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Abstract

The envelope of straight lines normal to a plane curve C is its evolute; the envelope of lines tangent
to C is the original curve, together with the entire tangent line at each inflexion of C. We introduce
some standard techniques of singularity theory and use them to explain how the first of these envelopes
turns into the second, as the (constant) angle between the set of lines forming the envelope and the
set of tangents to C changes from 1

2π to 0. In particular we explain how cusps disappear and what
happens at inflexions, where the evolute goes to infinity. We also study the family of “wavefronts” or
“parallels” associated with these envelopes.
MSC2010 Classification: 53A04, 53A05, 57R45, 58K05.

1 Introduction

Let σ be a plane curve, which we shall often assume is closed, and always assume is free from singular-
ities (such as cusps) and self-intersections. The family of tangent lines to σ and the family of normal
lines to σ each have an envelope. We make the definitions precise in §2 but the general idea is that
the envelope of a family of lines in the plane is a curve tangent to all of them. Unsurprisingly, the
envelope of the tangent lines to σ contains—at least—σ itself. The envelope of normal lines is called
the evolute of σ, and this has cusps corresponding to the curvature extrema of σ. The evolute also
“goes to infinity” corresponding to inflexions—zeros of curvature—of σ.

It is natural to ask what lies in between the envelope of tangents and the envelope of normals. Let
us fix an angle α and consider straight lines L obtained by rotating each tangent to σ at a point p ∈ σ
about p counter-clockwise through α, denoting the envelope of the lines L by τα. See Figure 1. Thus
τ0 is the envelope of tangent lines and τπ/2 is the envelope of normal lines. For other values of α,
τα is a so-called evolutoid of σ. The geometry of these envelopes has been studied since Réaumur in
1709. For a modern reference see [10]; this, like most studies of evolutoids, restricts attention to the
case when σ is an oval, that is a closed curve without inflexions and hence strictly convex, such as an
ellipse. We relax this condition here and consider curves with inflexions. In [1] the authors study the
opposite situation of generalized involutes of plane curves: σ is an involute of τ if τ is the evolute of σ.

What happens when α moves from 0 to 1
2π, so that τα evolves from the envelope of tangent lines

to a many-cusped envolute? The object of this article is to explain how some basic techniques of
singularity theory enable us to say exactly what happens, in the sense of showing that in precisely
defined conditions the cusps appear and disappear in a fixed manner and, crucially, explaining the
contribution of inflexions. These are important since—as is well known, though we prove it in Propo-
sition 2.3 below—the envelope of tangent lines to a plane curve σ contains, besides σ itself, also the
entire tangent line at each inflexion of σ. Figure 2 shows the envelope of normals (α = 1

2π) and the
envelope of tangents (α = 0) to a closed curve with two inflexions. Later we investigate what happens
for α close to 0; see §5, and Figure 9 for an illustration.

The key ingredients of singularity theory which we call on are the theory of unfoldings and discrim-
inants and the theory of functions on discriminants. We cannot (alas) present all the details of these
theories here but we hope that enough is said to show how powerful abstract techniques yield highly
concrete geometrical results. (For details of most of the techniques, and other geometrical applications,
see [6].)

The article is organized as follows. In §2 we firm up the definitions and give an explicit formula for
the envelope τα, recalling some basic facts about plane parametrized curves. In §3 we study the cusps
of τα, introducing the first ideas from singularity theory and the classification of functions. In §4 we
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Figure 1: Left: we consider the envelope τα of lines L such that the counter-clockwise angle α between the tangent
T to σ and L is constant. Center and right: an ellipse σ(t) = (2 cos t, sin t) and the envelope with α = 1

4π = 0.785...,
clearly showing four cusps, and α = 0.5, where the cusps have almost disappeared and the envelope is more closely
approximating the ellipse itself. For clarity, the lines L are drawn only in the “forward” direction at each point.
See also Example 3.2.

a s y m p t o t e s

Figure 2: A curve with two inflexions—the curve appears as the dark line on the left. Left and middle: the
envelope of normals, which has six cusps and two asymptotes, shown in full on the left. The center diagram shows
the normals themselves; for clarity they are drawn only in the direction in which they “focus” on the envelope.
Right: the envelope of tangents, this time drawn in both directions. Here, the envelope includes the original curve
and the whole of the tangent lines at the inflexions.

set the study of envelopes in the general context of discriminants and functions on discriminants. In
§5 we state the necessary results from singularity theory and apply them to the example of evolutoids,
giving the main results as Corollary 5.7 and Theorem 5.9. In a nutshell the results say that as α varies
the local appearance of the evolutoids changes in one of only two ways, a “swallowtail transition” as
in Figures 5 and 6, or a “beaks” transition as in Figures 4 and 9.

In §6 we study the wavefronts associated to a given value of α; the cusps on these wavefronts trace
out the envelope τα but in general the wavefronts are not closed curves. Finally in §7 and §8 we draw
things together and offer some more details of proofs.

2 Envelopes

We shall mildly abuse notation by using the same symbol σ to denote a plane curve and a parametriza-
tion. For us, the most interesting examples occur when σ is a closed curve, such as an ellipse
σ(t) = (a cos t, b sin t), a > 0, b > 0, 0 ≤ t ≤ 2π, and we shall give such examples below. Since
the line L is not itself oriented the angle α in Figure 1 can be considered modulo π. Parametrizing σ
by t automatically gives it an orientation (increasing t) but if we reverse this orientation then α gives
the same line L.

Throughout this article we assume that σ(t) = (X(t), Y (t)) is a regular parametrized curve, that
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is X and Y are smooth functions of t and (using ′ for d/dt), X ′(t) = Y ′(t) = 0 never happens, so that
the speed ||σ′(t)|| is always nonzero. We use the standard notation T , or T (t), for the unit tangent
σ′(t)/||σ′(t)|| and N , or N(t), for the unit normal, obtained by rotating T counter-clockwise through
1
2π. The curvature κ(t) is given by T ′(t) = κ(t)||σ′(t)||N(t), and in terms of X and Y has the rather

unattractive formula (omitting the variable t) κ = (X ′Y ′′ −X ′′Y ′)/(X ′2 + Y ′2)3/2.
Finally we make the following

Assumption 2.1 The curve σ is generic in the precise sense that all inflexions (zeros of curvature)
and vertices (extrema of curvature) are ordinary. This means that, for σ, inflexions are simple zeros
and vertices are simple extrema: κ = 0, κ′ 6= 0 at inflexions, and κ 6= 0, κ′ = 0, κ′′ 6= 0 at vertices1.

We are interested in the line L obtained by rotating the tangent a fixed angle α; the direction of
L is therefore T (t) cosα+N(t) sinα. Hence T (t) sinα−N(t) cosα is perpendicular to L and a vector
equation of the line L is F (x, t) = 0 where

F (x, t) = (x− σ(t)) · (T (t) sinα−N(t) cosα). (1)

Here, · is the usual scalar product of vectors and x = (x, y) ∈ R
2. Thus we regard α as fixed; then

F (x, t) = 0 represents a family of lines: each t gives a line and as t varies the line moves in the
(x, y)-plane.

There is a simple method for finding the envelope τα of these lines. Visually, the envelope is a
curve tangent to all the lines, or the “limit of intersection points of consecutive lines”; see Figure 3.
In fact, both these latter definitions, when made precise, give curves which are always subsets of τα,
as defined below. This is shown in [6, pp. 107–109].

Figure 3: Envelopes of families of lines are intuitively formed by (left) intersections of “consecutive” lines or (right)
a curve tangent to all the lines. Generally these definitions coincide with Definition 2.2 used here.

Definition 2.2 The envelope τα of the family of lines given by (1), for a fixed α, is the set of points
x = (x, y) in the plane for which there exists t with

F (x, t) =
∂F

∂t
(x, t) = 0.

To solve these equations we use the standard Serret-Frenet formulae:

T ′(t) = κ(t)N(t)||σ′(t)||, N ′(t) = −κ(t)T (t)||σ′(t)||, (2)

which relate the derivatives of T and N to T and N themselves, the curvature κ and the speed ||σ′||
of the curve σ. (See any book on differential geometry, or alternatively [6, Ch.2].)

Using the fact that α is constant this gives

∂F

∂t
= − sinα||σ′(t)|| + (x− σ(t)) · (κ(t) sinα N(t)||σ′(t)||+ κ(t) cosα T (t)||σ′(t))||) .

Now any vector is a linear combination of the form λT (t) + µN(t) and applying this to the vector
x− σ(t) and substituting in F = ∂F

∂t = 0 we obtain two equations for λ and µ:

λ sinα− µ cosα = 0,

λκ(t) cosα+ µκ(t) sinα = sinα. (3)

1It can be shown that in a precise sense “almost all” closed curves are generic in the sense used here. See [6, Ch.9].
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Solving these gives a parametrization of the envelope, for a fixed α:

x(t) = σ(t) +
sinα cosα

κ(t)
T (t) +

sin2 α

κ(t)
N(t), (4)

provided κ(t) 6= 0. Thus if α = ± 1
2π the lines F = 0 are the normals to σ and the envelope is the usual

evolute, namely the set of points σ(t) + 1
κ(t)N(t); these points are also called the centers of curvature

of σ. If α = 0 (or π) then the lines F = 0 are the tangents to σ and the envelope, away from inflexions
where κ(t) = 0, is the original curve σ.

Note that when α = 0 and κ(t) = 0 then using (3) directly we have µ = 0, λ arbitrary so, as
mentioned in the Introduction,

Proposition 2.3 The envelope of tangent lines consists of the original curve σ together with the whole
tangent line at inflexion points. �

Our aim in what follows is to describe exactly how, as α moves from 1
2π to 0, the evolute of σ turns

into the curve σ itself, and in particular to explain what happens at inflexions, where κ(t) = 0.

Remarks 2.4 There are numerous attractive properties of the envelope τα. Here are two, the first
pointed out to us by the referees, and the second proved in [10, Prop.5].
(i) The line joining the center of curvature σ(t)+(1/κ(t))N(t) of the curve σ at the point with param-
eter t to the envelope point as in (4) has the direction sinαT (t) − cosαN(t), which is perpendicular
to the line L. This has the following interpretation, using “angle in a semicircle”: the envelope point
(4) is the intersection of the line L with the circle tangent to σ at σ(t) and passing through the center
of curvature. When α = 1

2π this point is the center of curvature. When α = 0 the result holds—-the
envelope point is σ(t) itself—except of course at inflexions, where κ(t) = 0.

(ii) This relates the evolutoid τα with the center symmetry set (CSS) or Minkowski set of σ (it
is given yet a third name in [10], namely the midenvelope of σ). This is the envelope of all lines
joining pairs of distinct points of σ at which the tangent lines are parallel. The CSS is the subject
of several investigations, both in the plane, and through generalizations (using tangent planes rather
than tangent lines) in higher dimensions, employing more advanced techniques of singularity theory.
See [8, §5] for an introduction and [9] for a more technical discussion. Now consider the points P,Q
of the evolutoid τα corresponding with two distinct points p, q of σ at which the tangent lines are
parallel. Let R be the point where the line PQ meets the line pq. Then R is the CSS point on pq.
It is not clear to us whether there are sensible generalizations of evolutoids to higher dimensions, and
hence a generalization of this result. Note that the CSS, unlike the evolutoid, is invariant under linear
transformations of the plane, since such a transformation preserves parallel lines.

3 Cusps on the envelope

Consider the envelope curve given by (4): when will this curve not be regular? The condition is that
the speed is zero, that is to say the derivative of x with respect to t is the zero vector. Again using the
Serret-Frenet formulae (2) this derivative is, assuming κ(t) 6= 0 and omitting now the variable name t

x′ =

(

||σ′||+ κ′

κ2
sinα cosα− ||σ′|| sin2 α

)

T +

(

||σ′|| sinα cosα− κ′

κ2
sin2 α

)

N

=

(

||σ′|| cosα− κ′

κ2
sinα

)

(cosα T + sinα N).

This is zero if and only if κ2||σ′|| cosα − κ′ sinα = 0. Writing s for the arclength parameter on σ,
dκ
dt = dκ

ds
ds
dt = dκ

ds ||σ′(t)||; hence:
Proposition 3.1 The envelope (4) (still assuming κ 6= 0) is not regular if and only if κ2 cosα −
κs sinα = 0, where κs is the derivative of curvature with respect to arclength s on σ. This condition
can also be written in terms of the radius of curvature ρ = 1/κ : ρs sinα+ cosα = 0. �
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Note that κ2 and κs are independent of the direction of orientation of σ, and that α > 0, say, always
means a counter-clockwise rotation of the oriented tangent to σ and so gives the same line whichever
orientation of σ is used. That is why the equation in the Proposition is unaltered when the orientation
of σ is reversed.

For α = ± 1
2π, that is for the envelope of normals (the evolute of σ), the Proposition gives the

familiar condition κ′ = 0 (this can be the derivative with respect to any regular parameter), which
says that σ has an extremum of curvature, that is a vertex. For α = 0, the envelope of tangents, it says
that, away from inflexions, the envelope has no cusps—but the envelope is σ itself so this is nothing
new.

Example 3.2 In the special case where σ(t) = (r cos t, r sin t), a circle of radius r > 0, then κ is
1
r , a non-zero constant. The Proposition shows that there are no cusps at all, the only exception
being cosα = 0, when all the lines are radii and pass through the center of the circle so the evelope
degenerates to a point. In fact for other values of α we have ||x(t)||2 = r2 cos2 α, so that the envelope
is a concentric circle of radius r| cosα|. The reader may enjoy showing from the Proposition that, for
an ellipse σ(t) = (a cos t, b sin t), a > b > 0, the value of α at which the four cusps appear (are “born”)
on τα, starting from α = 0, is α0 = arctan

(

2ab/3(a2 − b2)
)

. For a = 2, b = 1, as in Figure 1, this
comes to about α = 0.418 radians, or 24◦.

When a plane curve such as this envelope curve is not regular then in general we expect it to have
an “ordinary cusp”, that is a singular point which is “like” the cusp at the origin on the curve (t2, t3).
More formally a local diffeomorphism of the plane should take the given curve to this standard cusp2.
The condition for an ordinary cusp is in fact that the second and third derivatives of σ (with respect
to any regular parameter), evaluated at the cusp point, should be independent vectors3. Note that
for (t2, t3) at t = 0 these vectors are (2, 0) and (0, 6), hence certainly independent. Some modest
calculation (see §8.1) reveals the following.

Proposition 3.3 Assume as before that κ is nonzero, and also that sinα 6= 0, that is the lines forming
the envelope are not the tangent lines to σ. Then the cusp as in Proposition 3.1 is an ordinary cusp
if and only if 2κ2

s − κκss 6= 0, where the derivatives, with respect to arclength s, are evaluated at the
cusp point. This can also be written as ρss 6= 0 where ρ = 1/κ is the radius of curvature of σ. �

Example 3.4 When α = 1
2π the conditions for an ordinary cusp reduce to κ 6= 0, κ′ = 0, κ′′ 6= 0, and

by Assumption 2.1 we know that all points of σ where the first two of these conditions hold also satisfy
the third condition. So all cusps of τπ/2 (the evolute of σ) are ordinary cusps. But the Proposition
does not guarantee that for other values of α the cusps on τα are ordinary. Indeed in Example 3.2,
where σ is an ellipse, the cusps are not ordinary at the moment of “birth”, when α = α0. By suitably
choosing a and b we can make α0 take any value in 0 < α0 < 1

2π.

Our object in this article is not to study a single value of α but to study what happens to τα as α
varies. For this we put the investigation in a wider context.

4 Discriminants

The function F (x, t) in (1), for a fixed α, is an example of a family of functions of one variable t with
two parameters (x, y) = x. We can include α in the parameters as well as x, y:

F(x, α, t) = (x− σ(t)) · (T (t) sinα−N(t) cosα) : (5)

2A local diffeomorphism here is a smooth map with smooth inverse, from a neighbourhood of the cusp point in the plane
to a neighbourhood of the origin, taking the one curve to the other. Similar definitions apply to higher dimensions.

3Starting with (x, y) = (at2 + bt3 + . . . , ct2 + dt3 + . . .) this means that ad − bc 6= 0. In fact an invertible linear
transformation x = aX + bY, y = cX + dY transforms the curve into (X,Y ) = (t2 + . . . , t3 + . . .), and a reparametrization
easily turns this into (u2, u3 + . . .) for a new parameter u. The final step to make a smooth and invertible change of
coordinates in the plane turning this into “normal form” (u2, u3) takes something more substantial and it is usual to invoke
the Preparation Theorem. This reduction to normal form is the very stuff of singularity theory; see for example [4] or, more
technically, [7].
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this is a three-parameter family, where we use a script F to emphasize this.
Any family G(X, t) = G(x1, x2, . . . , xk, t) with k parameters (we shall always have k = 2 or 3) has

a discriminant DG, as follows, where we use a subscript as in Gt to denote partial differentiation. We
will use X to denote (x1, x2, . . . , xk), and X0 to denote a fixed value of X, to avoid confusion with
x which denotes (x, y) in our discussion of envelopes. (For contrasting discussions of discriminants
see [6, Ch.6],[11].)

DG = {X = (x1, x2, . . . xk) : for some t, G = Gt = 0 at (X, t)} . (6)

Examples 4.1 (i) Cusp Let G(X, t) = G(x1, x2, t) = t3+x1t+x2. For a fixed X this is a (reduced)
polynomial of degree 3 in t, and DG consists exactly of those polynomials with a repeated root: it is
the curve X = (−3t2, 2t3) parametrized by t with an ordinary cusp at the origin.
(ii) Cuspidal edge surface Slightly more bizarrely, let G(X, t) = G(x1, x2, x3, t) = t3 + x1t + x2,
where x3 plays no role on the right-side. The discriminant is called a (standard) cuspidal edge surface:
it is the product of an ordinary cusp with a line, as in Figure 4, left, and is parametrized by x3 and t,
namely

(x3, t) 7→ (−3t2, 2t3, x3) (7)

The product of the cusp point itself with this line (the x3-axis here) is called the line of cusps. This
surface has an important property.

Consider a point p of the line of cusps, and the tangent T to the line of cusps at p. Then
the tangent planes at points away from the line of cusps but with limit p have a limit which
contains T.

For the surface as in (7) a normal is in direction (t, 1, 0) at points away from the line of cusps, and
this has limit (0, 1, 0) as t → 0, so the limiting tangent plane is x2 = 0. Of course in general when we
encounter a cuspidal edge surface it will not be so “straight up and down” (see Figures 7 and 8)—it
will be locally diffeomorphic to the standard surface in a neighbourhood of a point p as above—but
the property stated will still be true locally.
(iii) Swallowtail surface Let G(X, t) = G(x1, x2, x3, t) = t4 + x1t

2 + x2t+ x3. For a fixed X this is
a (reduced) polynomial of degree 4 in t: these polynomials fill a 3-dimensional space with coordinates
(x1, x2, x3). The discriminant of G consists exactly of those polynomials which have a repeated root.
It is a surface known as a (standard) swallowtail4 surface and is illustrated in Figure 5. Solving for x2

and x3 the surface is parametrized by x1 and t:

(x1, t) 7→ (x1, −4t3 − 2x1t, 3t4 + x1t
2). (8)

The origin is then called the swallowtail point and there are two lines of cusps through the origin,
given by G = Gt = Gtt = 0 and parametrized by (−6t2, 8t3,−3t4), t > 0 and t < 0: these represent
polynomials with a triple root. There is also a curve of self-intersection, parametrized by (−2t2, 0, t4) (a
half-parabola), representing polynomials with two double roots. The origin represents the polynomial
t4 with a fourfold root. One important property of this surface is the following.

The tangents to the lines of cusps, and the tangent to the self-intersection curve, all have
the same limit at the origin (here the limit is the x1-axis). Furthermore the tangent planes
to the swallowtail surface at points away from these curves all have the same limit (here
the x1x2-plane), which contains the above limit of tangent lines.

(A surface normal at such a point, with parameters x1, t as in (8) is (t2, t, 1) which has limit (0, 0, 1)
as t → 0.) Any surface locally diffeomorphic to the standard swallowtail, in a neighbourhood of the
swallowtail point, will also satisfy the stated property locally.
(iv) Of course there is the example at the heart of this article, given by (1), where the discriminant
DF is the envelope τα for a fixed α. Using (5) instead, x1, x2, x3 become x, y, α respectively and the
discriminant DF , in (x, y, α)-space is

DF = {(x, y, α) : there exists t such that F(x, y, α, t) = Ft(x, y, α, t) = 0} . (9)

4Originally queue d’aronde in the French of the great mathematician René Thom (1923–2002), one of the founders of
singularity theory.
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This is the union of all the envelopes, for all α: they are spread out in the α-direction. (Figures 6
and 7 below illustrate this discriminant.)

c  >  0 c  =  0 c  <  0 c  >  0 c  =  0 c  <  0

x 1

x 3  =  c
l i n e  o f

c u s p s

x 2
x 3

x 1 +  x 3
2  =  c x 1  -  x 3

2  =  c

c  >  0 c  =  0 c  <  0

Stable cusp “beaks” transition “lips” transition

Figure 4: Left: the level sets x3 = c of the function h1(x1, x2, x3) = x3 in the cuspidal edge surface are all curves
with a cusp. Center and right: the level sets defined by functions h2(x1, x2, x3) = x1 + x2

3 and h3(x1, x2, x3) =
x1 − x2

3. Below each figure is drawn a schematic diagrams of the transitions undergone by these level sets as c
changes. The transition for h2 is called a “beaks” or “bec-à-bec”, and that for h3 a “lips”, where for c > 0 the
level set is empty and for c = 0 it is a single point.

O c  <  0 c  =  0 c  >  0

x 1

l e v e l  s e t s  x 1  =  c
x 2

x 3

Figure 5: Left: a swallowtail surface with the curved lines of cusps and self-intersection curve marked. These all
pass through the origin O. Right: a planar section x1 = constant c < 0 of a swallowtail surface, and the “swallowtail
transition” which these sections—level sets of the function h0(x1, x2, x3) = x1—undergo as the constant c moves
through 0.

Singularity theory includes extensive investigations of discriminants and of functions on discrimi-
nants. To illustrate the latter consider examples (ii) and (iii) above, the three functions

h1(X) = x3, h2(X) = x1 + x2
3, h3(X) = x1 − x2

3

for the cuspidal edge surface in (ii) and the function h0(X) = x1 for the swallowtail surface in (iii).
These are illustrated in Figures 4 and 5 by means of their level sets, that is the sets of points of
the cuspidal edge or swallowtail surface for which hi = c, for values of c passing through 0. We are
interested in the answers to two questions here:

Qu.1 How can we recognize, in a given situation, such as that of DF , that a discriminant is, up to a
local diffeomorphism of R3, a cuspidal edge or a swallowtail surface? See §5.1.

Qu.2 How can we recognize that a given function, e.g. α : DF → R, has level sets which undergo an
evolution (or transition or “perestroika”5) in one of the “standard” ways of Figures 5 and 4? See

5“Perestroika” in Russian means approximately the same as “restructuring” in English, and the Western World heard a
great deal about it in the 1980s and 1990s during the Gorbachev era in the Soviet Union and then the Russian Federation. Its
use in a mathematical context was popularized by the great Russian mathematician Vladimir Igorevich Arnol’d (1937–2010).
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§5.2.
In the case of when the discriminant is DF and the function is h(x, y, α) = α, the level sets h =
constant are of course the individual envelopes of the family, and we want to study precisely how
these change as α changes.

Example 4.2 Let σ be an ellipse. The surface DF is illustrated in Figure 6. The surface appears to
have the structure of (curved) cuspidal edge and swallowtail surfaces and the function h(x, y, α) = α
appears to have level sets which undergo a swallowtail transition for certain values of α. How can
these observations be verified? Read on!

C

C

C

a

a  =  a
0

a  >  a
0

a  <  a
0

a  <  a
0

a  >  a
0

a  =  a
0

Figure 6: See Example 4.2. Two views of the discriminant surface DF , as in (9), for σ an ellipse. The α-axis is
vertical in the right-hand figure and α = 0 is at the bottom (the envelope is the original ellipse) and α = 1

2π is
at the top (the envelope of normals has four cusps). The surface appears to have (curved) cuspidal edges, with
(curved) lines of cusps C marked, and the horizontal sections—the level sets of α close to the marked swallowtail
point, where α = α0 say—appear to undergo a swallowtail transition.

5 Applying results from singularity theory

In this section we shall state and then apply the results from singularity theory which allow us to make
precise statements about the way in which the envelopes τα evolve as α changes. Details of the results
in §5.1 are in [6] while those in §5.2 are found in various places, such as [2, 5].

5.1 How to recognize a discriminant surface

We consider a discriminant as in (6), and restrict to the case k = 3, so that the general form will have
a family of functions G(X, t) = G(x1, x2, x3, t), and

DG = {X : there exists t such that G = Gt = 0 at (X, t)}.

Definition 5.1 For X = X0 the function g(t) = G(X0, t) has
(i) type A2 at t = t0 if g′(t0) = g′′(t0) = 0, g′′′(t0) 6= 0,
(ii) type A3 at t = t0 if g′(t0) = g′′(t0) = g′′′(t0) = 0, g(4)(t0) 6= 0.
We also say g has an “A2 or A3 singularity” at t = t0.

Thus the type measures how many partial derivatives of G with the xi parameters held fixed vanish
at t0. In the special case of the family F(x, y, α, t) in (5) defining the envelopes τα, X is replaced
by (x, y, α). The following Proposition gives the conditions for A2 and A3 singularities, expressed in
terms of the curvature κ and its derivatives. Part (i) is a routine and not very interesting calculation
using the Serret-Frenet formulas (2). Part (ii) deals with the case of an inflexion and we shall verify
this since it is slightly more surprising. Recall from Prop. 2.3 that the envelope of tangents to a curve
σ, that is τα with α = 0, when σ has inflexions, consists of σ and the whole tangent line at inflexion
points. We shall be interested in the discriminant DF close to a point (x0, 0) where x0 = (x0, y0) is
the inflexion point itself. It will turn out that this discriminant is locally diffeomorphic to a cuspidal
edge surface, as in Figure 7, and we need the result of (ii) to show this.
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Figure 7: Two views of the cuspidal edge discriminant DF close to an ordinary inflexion of a curve and close to
α = 0, looking from below the plane α = 0 (left) and from above (right). The lines of cusps C are labelled as are
the parts of the curve σ in the plane α = 0 which are visible; also the x-axis, which is the inflexional tangent to σ
at the origin. The plane sections α = constant of DF evolve through α = 0 by a “beaks” transition, as shown in
Figure 9.

Proposition 5.2 Let the point (x0, α0, t0) = (x0, y0, α0, t0) satisfy F = Ft = 0, so that (x0, α0) ∈ DF .
(i) Let s denote the arclength function on σ, as in §3. Suppose that κ(t0) 6= 0 so that x0 is given by
(4). Then f(t) = F(x0, α0, t) has, at t = t0

(a) type A2 provided, at t0,

κ2 cosα− κs sinα = 0, 2κ2
s − κκss 6= 0,

(b) type A3 provided, at t0,

κ2 cosα− κs sinα = 0, 2κ2
s − κκss = 0, 6κ3

s − κ2κsss 6= 0

(ii) Suppose that κ(t0) = 0, κ′(t0) 6= 0, so that σ has an ordinary inflexion at t = t0. Then, setting
α0 = 0, the only x close to σ(t0) for which Ftt(x, 0, t0) = 0 is x = σ(t0) itself and f(t) = F(σ(t0), 0, t)
has type A2 at t0.

Note that the A2 condition in (i)(a) is the same as that for an ordinary cusp given in Proposition 3.3.

Proof of (ii) The calculations are marginally simplified by taking the parameter t to be itself
arclength, so that Serret-Frenet formulae become T ′ = κN, N ′ = −κT . (But we shall still write t for
the parameter.) Let us take t0 = 0. We know that, locally, F = Ft = 0 at (x, 0, t) implies that either
x = σ(t) or x is on the tangent line at the inflexion σ(0). Using the formula (5), we differentiate twice
and put α = t = 0: Ftt(x, 0, 0) = (x − σ(0)) · (κ′(0)T (0)), which can only be zero, for x close to the
inflexion point, when x coincides with that point. (This actually implies that at other points of the
tangent line at the inflexion, DF is a nonsingular surface.) Furthermore Fttt(0, 0, 0) = −2κ′(0) 6= 0 so
F(0, 0, t) has exactly an A2 singularity at t = 0. �

Now let us return to a general family G as above. We will continue to use X to denote (x1, x2, x3),
and X0 to denote a fixed value of X. Suppose that G = Gt = 0 at (X0, t0), where the function
g(t) = G(X0, t) has type Ar , r = 2 or 3, at t0. It is almost true that DG, in a small neighbourhood
of X0, is locally diffeomorphic to the standard discriminant of Examples 4.1. In fact there is an
additional “genericity” condition to verify which, in the case G = F , we shall show is automatic from
our assumption 2.1.

Example 5.3 Consider the family G(X, t) = 2t3 + x1t
2 + x2 (independent of x3), for which

DG = {(x1, 0, x3)} ∪ {(−3t, t3, x3)}. Then g(t) = G(0, 0, 0, t) = 2t3 has, at t0 = 0, an A2 singularity.
But DG is not a cuspidal edge surface near the origin; it is the product of the curve x3

1 + 27x2 = 0,
together with its inflexional tangent x2 = 0, by the x3-axis.

9



The additional condition which is needed, besides the A2 or A3 singularity, is as follows. It essen-
tially says that the parameters xi perturb the singularity in a “sufficiently general” way; the technical
term is that they “unfold” the singularity in a (uni)versal manner.

Definition 5.4 Suppose that G = Gt = 0 at (X0, t0) and g(t) = G(X0, t) has an Ar singularity at
t0. Consider the partial derivatives Gx1

, Gx2
, Gx3

with respect to the parameters xi, evaluated at X0,
and in particular their Taylor polynomials Ti up to degree r − 1, expanded about t0 (so these have
r terms). The family G(X, t) is called a versal unfolding of g at t0 if the Ti span a vector space of
dimension r. Thus, if the coefficients in the Ti are placed as the columns of an r × 3 matrix, the rank
is r. Clearly this is possible only for r ≤ 3.

Examples 5.5 (i) For the G, and X0 = (0, 0, 0), t0 = 0 in Example 5.3, where r = 2, the derivatives
with respect to xi are t

2, t, 0 respectively (independently of X0 in fact). The Taylor polynomials up to
degree 1, expanded about 0, are 0, t, 0 respectively so the criterion of Definition 5.4 does not hold. It is
also clear that there is “something missing” from this family for, whatever the values of x1, x2, x3, the
function g(t) = G(x1, x2, x3, t) will always have a singularity at t = 0, in fact of type A1 unless x1 = 0.
We cannot turn the graph of the function g(t) = t3 into a graph without turning points by adjusting
the xi. On the other hand for Example 4.1(iii) the condition for a critical point is 3t2 + x1 = 0 and
there are no critical points if x1 > 0.
(ii) For the G of Examples 4.1(i), (ii), (iii), the criterion is easily shown to hold. For example
with 4.1(iii), where r = 3, the Ti are t2, t, 1 respectively.

The key theorem then is as follows; for details see [6].

Theorem 5.6 Suppose that G satisfies the criterion of Definiton 5.4. Then, in a neighbourhood of
X0 ∈ DG, the discriminant is locally diffeomorphic to a standard cuspidal edge surface when r = 2
and a standard swallowtail surface when r = 3 (as in Examples 4.1(ii), (iii)). �

The most important example for us is of course DF and there we must work a little harder to
verify the criterion of Definition 5.4 when G = F . We give some details in §8.2 and the result is then
as follows.

Corollary 5.7 The family F , as in (5), satistifies the conditions of the above theorem. Thus, when
f(t) = F(x0, t) has an Ar singularity at t0, r = 2 or 3, in the cases covered by Proposition 5.2,
the discriminant DF , which is the union of the envelopes τα spread out in the α direction, is always
locally diffeomorphic to a standard cuspidal edge (r = 2) or a standard swallowtail surface (r = 3) in
a neighbourhood of x0. �

So Figures 6 and 7 are not deceiving us.

5.2 How to recognize level sets of a function

There are two cases to consider, namely level sets of a function on a cuspidal edge surface and on a
swallowtail surface in 3-space R

3. Fortunately in both cases the conditions to realize the transitions
of Figures 5 and 4 are intuitively very reasonable. We shall only state the answers here; there is more
discussion of functions on discriminants in [2, 5]. For a smooth function h : R3 → R, defined in a
neighbourhood of X0 ∈ DG, there will be a kernel plane K through X0. This is the plane tangent
to the level set of h through X0 and has equation (X − X0) · (hx1

, hx2
, hx3

) = 0, where the partial
derivatives are evaluated at X0. We refer back to Examples 4.1(ii), (iii) for properties of tangent planes
to a cusped edge and swallowtail surface.

Proposition 5.8 (i) For a cuspidal edge surface, with X0 on the line of cusps, the level sets of h on
DG will all be cusped curves, as in Figure 4, left, provided the plane K does not contain the tangent
to the line of cusps through X0. (“K is transverse to the line of cusps”.)
On the other hand, the levels sets undergo a “beaks” or “lips” transition, as in Figure 4, center and
right, provided K does contain this tangent but does not coincide with the limiting tangent plane to the
cuspidal edge surface at points approaching X0. (“K is transverse to this limiting tangent plane”.)
(ii) For a swallowtail surface, with X0 at the swallowtail point, the level sets on DG undergo a
swallowtail transition, as in Figure 5, with two cusps merging and disappearing, provided K does not
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contain the limiting tangent to the lines of cusps on DG at X0. (“K is transverse to this limiting
tangent line”.)

See Figure 8 for examples where the conditions of (i) hold and also one where they do not hold.
Similarly, level sets of a function on a swallowtail surface failing to satisfy the condition of (ii) will not
resemble a swallowtail transition.

x 1

x 2

x 3

x 2  +  x 3
2  =  c

c  >  0 c  =  0 c  <  0

( a )

P

( b )
( c )

M

Ml i n e  o f

c u s p s  C

o n  M

C

Figure 8: (a) An example of a function h(X) = x2 +x2
3 on the cuspidal edge illustrated which does not satisfy the

conditions of Proposition 5.8(i), since the level set for c = 0, appearing as the lighter colored surface on the left,
has tangent plane at the origin equal to the x1x3-plane, which coincides with the limiting tangent planes to the
cuspidal edge. The level sets where the surface x2 + x2

3 = c meets the cuspidal edge evolve in the way illustrated.
Clearly this is not anything like the transitions of Figure 4. In (b) and (c) the function on the curved cuspidal edge
M is assumed to be height in the direction of the vertical arrow. For (b) the level set at any level is a horizontal
plane, which is transverse to the line of cusps C and all the horizontal sections are cusps. For (c) the level set
(horizontal plane) through P is tangent to C but does not coincide with the (vertical) limiting tangent planes to
M , hence producing a “beaks” transition as in Proposition 5.8(i).

Remarkably, the conditions of Proposition 5.8 are always satisfied for the discriminantDF , provided
only that the original curve σ satisfies the Assumptions 2.1. We sketch the proof of this in §8.3 below.
In particular the transition on the envelope τα through α = 0, at an inflexion point of σ, is a “beaks”
transition in which two cusps collide, momentarily giving the envelope the entire tangent line at the
inflexion point, and then separate into two smooth branches. This is illustrated in Figure 9 for a closed
curve with two inflexions, in fact the curve σ(t) = ((cos t+2 cos(2t)+10) cos t, (12 sin t−8) sin t). (The
transition cannot be of “lips” type as in Figure 4, right, since the envelope cannot become empty.)
Thus we have the following, which completely describes the local changes in the envelopes τα for a

Figure 9: Center: a curve σ with two inflexions, and (left) the envelope τα for α small and negative; (right) for α
small and positive. Two cusps approach and merge close to each inflexion, leaving smooth branches, in a “beaks”
transition as in Figure 4, center. The envelope for α = 0 is the original curve and the tangents at the inflexion
points, which are drawn dashed in the center figure (see Proposition 2.3 and compare Figure 2, right). The figure
also shows two swallowtail configurations on each envelope, which collapse in a swallowtail transition as α → 0.
The envelope τα goes “to infinity” at points corresponding to the inflexions themselves, since the denominator in
(4) vanishes.

curve σ satisfying the genericity assumption 2.1.

Theorem 5.9 The evolutoids τα evolve locally according to a stable cusp (Figures 4,left, 6 and 8(b))
at A2 points where the curvature κ is nonzero; according to a swallowtail transition (Figure 6) at A3
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Figure 10: Left: the “ordinary” wavefronts of an ellipse σ, which are obtained by displacing σ a constant distance
along its normals. The cusps on the wavefronts all lie on the envelope of normals, the 4-cusped curve which is
also drawn. Right: non-closed wavefronts, given by (10), corresponding to the envelope of lines shown in Figure 1,
center, for which α = 1

4π. Note that as the wavefronts (in either example) approach a cusp on the envelope two
cusps on the wavefronts collapse together—this is in fact another example of a swallowtail transition.

points where κ 6= 0; and according to a “beaks” transition (Figures 4, center, and 8(c)) at points where
κ = 0 and α = 0. At all other points the envelope τα is a smooth curve.

For example, in Figure 1, the envelope is undergoing swallowtail transitions which are identical, up to
a local diffeomorphism, with those of the standard swallowtail sections in Figure 5.

6 Wavefronts

For the envelope of normals τπ/2 to a curve σ there is associated a family of wavefronts, also called par-
allels or offsets which look like radiation emanating from σ into the surrounding space. See Figure 10,
left. The cusps on the wavefronts trace out the envelope, which in this case is just the four-cusped
evolute of σ. The wavefronts have the parametrization σ(t) + wN(t) where w takes a constant value
along each wavefront. Thus σ is displaced a constant distance w along the normals to σ. The general
prescription for wavefronts from a family of lines (or curves) F (x, t) is as follows. We “integrate” F ,
that is we look for a family G satisfying Gt = F . Then the wavefronts are given by F = 0, G =
constant.

In the case of the family of normals, which is given by F (x, t) = (x − σ(t)) · T (t), it is easy to
write down a suitable G. Let us take t to be the arclength parameter; then we can take G(x, t) =
− 1

2 ||x− σ(t)||2 = − 1
2 (x − σ(t)) · (x − σ(t)), since by (2) σ′(t) = T (t), so that Gt = F . The solutions

of F = 0, G = w1 = constant < 0 are the points of the normal (F = 0) for which the distance to the
curve is ±

√
−2w1, that is the ordinary parallels (offsets) of σ.

For the family F in (1), with α fixed, we have to work a little harder but writing F = F1 sinα −
F2 cosα we can use the above solution for G1 with (G1)t = F1 and, for F2 we need

G2 =

∫

(x− (X(t), Y (t))) · (−Y ′(t), X ′(t)) dt,

where σ(t) = (X(t), Y (t)). Note that the integral is independent of the parametrization of σ and in
fact it represents, up to an added constant, twice the area swept out by a line from x to σ(t), as t
travels from some arbitrary starting value t0. When t is arclength G2 =

∫

(x− σ(t)) ·N(t) dt. In the
special case of an ellipse σ(t) = (a cos t, b sin t) we can write down the integral explicitly:

G2(t) = ay cos t− bx sin t+ abt (+ constant).

Note that this contains t on its own, so that unless cosα = 0 in which case G2 is not needed, the
solution is not periodic: the wavefronts will not be closed curves, even though the ellipse σ is closed.
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Returning to F for a fixed α and any regular curve σ, and using G = G1 cos t +G2 sin t, we have
a prescription for finding the wavefronts. It is not hard to check that the following formula satisfies
F (σw(t), t) = 0, G(σw, t) = − 1

2w
2 sinα, which is constant for a given w and α.

σw(t) = σ(t) + (w − t cosα)(T (t) cosα+N(t) sinα). (10)

This gives an explicit formula for the family of wavefronts corresponding to a given σ and α. Fixing w
and letting t vary we get an individual wavefront, parametrized by t, corresponding to that w. It can
be checked that the singular points (cusps) on the wavefronts are given by the additional condition
Gtt = 0, that is Ft = 0, which says that the cusps lie on the envelope τα of lines given by F = Ft = 0.
We say that the cusps of the wavefronts sweep out the envelope τα. The exception is sinα = 0, for
which τα is the envelope of tangent lines to σ. In that case there are no cusps to sweep out anything.

If α = 1
2π (the envelope of normals to σ) then σw(t) = σ(t) + wN(t), which is the usual parallel

or offset of σ, obtained by moving down the normals a distance w. Note that w and −w give different
parallels, but the same value of G: fixing the value of G gives two parallels, corresponding to values
of w of opposite sign. If we use α = − 1

2π instead then w and −w are interchanged.
For a general α 6= ± 1

2π the factor w + t sinα in (10) tells us how far along the line given by t we
must go to reach the wavefront point. For a closed curve σ, parametrized by 0 ≤ t < 2π we can add
any mutliple of 2π on to t and obtain the same point of σ and the same line of the family. Thus the
wavefront meets the line corresponding to the value t infinitely often.

An example, using the ellipse, is shown in Figure 10, right.

7 Conclusion

We have shown how to investigate a family of envelopes, parametrized by an angle α, using some
results from singularity theory. The family τα of envelopes interpolates between the a plane curve
σ (α = 0) and its evolute (α = 1

2π), with some additional complications connected with inflexions
of σ. We can apply some general results about discriminants—cusp, cuspidal edge, swallowtail—
together with real-valued functions α on discriminants and their associated level sets, that is the sets
on which α is constant. It is the identification of envelopes with discriminants which is at the heart of
the applications given in this article. We have also investigated the corresponding wavefronts whose
singular points sweep out the envelopes τα, and found that, unlike the parallels associated with the
evolute of a curve, these wavefronts are in general not closed curves. The same techniques—reduction
to normal form, use of standard models, discriminants and functions on discriminants—give a great
deal of information about the differential geometry of surfaces and higher dimensional manifolds, and
there are many applications to areas of science such as control theory and dynamical systems. Some
examples are given in the classic text [3], and applications to shape analysis are in [12].

8 Some proofs and additional notes

8.1 Proof of Proposition 3.3

Here is an indication of how to prove Proposition 3.3 without getting tangled in too much algebra.
We will assume for this that ||σ′(t)|| = 1 for all t, which says that σ is unit speed, or that t = s is the
arclength parameter. This is no loss of generality (see any book on differential geometry of curves,
or alternatively [6, pp.27-8]) and saves a little writing. In fact write λ = − cosα + (κ′ sinα/κ2) so
that the condition for a cusp is λ = 0. Then the envelope in (4) has x′ = −λ cosα T + λ sinα N .
Differentiating this twice, to give x′′ and x′′′, and putting λ = 0 (after differentiating!) quickly gives
the condition for these vectors to be linearly dependent as 2κλ′2 = 0, that is λ′ = 0, and this gives the
required formula provided sinα 6= 0. �

8.2 Sketch of a proof of Corollary 5.7

Let us write s for sinα and c for cosα, σ(t) = (X(t), Y (t)) and assume that σ is unit speed, that is
||σ′(t)|| = 1 for all t, and that κ 6= 0 (see below for the case κ = 0). Recall (5) that

F(x, α, t) = (x− σ) · (Ts−Nc) = (x−X)(X ′s+ Y ′c) + (y − Y )(Y ′s−X ′t).
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To show that F is “versal” we need to consider the Taylor series in t, including constant term, up to
degree 2, of the derivatives Fx,Fy,Fα, and check that they are independent when evaluated at an A3

(swallowtail) point, that is one at which the conditions of Proposition 5.2(i)(b) hold. So we need to
take these three derivatives and differentiate them with respect to t twice to get hold of the necessary
terms of the Taylor series. We are of course allowed to assume (4). For example,

Fα = (x− σ) · (Tc+Ns), so Fαt = −T · (Tc+Ns) + (x− σ) · (κNc− κTs),

but using (4) this boils down to simply − cosα. Differentiating again and substituting from (4) shows
Fαtt = 0. Let us write u = (s, c); then for example Fx = T · u and Fy = −N · u. Altogether we
find that the 2-jets are the columns of the matrix J1 below (where the binomial coefficient 1

2 has been
omitted)

J1 =





Fx Fy Fα

Fxt Fyt Fαt

Fxtt Fytt Fαtt



 =





T · u −N · u s
κ

κN · u κT · u −c
(−κ2T + κ′N) · u (κ2N + κ′T ) · u 0





The determinant of this matrix is κ2 sinα + κ′ cosα. If this is zero then, using Proposition 5.2(2)
(where κs is our κ′), we have κ4 + κ′2 = 0 so that κ = 0, contrary to assumption. This proves the
required independence. See [6, Ch.6] for full details of this method.

In the case of an A2 singularity where κ 6= 0 the versal unfolding condition is simply that the top left
2× 2 minor of J1 is nonsingular, and this amounts to κ 6= 0.

Finally when considering an (ordinary) inflexion, so that κ = 0, and working at α = 0, it is easy to
check that F has exactly an A2 singularity. Let us take the unit tangent at the inflexion to be (1, 0)
so that the unit normal is (0, 1). The vector u is (0, 1) here, and the Taylor expansions to degree 1 of
Fx,Fy,Fα come to 0,−1 and −t respectively. These span polynomials of degree 1 in t. �

8.3 Verifying the conditions needed to apply Proposition 5.8 to the dis-

criminant DF

First, consider the case where the curve σ does not have an inflexion at σ(t0), but f(t) = F(x0, α0, t)
has an A2 or A3 singularity at t = t0. In the A2 case, by Corollary 5.7, DF is locally diffeomorphic to
a cuspidal edge surface close to (x0, α0). This cuspidal edge is given by F = Ft = Ftt = 0, that is 3
equations in the four variables x, y, α, t, and the solutions are then projected to (x, y, α)-space, where
DF lies. A standard technique for calculating tangent vectors (the implicit function theorem, which is
covered in books of advanced calculus, or see [6, Ch.4]) says that we look for non-zero kernel vectors
of the 3× 4 matrix J2 of partial derivatives of F ,Ft,Ftt with respect to the four variables (x, y, α, t),
evaluated at (x0, α0, t0). Note that the first three columns of J2 are the same as the three columns of
J1 in the previous section, while the fourth column is (0, 0,Fttt 6= 0)⊤ at an A2 point and (0, 0, 0)⊤

at an A3 point. Thus for an A2 point we can always find a kernel vector (x, y, α, t) say, whose first
three components are not all zero, using the first two rows of J2, and then determine t using the third
row of J2, since Fttt 6= 0. Then (x, y, α) is a nonzero tangent vector to the line of cusps C on DF in
(x, y, α)-space. However this cannot be done with α = 0 in view of the nonsingularity of the top left
2 × 2 submatrix of J2 (or J1). So a tangent vector to C will never be horizontal and changing α to
nearby values gives a stable cusp as in Figure 8(b) and not (c).

There is clearly a problem with this argument at an A3 point (x0, α0), where Fttt = 0, since in view
of the nonsingularity of J1, all kernel vectors of J2 have the form (0, 0, 0, t). This simply says that,
in (x, y, α)-space the curve C on DF is singular at (x0, α0)—not surprising since DF is a swallowtail
surface and the space curve C itself has a cusp at (x0, α0). However the above argument still applies,
by taking say a unit tangent vector (x, y, α) and moving towards x0, α0) along C: the last component
cannot tend to 0 without the other two tending to 0 as well, which is a contradiction. In the present
case we can be more explicit: a tangent vector (of length

√
1 + κ2 > 1) to C, obtained from the first

two rows of J2 is ((sin(2α), cos(2α)) · N, (sin(2α), cos(2α)) · T, κ). It is plain that this cannot have
a limit in which the third component is 0. This is certainly visible in Figure 6, where the limiting
tangent to the lines of cusps is far from horizontal.
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Finally consider the case when σ has an inflexion at t0 = 0 say, and x0 = σ(t0), α0 = 0. Then DF

is locally diffeomorphic to a cuspidal edge surface by Corollary 5.7. In this case it is easier to do a
calculation in local coordinates, taking σ(t) = (t, at3 + bt4 + ct5 + . . .) say, where a 6= 0 since there is
an ordinary inflexion at the origin, and expanding everything about (x, y, α, t) = (0, 0, 0, 0). Then an
explicit calculation shows that DF is locally parametrized by (x, t) and the line of cusps by t:

DF : (x, t) 7→ (x, 6ax2t− 9axt2 + 4at3 + . . . , 6axt− 6at2 + . . .);

C : t 7→
(

2t+ . . . ,
8b(24b− 35ac)

a2
t4 + . . . , −40ct5 + . . .

)

.

It is clear that the limiting tangent to C is in the direction (1, 0, 0) which is in the plane α = 0. Since
we know DF is a cuspidal edge surface, we can find the limiting tangent plane to DF at points away
from C by taking any path on DF which avoids C (apart from at (x, α) = (0, 0, 0)), such as the path
given by t = 0. The normal to DF then comes to (0,−6ax+ . . . , 6ax2+ . . .) which has limit (0, 1, 0) so
that the limiting tangent plane is the plane y = 0 and hence does not coincide with the plane α = 0,
as required. �
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