 − λ be barycentric cooordinates on R; let 〈, 〉 be the standard pairing of vectors
from R

n and covectors p from the dual space (Rn)∧. Let r1, r2 be local parametrizations
of M , N close to a0, b0 respectively, defined on neighbourhoods U, V of the origin in R

n−1,
with coordinates u, v and satisfying r1(0) = a0, r2(0) = b0.

Definition 2.3 An affine generating family F of a pair M, N is a family of functions in
variables x, y, p ∈ U × V × ((Rn)∧\{0}, 0) with parameters λ, q ∈ R × R

n of the form

F(x, y, p, λ, q) = λ〈r1(x) − q, p〉 + µ〈r2(y) − q, p〉.

We have shown in [10] the following crucial fact.
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Proposition 2.4 The wave front W (F) coincides with the affine extended wavefront
W (M, N), and the affine equidistants of M, N coincide with the sections of the wave
front W (F) by the hyperplanes λ = const.

In fact, W (F) is reducible and consists of three components:
the germ of N : λ = 0, q = r2(y)
the germ of M : µ = 0, q = r1(x)
and the germ of the set of (λ, q) such that λ 6= 0, µ 6= 0, and q is a point on a chord joining
the parallel pair r1(x), r2(y).

The germ of W (F) at any point (λ0, q0) where q0 = λ0a0 + (1 − λ0)b0, corresponding
to x = 0, y = 0, [p] = [dr1|a0

] = [dr2|b0 ] coincides with the germ of the extended wavefront
W (M, N) at this point.

The simplest case is that of two distinct hypersurfaces with parallel but distinct tan-
gent planes. In such a case choose affine coordinates q = (h, s1 . . . , sn−1) in R

n such that
a0 = (c, 0, . . . , 0), b0 = (−c, 0, . . . , 0) for some constant c and the hyperplanes tangent to
M, a0 and N, b0 are parallel to the h = 0 coordinate hyperplane.

Take local parametrizations of M in Monge form:

r1(x) = (c + f(x), x1, . . . , xn−1), r2(y) = (−c + g(y), y1, . . . , yn−1).

Here x = (x1, . . . , xn−1) ∈ U ; y = (y1, . . . , yn−1) ∈ V , where U, V are neighbourhoods
of the origin in R

n−1 and the smooth functions f, g have zero 1-jet at the origin: f ∈
M2

x, g ∈ M2
y.

Lemma 2.5 The germ of the family F at the point x = 0, y = 0, p0 = (1, 0, . . . , 0), λ =
λ0, q0 = (h0, 0, . . . , 0), h0 = c(λ0−µ0) (which corresponds to the point q0 = λ0a0 +µ0b0 on
the chord l(a0, b0) ) is stably s-equivalent to the germ of the following family G of functions
in z ∈ R

n−1 with parameters q = (h, s), λ at the point z = 0, λ = λ0, q = q0 = (h0, 0) :

G = −h + λ (c + f(s + µz)) + µ (−c + g(s − λz)) .

Remarks 2.6 1. The lemma is essentially the stabilization lemma from [10], but for the
case of s− equivalence. Due to its importance we repeat the proof.

2. The proof of the lemma actually provides not only stable s-equivalence, but also an
underlying identity diffeomorphism of the extended parameters λ, h, s: these parameters
remain unchanged.

Proof of Lemma 2.5 The family F differs only by a non-zero factor from its restriction
Fr to the subspace p = (1, p1, . . . , pn−1) which is

Fr = −h + c(λ − µ) + λf(x) + µg(y) +

n−1∑

i=1

(λxi + µyi − si)pi.

Let wi = λxi + µyi − si and zi = xi − yi for i = 1, . . . , n − 1. The determinant of the
transformation x, y 7→ z, w equals 1. In the new variables z, w the family takes the form
F∗ = G∗(z, w, λ, q) +

∑
wipi where

G∗ = −h + c(λ − µ) + λf(x(z, w)) + µg(y(z, w)).
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By D’Adamard’s lemma F∗ = G∗(z, 0, λ, q) +
∑

wi (pi + φi(z, w, λ, q)) , where φi are
smooth functions which vanish at w = z = 0, λ = λ0, q = q0. Hence F∗ is a stabi-
lization of G∗(z, 0, λ, q). Since the restriction to w = 0 of the inverse mapping z, w 7→ x, y
yields x = s + µz, y = s − λz we obtain

G(z, λ, q) = G∗(z, 0, λ, q) = −h + c(λ − µ) + λf(s + µz) + µg(s − λz).

3 Normal forms of families of equidistants at inflec-

tions and parabolic points

For systems of chords through parallel pairs of points close to a parabolic point on a
single hypersurface M ∈ R

n [10] the lemma 2.5 (setting c = 0, f = g) proves that the
generating family F is stably s-equivalent to the form:

G = −h + λf(s + µz) + µf(s − λz).

The germ of the function f (defining the hypersurface) will be taken to have vanishing
1-jet at the origin and degenerate second differential at the origin.

According to the results of the previous section, studying s-equivalence of these families
will give us a classification of equivalence classes of families of affine equidistants.

This formula implies the following properties of the family G:
1. The function G |z=0 = −h + f(s) vanishes exactly at the hypersurface M.
2. The family G contains no terms linear in z : ∂G

∂z
|z=0 = 0.

3. The family G is invariant under the symmetry λ 7→ µ, z 7→ −z which has a fixed
point at λ = µ = 1/2, z = 0.

4. The extended wavefront contains the axis q = 0, λ ∈ R, which projects to the origin
in q space. So the mapping π

∣∣
W (F ) is not a proper map but is a kind of blowing-down

map. In contrast to this, the projection π1 to the affine time axis is generically a proper
map. We shall see below the generic affine equidistant bifurcations are stable and simple
with respect to s-equivalence.

3.1 Planar inflection case

Starting with the planar case z ∈ R, s ∈ R observe that up to an appropriate affine
transformation a germ of a generic plane curve C at an ordinary inflection point is the
graph h = f(s) of a function f(z) = z3 + c4z

4 + c5z
5 + . . . with c4 6= 0.

Hence

G = −h + f(s) + λµ
[
(µ − λ)z3 + (µ2 + λ2 − µλ)c4z

4 + · · ·+
sz2(3 + 6c4s + . . . ) + (µ − λ)sz3(4c4 + . . . )

]
.

We shall write λ = λ0 + ε and h̃ = h − f(s). In all cases below the equidistant contains
a redundant component which is the original curve C given by h̃ = 0. All the reductions
to normal form in the following theorem leave the ‘time’ component ε unchanged.
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Theorem 3.1 (i) For λ0 6= 0, 1
2
, 1 the germ of G(z, λ, s) at (0, λ0, 0) is s-equivalent to

the germ at the origin of
H = −h̃ + sz2 + z3,

which corresponds to a trivial family of affine equidistants, independent of ε. The germs
of equidistants are smooth when passing through the origin. Each of them has 3-point
contact with C.

(ii) For λ0 = 0 or λ0 = 1 the normal form is

H = −h̃ + ε(sz2 + z3).

The equidistant coincides with C for ε = 0, and for ε 6= 0 is family smooth curves having
3-point contact with C at the origin.

(iii) For λ0 = 1
2

the family is s-equivalent to the normal form

H = −h̃ + sz2 + εz3 + z4.

For ε = 0 this is a ‘half-parabola’ (−2z2,−z4) and for ε 6= 0 it is a curve having 3-point
contact with C and a cusp at z = −3

8
ε. The cusps trace out the curve (2z2, 1

3
z4) which

is the caustic, also called the centre symmetry set (CSS) of C. See Figure 1 for a real
example.

l  =  0 . 5

l       0  

l       0  

C

C

l  =  0 . 2 5

l  =  0 . 2 5

Figure 1: The equidistants for a curve with C an inflexion and various values of λ from 0 to 1
2

(note that λ and 1− λ give identical equidistants). As λ → 0 (or 1) the equidistant wraps itself
along the curve C. For λ = 1

2 it is a ‘half parabola’; for other values of λ it is smooth at the
point of contact with C but has a cusp elsewhere.

Remarks 3.2 (1) In case (iii) the caustic and the initial curve h̃ = 0 form the bifurcation
diagram of Arnold’s boundary singularity B2.

(2) In the case (iii), in [10, Prop. 5.2] we were able to prove only weak stability (stability
of the caustic) for this normal form. Here, in contrast, we prove s-stability of the normal
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form, thereby obtaining an accurate representation of the family of equidistants up to
diffeomorphism. As we shall see, the same s-stability holds also in all the generic cases of
surfaces in R

3.

Proof. (i). An appropriate rescaling of z, s and a diffeomorphism s 7→ 3s+6c4s
2 + . . .

reduce the family to the following one:

G = −h̃ + sz2(1 + A(ε)) + z3(1 + B(z, ε, s))

with smooth functions A, B such that A(0) = 0, and B(0) = 0.
Applying the standard Moser homotopy method it is easy to prove that all such germs

are s-equivalent. We give the details of this case below.
Consider a homotopy

Gτ = −h̃ + sz2(1 + τA(ε)) + z3(1 + τB(z, ε, s)), τ ∈ [0, 1],

joining G1 = G and G0 - which is the normal form. Try to find a family of s-equivalences
reducing Gτ to G0. In other words we need a family of non-zero functions Pτ (z, s, h, ε),
and a family of diffeomorphisms of the form

Θτ : (z, s, h̃, ε) 7→
(
Zτ (z, s, h̃, ε), Sτ(s, h̃, ε), Hτ(s, h̃, ε), Eτ(ε)

)

such that Pτ (Gτ ◦ Θτ ) = G0 for any τ ∈ [0, 1].
Differentiating with respect to τ and dividing by P we get so-called homological equa-

tion

−∂Gτ

∂τ
=

1

P

∂P

∂τ
Gτ +

∂Gτ

∂z

∂Zτ

∂τ
+

∂Gτ

∂h̃

∂Hτ

∂τ
+

∂Gτ

∂s

∂Sτ

∂τ
+

∂Gτ

∂ε

∂Eτ

∂τ
.

Notice that all the partial derivatives of Gτ are taken at the point Θt(z, s, h, ε).
The key idea of the method consists of the following. For a given left hand side

function −∂Gτ

∂τ
of the variables z, s, h, ε, τ we have to find a decomposition from the right

hand side with some smooth functions ∂Zτ

∂τ
, ∂Hτ

∂τ
, ∂Sτ

∂τ
, ∂Eτ

∂τ
.

The phase flow of the vector field in z, s, h, ε-space with these components provides
the required family of diffeomorphisms Θτ . Then knowing 1

P
∂P
∂τ

we can reconstruct family
of functions Pτ and therefore, establish the s-equivalence of the families Gτ .

In other words, we have to show that the tangent space

TGτ
A =

{
−∂Gτ

∂τ

}

at Gτ to the space A of all families (which is a Oz,ε,q-module) belongs to the tangent
space

TOs(Gτ ) =

{
P̃Gτ +

∂Gτ

∂z
Ż +

∂Gτ

∂h̃
Ḣ +

∂Gτ

∂s
Ṡ +

∂Gτ

∂ε
Ė

}

of the orbit of s-equivalencies through Gτ .
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Here P̃ (z, s, h, ε, τ), Ż(z, s, h, ε, τ), Ḣ(s, h, ε, τ), Ṡ(s, h, ε, τ), Ė(ε, τ) are arbitrarily
germs in respective variables. This condition is called the s-infinitesimal stability (or
versality).

Notice that TOs(Gτ ) contains a subspace

T∗ = Oz,ε,q

{
∂Gτ

∂z
z

}
+ Oε,q

∂G

∂s
⊂ TOs(Gτ ),

Now we will show that T∗ = TGτ
A and hence s-infinitesimal versality of Gτ holds.

Moreover in this case we don’t need to modify affine time ε : E = id since the component
Ė can always be chosen equal to zero.

For completeness we state now the Malgrange preparation theorem (see e.g. [3]) which
is the main tool to proof similar inclusions. This theorem will be intensively used in each
theorem below.

Malgrange Preparation Theorem Let f : x 7→ y be a germ (at the origin) of a C∞

mapping from R
n to R

m. Assume that M is a finitely generated module over the algebra
Ox of germs at the origin of smooth functions in x and that the factor module M/IfM
where the ideal If is generated by the components of f is isomorphic to R-module with
the generators g1(x), . . . , gk(x). Then M is isomorphic to the module over the algebra of
composed functions Of = {h(y1(x), . . . , ym(x)} with the same set of generators g1, . . . , gk.

Let now M be the Oz,s,h,ε,τ module of germs at z = s = h = ε = 0, τ = τ0 (for
any τo ∈ [0, 1]) of smooth functions in z, s, h, ε, τ which are divisible by z2. Consider the
mapping f : (z, s, h, ε, τ) 7→ (s, h, ε, τ − τ0,

∂Gτ

∂z
z. Apparently, the factor module M/IfM

is isomorphic to the factor module of the space z2Oz of functions in z only divisible
by z2 over the ideal generated by the z5. In fact, we can restrict each function to subset
ε = h = s = 0, τ = τ0 since the respective coordinate functions belong to the ideal. Clearly
the restriction of ∂Gτ

∂z
z is z3q(z) with q(0) 6= 0, and the restriction of ∂Gτ

∂s
equals z2p(z)

with p(0) 6= 0. Hence M/IfM is generated over R by the classes of ∂Gτ

∂s
, ∂Gτ

∂z
z, ∂Gτ

∂z
z2. Now

Malgrange’s preparation theorem implies that any function ϕ ∈ M can be represented as
the following linear combination with smooth functions C1, C2, C3 :

ϕ =
∂Gτ

∂s
C1

(
s, h, ε, τ,

∂Gτ

∂z
z

)
+

∂Gτ

∂z
zC2

(
s, h, ε, τ,

∂Gτ

∂z
z

)
+

∂Gτ

∂z
z2C3

(
s, h, ε, τ,

∂Gτ

∂z
z

)
.

Decomposing a given function germ ϕ at any τ0 and then using the compactness of
the unit segment [0, 1] and appropriate distribution of the unit, we get the decomposition
with the coefficients being smooth functions with respect to τ on this segment. The s−
infinitesimal stability and hence s-stability in this easy case is proven. As we have seen
neither modification of ε, nor of h, nor any non-trivial factor P are needed.

The proof of (ii) is similar. From now on we will omit repeating complete details
describing only the essential part of the solvability of the homological equation.

Now the space of deformations

A =
{

εz2sÂ(s, ε) + εz3B̂(z, ε, s)
}
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is exhausted by sum of the subspaces of the right orbit generated (over the corresponding
algebras of germs of functions) by:

z
∂G

∂z
= 2εsA(ε, s)z2 + 3εz3B(z, ε, s);

G = −h + εsA(ε, s)z2 + εz3B(z, ε, s);

s
∂G

∂s
= εsÃ(ε, s)z2 + εz3B̃(z, ε, s)

with smooth functions A 6= 0, Â 6= 0, B 6= 0 and B̂.

To prove (iii) observe that family G is σ-invariant, where the involution σ : (q, λ, µ, z) 7→
(q, µ, λ,−z) transposes λ and µ (and so takes ε to −ε), and reverses the sign of z (in fact
it transposes th basic points along a chord). Denote by Oσ

z,ε,q the space of germs at the
origin of smooth σ-invariant functions in z, ε, q. According to Malgrange preparation the-
orem Oσ

z,ε,q consists of composed functions germs, being functions in basic σ-invariants
ε2, zε, z2, q.

Germs at the origin ε = 1
2
(λ−µ) = 0, q = 0, z = 0 of affine generating families G after

some obvious s-transformation G take the form

G = h + sz2A + εz3B + z4C

with non-vanishing at the origin σ-invariant functions A, B ∈ Oσ
ε,q in parameters ε, q

only, and non-vanishing at the origin σ-invariant functions C ∈ Oσ
z,ε,q. Denote by OG the

space of all such families G.
The tangent space TOG to OG at any G consist of germs

G′ = sz2A′ + εz3B′ + z4C ′

with A′, B′ ∈ Oσ
ε,q, and C ′ ∈ Oσ

z,ε,q which are divisible by z2.
Up to reversing signs of s, h, z and G itself we may assume the germ G belongs to the

connected component of the normalized germ G0 = h + sz2 + εz3 + z4.
Following again Moser’s method connect G0 and G by a homotopy Gτ , τ ∈ [0, 1] and

prove that all Gτ are s-equivalent to G0. Now it is sufficient to show that TOG for any Gτ

is contained in the tangent space TOsGτ of the orbit of the action of s-equivalences, which
are σ-equivariant. This space has the following form (for shortness we omit suscript τ.

TSG = Oσ
z,ε,q

{
G, z

∂G

∂z

}
+ Oσ

ε,q

{
∂G

∂h
,
∂G

∂s
,

}
+ Oσ

ε

∂G

∂ε
.

The Malgrange preparation theorem implies that for any g ∈ TOG there is a decom-
position

g = z
∂G

∂z
a(z, ε, s) + εz3b(ε2, s) + z2c(ε2, s)

with some smooth germs a ∈ Oσ
z,ε,q b, c ∈ Oσ

ε,q
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This decomposition for G − h provides

G = z
∂G

∂z
a0(z, ε, s) + εz3b0(ε

2, s) + z2c0(ε
2, s) + h

with a0 ∈ Oσ
z,ε,q b0, c0 ∈ Oσ

ε,q and b0(0) 6= 0, but c0(0) = 0.

Decomposing ∂G
∂s

we get

∂G

∂s
= z

∂G

∂z
a1(z, ε, s) + εz3b1(ε

2, s) + z2c1(ε
2, s)

with c1(0) 6= 0.
Hence, classes of 1, G and ∂G

∂s
generates over Oσ

ε,q the factor module TOG/Oσ
z,ε,q{z ∂G

∂z
},

and the required inclusion holds. The infinitesimal s-versality condition holds for the
family G in the subspace of σ-invariant functions G′.

Moreover, the decompositions do not involve variations of ε, so the resulting s-equivalence
is preserving values of affine time ε.

3.2 Space case

Let a germ of a generic surface M be the graph of a function h = f(s, t) h, s, t ∈ R.
Let

f = f2 + f3 + . . . , fk =
∑

i+j=k

ai,js
itj

be Taylor decomposition of f into homogeneous forms.
On a generic surface M parabolic points form a smooth curve. At any of them

quadratic form f2 has rank 1.
At a generic parabolic point on the parabolic curve the dual surface has A2 singularity

(cuspidal edge). By an appropriate affine transformation (of s, t plane) the 3-jet of f at
such a point can be reduced to the form:

A2 : f(s, t) = s2 + t3 + a2,1ts
2 + a3,0s

3 + . . .

After this normalization of 3-jet at some isolated points the 4-th order form f4 can
vanish on the line s = 0. These special points will be called A∗

2points. The notation A2

remains for generic points with non-vanishing f4 |s=0 .
In these cases (A2, A

∗

2) the organizing centre of the affine generating family takes the
form:

G0 = λµ
[
x2 + (µ − λ)

(
y3 + a2,1x

2y + a3,0x
3
)

+ (µ2 − λµ + λ2)f4 + . . .
]
.

Theorem 3.3 As in the curve case, the redundant component M is part of every equidis-
tant.

(i) In the cases A2, A∗

2 if λ0 6= 0, 1
2
, 1 the affine generating family is s-equivalent to the

normal form
H = −h̃ + ty2 + y3

which gives a trivial family of smooth germs of affine equidistants at the origin, indepen-
dent of time ε.

11



If λ0 = 0, 1 the affine generating family is s-equivalent to the normal form

H = −h̃ + ε(ty2 + y3).

(ii) In the case A2 (that is, a0,4 6= 0) at λ0 = 1
2

the germ of the generating family is
s-equivalent to the normal form :

H = −h̃ + ty2 + εy3 + y4.

(iii) In the case A∗

2 (that is, a0,4 = 0) at λ0 = 1
2

the generating family is s-equivalent to
the normal form

H = −h̃ + ty2 + εy3 + sy4 + y6,

We now describe these cases geometrically.
In all the cases (i) and (ii) the family of equidistants is diffeomorphic to the product

of a line with the family which arises in the plane case, as in Theorem 3.1. Thus in case
(ii) the cuspidal edge of the equidistant (Figure 2) approaches the parabolic curve on M
as affine time tends to 1

2
and coincides with it completely at this instant. At λ = 1

2
the

affine equidistant becomes a smooth surface with a boundary, which coincides with the
parabolic curve. The surface is tangent to M : h̃ = 0 along the boundary.

M

M

EE

c u s p  e d g e  o n  E p a r a b o l i c  c u r v e  o n  M

E

M M

Figure 2: Left: the equidistant E = Eλ for λ0 = 1
2

and λ = λ0 + ε, ε 6= 0. As ε → 0 the
cusp edge comes into coincidence with the parabolic curve on the original surface M and
the two sheets of Eλ coincide. Right: ε = 0.

The case (iii) of A∗

2 for λ = 1
2

+ ε is quite different. With ε = 0 the equidistant has
a cusp edge ending on the boundary of the equidistant, which lies along the parabolic
curve of M . For ε 6= 0 the cusp edge splits, one piece ending in a swallowtail point which
moves away from the origin carrying a third cusp edge with it. See Figure 4. Using the
normal form, the swallowtail point p0 corresponds to y = y0 = (ε/16)1/3, which gives
p0 = (s, t, h̃) = (−9y4

0,−9y2
0,−y6

0). We can check that the equidistant at this point is
locally diffeomorphic to a standard swallowtail as follows. Regard H for a fixed ε as an
unfolding of a function of y by three unfolding parameters s, t, h̃ (that is, regard H as
defining the equidistant as an envelope of planes in R parametrized by y). Then it is easy
to check that the family H is a versal unfolding at p0 of an A3 singularity at y0, for all
sufficiently small ε (compare [5, §6.18]).
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b o u n d a r y

h a l f  c u s p  e d g e
b o u n d a r y

h a l f  c u s p  e d g e

b o u n d a r y
b o u n d a r y

Figure 3: The equidistant Eλ, for λ = λ0 = 1
2
, (ε = 0) in the case A∗

2 (Theorem 3.3,
(iii)). Left: using the normal form; right: a real example, the surface M being z =
x2 + xy2 + y3 + xy3; the boundary lies along the parabolic curve on M .

A

D

C

B

Figure 4: The equidistant Eλ for λ = 1
2
+ ε, ε 6= 0 (ε small) in the case A∗

2 (Theorem 3.3,
(iii)). Note the swallowtail point; the cusp edges A and B become identical as ε → 0 and
the cusp edges C and D join to form the boundary of the equidistant for ε = 0.

Remarks 3.4 (1) Similarly to the plane case, the germs of affine generating families at
q = 0, z = 0, λ = µ = 1

2
are σ-symmetric, and the affine equidistant for this value of affine

time is covered twice via the respective Legendre mapping.

(2) Notice that in the case of A∗

2 the generic caustic is diffeomorphic to the image of a
half plane under the simple mapping Â4 (from the classification by D.Mond of mapping
from R

2 to R
3):

(t, τ) 7→
(
t, τ 2, τ 3 + t5τ

)
.

The criminant is h̃ = 0 [10].

Proof. Recall that the organizing centre and terms linear in parameters h̃, s, t from
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the affine generating family are given by the formula:

G1 = −h + λµ

[
f2(x, y) +

∑

i>2

fi(x, y)(µi−1 + (−1)iλi−1)

+
∑

i>2

(
∂fi(x, y)

∂x
s +

∂fi(x, y)

∂y
t)(µi−2 + (−1)i−1λi−2)

]
.

When λ0µ0 6= 0 (also when λ0 = 0, 1 but dealing with non-redundant components)
the variable x can be eliminated by stabilization:

1

λµ

∂G1

∂x
= 2x + 2a2,1sy + 6a3,0xs + 2a2,1tx

+(µ − λ)
[
2a2,1xy + 3a3,0x

2 + . . .
]

+(µ2 + λ2 − µλ)

[
∑

i+j=3

ai,jix
i−1yj + . . .

]
+ . . . .

Solving the latter for x and substituting the result into the expression of the family G
provides the family in y, q, λ only with the following low degree terms

Ĝ = −h̃ + µλ
[
(µ − λ)y3 + (µ2 + λ2 − µλ)a0,4y

4 + 3ty2 + . . .
]
.

Clearly, the reduced family remains symmetric under the involution σ : (s, t, µ, λ, y) 7→
(s, t, λ, µ,−y).

If a0,4 6= 0 or (a0,4 = 0 but λ0 6= µ0) the reduced family has the form already considered
in the Theorem 3.1. Hence the result in I, and II cases follows.

In the remaining A∗

2 case µ = 1
2
− ε, λ = 1

2
+ ε and a0,4 = 0 the family which is σ

invariant after an appropriate s-equivalence takes the following form:

Ĝ = −h̃ +
(
ty2 + εA(ε2, s, t)y3 + sB(ε2, s, t)y4 + εC(ε2, s, t)y5 + D(ε2, s, t)y6 + . . .

)
.

Here . . . stands for terms divisible by y7 and the functions A, B, C, D do not vanish
at the origin generically. For example, D = a0,6 + 1

4
(µ2 + λ2 − λµ)2a2

1,3.
Similarly to the proof of the proposition 3.1 it is sufficient to show the inclusion of

tangent spaces TOĜ ⊂ TSĜ. The first one has the following representation:

TOĜ ⊂ Oσ
y,ε,qy

6 + Oσ
ε,q

{
y2, y4, εy3, εy5

}

while the second takes the form

TSĜ = Oσ
y,ε,q

{
Ĝ, y

∂Ĝ

∂y

}
+ Oε,q

{
∂Ĝ

∂h
,
∂Ĝ

∂s
,
∂Ĝ

∂t
,

}
+ Oε

∂Ĝ

∂ε
.

Again according to Malgrange preparation theorem for any g ∈ TOĜ there is a de-
composition
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g = y
∂Ĝ

∂y
a(y, ε, s, t) + εy5b(e2, s, t) + y4c(ε2, s, t) + εy3d(ε2, s, t) + y2e(ε2, s, t)

with some smooth germs a ∈ Oσ
y,ε,q b, c, d, e ∈ Oσ

ε,q.

This decomposition for Ĝ − h provides

Ĝ = y
∂Ĝ

∂y
a0(y, ε, s) + εy5b0(ε

2, s, t) + y4c0(ε
2, s, t) + εy3d0(ε

2, s, t) + y2e0(ε
2, s, t) + h

with a0 ∈ Oσ
y,ε,q b0, c0 ∈ Oσ

ε,q and d(0) 6= 0.

Take now the decomposition for y2Ĝ ∈ TOĜ :

y2Ĝ = y
∂Ĝ

∂y
a∗(y, ε, s) + εy5b∗(ε

2, s, t) + y4c∗(ε
2, s, t) + εy3d∗(ε

2, s, t) + y2(e∗(ε
2, s, t) + h)

which is obtained from the previous one via multiplication by y2 and forgoing decomposing
of terms εy7b0 and y6c0 of higher degrees in y appearing thereafter.

So b∗(0) 6= 0, and d∗(0) = 0.

Decomposing also ∂Ĝ
∂s

and ∂Ĝ
∂t

we get the set of generators 1, ∂Ĝ
∂s

, ∂Ĝ
∂t

, Ĝ, y2Ĝ of

the Oσ
ε,q-module TOĜ/Oσ

y,ε,q{y ∂Ĝ
∂y
}. Hence the required inclusion holds. The infinitesimal

s-versality condition holds for the family Ĝ in the subspace of admissible σ-invariant
deformations of Ĝ.

Again, the decompositions do not involve variations of ε, so the resulting s-equivalence
is preserving values of affine time ε in this case as well.

On the parabolic set of M there are also special isolated points of A3 type: cusps of
Gauss or godrons. We may take the asymptotic direction at the cusp of Gauss to be the
line s = 0, so that the surface takes the form

h = s2 + a3,0s
3 + a2,1s

2t + a1,2st
2 + a4,0s

4 + . . . + a0,4t
4.

For exactly type A3 (nondegenerate cusp of Gauss) we need a2
1,2 6= 4a0,4 and for a smooth

parabolic set we need a1,2 6= 0. Then the dual surface has swallowtail (A3 discriminant
singularity) at the corresponding dual point.

The 4-jet of h can then by an appropriate affine transformation be reduced to the
form:

A3 : f = s2 + st2 + a3,0s
3 + a0,4t

4 + sϕ(s, t), a0,4 6= 1
4
,

for some cubic polynomial ϕ(s, t).

Theorem 3.5 (i) In the case A3 the germ of G at point of λ different from λ0 = 0, 1, 1
2

and the values in (iii) below is s-equivalent to the family

H = −h̃ + sy2 + ty3 + y4,
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which is independent of ε.
For λ0 = 0 or 1, the family becomes

H = −h̃ + ε(sy2 + ty3 + y4).

(ii) For λ0 = 1
2

the family is s-equivalent to

H = −h̃ + sy2 + εty3 + y4,

provided a0,4 6= 0.

(iii) Provided 0 < a0,4 < 1
3
, there are also two values of λ0 symmetric with respect to

λ0 = 1
2

the germ of G at which is s-equivalent to the germ at the origin of the family

H = −h̃ + sy2 + ty3 + (ε + t)y4 + y5.

(This also requires the two further open conditions a1,3 − 4a0,5 + 8a0,4a0,5 6= 0 and a1,3 +
6a1,3a0,4 − 5a0,5 6= 0.)

We now give some more detail and describe these cases geometrically.

(i) The equidistant is a folded Whitney umbrella. See Figure 5, left. As λ0 → 0 or 1, the
umbrella flattens to become the surface M itself, on one side of the parabolic curve.

(ii) The equidistant becomes a smooth surface with boundary along the parabolic curve
of M .

(iii) The two values of λ0 are

λ∗ = 1
2
±

√
a0,4√

(1 − 3a0,4)
.

For ε = 0 there is an open swallowtail at the A3 point; see Figure 5, right. Two cusp
edges converge on the cusp of Gauss, and meet there in a cusp point, but there is no
self-intersection. As ε changes, an ordinary swallowtail forms (see Figure 6). Using the
normal form, the swallowtail point p0 corresponds to y = y0 = (ε/16)1/3, which gives
p0 = (s, t, h̃) = (−9y4

0,−9y2
0,−y6

0(1 − 256y6
0)). We can check that the equidistant at this

point is locally diffeomorphic to a standard swallowtail as follows. Regard H for a fixed
ε as an unfolding of a function of y by three unfolding parameters s, t, h̃ (that is, regard
H as defining the equidistant as an envelope of planes in R parametrized by y). Then it
is easy to check that the family H is a versal unfolding at p0 of an A3 singularity at y0,

Proof. Generically, at A3 point the coefficients a, b, c, k in the Taylor series of
f(s, t) = s2 + st2 + as3 + bt4 + cst3 + kt5 + . . . where . . . stand for terms of weighted
degree greater than 5

4
(other than s3) with weights 1

2
of s and 1

4
of t.

Hence the affine generating family near the origin has a low degree terms

G = −h + λµ
{
x2 + (µ − λ)(xy2 + ax3) + (µ2 + λ2 − µλ)(by4 + cxy3)

+ s(y2 + 3ax2) + 2xyt + (µ − λ)(scy3 + 4tby3 + 3tcxy2) + . . .
}
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c u s p  e d g e

i n t e r s e c t i o n
w i t h  s u r f a c e

Figure 5: Left: using the normal form of Theorem 3.5, the equidistant for λ 6= 1
2 , 0, 1 at an A3

point (cusp of Gauss on the original surface M) is a folded Whitney umbrella which intersects
M with inflexional contact along the parabolic curve. For λ = 1

2 the two sheets of the umbrella
collapse together and the equidistant is a smooth surface with boundary on the parabolic curve.
Centre: For λ one of the special values λ∗, the equidistant is an open swallowtail, with two cusp
edges (dark lines) meeting at the cusp of Gauss on M . The equidistant intersects M as before
along the parabolic curve (grey line) but there is no self-intersection. Right: The equidistant
for λ∗ = 1

4 for the surface z = x2 + xy2 + 1
7y4 + xy3. Again the parabolic curve on M , where

the equidistant meets the surface with inflexional contact, is shown in grey.

where . . . mean the terms either of order greater than 1 with respect to s, t variables
either of high enough weighted order mentioned.

Eliminating x variable by stabilization solve for x the equation

0 =
∂G

∂x
= 2x + (µ− λ)(y2 + 3ax2) + (λ2 + µ2 − µλ)cy3 + 6sax + 2ty + 3t(µ− λ)cy2 + . . .

and get

x = −1

2
(µ−λ)y2−frac12(λ2+µ2−λµ)cy3+

3

4
(µ−λ)y2sa+frac34(λ2+µ2−λµ)scay3+. . .

After the substitution of this expression into the formula for G we get

Ĝ(y, λ, µ, q) = −h + λµ

{
[(b(µ2 + λ2 − µλ) − 1

4
(µ − λ)2]y4 + (µ − λ)[(λ2 + µ2)

−1

8
(µ2 + λ2 − λµ)(6 + 4c)]y5 + sy2 + (µ − λ)y3[(4b − 1)t + sc] +

1

4
(3as(µ − λ)2 − 5ct)y4 + . . .

}

where dots stand for either terms of degree greater than 1 in s, t or of degree greater than
5 in y.

Now it is clearly visible that if λ 6= 0; 1
2
; 1, and 4b−1 6= 0, 4b(µ2+λ2−λµ)−(µ−λ) 6= 0

then the family is s-equivalent to a versal family g0 = −h + y2s + y3t + y4.
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e  =  0 e  =  0 . 1 e  =  0 . 5 e  =  0 . 7

Figure 6: Equidistants for an A3 point (cusp of Gauss on the original surface M), for λ = λ∗+ε.
Each equidistant is shown from two views. For ε = 0 the equidistant has an open swallowtail
singularity, as in Figure 5, right, and as ε increases an ordinary swallowtail appears (see the
text) and moves away from the cusp of Gauss. One of the cusp edges persists while the other
pierces the equidistant and creates a self-intersection.

If λ = 1
2

the family is σ-symmetric and is s-equivalent (with respect to equivariant
mappings) to the normal form g1 = −h + y2s + εty3 + y4, where as usual ε = 1

2
(λ − µ)

is the affine time measured from the middle point λ = µ = 1
2

on a chord. The proof of
equivariant stability is analogous to that of the theorem 3.1.

Finally, if the coefficient at y4 vanishes for some affine time 4b(µ2+λ2−µλ)−(µ−λ) = 0
then generically the derivative of this coefficient with respect to λ does not vanish and
the family is s-equivalent to the normal form g2 = −h + sy2 + ty3 + εy4 + y5. In fact,
the proof follows from the fact that the classes of y2, y3, g2, g2y

2 and g3
y generates over

Oε,s,t,h the factor module y2Oy,ε,s,t,h/Oy,ε,s,t,h

{
∂g2

∂y
y
}

.
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