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Gordon James Fletcher

Abstract,

In this thesis we consider three geometrical problems in Computer Vision.
The main tools we use are from differential geometry and singularity theory.

We consider general one parameter families of monocular central projections
of a surface. In particular the generic stable singularity that occurs on the profile,
the cusp, is tracked and information concerning the geometry of the surface is
determined. We provide formulae for reconstructing the depth, Gauss and Mean
curvatures from tracking cusps. A mathematical analysis of the geometrical
and topological configurations of the critical sets, cusp curves and profiles is
performed. We track cusps on special surface classes; a surface of revolution,
ruled surface and canal surface, and find that global information can be derived.

The frontier of a curved surface is examined and the problem of surface
construction is introduced. Here we seek to establish the necessary and sufficient
conditions on the camera motion and profiles for the reconstruction of a doubly
covered surface with boundary. We find that our construction maps have corank 1
along a curve, and we examine the resulting singularites by working at the jet
level of our map.

The conjugate curve congruence C, is introduced in the last chapter as a
one parameter family of curve congruences on the surface that contains both
the asymptotic and principal curve congruence. We analyse the family of dis-
criminants and the zeros of Co- The family of spherica] images is found to be
connected to a cubic form defined on the surface, and these are connected to the
geodesic inflections of the critical set of some parallel projection.
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Introduction

In interpreting the world around us, the human visual system uses many so-
phisticated techniques and takes advantage of a wide range of visual cues. It is
certainly the case that one of the most constraining, and perhaps useful visual
cues to solid shape, is the outline or silhouette of an object. In computer vi-
sion we seek to model this mathematically via projections and the differential
geometry of surfaces.

This thesis contains essentially three main topics of investigation; tracking
the cusps of smooth profiles of a surface, the frontier of a surface, and the con-
jugate curve congruence. The link between them is that they all seek fo provide
geometrical models and solutions for situations in computer vision. Amnother
common thread is that many of the techniques used utilise a Singularity The-
ory approach. Results made in recent decades in this area, have helped to make
powerful assertions concerning generic geometry and ultimately computer vision.

In Chapter 1 we provide a review of the literature concerning the topics in
this thesis, and describe the context and relevance of this work. Standard results
from differential geometry that are often used in this work are provided in this
chapter. The ‘Monge form’ of a surface is introduced where the surface is given
parametrised as the graph of a function, and the second fundamental form de-
fined, allowing us to introduce the notion of surface curvature. By extending the
asymptotic directions along the parabolic curve of a smooth surface we create a
ruled surface, this is proven to be developable. Extending the flecnodal direc-
tions along the flecnodal curve gives the so called flecnodal scroll. These two
ruled surfaces are significant when considering the bifurcation of singularites of
the projection of surfaces, and are used in later chapters.

Let M be a smooth surface in R3. For a direction w the orthogonal projection
of M to a plane perpendicular to w has a critical set & and the image of ¥ is the
profile. In the case of perspective projection we consider our projection through



the point ¢. For a generic surface we expect the cone of rays with vertex ¢ to
be tangent to M along a curve, which is the critical set. The intersection of
this cone with a unit sphere centre ¢ is the profile. Chapter 2 provides the basic
definitions and setup for geometrical problems in computer vision. We examine
parallel and perspective projection and provide some standard results concerning
the critical set and profile of a projection. There is a rather involved section that
is devoted to proving Koenderink’s result connecting the Gauss curvature with
the curvature of the profile, and seeing how this result in parallel projection is
the limit of the perspective result. If we now consider a one parameter family
of perspective projections, with camera centres ¢(t), of M this results in a one
parameter family of critical sets on the surface, and a family of profile curves.
It is possible to ‘spread out’ the family of critical sets in the time direction
forming the so called Spatio-Temporal surface M. The main use for M is for
when the critical sets form an envelope, in which case the projection Mo M
has a fold. At the end of the chapter we use some technical results to find a
generic classification of critical sets, subject to an equivalence described in the
main text.

It is possible to view the projection of smooth surfaces as maps from the
plane to the plane. The generic singularities we expect are the fold and cusp,
i.e. the map germ is equivalent to z,y — z2%,y, z,y — 2%, 4° respectively. In
fact when projecting a hyperbolic region of surface we expect the profile to have
isolated singularities, or cusps. These are stable under viewer motion, and we
thus ‘track’ cusps in a one parameter family of central projections. Chapter 3
provides the more mathematical results that are used when tracking cusps under
perspective projection and arbitrary viewer motion, and introduces the locus of
cusps. The points on the surface that generate cusps form the ‘cusp generator
curve’ and the interplay between this and the critical sets is investigated. We are
particularly interested in the singular instances of the cusp locus, and these are
found and related to the underlying geometry. The final section provides some
results using the method of versal unfoldings. These provide typical pictures, in
some sense, of the profiles.

Chapter 4 provides those results that are more of a computer vision nature.
One of the main results is that since the cusps are visible features the Gauss
curvature K and Mean curvature H may be found from tracking cusps. In fact
the formulae

(pym)?
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H = ﬁ (Ctt-ﬂ P+ — €. Py — 2P.Cy (Pt-n)g) .

use lower derivatives (an important fact when considering any implementation)
than other reconstruction formulae in the literature. We also find that these
formulae for the curvatures are independent of spatio-temporal parametrisation.
This means that when parametrising the surface by using the family of critical
sets as one half of the coordinate grid, we are free to take any other family
of transverse curves to form a parametrisation on M, and this will not affect
the formulae for K or H. The next section is concerned with the question of
whether tracking cusps provides a constraint on the motion of the camera. We
prove that this is not the case. Some examples are provided illustrating the
methods that one might adopt in a physical implementation. These examples
increase in sophistication and we are able to make some analysis of the stability
of the depth and curvature formulae under error. This stability is found to be
good, even under relatively large noise. The final section reproves results of an
earlier paper on tracking cusps in the restricted case of parallel projection and
circular motion.

In Chapter 5 we consider tracking cusps on special surface classes. The classes
are, surfaces of revolution, canal surfaces (formed as the envelope of spheres of
constant radius along a spacecurve) and ruled surfaces. Ior instance it is proven
that cusps on profiles of surfaces of revolution are generated in pairs by points
on the same parallel circle. This constraint combined with knowledge of the
geometry of such surfaces allows us to reconstruct the axis of revolution, and
finally the whole surface. In fact we find that the geometrical structure of these
classes are sufficiently constrained so as to allow global reconstruction, where the
theory of the previous chapter only promised local information. For a generic
surface by tracking cusps we can reconstruct the cusp generator curve C on the
surface, the tangent plane, and the second fundamental form along C. For any
one of the above surface classes we can reconstruct C as usual but now we find
that with knowledge of the geometry a whole curve through points of C can in
fact be recovered. For each surface class we examine the theoretical results and
then devise some synthetic examples.

A large area of theoretical and practical research in computer vision is the
area of surface reconstruction from profiles. By taking a known camera motion
giving a one parameter family of profiles it has been shown that it is possible
to recover the surface. Chapter 6 introduces the notion of surface construction.
This is an abstraction of the idea of surface reconstruction. In the case of surface
reconstruction it is generic for the critical sets to locally form an envelope on the
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underlying smooth surface. This envelope separates (locally at least} the visible
(i.e. the part covered by the family of critical sets) from invisible region. In effect
what we reconstruct is a smooth surface with a boundary, and the boundary is the
envelope of critical sets, called the frontier. Now we ask, conversely, precisely
what properties of the profile curves and camera motion guarantee that the
reconstructed surface is a smooth surface with boundary? This leads us to surface
construction where we take essentially arbitrary curves and use these as profiles
and a camera motion, and using the standard techniques construct a surface.
We seek to find the exact conditions on these profiles and camera motion for
the critical sets to construct a surface with boundary, that will form the frontier
for the motion. We describe how the construction map can be viewed as map
from the plane to three space and is in fact found to be rank one along a curve.
We work at the jet level and use results of Mond to calculate the conditions for
singularities of the construction map. Working in the double point space we find
that we construct cusp edges and cuspidal cross caps, clearly showing that there
are constraints missing on the profiles curves and camera motion that are needed
to construct a genuine frontier.

Chapter 7 introduces a one parameter family of binary differential equations
(BDEs) that we call the Conjugate Curve Congruence C,. Given a smooth
surface M we can take all directions in all tangent planes that make a fixed
angle o with their conjugate direction. This is C,. We apply results of Bruce
and Tart to obtain topological pictures and we investigate the discriminant curves
and zeros of the BDEs. The family of spherical images is described, and the
relation with the critical set of the projection of a surface is elucidated. A new
characterisation of the sub parabolic lines and flecnodal curves of a surface is
found. The chapter finishes with some speculative work concerning the umbilical
cords of a surface and their global impact.

The illustration at the front, and the quotations within this work are from the
treatise of one of the most influential perspective theorists of the 17th century:
“Rules and Ezamples of Perspective proper for painters and architect, etc in
English and Latin: containing a most easie and expeditious method to delineate
in perspective all designs relating to architecture, after a new manner, wholly
free from the confusion of occult lines; by that master thereof Andrea Pozzo, Soc.
Jes.” Andrea Pozzo was a Jesuit brother who earned considerable fame for his
monumental perspective creations that harmonised high spiritual art with linear
perspective.

Pozzo is particularly well known for the illusory cupola on the church of




St.Ignatius in Rome. When St.Ignatius was first opened to the public it was
still incomplete, and a shortage of funds rendered the completion unlikely. An
over ambitious plan for a cupola, only a little smaller than St.Peter’s, caused a
dilemma since this would have been the only way to honour the Saint who had
founded the Society of Jesus. The solution provided us with a glorious illusion,
and Brother Pozzo with the opportunity to apply his consummate technique,
which finally led to a commission to decorate the whole church. Pozzo was not
without his critics, and when they accused him of misuse of the baroque style
by resting the columns of his ‘cupola’ on simple brackets, he said wryly: “If my
brackets give way and columns start to fall to the ground, you will easily find
some painters among my friends to remake them and remake them better” [JD].
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Chapter 1

Introductory Results.

This being of much the more general use, and, when rightly
understood, renders the difficulties of the circular or irregular
surfaces, easy and familiar. Preface [Poz]

1.1 Background Literature.

For the main topics in this thesis we now present a short discussion on related
work, and its relevance to the research in the subsequent chapters.

1.1.1 Projections and Profiles.

In later chapters we will consider ‘tracking’ singular points of profiles. These
objects have a venerable history in the mathematics of Singularity Theory and
have more recently been studied with a view towards Computer Vision. Whitney
[Wh] showed that the fold and the cusp are the stable singularities of maps from
the plane to the plane. The projection of a surface on to a plane (which could
be local coordinates of an image sphere) can be considered as a map from the
plane to the plane. Consider the surface given as the graph of a function, so we
have the map

R%0 — R3,0
(mi y) = (:E’ y’ h(mi y))'
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We then project the surface orthogonally on to a plane (which we call the image
plane) perpendicular to (0,1,0) (the view direction), the projection map is 7;

7(z, v, bz, ) = (z, h(z, v)).

The composite of these two maps is the map f which is sometimes called the
visual mapping

fa,y) = (2, h(z,y)).

Whitney’s result shows that generically the projection of a surface is either locally
smooth or has a cusp. For a cusp it can be shown that the view direction is along
an asymptotic direction to the surface.

Koenderink and van Doorn [KvD76] considered ‘local events’ and showed
that the visual mapping can be a lips/beaks map or a swallowtail map. Such
phenomena are only generic in a one parameter family of projections, or one
parameter family of surfaces.

Gaffney [G] classified all orthogonal projections of a generic surface in R>.
The classification process was carried out with Maria Ruas. Gaffney gives the
germ of the mapping in each case, the name of the mapping (e.g. swallowtail)
and the condition for such a singularity to arise. The list includes the fold, cusp,
lips/beaks, swallowtail together with the codimension two singularities of gull,
goose and butterfly. Lips/beaks singularities arise when the view direction is an
asymptotic direction at a parabolic point. The view direction lies in the cylinder
axis [K]. A swallowtail singularity arises when the view direction has four points
of contact. The view direction then lies in the flecnodal scroll [K]. The list is
also presented in Arnold [A] Chapter 12 and Kergosien {Ke].

Rieger studied the singularities of the projections of surfaces on to planes in
his thesis [R88] and extends the classification to the case of 1-parameter families
of surfaces [R87]. More recently Rieger [R92] classified the perspective projection
of generic surfaces of revolution from any centre of projection up to diffeomor-
phism of the profile.

1.1.2 Recovery of Surface Shape from Profiles.

The reconstruction of smooth surfaces from smooth profiles under a known viewer
motion has received much attention in the Computer Vision research field. See
for example {CB], [BB], [GW], [KD], [SW], {VF] and [Z]. The first real attempt
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to extract useful reconstruction information from singular profiles was [GS]. This
paper dealt with the special case of circular motion and parallel projection. In
Chapter4 we discuss the general case of reconstructing surfaces from tracking
the singular profile points under a known viewer motion, and the formulae we
present are reduced to the case of [GS].

Some of the material from Chapters4 and 5 has appeared in [CFG, CFG2| and
[FG]. For general perspective motion one should consult [CFG] and [CFG2]. In
these papers and Chapter4 below formulae for the Gauss and Mean curvature
are presented and the simplifications compared to [CB] are noted. There is
a discussion on the possibility of tracking cusps in order to provide a motion
constraint, but this is found to be impossible. By restricting the class of observed
surfaces one can make more powerful statements, and this is the subject of [FG].
Here we can make global assertions where previously [CFG, CFG2| promised
only local information. We find that by simply tracking the cusps under known
viewer motion we can reconstruct a characteristic curve of that surface and hence
as the cusp sweeps over the surface we reconstruct the whole surface.

1.1.3 Recovery of Structure and Motion from Profiles.

Structure and motion from the images of point features has attracted consider-
able attention and a large number of algorithms exist to recover both the spatial
configuration of the points and the motion compatible with the views. Structure
and motion from the outline of curved surfaces, on the other hand, has been
thought to be more difficult because of the aperture problem, i.e. it is not possi-
ble to get the correspondence of points between two images since the profiles at
different times correspond to different critical sets on the surface.

For a smooth arbitrary curved surface an important image feature is the
profile or apparent contour. This is the projection of the locus of points on
the surface which separates the visible from the occluded parts. Each different
viewpoint will generate a different critical set or contour generator with the
critical sets ‘slipping’ over the visible surface under viewer motion. The frontier
is the envelope of critical sets showing the boundary, at least locally, of the visible
region swept out under viewer motion.

As above, under known viewer motion, the deformation of profiles can be used
to recover surface geometry (structure) [CB], [BB], [GW], [KD], [SW], [VF] and
[Z}. This requires a spatio-temporal parametrisation of the image-curve motion.
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The epipolar parametrisation is most naturally suited to the recovery of surface
curvature, cf [CB|. In reconstruction techniques such as [CB| the frontier is
viewed more as a nuisance since it is one instance of the failure of the epipolar
pararmetrisation. In fact the frontier can provide a constraint on the viewer
motion and it is this that interests those involved in the area of ‘Structure and
Motion’. Frontier points are sometimes referred to in the literature as epipolar
tangency points. The epipole is the instantaneous direction of the camera motion
and the epipolar plane is spanned by the epipole and the view direction. An
epipolar tangency occurs when the epipolar plane is the tangent plane. This
characterisation of the frontier is described elsewhere in this thesis.

Rieger [R86] considered circular motion, showing how to infer the axis of
rotation when the rotation is perpendicular to the view direction, by finding cor-
responding points on two profiles. The restriction of circular motion was further
explored in [GPR] which generalised [R86]. In this the authors consider the sur-
face rotating about an unknown axis and viewed by orthogonal projection to a
fixed image plane. Porrill and Pollard in [PP] consider corresponding points on
profiles in much the same way as Rieger, in the context of epipolar tangencies.
This was primarily concerned with stereo calibration from space curves and they
noted that the intersection of two profiles from two distinct viewpoints gener-
ated a real point visible in both images. Carlsson [C] exploited frontier type
constraints in the analysis of the visual motion of space curves.

Recent papers have tried to generalise to arbitrary viewer motion (not just
circular motion) and general perspective projection of smooth surfaces. Joshi et
al [JAP] discussed a method of recovering structure and motion from perspective
images acquired by a calibrated trinocular camera rig. The authors of [ACG95)
sought to determine the epipolar geometry for infinitesimal and discrete motions.
The technique is iterative and requires an initial guess for the epipole or for the
essential matrix. The iteration over some high dimensional manifold aims to
minimise so called residuals which arise as either angles between epipolar planes
in the discrete case, or normal velocities in the continuous case. The residuals
are a measure of how good the guess is for the epipole and rotation, but no
formal results are given for the uniqueness of any minima in the search space.

Novel techniques have been used recently in [VKP] where viewpoint invariant
representations of curves such as bitangents, inflections, parallel tangents are
used to match discrete frontier points. Velocity cues of the tangents are also
utilised to provide constraints on the matching. The paper deals with scaled
orthographic projection and this is necessary for the method.

14



It is constructive to examine in more detail the differences and similarities
between [ACG95, ACG96] and [VKP]. On closer inspection it seems that passing
from parallel projection [VKP] to perspective projection [ACG95] gives the same
measure for finding the epipole. In [VKP] they draw parallel lines in the image
plane tangent in the two images to fix a guess for the epipole. For orthographic
projection the epipolar geometry consists of parallel lines. In actual fact bitan-
gents and inflections are used in [VKP]. The analogous case in [ACG96] is fixing
a point on the image sphere for the epipole. Consider the discrete case with
two time steps where we would have to fix an epipole at each time, giving four
degrees of freedom. Drawing great circles through the proposed epipole tangent
to the profiles gives the frontier points, just as drawing parallel lines tangent to
plane profiles in the parallel case, gives the frontier points.

Thus we immediately see that in the parallel projection case the search space
is considerably reduced. Specifying epipolar geometry for parallel projection is
one degree of freedom per view, since we only have to specify the direction of
a set of parallel lines. For perspective we need two degrees per view since the
epipole is a point on the sphere.

The residuals described in [ACG96] are angles between epipolar planes. These
are planes that are members of a pencil containing the epipole direction. If we
imagine the camera receding to infinity these planes become parallel and the
epipolar great circles on the image sphere become parallel epipolar lines on the
image plane. Moreover the angle between the planes become distances between
the lines. This is what is measured in {VKP]. Thus we see that the criterion for
judging the accuracy of the estimate of the epipolar geometry is the same in the
two papers. The method at arriving at that estimate is different though.

The method in [VKP] is novel in the sense that they pick a bitangent point b
on a profile and search through time to find its occurrence again (a little thought
shows that this is generic), where b is now a discrete frontier point for those two
camera positions. In other words the tangent plane at b is the epipolar plane for
the two camera positions. The key is to exploit invariancy with parallel tangents
that result in only considering orthogonal projection. These parallel tangents to
bitangents or inflections provide a ‘signature’ with which we can recognise future
appearances of this point in the image. This search is made more efficient by
use of an ‘indexing’ data structure such as a hash table or tree.

The disadvantage of this method is that it does not easily generalise to per-
spective projection. The invariancy described is dependent on orthogonal pro-
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jection.

Chapter 6 introduces the concept of surface construction, as opposed to sur-
face reconstruction. Here we seek to find the precise conditions on the profiles
and camera motion for us to reconstruct a smooth part of a surface bounded
by the frontier. We choose arbitrary curves p{s,t) and camera motion c(t) sub-
ject to some limited constraint and construct a new surface. We find that the
constraints used in all the previous papers on the frontier are in fact incom-
plete. Incomplete in the sense that imposing them is not sufficient to construct
a smooth surface with boundary. Some early results of this chapter appear in

[FG2].

1.1.4 The Conjugate Curve Congruence.

Consider all directions in all tangent planes to a smooth surface in R? making
a fixed angle o with their conjugate direction. ‘Conjugate’ in this sense is with
respect to the second fundamental form. This is the curve congruence C,.

It is perhaps initially surprising that the Conjugate Curve Congruence C, is
not a classical object found in late nineteenth century textbooks on differential
geometry. It is certainly the case that the notion of conjugacy was well known to
Darboux and before. On further reflection though the concepts that arise when
studying C, are not in general ‘classical’; concepts such as ‘cusps of Gauss’, ‘sub-
parabolic curves’, ‘flecnodal curves’ etc. were not common geometrical objects
to the late nineteenth or early twentieth century geometers, and may perhaps
explain the lack of interest in such an object as C,. Also the methods used in
this thesis utilise a singularity theory approach to families of BDEs that provide
a sophisticated tool for analysing the integral curves of C,. These methods
were of course unavailable until recently, though we should note Darboux’s great
achievement at the turn of the century of providing us with the lines of curvature
at a generic umbilic.

There is some discussion in Eisenhart [E, 129] and Goursat [GO, 512] on
‘conjugate networks’ or ‘conjugate systems’. These are a two parameter family of
curves on the surface with the property that at a point the tangents are conjugate.
There is no mention though of conjugate networks with equal angle. In [E,
129] and [K, 244] the ‘characteristic directions’ are defined as ‘those conjugated
directions that subtend the smallest angle among all possible conjugated pairs’.
Of course for an hyperbolic patch the characteristic directions are asymptotic.
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This is perhaps the nearest one gets to C, in the literature.

A problem related to C, and described in Chapter7 is when the critical set
or contour generator of a parallel projection has a geodesic inflection. There has
been a huge interest in the computer vision literature concerning the critical sets
of projections of smooth surfaces (which also appear as the shadow boundary in
shape from shading problems [KD]), but the question of geodesic inflections of
the critical set has been neglected. We note that the projection to a view plane
of a geodesic inflection is not visible.

1.2 Surface Geometry.

In this section we give the basic definitions and results from differential geometry
that are used in the rest of the thesis. These are found in [ON] or most other
books on differential geometry.

1.1 Definition: A surface given by

flz,y) = (2,9, h(z,9))

is said to be given as the graph of a function as z = h(z,y). This is the Monge
form of the surface. We usually take h,(0,0) = h,(0,0) = 0 so that the tangent
plane at the origin is coincident with the xy plane.

We will need to calculate the second fundamental form I7 of a surface. Here
we calculate the matrix of /7 for a surface M given as the graph of a function,
as we will mostly have the surface in this form. O’Neill [ON] gives the method
for a general parametrised surface.

1.2 Lemma: Let the surface M be given as a graph of a function z = h(z,y)
and the normal (—h,, —hy, 1) be in the direction w. Choose a tangent direction u
to the surface M. Then II is calculated with reference to u and another tangent
direction given by v.= w Au. Then the matriz B of the second fundamental

form is given by
a b
o= (5 ¢)

q= wHut o _uHv? c= YHvT
Twllfull? wiif[ull][v — Twlifiviz

where
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and
hyw hgy O

H=| hg hy 0
0 0 O0

Let there be coordinate axes ¢, and ( in directions u, v and w

izgscfzively. The surface M is given locally as the graph of a function
z = h(z,y) = zh, +yh, + (%R + Qx?,;hmy + hy) SRR (1.1)
Thus (z, v, z) coordinates in R? becomes (£, 7,() coordinates where
(= a§2+2b2§77+cn2 Y (12)
We can write £,7,¢ in terms of z,y, z
= (o i)
1 = (%9, Z)(—vlﬂsz@
(—hg,—hy, 1)

= (z,v,2).
¢ (z,y )(1+h%+h§)1/2

lwl]l. In matrix form this is

where (14 h2 + h2)H2 =
u g ug_
3 ]l Tuf Teel T
_ v g v3_
nl|= [Iv1] [I¥I] livli Y
C —hg —hy 1 z
(Fh2+h2072  (I+RZ+RDTE  (I+hE+R3)T2

Using (1.1) we substitute for z,y, z from above. Equating coefficients of &2, &7
and n?, making a substitution for ¢ from (1.2) where necessary, yields a, b,nd ¢
respectively and hence obtain IJ. We obtain

. = Pogtf + 2hgyugug + Ay ud
(R R) A
hmulvl + hxy (’U,lvg + Ulug) + h«yyﬂg'vg

H

3

b —
(1 + A2 + R {ul|]lv]
. - PgzV3 + 240105 + hyy 03
(TS eE
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The second fundamental form at p of M is denoted I7{u,v) where v and v
lie in the tangent plane to M at p. The matrix of the second fundamental form
will be denoted by B, as stated above. Hence

II(u,v) = uBvT.

The second fundamental form is very useful as it contains the information about
the surface up to second order, for example, the Gauss curvature, mean curva-
ture, principal curvatures and principal directions may all be obtained from I7.
We make this more precise, and give two equivalent definitions.

1.3 Definition: The normal curvature k of M at p in the tangent direction u
is the curvature of the curve formed by the intersection of the surface and the
plane spanned by the normal to M ol p and .

Note: It is a fact that the normal curvature of M at p in the direction u is
obtained from the second fundamental form

k= II{u,u) = uBu”.

1.4 Definition: The mazimum and minimum values of the normal curvature
of M at p are the principal curvatures k; and ky. The directions in which these
extreme values occur are called the principal directions of M at p. These direc-
tions are mutually perpendicular. The principal curvaiures are the eigenvalues
of B and the principal directions are the corresponding eigenvectors.

1.5 Remark: A pointp on M is an umbilic if ky = ks, that is all the normal
sections of M have the same curvature. At such points all the directions are
principal. Umbilics are divided into three classes: star, monstar and lemon,
[BF]. The final chapter will make use of this distinction.

We now come to the concept of conjugacy which is essential for the work in
Chapter 7 and some other viewpoints presented there.

1.6 Definition: The tangent directions u and v are conjugate directions iff
II(u,v)=0.
An asymptotic direction is self conjugate i.e.

II(u,u) = 0.
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Remark: Whereas a tangent vector to M at p has two point contact with
the surface ({BG]| give a definition of contact) an asymptotic direction has three
point contact with the surface at p. The notion of contact is used later in this
thesis, (1.23).

The Gauss curvature of a surface is a measure of the intrinsic surface curva-
ture at some point p.

1.7 Definition: The Gauss curvature K of M at p is given by the determinant
of B.

1.8 Lemma: The Gauss curvature K of M at p is the product of the principal

curvatures of M at p, that is,
K= klkg.

Proof: The principal curvatures are eigen values of B. O

‘The sign of the Gauss curvature classifies surface points into three distinct
types.

1.9 Definition: A point p on M is classified as

(1) An elliptic point if K > 0 at p;
(2) A hyperbolic point if K <0 at p;
(8) A parabolic point if K =0 at p.

The number of asymptotic directions at p on M depends on the Gauss curvature
of M at p.

1.10 Lemma: The surface M at p has

(1) No asympiotic directions if K > 0 at p;
(2) Two asymptotic directions if K < 0 at p;
(3) One asymptotic direction if K =0 at p.

Proof: The asymptotic directions are given as root directions of uBu? =0. O

Remark: If a surface contains a straight line then the line will be an
asymptotic direction to the surface at points on the line. At a parabolic point on
the surface every direction is a conjugate direction to the asymptotic direction,
This is equivalent to saying that if two directions are conjugate at a parabolic
point one of them is the asymptotic direction.
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1.11 Definition: A flecnode is a point on the surface where an asymptotic
direction possesses an extra point of contact (i.e. four poinis of contact). The
flecnodal curve is the locus of such points.

Note on 1.11: at a flecnodal point the flecnodal line doesn’t pierce the surface,
whereas an ordinary (three-point contact) asymptotic line pierces the surface.
In the image one sees a ‘swallowtail’ singularity on the profile [K, p.448]. We
expect for a generic surface the flecnodal points to occur in curves. Indeed they
come in two ‘flavours’ depending on which of the asymptotic directions has four
points of contact.

For a point p on a surface M the Gauss map assigns a point ¢} on the unit
sphere whose radius vector is parallel to the outward normal vector to the surface
at p. More formally:

1.12 Definition For a surface M in R® the Gauss map G : M — 5% sends
each point p on M with unit normal vector (g1, g2, g3) to the point (g1, 92, 93) on
the unit sphere.

The Gauss map fails to be a local diffeomorphism at p on M if and only if
p is a parabolic point on M. At such points the Gauss map is locally, almost
always, a fold map [BGM].

1.2.1 Curves on Surfaces

Consider a curve v on a surface M in R3. Let T be the tangent to the curve, S
be the surface normal and V' be SAT.

1.13 Definition: For a curve v parametrised by arc length the connection
matriz for the T, V', S frame is

T 0 ¢ k T
Vil=] —-g 0 ¢ Vv
S’ -k —t 0 S

where k is the normal curvature, g is the geodesic curvature and t is the geodesic
torsion.

21




1.2.2 Ruled Surfaces

In this thesis we will require the following definitions and simple results.

1.14 Definition: A ruled surface is formed by taking a spacecurve v(u) and
a curve on the unit sphere §(u), and the parametrisation is

r{u,v) = y(u) + vé(u).

1.15 Definition: The flecnodal scroll (FS) is the ruled surface formed by
taking the flecnodal curve as a base curve, and the rulings as the asymptotic
directions with four-point contact.

We now turn our attention to another ruled surface.

1.16 Definition: The cylinder axis developable (CAD) is the ruled sur-
face formed by taking the parabolic line on the surface as the generating curve,
and the asymptotic directions as the ruling.

Note on 1.16:

1. Whilst it is perhaps acceptable to call a hyperbolic point ‘saddle like’ and
an elliptic point ‘bowl like’, a generic parabolic point is unlike a cylinder.
A cylinder is developable with every point parabolic. In general the inter-
section of a generic surface at a generic parabolic point with its tangent
plane is a cusp and not a line. Thus the cuspidal tangent should take the
place of the ‘cylinder axis’.

2. We follow Koenderink [K, p.453] and assume that the singularities of the
CAD for a generic surface are curves in space. We prove below that the
CAD is a developable and so expect these to be cusp edges and swallowtail
points. We conclude that for a single camera motion it is not generic for
it to pass through the singular points of the CAD.

3. We consider our surfaces free from flat umbilics. These points, where both
principal curvatures vanish, are non generic for a single generic surface.
Flat points are generic in families, or on special classes, e.g. minimal
surfaces.
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1.17 Definition: A ruled surface M is developable if and only if M is the
envelope of a one parameter family of planes.

A cascade of Lemmas leads us to the important result that the CAD is a
developable surface.

1.18 Lemma: The ruled surface given in parametric form by the equation,
r(u,v) = y(u) + v6(u)
s developable if and only if,
[v.6,8]=0.

Proof: [WE, p.137] ]

1.19 Lemma: M is a developable ruled surface iff M has the same tangent
plane ot all points of a ruling.

Proof: If M is an envelope of a family of planes S5; say, then the tangent
plane to the envelope at a point p is the plane S, itself.

Now «' + v6’ and 6 span the tangent plane, so (v 4+ vé’) x 6, for a fixed ¢, is
independent of v. Therefore §' x § is parallel to ' x 6. This implies [, 6, §'] = 0.
O

1.20 Lemma: If we let y(t)} denote the parabolic curve parametrised on the
surface M, and 6(t) be the direction of the asymptotic rays on the parabolic curve
then providing 6(t) is not parallel to v'(t) then &'(t) lies in the plane of 6(t) and
7' (@)

Proof: Let I'(u,t) be a local parametrisation of the surface M, with I'(0,¢) =
7(t), Tu(0,8) = 6(2), and I4:(0,2) =/ (2).
Then we have I',;(0,t) = §(t). At u = 0 the Gaussian curvature is,

K = ([yn)(Tymn) _(Fut-n)z
= —(Fut-n)2

since ['y,.n = 0 because §(¢) is an asymptotic direction. On the parabolic line,
K =10, so ['y, lies in the plane of 6(¢) and +'(%). O
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1.21 Lemma: The cylinder-axis developable is a developable ruled surface.

Proof: Lemma 1.20 proves that for the cylinder-axis developable it is true that
[v',6,6'] = 0. Thus by Lemma 1.18 we see that the surface is indeed developable.
O

Note on 1.21: the result of the previous lemma would have been obvious
to the ancients. It was (and perhaps still is} a well known result that upon
taking the envelope of tangent planes along a smooth curve on the surface,
the characteristics (rulings) of the resulting developable will be in conjugate
directions to the tangent to the curve [E, p.126]. Thus if we take the envelope of
tangent planes to the parabolic curve we find that the generators are the unique
asymptotic direction, since every direction is conjugate to this one.

1.3 Other Useful Results

In this thesis we will often parametrise curves and surfaces that are given by
explicit functions and thus use the Implicit Function Theorem. This theorem
appears in most texts on real analysis.

1.22 Theorem:

Let f : R"9 (a,b) — RY? be a smooth map, defined on a neighbourhood
of (a,b) € R™ x RY = R"" with f(a,b) = ¢. Write (2q,... %4, Y1.-..Y,) for
coordinates in R™1 and consider the ¢ X q matriz

8h ... 8h
g dyq
9fy . 9y
amn g

If this matriz is nonsingular at (a,b) then there exist neighbourhoods A of a in
R™, B of b in R? such that for all z in A there is a unique point g(x) in B with
f(z,g(x)) = c. Furthermore the map x v g(x) is smooth.

Proof: [BG, p.58]. D
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Given two plane curves there is an associated order of contact between them
at any points of the two curves. If the curves cross transversely at a point p we
say they have 1-point contact. If the curves have a common tangent line at p
they have > 2-point contact and so on. This idea is expressed for a curve in R"
by the following definition [BG, p.17].

1.23 Definition: Lety: I — R" be a regular curve, where v = (71,...,Va),

and
F“l(O) ={z e R": F(z) =0}.

Then v and F~1 have k-fold contact for t = t, provided the function g defined by
g@) =F(n(), .-, 1) = F(»(t))
satisfies
9(te) = ¢'(t0) = ... = ¢* (1) =0
and
g*(to) # 0.

Here superscripts denote differentiation.

When considering a curve or surface given by the zero set of a map we will
generally assume that zero is a regular value of the map ([BG, p.56]).

1.24 Definition: Let f: R™ — R? be smooth with m > p. A point x of

R™ is called a regular point of f and f is called a submersion ot z, provided
Df(z) has rank p. A regular value of f is a point ¢ € R? such that every z in
the domain of f with f(x) = ¢ is a regular point.

Finally we will need to find tangent planes to surfaces and tangent lines to
curves.

1.25 Proposition: Let f : R v — RY,c be a smooth map where ¢ is a
regular value of f. In the neighbourhood V of v, M = f~'(c) is a parametrised
n-manifold. The tangent space to M at v is equal to

{z, : z € KernelD f(v)}.

The tangent space passes through v and is parallel to the linear subspace kernel
Df(v) of R™.

Proof: [BG, p.68]. O
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Chapter 2

Critical Sets and Profiles.

'Tis therefore absolutely necessary, that you employ yourself for
some time in Drawing; till you can readily describe the Plan of any
Upright, and from thence project the Section or Profile.

Advice To Beginners [Poz]

2.1 Introduction

In this chapter we aim to give a comprehensive introduction to the main types
of projections used in this thesis and the geometric and topological structure
of the critical sets and profiles that arise from projections of surfaces. In the
literature the critical set is sometimes called ‘contour generator’ or the ‘rim’, see
Figure 2.1. The profile is sometimes called the ‘apparent contour’ or ‘silhouette’.

The early sections of this chapter contain relatively well known results con-
cerning the critical sets and profiles, and later results introduce the ‘Spatio-
Temporal surface’ which we use to provide a more technical analysis of the critical
sets and to introduce the frontier.

2.2 Basic Definitions

We describe the essential differences between perspective and parallel projection.
The definitions of the critical set and profile are given by, for example, Giblin
and Weiss [GW], Koenderink and van Doorn [KvD91] for orthogonal projection,
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Figure 2.1: Two diagrams of a scene containing four (virtual) blobs. The camera
motion c(t) is circular and the critical sets X; for the three different view points
¢; arc shown.
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Cipolla [CI] for perspective projection onto a sphere and Vaillant and Faugeras
[VF] for perspective projection onto a plane.

2.2.1 Orthogonal Projection

Orthogonal (or parallel) projection is projection onto a plane perpendicular to a
vector called the view direction. If the view direction is w and the image plane
is spanned by the perpendicular unit vectors w and v the projection is given by

m:R? — R?
(z,y,2) — ((z,y,2)u,(z,y,2)v).

The size of the projection of a surface is unchanged if the surface is moved parallel
to the view direction.

2.1 Definition: Given a smooth surface M and a view direction w, with
an tmage plane perpendicular to w, the critical set X in direction w consists
of points p on M such that the tangent plane contains the view direction or,
equivalently, the surface normeal at p is perpendicular to w. The projection of X
onto the image plane gives the profile.

We now prove the important result that the surface normal on the critical
set is parallel to the normal to the profile in the case when the image plane
is perpendicular to the view direction. It is straightforward to generalise to
perspective projection.

2.2 Lemma: For parallel projection the normal to the surface is parallel to
the profile normal.

Proof: Suppose the profile p(s) is smooth (we can generalise to the case of
a singular profile and use limiting tangents). Let w be the fixed view direction
and r(s) the critical set. There is then a depth A(s) such that,

r(s) = p(s) + A(s)w. (2.1)

Let n(s) be the surface normal along the critical set and so we have the identity
n(s).w = 0. Differentiating (2.1) by s and dotting with n we get r,.n = p,.n -+
A;w.n = p,.n, and so p,.n = 0. Thus the plane spanned by p, and w (which
are always independent) is orthogonal to n i.e. the normal to the profile w A p,
is parallel to the normal to the surface n. o
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2.2.2 Perspective Projection

Perspective projection {or polar projection) is projection {rom a finite point,
called the centre of projection, onto a sphere or a plane. With perspective
projection the size of the projection of a surface is dependent on the positioning
of the surface relative to the centre of projection. There is a choice of projection,
onto a plane or a sphere. Perspective projection onto a plane involves the choice
of an optical axis which is perpendicular to the plane and passes through the
centre of projection. There is a diffeomorphism between a hemisphere and a
tangent plane to the hemisphere [RY, Lemma 2.2.4].

2.3 Definition Given a smooth surface M and a centre of projection C, the

critical set X consists of points p on M where the tangent plane to M at p
passes through C'. On a sphere with centre C the profile is the intersection of
the lines from C to p on ¥ with the sphere. In the plane the profile is the
wntersection of the lines from C to p on ¥ with the plane. The perpendicular
distance from C to the plane is called the focal length.

2.2.3 Notation.

We use r for the parametrisation of a smooth surface M and ¢(t) for the locus
of centres of a one parameter family of central projections not intersecting M. If
r(s,t) is a point on the critical set for some ¢ then we can find a view direction
p(s,t) and a non-zero depth A(s,t) such that,

r(s,t) = c(t) + A(s, t)p(s, ). (2.2)

See Figure2.2. Note that it is not necessarily the case that r(s,t) is a non-
singular parametrisation of M, and in fact Chapter 6 is concerned with precisely
this.

2.2.4 Epipolar Parametrisation

The above section describes the setup for a spatio-temporal parametrisation
of the surface M. By this we mean a parametrisation of the surface via the
critical sets 2,. Obviously this fails to be a smooth parametrisation if the critical
sets form an envelope or are singular. Assume that they do form a smooth
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Figure 2.2: Perspective projection: the critical set ¥ with a typical point r, the
image sphere with centre ¢ and the corresponding profile point ¢+ p. Thus p is
the unit vector joining the centre ¢ to the profile point. Also n is normal to the
surface at r.
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parametrisation of M, and the critical sets ‘slip’ over the surface allowing us to
use time as a local parameter.

Thus the critical sets %, form one set of parametrising curves on M. What
are the constant-s curves? These are essentially arbitrary since there is no ob-
vious connection between points on X, and ¥, just as there is no ‘matching’
between profiles in the image.

Omne natural parametrisation is the epipolar parametrisation (e.g. {CB])
where the direction r; is taken to be in the view direction at that point. Recall
that the view direction lies in the tangent plane since the point lies in the critical
set. The direction r, is the tangent to 2. One consequence of this parametrisa~
tion is that r, and r, are conjugate with respect to the second fundamental form
(see Proposition 2.5 part 6).

2.3 Rotated Coordinates.

In setting up a geometrical problem in computer vision a preferred basis or
coordinate system is often taken. We call this the world system and denote it
W. An external privileged observer can make measurements of directions and
points in space with respect to W. For example a parametrised surface may be
given as r(u,v) where we understand the three-vector r is with respect to W.
Also a view direction p, which is a geometrical vector connecting one point in
space with another, can be given in terms of W.

In Chapters3, 4, 5, and 6 we will be considering a one-parameter family of
central projections. At each projection centre an observer will be able to measure
rays with respect to an internal basis that is related to W via a translation and
rotation. An observer no longer has the facility to take measurements with
respect to W. If our projection centres are c(¢) then the internal basis at time
t is related to W by a rotation R(%).

2.4 Lemma: If a direction p is measured in the rotated frame BW with co-
ordinates (o, cvy, c3) then there erists a vector q such that p = Rq and q has
coordinates (o, o, au3) with respect to the basis W.

Proof: Let the basis vectors for W be w;,ws and ws, then the rotated basis
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RW has basis vectors Rwy, Rw,y, Rws;. We then have,

P = oaRw+ ayRwy+ azgRuws
= R(O{]_'wl + Qg Uiy + 0{3’11)3)

hence the result. d

Notes on the Lemma:

1. As an observer at c(t) the only measurement we have of a ray p is the
triple of numbers (e, oy, a3).

2. If the rotation R is known then by creating the vector q (as above) in W
we can rotate to get p, which is the true direction of the observed vector.

3. Often we will take measurements at many different times and we are then
presented with the problem of how to uniformly represent these measure-
ments when the world basis is unknown. Given some basis W related to
W by a rotation Ry, W = RyW, then using some measured coordinates
{ov1, @y, x3) we can draw the vectors with respect to the basis W. Thus
we take a measurement of a vector p at time ¢ in the camera basis giving
a triple (au, o, v3), then given a fixed basis W we create the vector q in
this basis whose coordinates are (o, g, 3). We now have p = Ry R(1)q.

In much of the following work we use p coordinates. These are world co-
ordinates that are written with respect to W. In any practical application in
computer vision one would have to use g coordinates where these are rotated
with respect to the p coordinates. In the following work we refer to p and g
coordinates for brevity. As shown above the p and g coordinates are related by

p = R(t)q.
There is then a unique vector £2(¢) such that,
p: = Riq+ Rq; = 2 x Rg + Rq;.

See [KK, p.290] for a derivation of this, and [CB] for its use in computer vision.
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2.4 Properties of the Critical Set and Profile

The following proposition gives several properties of critical sets and profiles for
a surface M in the case of orthogonal projection. A complete proof can be found
in [RY, p.18], the first four properties can be found in [GW)], Property 5 is stated
by [BT]. Property 6 is given by Koenderink in [K84].

2.5 Proposition: Given a smooth surface M and a view direction w:

1. The critical set is smooth ot p unless p is a parabolic point and the view
direction is the asymptotic direction at p.

2. The profile arising from a point p on the critical set is smooth unless the
view direction is an asymptotic direction.

3. When the critical set is smooth at p the tangent direction to T is parallel
to the view plane of and only if the view direction is a principal direction
at p.

4. When the profile is smooth the tangent to the profile is always in the tangent
plane to the surface at p.

5. The surface normal at p is parallel to the normal to the profile at the image
of p.

6. The view direction and the tangent to the critical set ¥ are in conjugate
directions with respect to the second fundamental form at p.

0

The results of the previous Proposition also hold in the case of perspective
projection, where the term view direction is replaced by ray direction, which is
the vector from the centre of projection to the point on the surface. Properties
3,4,5 and 6 are shown by Blake and Cipolla in [BC89]. The analogous results of
Properties 1 and 2 of the previous Proposition are given below and proofs can
be found in [RY, p.20].

2.6 Proposition: For perspective projection of ¢ smooth surface M from a
centre of projection C;
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e The critical set is smooth at p unless p is a parabolic point and the direction
Cyp is the asymptotic direction at p.

o The profile arising from p on the critical set, is smooth unless C, s in an
asymptotic direction.

2.5 Koenderink’s Formula for the
Gauss Curvature

The motivation behind the work in this section was to examine in what way
parallel projection is a natural limit of perspective projection. We examine how
the Koenderink formula for Gauss curvature (K = %), changes as we pass
to this limit. The reduction is instructive in that it brings out some of the
differences between perspective projection and parallel projection.

Subsection 2.5.1 derives the parallel projection equivalent for the Koenderink
formula for Gauss curvature. Subsection 2.5.2 details a derivation for perspective
projection, and lays some groundwork for future calculations. The lemmas ap-
pear at the end of the section to preserve the flow of the work. An expression for
the curvature of the profile from parallel projection is given in Subsection 2.5.3,
and a similar formula for perspective projection, in Subsection2.5.4. Subsec-
tion 2.5.5 describes how we revise the Koenderink formula and take a limit.

2.5.1 Gauss Curvature From Parallel Projection

Consider our surface patch passing through the origin with the tangent plane at
the origin coincident with the z,y plane. In Monge-Taylor form z = %(az® +
2bzy + cy®) + --- We take the z axis as the view direction, and project onto a
plane parallel to the y, z plane. We denote the normal curvature in the view
direction as xf, and the Gauss curvature K. Thus it is easily seen that,

K=a (2.3)
K =ac— b (2.4)

We denote the critical set of the projection mapping as 2, and in this situation it
is defined by z; = 0. Using the Monge form this condition becomes, az-+by+- - =
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0, or z = =2y + - --. Higher terms are indicated by - - -.

We wish to find the curvature of the profile. The profile is simply the pro-
jection of the critical set onto our image-plane. If 7{z,y, z) = (y, z), then we are
concerned with the profile curve (). The profile is written (y, 2(az® + 2bzy +
cy?) +---), and if we substitute z = =2y + - - - we arrive at the formula for 7(Z),

1 {ac—b*\ , N
y bl 2 a y v
ac—b?

This is a planar curve and the curvature of the profile is the coefficient, %
We call the curvature of the profile x7. Thus it is easily seen from above that,

K = kPl

This is the formula for Gauss curvature in the case of parallel projection.

2.5.2 Gauss Curvature from Perspective Projection

Recall the notation of Subsection 2.2.3 where r is our surface point, ¢ is the
projection centre, A is the depth, and p is the unit vector, so that

r=c+ Ap.

We wish to find expressions for the curvature of the profile, x” and the normal
curvature in the view direction, x*. The curvature of the profile is understood in
this case to mean the geodesic curvature of the profile on the image sphere. In
the following we let n be the normal to the surface and by Proposition 2.5 part
5 is the profile normal. Using common formulae, e.g. [ON, p.230] and the proof
of Lemma 2.7 below, we can write,

Pss-1

KPP == .
2|2

By Lemma 2.7 below this is related to s°, the normal curvature of the surface in
the tangent direction to the critical set, by

Ar®
kP =
sin? @
where # is the angle between the view-direction p and the tangent ry to the
critical set. As usual A is the depth.




By Lemma 2.8 below we can write the Gauss curvature as,

dot | TsoR TseDd
Il Tyl

det Y. T, Tz.T;
r,r, TI.I;

K =

In the epipolar parametrisation (Subsection 2.2.4 and [CB]} where r, is taken to
be the view direction, and r, is the tangent to the critical set, this becomes

K® 0
det [ 0 ||t ]
K= )
det 1 cos 0|z ||
cos 8||r|| ||1't“2

We have ry.n = |ry||?s?, by Lemma2.9 below. Also note that off-diagonal en-
tries are zero since r, and r; are in conjugate directions, since in the epipolar
parametrisation r, is along the view direction and r, is the tangent to the critical
set. Also we can safely parametrise the critical sets by arclength (i.e.|r;l = 1),
but it is not necessarily the case that ||r,|| = 1. Thus,

Kt

~ sl (2.5)
KP it

=— (2.6)

with the last equality from Lemma 2.7 below. This is the Koenderink formula
for Gauss curvature, KX = %’“t for perspective projection.

2.7 Lemma: If k? is the curvature of the profile, &° the normal curvature of
the surface in the direction tangent to the critical set, n the surface normal and
8 is the angle between the view direction and the tangent to the critical set then,

MRS

P
KPP = — .
sin® @

Proof: Let p(s) be the profile on the image sphere parametrised by s. If ¢ is
arclength we can write p,.p; = (0,)% If T is the unit tangent to the profile, g
the geodesic curvature, and %k the normal curvature, then T, = gn + kp. Thus
T, = To0, = (gn+kp)|ps||. So, ps = T||p,il and, p,, = (gn-+kp)|p,||*+ T4l
We have an expression for <7,

P51

KP == .
lIpsl|?
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By definition the normal curvature of the critical set ¥ is x° = r,.n. Using
r = c - Ap, we can write,
K = Aglips||*.

Observing that sin® @ = ||p A r,||?, and ||p|| = ||r;|| = 1, we get the result. O

2.8 Lemma:
r.n rst.n]

det {
K- r;.n Tyu.n
det [ I,y T,.T; } '

ey T By

Proof: In this proof we use the shape operator S that is a linear map on the
tangent space given by S(v) = —V,n where n is the unit surface normal and
V., is the directional derivative along v. We can write S operating on the basis
vectors in the following way.

S(rs) = or; + ﬂrt
S(I‘t) == 61'5 _}‘ ’Yrt.

Then a, 3,8,y define the shape operator with respect to this basis. In matrix
notation we can write,

S(r,).r, S(rs).rt] _ [a [5] [rs.rs rs.rt]_

S(r,).ry S(r,).r, & v r,.ry T,.T,
We take determinants, and hence result. O
The following result is true for the epipolar parametrisation where r, is along

the view direction p.

2.9 Lemma: For the epipolar parametrisation

Iy

flzel|?

Ht

Proof: Let r(¢) be the curve r(sy, ). We are considering the epipolar parametri-
sation so r, is parallel to p, and the normal to (2} is p, and the surface normal
is n.
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If o is arclength we can write r{¢).r(t) = (0;)2. Let T be the unit tangent to
r(t) and T, = gp, + &'n, then
T; = To0: = (gp, + £'n)|[r()]].
We have r; = T|r,|| and
||

dt
and dotting with n gives the required result. O

ry = (gps + £'0)[e(¥)|* + T

2.5.3 Geodesic Curvature of Profile from
Parallel Projection

"'”'"'|_"‘—”‘} r(s)

We consider r(s) to be the critical set of some surface with normal n for some
fixed time, under the parallel projection with kernel w. There is a non zero A
such that r = v+ Aw. Now ~(s) is not necessarily unit speed, so letting u be
arclength and T be the unit tangent we write,

dT dTdp dv(s)
ds  dpds ds

The geodesic curvature is &P and k the normal curvature. In fact the geodesic

(Pn + kw)

curvature of this curve is equal to its curvature in the sense of a plane-curve.
It is less cumbersome to write T, = (kP + kw)||7y,||, where sub-scripts denote
differentiation. We can derive the formula for &P,

Ys = T||73”
d
= Yoo = Tsllvsll + T |1l

= Yss- = K:p”f}’sllz
Vss-11

= K= i
[FAIR

38



Now using the fact that r = v + Aw, we can calculate the following derivatives,

Iy = Y+ AW
Ls- Ve = Ys¥s T AW,

Tys = "Yss"'/\ssw
rSs'n = ,YSS'n?
and so o1
P = Dl (2.7)
T Vs

This is then the (geodesic) curvature of the profile for the case of parallel projec-
tion in terms of r(s) and the projected curve. Now a similar formula is derived
for the perspective case, and we see how they are related.

2.5.4 Geodesic Curvature of Profile From
Perspective Projection

We now wish to consider the perspective projection of a space-curve, r(s) onto
an image sphere of radius o, centred at the point pc. What we plan to do is
to take the image sphere passing through the origin and then let the centre of
the sphere recede to infinity and simultaneously let the radius increase so that
the sphere remains through the origin. In the limit we expect the projection to
behave like parallel projection to a plane at the origin.

A formula for the geodesic curvature' of the profile is derived.

JQ@
\~\ pc

\—/

1This is now indicated x¥(¢), to show the dependence on the image sphere radius.
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The profile is denoted b(s), and is not necessarily parametrised by arclength.
If we let p be arclength of the curve b, then T, = k”(o)n -+ kp. p is the unit
normal pointing outwards from the centre of the sphere, and £ is the normal
curvature of the space-curve, b(s). T is the unit tangent vector to the profile,
A1(s) is the depth from the centre of the sphere to the point r(s), and A;(s) is
the depth from r(s) to the image b{s). xP(c) is the geodesic curvature of this
curve as a space-curve on the surface of the sphere, radius . We can derive an
expression for k”(¢) in a similar way to the parallel projection case. Thus,

b,,.n
[[bs]|?

We can now use the fact that b = pc + op. By differentiating this we get,

kP (o) = aﬁg. By observing that r = pc + Ayp, we reach the final form for the

curvature of the profile,

kP(o) =

r.n

kP (o) = b (2.8)

This is remarkably similar to the formula for the parallel projection case (2.7).
If we let o = p||c|| then the image sphere passes through the origin. Now we let
p tend to infinity (keeping ¢ fixed) which simultaneously moves the image sphere
away from the origin but increases the radius so that it still passes through the
origin. In the limit b(s) — (s}, and xP(¢) — #”. In other words the (geodesic)
curvature of the curve on the image sphere equals the (geodesic) curvature of
the planar curve, in the limit as we let the radius of the image sphere tend to

infinity (in a controlled way).

2.5.5 Gauss Curvature In The Limit

This section will derive a slightly altered Koenderink formula for the Gauss
curvature. We are now considering the case when the image sphere is centred at
pc, and has radius o, where o = p||c|, so that it passes through the origin, for
all p.

From the last section it was shown that

r..n
7 — 58 .
k(o) r,.b,
If we assume that ||r,|| = 1, then the normal curvature of the critical set is

written, x° = rg.n, and we have the simple connection,




Referring back to Subsection 2.5.2 on Gauss curvature from perspective projec-

tion we know, K = &5 5 (2.5). This makes no reference to the projected curve

since x* and x* are the normai curvatures on the surface, of the critical set and

view direction respectively. It is therefore a good place to start the new calcula-
rs. b )wP{o)x .

tion. We know x* and substitute to get, K = g——-l%;—}—l— Using r = pc + Alp

M ollpalic?(a)st
sin® @

and b = pc + op, we can substitute for r, and b,. Thus K =
writing sin? = ||p A r,||? we can make more substitutions to get,

akP(o)kt

K(o) = 7

This is the slightly revised Koenderink formula for the Gauss curvature for per-
spective projection on a image sphere radius ¢. We next use the relationship,
AL = Xs + o to get,
AP (o) Kt

Ay '
Now by letting p — o0 we see the right hand term vanishes since, %g — 0 as
p — 00. In the left hand term, ! is unchanged since it does not depend on p, but
it has already been shown that x*(¢) — kP. So we might write the suggestive
formula K (o) — xPx!, which says that the Koenderink formula makes sense as
we pass from perspective to parallel projection, in the (special) limit.

K(o) = kP(o)s" —

2.6 The Spatio—Temporal Surface

When considering families of curves in the plane or on a smooth surface, it is
often natural to ‘lift’ them into a new extended space where they form a surface
[BG|. The inverse operation is the projection of the surface back to a family of
curves. More concretely, we wish to lift our family of critical sets on M that
have resulted from some camera motion c¢(¢), to form a new surface called the
Spatio—Temporal surfoce, M.

2.10 Definition: Given a smooth surface M parametrised r(u,v) with normal
n(u,v) and a camera motion c(t), then the spatio-temporal surface in (u,v,t)
space s given by,

(r(u,v) - ¢(t)).n(u,v) =0

2.11 Notes on the definition.
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e Level-t sets are the critical sets at time ¢ in the u, v plane. Therefore the
spatio-temporal surface can be viewed as the critical sets ‘stacked up’ in
(u, v, 1) space.

e The projection m,(u,v,¢) = (u,v) projects M on to the parameter space
of M (essentially M itself). Restricting m; to M gives us a map from the
plane to the plane which (generically) may be a diffeomorphism, fold or
Cusp.

e In the case when M is not diffeomorphic to M the critical sets form an
envelope, the frontier, on M (see Definition 2.15).

It is the third note above that reveals the usefulness of the spatio—temporal
surface. It provides a natural setting for studying the envelope of critical sets.

It is of interest to ask when the spatio-temporal surface is singular, and the

following two results addresses this.

2.12 Lemma: If the surface M is described locally at a point v by the equation
z = h(u,v), then we may parametrise M by,

o y and t provided the view direction is not a principal direction.

e v andt provided the view direction is not asymptotic.

e u and v provided r is not a frontier point
Proof: We can set up the surface in Monge form (u, v, h(u,v)) (Definition 1.1)

with the camera passing through the point (},0,0) at time zero. The differential
of the map (r — ¢).n, whose zero set is the spatio temporal surface, is

Mgy Ay, —C3(2)]

Recall (Lemma3.1) that h,, = 0 is the condition for the view direction to be
asymptotic, and in addition h,, = 0 gives a parabolic point. It is then straight-
forward to invoke the implicit function theorem to derive the result. O

2.13 Proposition: Given a smooth surface M, a camera motion c(t) not
passing through M and the corresponding spatio—temporal surface M, then the
following are equivalent.
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1. The spatio-temporal surface is singular at (u,v,t).

2. The view direction is asymptotic at o parabolic point r{u,v) and the point
is on the frontier, see Definition 2.15 i.e. ¢;(¢).n{u,v) = 0.

3. The carnera motion is tangent to the Cylinder Azis Developable at c(t).
(See the proof of the following corollary.)

Proof: 1 & 2

We can examine M locally at the origin by taking our original surface M in
Monge form (Definition 1.1}, and ¢(t) = (e1(¢), ea(t), c3(t)) with ¢(0) = (},0,0)
and non-zero A. The equation for M is,

hu(cl —’U')‘f‘hv(Cz —'U) +h—C3 = 0.

The Jacobian at (u,v,t}) = (0,0,0) is then [Aiyy, Ahy,, —c;], where ¢(0) =
(A,0,0). This is zero precisely when the view direction is asymptotic (h,, = 0),
the origin is parabolic (additionally h,, = 0) and the point is on the frontier
(¢4 = 0). This is the condition for ¢,.n = 0 the frontier, by Definition 2.15.

23

By the first part of the proof we see that for M to be singular the camera
must necessarily lie in the cylinder—axis developable (CAD). We consider our
surface in Monge form with the parabolic curve passing through the origin and
the agymptotic direction at the origin coincident with the u—axis. Since the CAD
is developable the tangent plane is constant along any ruling. Thus the tangent
plane to the CAD at the point ¢(0) = (A, 0,0) is coincident with the u,v plane.
Also the tangent plane to the CAD at the point on the surface is equal to the
tangent plane to the surface since it is spanned by the tangent to the parabolic
curve and the asymptotic direction. Therefore the condition that the camera
motion is tangential to the CAD is equivalent to the condition ¢§ = 0. Which is
the condition for a frontier. 0

2.14 Corollary: For a single camera motion it s generic for the spatio—
temporal surface to be smooth.

Sketch Proof: The CAD is not in general smooth but it is stratified into
smooth manifolds abd of dimension 2. Therefore a 1-dimensional curve c(¢) will
generically be transverse to the CAD, hnece missing the singular set. O
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2.7 The Frontier.

We remain in the situation of considering the critical sets that arise from a
one parameter family of projections parametrised by ¢. We saw in the last
section that the critical sets can be ‘stacked up’ in time to produce the spatio-
temporal surface M. In [CB] the authors are concerned with when the critical
sets form a local parametrisation of the surface M, so that surface reconstruction
can be performed (1.1.2). In this section we concern ourselves with precisely
the situation when the critical sets do not foliate M. The following definition
introduces the condition for a frontier in terms of the camera velocity ¢;(t) and
surface normal n(z).

2.15 Definition: If our smooth parametrised surface is v(u,v) and the cam-
era motion is c(t) then the frontier is the curve on the surface defined by the
Sfollowing two equations,

(r{u,v) —c(t))m(u,v) = 0
cy(¢).n(u,v) =0.

Frontier points are sometimes called epipolar tangency points. A collision
point is a point on the frontier for which in addition the vector c,(t) s parallel
to the view direction p. (See (2.2.8) for a review of p and c.)

Notes:

e This characterisation ¢;.n = 0 is very geometrical and says that a frontier
point occurs when the camera trajectory is tangent to a tangent plane of
the surface. If ¢ passes through a tangent plane then the point is on the
critical set, but if it is tangent to the tangent plane then it is also a frontier
point. Figure 2.3 illustrates this.

e In a later section we prove that another characterisation of the frontier is
that the critical sets form an envelope (Lemma 2.22).

¢ The direction c; is sometimes called the epipolar direction and the
epipolar plane is spanned by the view direction to the surface, and the
epipolar direction. Frontier points are those points where the epipolar
plane is a tangent plane.
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C(t-1) - C@)
Tangent plane :

= Epipolar plane C(t+D)

¥ (t+1)

Figure 2.3: Illustration of a frontier point with three camera positions ¢ and
three critical sets X shown.

Figure 2.4: Lifted frontier shown for an example spatio-temporal surface.
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e The frontier forms the boundary (locally at least) between the region visible
from some point on c(t) and invisible for all points.

The lifted frontier (see Figure2.4) denoted F is the critical set of the pro-
jection m,(u,v,t) = (u,v). The projection of this curve in the (u,v) plane is the
frontier on M. Parametrising M and restricting m; to M we have a map from
the plane to the plane. Maps of this type are well studied and we expect either
a fold or cusp singularity. We wish to answer the question; when is F' a cusp,
i.e. when is the projection map a cusp map? First we find the conditions for £
to be singular, and then implement the recognition criterion found in [LU, p.38],
which is reproduced as Definition 2.18 below.

2.16 Lemma: If x(u,v) is a smooth parametrisation of M, c(t) ¢ smooth
camera motion and n the normeal to M, then F is singular ot p if either p is a
parabolic point and the view line is asymptotic, or cy.nn =0 and p is a collision
point.

Proof: Let m,(u,v,t) be the projection map on the first two coordinates from
M to the parameter space of M. Let %(m,) be the critical set of m; which is F.
Then ¥(m;) is given by two conditions in the three variables (u,v,t),

Ci. 1 =

(r—c)n =

The differential of ¢;.n is [ ¢;.m, ¢;.n, cgu.n |, and the differential of (r — ¢).n is

[(x~¢).n, (r—c¢)m, —c;.n], since Z£((r—c).n) =r,n+(x—c)n, = (r—-c)n,
and n is the surface normal. Similarly for 5%. So the tangent to £ lies in the

kernel of both. Since ¢;.n = () we examine 2 X 2 minors of the following matrix,

Ct-nu Ct -nv Ctt-n
(r—c¢)n, (r—c)n, 0 (2.9)
These are

¢, (r—c¢)ny, — ¢, (r—cln, =
cy.n(r—cln, =
cyn(r—c)n, =

If cy.n # 0 then we must have (r — ¢).n, = (r — ¢).n, = 0. Now (r —c) is
the view direction, and the only way for it to be conjugate to both the linearly
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independent directions r, and r, is if the view line is asymptotic at a parabolic
point.

If cy.n = 0 we must have ¢;.n,(r — ¢).n, — ¢,.n,(r -~ ¢).n, = 0. Now let r,,
be the tangent to the critical set. The parametrisation r is essentially arbitrary
so we allow ourselves this, and we know that the critical set is smooth since the
previous case dealt with the singular critical set. Therefore (r — ¢).n, = 0 since
this just says that the view direction p (recall notation of 2.2.3) is conjugate to
r, the tangent to the critical set. We therefore must also have ¢;.n, = 0. That
is c; is conjugate to r, (since ¢; lies in the tangent plane), and since r, has a
unique conjugate we must conclude that ¢; and p are parallel giving rise to a
collision point. This concludes the proof. O

Note: The conditions given above for a singular F are non generic for a sin-
gle camera motion. The first condition says that we have a parabolic point on the
frontier with the view line asymptotic. Recall from Proposition 2.13 that this is
the condition for the spatio-temporal surface to be singular. More geometrically
the camera is tangent to the CAD. This is not a generic occurrence.

For the second condition we require two conditions to hold on the frontier,
namely c;.n = 0 and a collision point. Since F is a curve we do not expect two
conditions to hold simultaneously, and we assume for the remainder of the thesis
that ¥ is smooth.

2.17 Lemma: Provided the lifted frontier F' is smooth (see Lemma 2.16), then
1ts tangent ts parallel to the t-azis if and only if c,.n = 0.

Proof: The proof of this lemma closely follows the first part of the proof of
Lemma2.16. Following from equation 2.9 the tangent to F is parallel to the
t-axis if and only if,

0
C.11,, C,. 11, Ctg.n 0 — g
r—c¢n, r—cn, —c;n 1 0
Since ¢;.t = 0 we have the result. O

We can use the previous lemma to establish when the projection has a cusp
singularity. We reproduce the recognition criterion for a fold and cusp from [LU,
p-38] below.
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2.18 Definition: Let ¢(t) = (¢,v(t)) be a C*-parametrisation of a nonsingular
fold of [ such that $(0) = p where p is a singular point of f.

1. p is a fold point of f if Z(f o $)(0) #0
2. p is a cusp point of f if £(f o ¢)(0) =0 but gz(foqb)(O) # 0.

2.19 Lemma: Ifc.n = cy.n =0 but c;y.n # 0 then the projection from M
to M will be a cusp singularity and no worse (hence the frontier has a cusp).

Proof: Assume that ¢;.n = ¢y.m = 0 at t = 0 and (u,v) = (0,0). In the
Monge-Taylor form we write the camera motion as,

C(t)=()\'+"C11t+"‘,C21t+"',ngta+"‘)

and the surface as (u, v, A(u,v)) where,
1
2
Now since ¢;.n = cy.n = 0 at v = v = ¢t = 0 we can use the previous lemma to
say that the tangent to F' (at the cusp point) is parallel to the t-axis. We may
therefore write F' locally as,

h(u,v) = =(biu® + 2byuv -+ byv?) + - --.

(u,v9,8) = (at®* + -+, B2 + - -+, 1)

Recall from the note following Lemma 2.16 that we assume F is smooth and so
can parametrise in this way. By the criterion in Lu; F' is worse than a cusp if
and only if @ = 0 and 8 = 0. Therefore using Monge form,

c;,.n= 0 < —“(Cn + - -)(bla + bgﬁ)t2
—(621 + - )(bgOd -+ b3ﬁ)t2 =+ 3633t2 + O(tS) = (.

Now since cg3 # 0 (since ¢y 7 0) we can not have o = 0 and 8 = 0, and we
conclude that the map is no worse than a cusp. a

2.7.1 Structure of the Critical Sets.

We now turn our attention to the pattern of critical set on M at a frontier point.
Can we classify their geometric form up to a suitable equivalence ? This section
is almost entirely based on the work of Dufour and his paper [DUJ.

48



Dufour is concerned with a (one parameter) “family of plane curves”. This
he represents by the diagram,

f ¥
R —« U — R?

where U is open in R? and f and «y are smooth. Two families R R?7 R? and
R R?7YR? are “equivalent” if there is a commutative diagram

I v
R —« R? — R?
Al | H | K
R « R? —» R?
f ! ,},I

where A, H, K are diffeomorphisms. He then derives a generic classification for
the families.

We consider the situation in [DU] with our spatio-temporal surface M foliated
by the lifted critical sets and then projected in the standard way onto our surface
M. We define the lifted critical sets as level sets of a function f(u,v,¢) =t¢, and
the projection v as y(u,v,t) = (u,v). We then wish to consider the situations
arising when we project the f-curves under the map -,

f ¥

R &« M - M

We now reproduce from Dufour recognition criteria for the generic behaviour
of these families,

1. Diffeomorphism: v regular; f regular.

2. Singular: «y regular; f Morse.

3. Fold: v admits a fold; (v, f) is regular and f restricted to the critical set
of  is regular.

4. Parabolic point on fold: v admits a fold; (v, f) is regular and f restricted
to the critical set of vy is Morse.

5. Whitney Umbrella: v admits a fold; (v, f) admits a Whitney Umbrella
with its double point line transverse to R* x 0 in R? x R. Note that this
does not occur in our family.
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6. Cusp type: -y admits a cusp and (v, f) is regular.

A succession of lemmas provides the hypotheses for these standard forms.

2.20 Lemma: Assume the point r on M is not a frontier point and the view
direction is not asymptotic. Then,
e v is regular,

o f is reqular.

Proof: Parametrise M by v and ¢. The map f is then f : (v,£) — ¢ since 5
are t-level sets. The map vy is y|M : (v,) — (u(v,t),v).

Note that f is regular, and

So  fails to be regular iff 2% = 0.

Recalling the notation introduced in (2.2.3) we have

5}
(r—c)ln=0= AP'H“B—? —c.n =10,

SO %% = 0= ¢;.n = 0. But ¢;.n # 0 thus ‘g—"; 2 0 and « is regular. O
For the following result we assume that the singularity of the visual mapping
is no worse than a lips/beaks. It can be worse than a lips/beaks if we are viewing

a cusp of Gauss on a parabolic curve along an asymptotic direction. This is called
a ‘Gulls’ singularity [BG85].

2.21 Lemma: Suppose the point v is parabolic but not on the frontier, the

view direction is asymptotic and the singularity of the visual mapping is no worse
than a lips/beaks then,

o -y regular,

o [ is Morse.
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Proof:  Parametrise M by u and v. The map « is then v : u,v — u,v
which is regular. The map f is f : (u,v) — t(u,v). Let the camera motion be
c(t) = (A + e1(t), ea(t), ca(t)) with ¢(0) = ¢o(0) = ¢3(0) = 0, then M is given by
the equation

(u—A—c)hy+(v—c)hy — (A —c3) =0
i.e.

ho(w — A) + hyv — h = ¢ hy, + c3hy — ca. (2.10)

If t = t(u,v) then we wish to evaluate first and second derivatives of ¢. Differ-
entiate (2.10) with respect to u and using a dash to indicate derivatives with
respect to ¢ we find,

ot
Pou(t — A) + by + v — by = cla hy + C1huy
ot ot
+c23 By + Cohy — cga—

and evaluating at « = v = 0 gives My, = c4&: and Ahy, = 8t when we

differentiate with respect to v.

Now c4(0) # 0 since we are not at a frontier point, so f is singular since the
point is parabolic and the view direction asymptotic, making h,, = Ay, = 0.

We now calculate the second derivatives,

ot 9%t ot
h‘u‘uu(u - )‘) + gh‘uu + huuv'v - huu = CT (_a—?;) h’ + Cla gh' + cla huu

ot
+c’1 3_huu + ¢ huuu

, [0t , % at
+2(3u) by + 5 sy + h

ot
+C’2‘5"huv -+ Czhuuv

Ot , 8%
—¢3 Su 33 2

and evaluate at w = v = 0. In this way we can form the Hessian matrix of second

derivatives,

h’uuu h”LLTL’U

Thus f is Morse if Ay, = hyy = 0 and AyuuPuse 7 Ay, This is true by hypothesis
since r is a parabolic point along an asymptotic direction (h,, = hy, = 0) and
not a ‘Gulls’ singularity (hyyefuwe # Pons)- O
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2.22 Lemma: Letr be a frontier point with cy.n # 0 and not parabolic or a
collision point (£.15) or the view direction asymptotic then,

e v admits a fold at u.

e (v, f) is regular.

o f|g, is regular.

Proof: Frontier points are contained in ¥(vy) and are precisely the fold points.

We parametrise M by v and ¢, then ~ : v,t — u(v,t),v and f :v,t — ¢t and
the map (v, f) is v,t — u(v,t), v, ¢, which is regular.

Let the lifted frontier be parametrised by v, which is possible since 7y is not

a cusp map, then, _
F f
v — u,tlv) — t(v)

Let u = uyv+ugv?+--- and t = tyv+tv° +- - - parametrise F on ]’VT; we examine
our surface in Monge form. Our object is to prove ¢; = 0, which shows that f|s,
is regular. We have the following equations,

1
h = §(b1u2 + 2b2UU + b37)2) + U
hu = blu+b2’l)+"'
h"u = bgu+b3?)+"'

Our camera motion is given by,
C(t) = (/\—E‘Cnt“!‘clgtz"‘ cee Gt gt + )

The condition for points to be frontier points is that c;.n = 0. Thus our curve,
(ugv + ugv® + - -+, v, 819 + tv? + - - -) must satisfy this, i.e.,

—(CI]_ + 2C12t1?) + 2C12t2'02 + -- ')(bl’U -+ bzul’u + bg'u.z'Uz -+ - )
—(ea1 + 2e99t10 + 2099t90” -+ - - ) (byv + byuyv -+ byugv® + -+ )
+2632t1’0 + 2632t2’02 + O('Us) =0

We now equate coefficients of v in the above to get,

—c11by — cibaty — €210y — carbauy + 2¢39t, = 0.
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We also demand that our curve satisfies the equation to lie on M , {r—c).n =0,

giving,

—(’U — A~ et - Clltgﬂz)(bl'v + bg’Ul'U + bg'vg‘vz)

— (10 4+ v30% — Co1810) (bov + b3v1 v + b3vav®)

1
+§(b1v2 + 2b3010% + b3viv?) — cpativ® + O(0) = 0

Equating coefficients of y we find,

—b,
Uy == ——
i b2 )
and thus, c
21 2
t) = ——= (b5 — bib3).
1 2C3zb%( 2 1 3)
This can not be zero since the point is neither parabolic nor collision. O

2.23 Lemma: If the point u is a parabolic point on the frontier or o collision
point (cy; # 0) and the view direction is not asymptotic, then,

o v admits a fold,

o (v, f) is regular,

o fls, is Morse.
Proof: The proof is very similar to the previous proof. O

2.24 Lemma: Let u be a point for which c;.n = cy.n =0 and ¢ # 0 and
the view direction not asymptotic, then,

e v admits a cusp ot u,

e (v, f) is regular at u.

Proof: The hypotheses imply that + cusps by (2.19). We can parametrise M
by v and ¢ thus, (v, f) : v,t — u(v,t),v,t is regular.
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(2) (b)

|

() (d)

Figure 2.5: Classification of Critical Sets at the frontier. Models from Dufour.
(a) Away from frontier. (b) The frontier. (¢) Parabolic point on the frontier. (d)
Cusp of the frontier.
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We are now in a position to use the local models (up to equivalence) detailed
in [DU]. Pictures are by far the most helpful models as shown in Figure2.5.
Figure2.5(a) is the configuration corresponding to Lemma2.20 where we are
away from the frontier and the projection from MtoMisa diffeomorphism.
The local model up to equivalence is ¥/ (z,4) 7, (z, v).

Figure 2.5(b) is the configuration corresponding to Lemma 2.22 and shows the
critical sets making an envelope along the frontier away from a parabolic point.
The local model up to equivalence is z + y{ (z,9) % (z, ¥?).

Figure2.5(c) is the configuration corresponding to Lemma 2.23 and shows
critical sets at a parabolic point on the frontier. The local model up to equiva-
lence is 22 +y 7/ (z,v) L. (z, ¥%).

Figure 2.5(d) is the configuration corresponding to Lemma2.24 and is the
case for when the locus of camera centres has extra contact with the tangent
plane and the frontier cusps. The local model up to equivalence is y + g(z, zy +

) (z,9) Lz, zy + 1)
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Chapter 3

Tracking Cusps:
Mathematical Aspects

It may sometimes happen that the Visual may be so direct
as to render the Profile too close and narrow.
The ITonick Pedestal, and the way to shun another difficulty [Poz]

3.1 Introduction

We consider a one parameter family of central projections of a surface onto
an image sphere. We are particularly interested in the family of critical sets %;
(sometimes called contour generators) of this visual mapping and its image, see
Figure2.2. Locally maps from a surface to the sphere behave as maps from the
plane to the plane. We therefore expect two types of stable singularities, the fold
and cusp (e.g.[LU, p.33]). The image of a fold is called the profile and the image
of the cusp is a cusp on the profile or a contour ending in the opaque surface
case. It can easily be shown (e.g.[K, p.439] and Proposition 2.5) that the profile
(also known as the apparent contour or silhouette) is singular if and only if the
view direction is coincident with an asymptotic direction of the surface at the
point being viewed. See Figure 3.1 and Figure 3.2. Of course this will only occur
if we view a hyperbolic patch of surface.

Due to the stability of the singularities small changes in viewer position will
result in small changes in the position of the cusp in the image. We consider the
locus of these cusp points in the standard image sphere. The standard image
sphere is obtained by taking the image spheres at different times and identifying
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Figure 3.1: Sequence of real images with the lower two showing a moving con-
tour ending (or partially occluded cusp). Thanks to Dr.R.Cipolla for this video

sequence from the Yorkshire Sculpture Park.

o7 -




,«c(t)

Figure 3.2: A schematic showing the projection of the critical set of a smooth
surface on to the image sphere, giving a singular curve.

the points by translation to the unit sphere at the origin. This is called the p
coordinates. In this work we also consider the situation when the image-spheres
are all rotating with respect to the world frame. This we denote by q coordinates,
see Subsection 2.2.3.

Thus for some surface and some camera motion we have a curve on the
sphere that is called the cusp locus C. We can also view the locus of cusps
as a curve on the surface by simply tracing along the view direction from the
image sphere. These give the points on the surface that generate the cusps in the
image with respect to this camera motion. Since the cusp points lie on critical
sets for different times the locus of cusps can also be lifted on to the spatio-
temporal surface. The cusp generator curve on the surface is called L, and on
the spatio-temporal surface L.

In this chapter we present a detailed investigation of the locus of cusps.

3.2 The Locus Of Cusps

3.2.1 The Spatio-Temporal surface

In this subsection we examine the lifted cusp generator curve L. The principal
result describes the singular instances of L. The spatio temporal surface also
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provides a useful tool for examining the cusp locus in the vicinity of a frontier
point. Recall (Lemma2.22) that the fold of M in projecting to M is the frontier
curve. The critical set of this fold is the lifted frontier F.

We consider our camera c(t) to be moving through an area of space occupied
by the asymptotic ray complez (ARC) of our surface M. This consists of the two
parameter family of lines got by extending all asymptotic directions out from
all the hyperbolic and parabolic points on the surface. Therefore as ¢ moves
through the ARC we find ourselves sitting on some asymptotic direction and
hence observing a cusp in the image. The nature of the critical sets and cusp
locus depends on the position of ¢ with respect to the ‘boundaries’ of the ARC. In
characterising these boundaries we beat the bush of auxiliary ruled surfaces and
scare out the exotic sounding flecnodal scroll (FS) and cylinder axis developable
(CAD). Recall Subsection 1.2.2 for an introduction to these.

In many of the proofs below we represent our surface in Monge-Taylor form
(recall 1.1). We also make use of a ‘standard’ (without losing generality) camera
motion, where the centre of our image sphere is taken to lie at the position
c(t) = (e1(t), e2(t), c3(t)). We also demand that the image sphere passes through
the point (A,0,0) at time zero. ie.. ¢(0) = (},0,0).

The following elementary lemma relates common geometric situations with
this particular form of local coordinates.

3.1 Lemma: If our surface M is given in Monge-Taylor form with height
function h(z,y) and we toke the camera motion c(t) = (c(t), ca(t), cs(t)) with
c(0) = (A,0,0) then the following results hold.

e The condition h,, = 0 is equivalent to our view direction at t = 0 (the z-
azis) being an asymptotic direction. Then the cusp generator curve passes
through (0,0,0).

o If hy1(0,0) = O then the origin is a parabolic point if and only if h,,(0,0) =
0.

o If h,,(0,0) = 0 and h,y, = 0 then we call this a Swallowtail point [K,
p.448], and the view direction has an extra point of contact.

o The frontier is a curve on the surface given by the set of points satisfying
c.n = 0, namely the envelope of critical sets. In the situation above the
origin is a frontier point if and only if c5{0) = 0.
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o The special case of a frontier when the camera motion is instantaneously
towards the corresponding point of surface is called a Collision point (2.15)
and is given by c3(0) = ¢4(0) = 0.

a

The following definition of the map F and the subsequent proposztlon will
describe the lifted cusp generator curve L as the zeroes of the map F' on M.

3.2 Definition: We define the mapping F : R® — R? as

Fz,y,t) =( hole — ) +hylea —y) +h — ey,
hon(C1 = T)2 + 2hgy(cr — z)(cz — ¥) + hyy(c2 — 1)) (3.1)

where by, hy, by, by and hy, are evaluated at (z,y).

3.3 Proposition: The locus of cusps L, is given by the equation L = F~1(0).

Proof: In this proof we represent our surface in Monge form.

It is well known that a line has three point contact with a surface at a point
p if and only if it is an asymptotic direction at p. It is this characterisation that
is the most useful, and will be used in this proof. We want the view direction
(the line joining c(¢) and the surface point (z, y, h(z,¥))) at time ¢, to have three
point contact with the surface. Taking the following line parametrised by u

(1 - P’)(m:ya h’) + p(er, ¢, CS)

we compose it with the equation of the surface z — A{z,y) = 0 and evaluate first
and second derivatives at ¢ = 0. The vanishing of these two derivatives will
determine the locus of cusp points on M. The mapping F' above, incorporates
these equations so that F~1(0) describes the cusp locus. O

Therefore it can be seen that F~1(0) is the intersection of two surfaces, one
of which is the spatio-temporal surface.

The principal results of this section concern the singular cases of L. Before we
embark on this we first require some results concerning the differential geometry
of some special ruled surfaces, and the interplay between these and the camera
motion. Recall the results of Subsection1.2.2.

We now find the condition for the camera motion to be tangent to the FS.
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3.4 Proposition: Let our surface M be given in Monge form with the stan-
dard camera motion c(t) = (e1,¢3,¢3) and ¢(0) = (A,0,0), then provided the
origin is not parabolic and the view line has no more than four points of contact,
the conditions (evaluated at z =y =1t=10)

hzm(e) = hmmz(o) = 0:
(2hey — Adp) — 2¢hARZ, =

are eguivalent to the camera motion being tangential to the flecnodal scroll of the
surface at the origin.

Proof: We examine the surface in Monge form with the flecnodal curve
passing through the origin, and the asymptotic direction at the origin along the
z-axis. The camera at time zero is positioned at (A,0,0). We now wish to
find the tangent plane to the flecnodal scroll at the point (A, 0,0) and determine
when the camera motion is tangential to it. We write the surface as (z,y, h(z, y))
where,

1 1 1
h(.’L‘, y) = 5(25193?1 + bgy2) + 6(3(125623] -+ 3d3$’y2 -} déy?’) e ﬁ(elm‘l T

It is straightforward to calculate the first, second and third derivatives.

The flecnodal curve y(y), is written as an expansion and p is an unknown
coefficient.

Yy) = (py+ -,y hlpy+---,9)).

The situation when we could not parametrise v by ¥ is when - is tangent to the
z-axis. This case has been excluded since then the flecnodal curve is tangent
and not transverse to the asymptotic direction, which according to {K, p.296|
corresponds to five points of contact. Let §(y) be the direction of the asymptotic
rays having four-point contact with the surface. We have,

§y)=(,qy+---,ry+---)

for some constants ¢ and r. Note that we have only included linear terms, since
it is these that determine the tangent plane. Thus the flecnodal scroll is given
in the usual form for a ruled surface by the equation v(y) -+ ud(y). Now consider
fixing ¥ and moving along the direction 6(y). We substitute the linein z = h(z,y)
and find the condition for four-point contact.

hlpy + - y) +ulry+--) = hlpy+ - v,y +ulgy +---))
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Taking the first three derivatives with respect to u and evaluating at u = 0, we
get the following equations,

ry 4= hylpy - y) (g Yhy(py + o y)
= hyg +2(qy + - ey + (qy + - Y hy,
h:m:m+3(qy+"')hmmy+3(qy+'")2h$yy+(qy+"')3hyyy

Evaluating the coefficient of y in each case we can find expressions for the coef-
ficients, p, q and 7.

" Bng . —“dg

D= el y 4= Z_b'_{’

The tangent plane to the ruled surface y(y) + ué(y) is spanned by ¥'(y) + ué'(y)

and 6(y). Evaluating at y = 0 and w = A, we find that the tangent plane is
spanned by

T:bl

(1) O: 0) and (pa 1+ )\Q: ’\T)

The normal to this plane is,
(0, =Xr, 1+ Ag)

So the camera motion is tangential to this plane if and only if,

1
5 [c4(2b1 — Ady) — 23788] = 0
1

The following proposition is the principal result of this subsection and con-
nects the ¥S, CAD and cusp locus L.

3.5 Proposition: L is singular if and only if either of the following two
conditions hold.

e The camera motion is tangent to the cylinder-azis developable.

o The camera motion is tangent to the flecnodal scroll.

Proof: To examine the singularities of this curve at the origin we evaluate the
Jacobian matrix of the mapping F (equation3.1), at z = y = ¢ = 0, which is
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Figure 3.3: A singular spatio temporal surface produced from some example
surface and camera motion.

shown below 1.

0 Ahg,, (0) —ch

Nhpa(0) Moy (0) = 2Ahay(0) 2Ahay(0)h (3.2)

By examining the vanishing of the two-by-two minors of this matrix we can
determine the conditions for the curve to be singular. The three conditions are,

hmzmhzy =0
C{’,hz:r:m =0
Achhgzy + 2Xh2,0h — 2hyych =0
Counsider first b, = 0 then the first two equations above are zero and then by
Proposition 3.4 we see that the third equation implies that the camera is tangent

to the I'S. If h,,,; # O then we must have h,, = ¢4 = 0 and by Proposition2.13
we have the camera tangent to the CAD. O

Figure 3.3 shows an example of a singular M and the lifted cusp locus L.

We are also interested in when the line of cusps can be parametrised, and by
what parameter.

3.6 Lemma: L can be parametrised by time unless we are viewing a swallow-
tail or parabolic point.

1Tt is not always stated but the reader must remember that we are always considering the
view direction to be an asymptotic direction at ¢ = 0, giving f..{0) = 0, so that the profile is
singular.
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Figure 3.4: The vertical axis (with respect to the page) is time and horizontal
slices of M are the lifted critical sets. Here we see that at a swallowtail point L
is tangent to X. Nearby critical sets intersect in either zero or two points.

Proof: Our main tool is the implicit function theorem, which we use by exam-
ining minors of (3.2). To enable the parametrising of L by time we require the
non-vanishing of the matrix,

0 Ahy (0)

Recall Lemma 3.1 for the conditions for a swallowtail and parabolic point in this
setup, and hence result. 0

This is an intuitive result since it says that in these two cases we can not
locally parametrise L by the critical sets, see Figure 3.4 for an example illustra-
tion. In the light of the above lemma there are two cases of interest, parabolic
points and swallowtail points.

1. If we consider the standard setup with ¢(0) = (},0,0) and the view di-
rection at ¢ = 0 the x-axis, then if p is parabolic then the curve L can be
parametrised locally at (p,?) by = provided p is not on the frontier and the
singularity is not a gulls or worse.

2. If pis a flecnodal point then we can parametrise by x provided the camera
velocity is not tangential to the FS.

These results were achieved in a very similar way to the proof of Lemma 3.6,
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by first substituting A,, = 0 {parabolic point} in (3.2) and then A;., = 0 (swal-
lIowtail point) in (3.2).

3.2.2 The Surface

We now project L onto the surface M and ask when the locus of cusps is singular
on M. Projecting from M to M is achieved by the map 7, where w(z,y,t) =
(x,y). Thus it is easily seen that if the locus of cusps is singular in M then the
curve in M inherits that singularity. Figure 3.5 shows the cusp generator curve
on a surface.

3.7 Lemma: Suppose L is smooth, then L is singular iff the point of M is o
collision point (2.15).

Proof: Clearly this will happen when the tangent to I is vertical with respect to
the zy plane. Then the projection will cusp. In the language of differential topol-
ogy we have the kernel of dF(0,0,0) contained in the kernel of w. Calculations
reveal that this is the case when,

¢5 = hgyty =0.

Thus if the curve in M is smooth the only condition that will create a singular
curve on M is if the point is a collision point. 0

It is often useful in calculations to parametrise L by time. Figure3.7 gives
the cases when the lifted cusp generator curve L can be parametrised by time,
but we now wish to know when L is tangent to X, in which case L can not be
parametrised by time. This is shown in the lemma below.

3.8 Lemma: Assume L is non singular (see Proposition 3.7 and Lemma 8.5),
and X; is non singular. Then L is tangent to I, if and only if the point is a
swallowtail point or a frontier point.

Proof: Consider our surface in the usual Monge form, with the z-axis as
the view direction at ¢ = 0 and L passing through the origin. Then we have
hyz(0) = 0 and 3y is tangent to the z-axis. Also hy,, # 0 since ¥, is smooth. We
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The simplest case, where ¢ avoids the CAD and the flecnodal scroll

the cusp generator curve is nonsingular and transverse to the critical sets .

Also the cusp locus in the image sphere (not shown) is nonsingular.
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project L onto the zy plane. We find the tangent to L by examining the kernel
of dF (3.1), the matrix,

0 Mgy -
Mhapy Alhggy — 23hgy  2AhuyCh

This gives the vector,

2Ry Cy — hggyCh — 2AhZ,Ch
Aoy (3.3)
MRy Py

in (z,y,t) space. Projected into the parameter space of M gives the vector
(2R €y — gy €y — 2AR2, Ch, Ahyypcs). Then L is tangent to the z-axis iff chhgg, = 0.
Note the similarity with Lemma 3.12. a

3.2.3 The Image Sphere

We now wish to map the locus of cusps on the spatio-temporal surface to the
image sphere, and we shall call this curve €. There are some subtleties to be
observed, in particular a point on the locus of cusps at time ¢ is mapped to
an image sphere at a position varying with time ¢. So essentially it is a one
parameter family of maps from the surface to the sphere. Then we identify the
spheres to create a curve on the so called, standard image sphere.

The map chosen is,

G:M— §2

_ Az g h(z,y))—(c1 (£),c2(t),c3(t
G(z,9,1) = Gl e e

We recall (Subsection 2.2.3) the original formula for the visual mapping of the
surface onto the sphere positioned at ¢(¢); r = ¢+ Ap. Here r is a point on the
surface and p is a unit vector that indicates a point on the sphere. Thus we see
that the map G simply maps points on the t** critical set to the vector p, on the
standard image sphere located at the origin.

For the purposes of calculation we take local coordinates on the standard
image sphere located at the origin by projecting points out from the centre
onto the x = —1 plane, Figure3.6. We choose the z = —1 plane since we are
interested in the local picture around the origin, and this will appear at the
point (0,0, —1) on the image sphere at time 0. Thus a point {(u,v,w) on the
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A (u,v,w)

pd

—————

(u,v,w)

Figure 3.6: Local coordinates on the standard image sphere.

sphere goes to (5%, =%) on the plane. We now observe that given a curve on the
standard image sphere we can examine the derivatives of this curve simply by

taking measurements in the local coordinates.

If (py (), p2(2), p3(t)) is a curve on the image sphere with (p, (0), p2(0), p3(0)) =
(—1,0,0) then the curve in local coordinates, which we denote by a(t) is,

) )
“(*)”( ()’ pl(t))'

We can take the derivative of a(¢t) and evaluate at zero to get,

, _ =piph +papt ~Pp1p3 + P3Py
G’(G) - 2 3 2
pi pl te()
= (p2(0}, p3(0))

Also observe that since p? -+ p2 -+ p2 = 1 then p}(0) = 0. Calculation reveals that
the second derivative of a(t) is given by,

a"(0) = (p2(0), p5(0)). (3.4)

Thus our local coordinate map is a ‘good’ one, in the sense that we can deduce
the acceleration and velocity of the original curve from measurements in the local
approximation.

The map & in local coordinates is therefore,

co(t) —y cs(t) — h\
z—c(t) z—calt))

Glz,y,t) = ( (3.5)
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3.9 Proposition: The locus of cusps on the image sphere, G(L) is singular
iff either of the following conditions hold.

o The point is not on a frontier and on a swallowtail point. (¢4 # 0 and
h:r::rz = 0) .

o The point is on the frontier, and either the point is a swallowtail or parabolic
or a collision point. i.e. one of hyyy, hyy, ¢h is equal to zero.

Proof: We calculate the Jacobian matrix of the map G, evaluated at the origin.

0§ 3

00
The locus of cusps will be singular on the image sphere if the tangent to the
curve is in the kernel of DG(0). This is the situation when a vector is both
in the kernel of DF(0) (see Definition 3.2) and DG(0). We can determine the

conditions for this by examining the 4 x 3 matrix below and we will have the
above situation if the rank drops below three.

jam IS

0 Ay —ch
Nhoge  Ahggy — 20y 2Ry, ACh
0 1 —ch
0 0 —c

Thus the rank drops below three precisely when the stated conditions hold. O

We now turn our attention to when the local coordinates in each of the image-
spheres is rotated with respect to some fixed coordinate system with the surface.
All the previous work has assumed no rotation and this has enabled us to identify
image-spheres at different times. Recall Section 2.3 for an explanation of p and
q coordinates and p = R(t)q.

We take a very similar map as before, except we now map L to the q coor-
dinates.

Q:M— 2

- b, )h b} — sb2,y
Q1) = R (e ast)

where R™}(¢) is the inverse rotation for p = Rq. We wish to map L and examine
the singular occurrences of the image under Q.
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We represent our surface in Monge form as before with the view direction
along the z-axis and asymptotic. The camera trajectory is given by, c(¢) =
(A+ et 4+ -+ ent + -+, cat + -+ ) The instantaneous rotation vector {2, is
written in coordinates as (£, £, 3).

3.10 Proposition: If L is smooth then Q(E) 18 singular if and only if either
of the following conditions hold.

o The locus of camera centres intersects with the flecnodal scroll.

2
o A= _—521' and Cy1 stjz—cz&}‘hmy -+ %%‘Qg,hmy =0

Proof: Calculation reveals the Jacobian matrix of this mapping to be the
3 X 3 matrix,

1
3 [R7'7,(x), R7my(x,), AR;'p + Ry (c)]

where the elements are column vectors and m, is the projection mapping onto
the plane perpendicular to the p vector. If we have our surface in Monge form
with the standard camera motion then p is (~1,0,0) and at ¢ = 0 we have,
mu(r;) = (0,0,h;)
"Tp(ry) = (0,1, hy)
) =

Tp(Ct (0, —co1, —Ca1).

If we then evaluate the matrix at the origin we get,

1 0 0 0
'X 01 AQ:; — Cyqy
0 0 AQQ —Cn

We can now operate on the tangent to L (equation 3.3) to get the vector,

0 0
h:cm:!:cSl - C2l)\h.’1:ma:h':ry + }‘293hmzmhzy ie. h’mmm(cm - CZlf\hmy + AzQShmy)
‘631Ahmmmhzy - AzQthzzha:y hm:z:zhmy)\(““ciil - AQQ)

This gives us the tangent to the locus of cusps in the standard image sphere (in
g coordinates). Clearly the locus of cusps will be singular if the above vector is
identically zero. Hence result. o
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3.2.4 Conclusion

Items to note are,

o Swallowtail points always give a singular locus of cusps irrespective of the
frontier and camera rotation.

e Parabolic points are innocuous unless on the frontier (at which point even
the spatio-temporal surface itself is singular !).

¢ Collision points give a singular locus of cusps, but just frontier points do
not. This condition is replaced in the g coordinate situation with a much
stranger condition linking the surface geometry with the camera motion
and rotation.

e The conditions for L to be singular (c(t) tangent to either cylinder-axis
developable or flecnodal scroll) are non-generic. We mean non-generic in
the context of a generic surface and a single camera trajectory. Thus we
may eliminate a singularity on L by an arbitrarily small change in the
camera trajectory.

The results are summarised in the table below (Figure 3.7), and the reader
should recall that the z-axis is taken to be the view direction in the standard
setup.

3.3 Versal Unfoldings.

3.3.1 Basic Definitions

The previous section gave results for determining when the locus of cusps is
singular. This section will build on the results already obtained and give results
that use some singularity theory, which can be found for example in [M]. For the
following we now assume that Lis non-singular (which is generic for a generic
surface and a single camera trajectory) and the points are not collision points.
We also assume in this section that we are away from the frontier.
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Name Parametrised | by y by ¢ | Singular

byzon M? |on M? |on M? | on M? | on M? | on §%7
c(t) tangent to X % X Vv Vv Vv
C.A.Developable
c(t) transverse Vv x X % % Vv
10 C.A Developable
and Flec. Scroll
c(t) transverse X Vv X X X X
to C.A. Developable
and Agqy = 0
c(t) transverse v Vv X X X P
to C.A Developable
c(t) tangent P X X Vv Vv Vv
to Flec. Scroll.
c(t) transverse v X b P P Vv
to Flec. Scroll
Collision pt. X X Vv P v Vv
Frontier pt. N4 W Vv X X X

Figure 3.7: Table showing cases for locus of cusps to be singular.
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3.11 Definition: (i) Lei f € M(n) be a germ of a function of n variables
Ty, 2q. A p-parameter unfolding of f is, by definition, ¢ germ

F:R"xR”,0— R,0
with F(z,0) = f(z).

(ii) Two p-parameter unfoldings F and G, of the same germ f are isomorphic
if there exists a local diffeomorphism ¢ : R™ x RP,0 — R™ x R?,0 such that

1. qb(x:u) = ('1[)(3:, u),u), d’(wv 0) = I,
2. G =Fod¢ that is G(z,u) = F(¢(z,u),u).

(iii) An unfolding will be called trivial if it is isomorphic to the constant unfold-

ing F(z,u) = f(z) (so G{z,u) = (f(¥(z,u)) for some ).

() If F is a p -parameter unfolding of f let h : R? — R? be a smooth map
with h(0) = 0. One can define a g-parameter unfolding of f by (h*F)(z,v) =
F(z,h(v)). The unfolding h*F is said to be the pull back of F by h.

(v) Two p-parameter unfoldings F, G of f are called equivalent if there exists
a local diffeomorphism h: RP,0 — RP,0 such that G is isomorphic to h*F.

(vi) A deformation F' of f is said to be versal if any other deformation G of f
15 1somorphic to the pull back of F' by some suitable map h.

Parts (v) and (vi) have the following interpretations: if F' and G are equiv-
alent there are smooth maps ¢ : R* x R?,0 — R*" x R0, h = R?,0 —
R?,0 satisfying ¢(z,u) = (¥(z,u), u),¥(z,0) = z, dhy invertible and G(z,u) =
F(p(z,u), h(u)). If F is versal then for any G we can find %, h satisfying this
equation but A now is simply a smooth map » : R?,0 — R? 0 where F' (resp.
G) is a p (resp. g) parameter family.

3.3.2 Application of Versal Unfoldings

We provide some more results concerning the situation when the camera pierces
the flecnodal scroll and cylinder axis developable.

The main result uses techniques from singularity theory that tells us that
our family of visual maps versally unfolds the swallowtail and the lips/beaks.
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Figure 3.8: Schematic drawings of the case when the camera centre ¢ passes
through the flecnodal scroll: (left) Critical sets ¥ and cusp generator curve L
on M. Note that these curves are tangent at the swallowtail point and that two
cusps on the profile come into coincidence here; (right) profiles and cusp locus
C in the image sphere.

Figure 3.8(right) shows a typical view of the profiles on the image sphere that
occur when the camera pierces the flecnodal scroll. It is the purpose of this
sub-section to explain this picture.

The following Lemma gives us some information as to how two cusps come
together in the profile and form a swallowtail transition.

3.12 Lemma: Provided L is smooth (see Proposition3.5) at a point p € M
and the critical set is smooth at p, then L is tangent to the lifted critical set if
and only if p is a swallowtail point (i.e. p is a flecnodal point and the fleenodal
direction is the view direction).

Proof: We find the tangent to L by examining the kernel of dF (3.1), the matrix,

0 Mgy —d
M hige Nhggy — 2Ahgy 2\ gy Ch

This gives the vector,
2Ry Cy — gy h — 2ARZ,C5

ARyzrCh
A 2 h:t::x:x h’zy
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Figure 3.9: Lifted cusp generator curve (bold) through a swallowtail point with
the lifted critical sets shown.

which is not the zero vector by our assumption that I is smooth. A vector is
tangent to the critical set provided the component in the ¢ direction (¢ is the last
variable) is zero, since the lifted critical sets are horizontal (with respect to the
t-direction) cross-sections of M ie. provided Agy,h,, = 0. Along an asymptotic
direction at a parabolic point the critical set is singular, so k., # 0, and hypy = 0
is the swallowtail condition. O

Thus at a swallowtail point the lifted cusp generator curve is tangent to the
lifted critical set. See Figure3.9. Note that critical sets near to the tangency
point intersect I either in two places or not at all. This corresponds to the two
cusps coming together on a profile and disappearing. The locus of cusps on the
image sphere can be seen to cusp in this case (see Figure 3.8). Compare with
Proposition 3.9.

At a parabolic point the critical set itself is not smooth so clearly there is no
analogous lemma for this case. In fact 2, is a point or a crossing and L passes
straight through it. The critical sets are shown in Figure 3.10(left) and the cusp
generator curve is bold. This is smooth since I is and there are no collision
points (Lemma3.7). Again we see that L intersects nearby critical sets twice,
and in the case of a crossing it may not intersect some critical sets at all. Thus
we have a similar situation to a swallowtail with two cusps coming together in
a lips/beaks transition and disappearing. The projection on the image sphere is
shown in Figure 3.11 for the beaks transition. Note the non-singular cusp locus.
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Figure 3.10: Schematic drawings of the case when the camera centre ¢ passes
through the CAD: (left) critical sets ¥ and cusp generator curve L on M; (right)
profiles and cusp locus C in the image sphere.

N c :
g M .ij
NN —

Figure 3.11: Left: cusp generator curve L passing through the critical sets ¥ for
a beaks transition. Right: locus of cusps C through a parabolic point (beaks
transition) with the profiles at different times shown.
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Now consider our surface M in Monge form and the unfolding map,

F
MxI — 8§%2xI
z,y,t — plz,y,t),t

We consider the local picture and take local coordinates of the image sphere, as
detailed in Subsection 3.2.3.

3.13 Definition: The set Z'F of the map F consists of those points in M x I
where the rank of the differential map dF is 2.

Since M consists precisely of the critical sets we expect the following result
to hold.

3.14 Lemma: Y'F =M

Proof: With M in Monge form and ¢(0) = (},0,0), and taking the image
sphere in local coordinates (see Subsection 3.2.3 and equation 3.5) the map F' is,

(02(75) —y alt) — h(way),t)

F(z,y,t) = z-ct) z—cft)

The derivative of this map is,

y— ~1 chlz—e)te(ca—w)
(a:—cc12) T—c1 . (:zl:—c152 ?
—hz{z—c1)—(es—h) —hy chlz—c1}tei{ca—h)
(z—e1)? T—C1 (z—e1)2
0 0

with ¢; and its derivatives functions of time. This drops in rank iff,

1
@—c)® (hy(Cz =)+ ha(er — ) —es + h) =0
and has rank at least one. The above equation in the brackets defines M (i.e.
(r — ¢).n = 0). Therefore the result holds. O

3.15 Definition: The set of points on M where the rank of the restriction
of the unfolding map F' to M is equal to one is called 1. In other words
F|M : M — 8% x I has rank equal to one.
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The following lemma describes the lifted cusp generator curve as the ! set of
F.

3.16 Lemma: SWF =1

Proof: The equation defining M is,
he(ci(t) — =) + hylealt) —y) +h —c3(t) =0
The differential of this function is,
[hm(cl — ) + Ryy(C2 — Y), Rugyler — @) + hyyles — y), c1he + by — 0'3]

A _vector lies in the £ set of F' if it lies in the kernel of the above matrix for
M and the kernel of dF'. This is equivalent to saying that the matrix,

hez(e1 — T} + haylez —y)  Razyler — ) + hyy(ez — ¥) cihz + chhy — ¢

—c -1 ey (E{m—cad+e] (){ea~v)
(z—ey)” T—e3 (x—cl)"!
~hz(z—c1)—(ca—h} iy chlz—ey)tey (e —h)
(=—c1) z—cy {z—c1)
0 6 1

drops in rank from three to two. Note that it cannot drop in rank to one since
that would require the first two columns to be identically zero. This can not
be the case, since we have a #}{t) term. We now examine 2 x 2 minors of the

upper left 3 x 2 sub-matrix. These are,
_
(z—e1)?
1
(z—a)®
1
(z—c1)* (e —y)

[h’a‘:m(cl - 5«")2 “t 2Rhgy (€1 ~ x)(cg = y) + hyy(ca — y)z]
[(e1 = z)Yhy + (ca — y)hy + h — c3]

[((er — kg — c3 + h) (haylcr — T)(cz — y) + hyylea — 1))
—hy(cs — y) (haaler — ) + hoyles — ¥) (e — 3))]

From the definition of L (3.2) we see that the first two minors equal to zero is
equivalent to being on the cusp locus. By observation, the third minor is zero if
the first two are, hence result. O

3.17 Corollary: The set 2V F is smooth provided the camera trajectory is
not tangent to either the the cylinder axis developable or the flecnodal scroll.

Proof: This is simply a restatement of Proposition 3.5. a

Using the previous corollary, and the following criterion due to J.W.Bruce
and F.Tari we can deduce that our map F is a versal unfolding of the swallowtail
singularity.
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3.18 Proposition: Let F(z,y,t) be an unfolding of a swallowteil map. Then
F' is a versal unfolding if and only if % is a smooth curve.

Proof: [RY, p.117] a

We have a versal unfolding of minimum dimension i.e. 1. This is isomor-
phic to the standard versal unfolding of the standard swallowtail since that has
dimension 1 as well. This will ensure that there is a family of local diffeomor-
phisms of the plane (parametrised by #) taking the profiles (see Figure 3.8(right))
to profiles in the standard picture.

We also have a similar result for showing if our map is a versal unfolding of a
lips/beaks map. The following criterion is due to J.W.Bruce and the proof due
to F.Tari.

3.19 Proposition: Let F' be an unfolding of a lips/beaks map at the point
(#0,90) and the critical set of F be given by the equation,

YF = {{z,y,t): o(z,y,t) = 0}

where 0 is a regular value of o. The map F(z,y,t) is a versal unfolding of
F(z,y,0) if and only if 2% (z0,ys,0) # 0.

Proof: [RY, pp.108] O

For our map F, the critical set is simply 3 which is given by the equation
(r(z,y) ~ c(t)).n(z,y) = 0 where M is parametrised be z and y. We can thus
apply the above condition in the following corollary.

3.20 Corollary: If the map F(z,y,0) = (p(z,4,0),0) is a lips/beaks map at
the point (o, yo) then F is a versal unfolding if and only if the point (zg, %) 15
not a frontier point.

Proof: The critical set of F' is given by the equation,
(r—c)n=0.
The condition 22(xzq, vy, 0) # 0, which is thus equivalent to c,(0).n(zq, 7o) % 0.

Which is the condition for a non frontier point. O
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Chapter 4

Tracking Cusps:
Computer Vision Aspects.

But having found by Experience, the great Difficulty of describing
these round things, I have long since made use of another method.
Sizty-Fourth Figure [Poz]

4.1 Introduction

This chapter will consider aspects of tracking cusps that are of relevance to the
area of computer vision.

In the second section we prove that by tracking cusps the depth, Gauss
and Mean curvatures can be recovered thus enabling the recovery of the cusp
generator curve L and the second fundamental form along L. Indeed the formula
for the Gauss curvature is considerably simpler than that of [CB]. It involves
only first order temporal derivatives whereas [CB] uses up to second order spatio-
temporal derivatives. Another simplification is that the formulae for the Gauss
and Mean curvatures are independent of the spatio-temporal parametrisation.
Recall that the parametrisation is fundamentally arbitrary but the formulae in
[CB| are valid only for the epipolar parametrisation, see Subsection 2.2.4.

The third section considers the natural guestion, ‘Does tracking cusps place
a restriction on the camera motion?’. The answer is ‘No’, but this perhaps
disappointing result is used to great advantage later in the chapter to generate
many examples to perform an error analysis.
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The fourth section gives some numerical examples that illustrate some of the
techniques and difficulties that would be experienced in a practical demonstration
of tracking cusps. This then motivates a more systematic analysis of the errors
that one would need to quantify and control in a practical situation. We find that
the depth and Gauss curvature formula seem to be stable even under relatively
large errors.

Some of these results have appeared in [CFG| and [CFG2].

4.2 Surface Curvature from L

We now show that intrinsic information about the surface, namely the Gauss
and Mean curvature, can be obtained by tracking singular profiles. We consider
a surface marking (i.e. a smooth curve C') passing through a point on a critical
set that generates a cusp. We then measure the instantaneous velocity of C
with respect to the cusp in the image sphere. The calculation is initially done in
unrotated (p) coordinates.

If C' is parametrised by time then let p(¢) be the image of C in the standard
image sphere, n the unit surface normal and define t, the tangent (or limiting
tangent) to the profile, as t = n A p.

4.1 Lemma: Let C be a smooth curve on the surface, parametrised by t
(hence locally intersecting each critical set in one point). Let the image of C in
the standard image sphere be p(t) and the point p(ty) be a singular point of the
profile. Then,

¢ = Ci.n1 c;.t
P:- — )\2 .f__K A
_ C;.nn
pt‘n - ,\

where everything is evaluated at ty and K is the Gaussian curvature.

Proof: We take our surface in Monge form with a rotation so that the z-
axis is coincident with an asymptotic direction. Take the lifted curve C on the
spatio-temporal surface, parametrised by time and passing through the origin.
Let € be given by,

(b +---, 8t +--- 1)
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The surface and its derivatives are written,
z = %(lemy + byy?) + ~61—(d13:3 + 3dox?y + 3dszy® + day®) + - - -
z, = bly+%(d1$2+...)+...
z, = b1$+bgy+%(d2$2+"')+"'
We write the camera motion as the vector,
c(t) = (e1(t), ea(t),e3(t)) = (At et + -, et + -, et +- )
The lifted curve € lies on M and thus points must satisfy the equation,
heA+ent+-—z)+hylent+- - —y)+h—cyt+---=0

We substitute the curve into this equation and compare coefficients of ¢, to get
f = $. Now we map from M to §? by the map G (see Subsection 3.2.3). We
consider local coordinates of the image-sphere and so the image of the curve C
under this map is,

(e — BYE+ O(tg) ca1t + O(tz) )

Glat 4, e+ ) = (—z\(a—cu)t+0(f2)’ —A+ (@ —en)t+0O(?)

This is the observed path of the curve ¢ parametrised by time, in local coor-
dinates of the image sphere. We wish to find the instantaneous velocity at the
origin, and thus calculate the derivative and evaluate at ¢ = 0. This is,

(a1 —B)A —eqA) _ ( €1 Cm —031>
AN AN AT A

in the yz plane. We now wish to give this a coordinate-free description. Remem-
ber that n is the vector (1,0,0), the view direction is (—1,0,0), t is (0,1,0) and

b}. = v "“’“‘K
Hence result. O

We also have an equivalent result for the rotating q coordinates (Section 2.3).

4.2 Corollary: With the hypotheses of the previous lemma we have,

_ .11 c;.t
C;.
gpii = szﬂ -2t
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Proof: We follow closely the method used in the proof of the previous
lemma. The tangent vector to the curve C on M is (e, 3,1). We can map
this by means of the derivative of the projection map in q coordinates, see
Subsection 3.2.3

1|00 0 o 1 0
X 01 Agg — Co1 ﬁ = X ﬁ + AQ3 - Cg3
0 0 "“/\Qg — Ca3 1 —"/\Qg - Ca1

We also have § = §it. In local g coordinates of the image sphere we have the
tangent to the image curve as,

1 Cy
Y (—)_\_EII + A3 — e, — Ay — c31)
We interpret this in coordinate-free language to obtain the result. a
Comments:

e The critical set ¥, at ¢ = 0 is tangent to the view direction.
e The variable # measures the speed at which critical sets depart from X,.

e This surface marking is any curve parametrised by time. It could equally
well be L which is parametrised by time. The hypotheses required are
detailed in the following corollary. The important fact is that we examine
the speed at the cusp point.

It may be useful to take the cusp generator curve as our curve, and track
that through a cusp point. The following corollary details when this is possible.

4.3 Corollary: If the camera centre does not intersect the cylinder-axis de-
velopable or the flecnodal scroll and we now take p(t) to be the locus of cusps in
the image-sphere then,

£ = C;.n1 c;.t

Pt = 2K T X
_ ¢n
pt‘n - A

Proof: We can parametrise L by time provided the camera does not coincide
with the cylinder axis developable or the flecnodal scroll. See table3.7 for a
summary of these cases. u
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With the following proposition we can calculate the Gauss curvature of a
point on the locus of cusps by tracking any smooth curve (providing we can
parametrise it by time on M ) passing through the cusp without knowing any
details about the curve itself.

4.4 Proposition: In the situation of Lemma 4.1 we have the formula for the
depth A, Gauss curvature and Mean curvature at a singular point of the profile,

y = _&n
P
4
Kk = - e
[p1 ct} pt]
b1 )
H 2[p, ¢, D)2 (c“’n Pl — €.l Dyt — 2p.c; (pg.1n) ) .

Proof: The depth formula is identical to that of [CB].

For the Gauss and mean curvature we set the surface in Monge form. Eval-
uated at the origin we have

p = (-1,0,0)
¢, = {(cu,ca,Ca1)
P = (0 _ :.ff:l)
¢ XK AT A
We can evaluate the triple scalar product [p, ¢, p;], in terms of these coordinates
to get,
2
[P, ¢, Pe] = L
A2/—-K
The standard formula for the distance A allows us to write,

c;.n)? 2
(pt‘n)2 = ( t)\g - %

We can eliminate ¢a; to get the Gauss curvature.

For the mean curvature consider the surface again in Monge form with the
z-axis as an asymptotic direction and the view direction at £ = 0.

Therefore,

1 1
h = 5(2!313:1; + byyy?) g(dgwa + 3dyx?y + 3daxy® + dyy®) + -+
he = byt

84




The camera motion c(t) = (¢, ¢, ¢3) is,
c = )\+Cllt+612t2+"‘
Cy — Cglt -+ sztz + -
Cy = Cg}t - ngtz G+ -

Our curve C' is parametrised by time so for some real numbers «; and 3; then,

T = agt+ogt+--
y = B+ Gt®+ .

The equation for the spatio-temporal surface is,
ho{z — e1(t)) + hy(y — ca(2)) = h(z, y) — e3(2).

We now insist that our curve C lies on M and so must satisfy the above equation.
We substitute in the relevant values and equate the coefficients of ¢ to get an

expression for 3,

_ e
61_1)1/\-

aft) = (y—Cz(t) z—cs(t)) |

Our map is,

aft) -z’ a(t) —=

If we examine the image of our curve then the second component is,

—cgrt + (byou By + $625% — g )t + - -
AL+ ngng 4 czsaes? ..

and by the binomial theorem this is equal to,

1 1 cip — o
"/\' ('—Cglt + (bialﬁl + 552}612 - Cg9 e C31 (“"}"}""‘"“/\“““‘“{)) tg “+ - ) .

Observe that the terms containing «; vanish since 3, = % and the coefficient
of oy is b8, — %L, Thus the second derivative of the second component of a(t)
evaluated at ¢ = 0 is,

271 Ca1C
5(0) = 5 (0282 — e + 3{\“) .

Since in this case it is true that b, = 2H, then we can rearrange the above to
get,

2
Cy

BT T

(4.1)

(Aﬂg(t) - 2832 — 2631611) .

1
2 A
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We now wish to interpret this in a coordinate free manner. Thus,

as(0) = pg.n (see(3.4))

2032 == Cn.n
C. 1

A= -
P:-I

=Ci1 = P.¢

b]_ == V——K.

From the result about X we have,

V=K = (py.n)?

- {p) Ci, pt} -

Therefore we can interpret and rearrange equation4.1 to get the result. O

4.3 General Motion Constraint

Here, we show that in a certain precise sense there is no general constraint on the
motion obtainable from following cusps (that is, not making use of parallax). In
fact we show that, using the locus of cusps as a parametrised curve g(t) (using
rotated coordinates) in the sphere, and using also the normal lines to the cusps,
there cannot be any constraint on the motion. Explicitly, we claim the following,
where £ is a real number lying in some (small) open interval {; <t < t,.

4.5 Proposition: Suppose that q(t),n(¢) are given smooth families of orthog-
onal unit vectors, that R(t) is a smooth family of 3-dimensional rotations, and
that c(t) is a smooth space curve with ¢, Rn # 0 and (Rq);.Rn # 0. Then we
can find a smooth surface M in 3-space for which q(t) is the locus of cusps of
profiles arising from camera centres c(t), with rotated q coordinates (p = Rq in
the usual notation) end n(t) is the normal to the profile at the cusp point.

Proof Let p(t) = R(t)q(¢) and replace also n by its rotated form R(¢)n(z) (we
shall continue to use n). We then seek a surface M with the following properties:

o for each £, there is a point r(£) = c(t) + AM&)p(f) on M for some (%),

s the normal to M at ©(2) is nu(t),
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e for each ¢, the vector p(f) is in an asymptotic direction at r(t) (this ensures
that the profile at ‘time’ ¢ has a cusp at the profile point c(¢) + p(¢)).

There is no choice for the function A, since we require (using subscripts to
denote differentiation as usual) r; = ¢; + Ap; + A:p, and since n(t) is required
to be normal to the surface so that r,.n = 0, we deduce the usual formula
A(t) = —c¢p.n/p,.n, noting here that p is a function of one variable £, since it
gives the position of the cusp (in unrotated p coordinates). Note that q and n
were chosen so that p;.n 7 0 and ¢;.n # 0.

We now have a space curve r(t), and, along that curve, we shall require
our surface M to have normal n(¢) (for this is parallel to the profile normal in
the unrotated coordinates). This gives us a ‘surface strip’ in the language of
Koenderink [K, p.195].

The final requirement on M is that, at each point r(¢), an asymptotic di-
rection is in the specified direction p(¢). This amounts to saying that, in the
direction p(t), the sectional curvature of M is zero, that is the section of M by
the plane through r(f) containing p(¢) and n(t) has an (ordinary) inflection at
r(t). There is no difficulty in constructing an M with this property, so long as
the asymptotic direction does not actually coincide with the tangent to the curve
r(t). But in that case it is easy to check that the locus of cusps p(f) in the image
sphere would be singular or the surface point is on the frontier.

We can provide an explicit construction of a surface that satisfies the given
data. If we let r(s,t) be a parametrisation of M where

(s, 1) = c(t) + A(t)p(t) + sp(t) + s°n(t)

then r(0,¢) is still the locus of cusps (see Figure4.1 for an illustration of this
construction). By taking a normal section containing p through M we have an
inflectional curve making p an asymptotic direction as required. The normal to
M along the locus of cusps is,

r5(0,2) Ar,(0,2) = p A (e, + Apy).

Since r = ¢+ Ap then ry; = ¢;+ \p-+Ap; and pAr; = pA(c,+ Ap;), resulting
in a non singular surface since r; is not parallel to p for the reason given at the
end of the last paragraph.

(Another way of thinking of this reconstruction is to say that we are specifying
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Figure 4.1: Ilustration of the explicit surface construction used in proof of the-
orem.

one asymptotic direction and the derivative of the normal in a different direction
(along the curve) is precisely enough to fix the second fundamental form. Of
course there is no claim here that the surface constructed is unique, away from
the curve r(t).)

4.4 Examples

We now present some examples of tracking cusps.

4.4.1 Example 1

We start with a general calculation and then consider a specific example. When
the surface M is given by an equation z = h(z,y), and the camera motion is given
by a vector-valued function c(t) = (c¢;(t), c2(t), ca(t)), then it is straightforward
to write down the conditions which must be satisfied by the cusp generator curve
r{t) = (x(¢), y(¢t), h{z(t),y(¢))) on M. There are two conditions, both of which
are obtained in the same way, as follows. Consider, for a fixed £, the line joining
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r(t) to c(t). This line consists of points {omitting the variable t)

r+p(r—c)=(z+plr—ca),y+ uly— ),z + p(z — c3)),

where p is an arbitrary real number, taking the value 0 at r(¢). This line meets
the surface where

z+ p(z — c3) = h{z + plz — 1),y -+ ply = ). (4.2)

This equation for g naturally has g = 0 as a solution; we want to impose the
condition that g = 0 is a ¢riple solution, since this means that the line has 3
points of contact with the surface, that is in an asymptotic direction. Thus we
want the equations obtained by differentiating 4.2 once and twice with respect
to p to hold. With a little manipulation these come to

(3: — 0, Y — Gy, h(l.', y) - CS)("h’m '“"h'y: 1) = 0: . (43)
hoz(T — €1)° A+ 2hey (T = 1) (¥ — €2) + By (¥ — 2)* = 0. (4.4)

Here, h and its derivatives are evaluated at (z{t),y(¢)). Of course, (4.3) says
merely that r — c is perpendicular to the normal to M, which is the critical set
condition.

We now apply the above to the surface M with equation
Lo s, .3
2= hz,y) = —zy + 5 (2" +3°).

Let us further consider the straight line motion c(t) = (e(2), ca(t), c3(2)) =
(1+1¢,2t,3t). See Figure4.2. We show how to obtain the Gauss curvature of M
at the origin, by using the formula for tracking cusps. Note that the curvature
is actually —1 from the equation h of the surface.

First we use (4.3), (4.4) to find out about the cusp generator curve on M
close to the origin. Consider a curve in the z, y parameter plane, passing through
the origin:

T=at+ Tt 4+ ..., Y=ttt 4 ...

We substitute these into (4.3). Comparing coefficients of ¢ gives y; = —3 and
comparing coefficients of #? gives ¥y = z% — 8z, + 3. That is, 1, is fixed but we
can choose x; and then deduce y,. If we use (4.4) as well, than the curve on M
is determined uniquely; the expansion of (z,y) starts off

(5t +32t2 + ..., =3t — 1262 +...).

89

—




c(t) x

Figure 4.2: Graph of h(z,y) = —zy + (1/3)(z® + ¥®) and e(t) = (1 + ¢, 2¢, 3¢)

But to use the formula for K (and the corresponding formula for the mean
curvature) we do not need to know any more than y,, which comes from the
condition that r(t) lies on the critical set (t).

In fact, the image p(¢) of the curve r(¢) comes to
(=14+...,=5t+...,3t+...),

where in each case ... stands for terms of degree 2 or higher. This uses only
y1 = —3, not the extra conditions obtained from (4.3). Therefore, at ¢t = 0,
where we have the surface normal n equal to (0,0,1), we have p,.n = —3. Also
¢, = (1,2, 3) (for any ¢ in our example), and p(0) = (-1, 0,0), so [p, c;, p;] = —9
and we then obtain K = —(—3)*/(—9)? = —1 from Proposition 4.4.

4.4.2 Example 2

This example is in the form of a simulated experiment. We consider a camera
flying past a surface taking ‘snapshots’ at set time intervals. We observe a cusp
on the profile and track it. By estimating the velocity of the cusp and using
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known ‘observables’ (time, camera velocity, cusp view direction, surface normal)
we can estimate the Gauss curvature at the cusp point.

Recall the formula for K,

__Pen
[Ct= Pt, p]

We have all the information apart from the derivative of p with respect to time.
In the following we use a simple difference algorithm to estimate the derivative.
If we wish to find p;(ty) then we estimate it by evaluating the difference,

_ plto —2h) — 8p(ty — h) +8p(to + h) — p(to + 2h)
pt(tﬂ) - 12k

where A is the time difference between observed cusp points [PTVF].

The example surface is the graph of the function f(z,y) = —zy+(1/3)(z>+°)
and the camera motion we take is the trajectory, ¢(t) = (14¢, 2¢, 3t) (Figure 4.2).
Thus c; is the constant vector (1,2,3). The table of observable data is contained
in Figure4.3. In general the camera path will be a space curve but in tracking
cusps we only need knowledge of the camera velocity. We simplify the following
calculations by taking the velocity to be constant. The directions p(t) for each
t were found by solving {4.3) and (4.4) for z and y to get the cusp generator
r(z(t), y(t)) and then p = £=S. The normals could then be calculated at r(z, y).

o el

If we examine the cusp point at £ = 0, then taking h = 0.02 and using the
data in Figure4.3 we get,
—-.97,—-.23,—.11) — 8(—.99, —.11,—-.06
p(0) = : 1)2 X .(52 :
8(-.99,.09,.06) — (—.98,.17,.12)
+ 12 x .02
= (.042,5.000,3.042)

Thus pt.n = 3.042 and [ci, pe, p) = 8.917. So our estimate for the Gauss cur-
vature is -1.08. We can now take any time as our starting point and calculate
the Gauss curvature at that time by taking the appropriate differences at that
cusp point. Figure 4.4 shows the results of our calculation for some different
times, and gives the exact analytically calculated values using the formula for
the Gauss curvature of a parametrised surface in [ON, p.212].

Comment: This example used a known surface and a known camera locus.
The cusp generator points were calculated with MAPLE and then the view
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Time, | View direction of cusp, Surface normal
t P= TFE%T at cusp generator, n
-0.10 -.90, .34, .28 11, -.45, .89
-0.08 -.93, .29, .23 11, -.37, .92
~0.06 -05, .24, 18 11, -.28, .95
-0.04 -.98, .17, .12 .09, -.19, .98
-0.02 -.99, .09, .06 .05, -.10, .99
0.00 -1.00, 0.00, 0.00 0.00, 0.00, 1.00
0.02 -.99, -.11, -.06 -.07, .10, .99
0.04 -.97,-.23,-.11 -.16, .22, .96
0.06 -.92,-.37,-.14 -.26, .36, .89
0.08 -.78, -.62, -05 -.49, -.55, .67

Figure 4.3: Table showing observable data.

Time, ¢t | Measured value | Actual value | Measured value | Actual value
of K. of K. of A of A
0.00 -1.08 -1.00 0.99 1.00
-.02 -1.00 -1.00 1.10 1.08
-.04 -1.03 -0.99 1.14 1.16
-0.06 -1.09 -0.98 1.25 1.25

Figure 4.4: Table showing results (2 d.p’s).
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direction p could be calculated precisely. The only errors are those got from
calculating the derivative of p from a difference formula. No error was added to

P-

4.4.3 Example 3

Comment: In constructing a numerical example we take a known surface
and known camera motion and then calculate data concerning the motion of the
observed cusp points. This is then taken to be ezperimental data and derivatives
can be calculated via a difference method and we may wish to introduce noise to
test the formulas. The following examples feature a ruled surface and a surface
of revolution. The advantage in choosing a surface from a special class is that
the calculations often simplify. We construct the examples in a different way to
Example 1, by first taking a (relatively simple) curve on the surface and fixing
that as the cusp generator curve L. We then calculate the direction of one
flavour of asymptotic direction along L. Extending this vector in space gives a
ruled surface. A camera motion on this surface (transverse to all rulings) will
produce this L. This method is shown schematically in the illustrations below.
Note that we can use this argument to argue that the curve L has no inherent
geometrical restriction since we may take any curve on the hyperbolic region of
M, and there are an infinite number of camera motions that produce this curve
as a cusp generator curve.

Create cusp generator. Extend asymptotic direction. Create camera locus.

We take the ruled surface r(z,u) = (z,0,z?) + u(0, cos z,sin z) with Gauss
curvature

-1
K =
(14 (u+ 2z cosz)?)?’
Mean curvature )
i cosx — 2xsing

T I+ (u+ 2zcosz)*?’
and surface normal,

(—u — 2z cosz, —sin z, cos I)

n =
V/'i + (u + 2z cos )2
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Note that there are no parabolic rulings on the surface.

From [ON, p.230] we note that a;r; + asr, is an asymptotic direction iff
I{a;)? -+ 2mayay +n(az)? = 0, where I, m, n are the usual coefficients of the shape
operator. In our case this is made simpler because n = 0 for ruled surfaces.

This asymptotic direction will be our view direction p(t) in these examples.
We take L parametrised by time so that z = z(#) and w = u(t). Recall that our
surface is parametrised r(z,u) = (z,0,z*) +u(0, cos z, sin z) so we can calculate
the first and second partial derivatives. We calculate the coefficients of the shape
operator [, m and n and omitting a denominator that is common to all the terms

we find,
[ = 2cosx
= 1
n = 0.

We find the asymptotic directions a1, + as1r, by solving la} +2ma,ay = 0 giving
a; = 0 as a solution corresponding to the ruling, and a; = —2m and a; = [ as
the other direction. So the view direction p(?) is taken to be this direction.

p(t) = —2mr;+1r,
—2r, + 2coszr,

= —2(1,—usinz, 2z + ucosx) + 2 cos z(0, cos z, sin ).

Normalising this vector to make it unit, gives

(1, —usinz — cos® z, 2z + ucos  — cos T sin )

p(t) = —
\/(1 + 42? + u? + cos? x + duz cosz — dx cosrsin x)

The camera path is given by ¢ = r — Ap and we can take A to be the denominator
in p to ease the calculation. This gives,

c(t) = (z — 1,u(cosx +sinz) + cos? z, z° + u(sinz — cos z) + cos zsinz — 2z)

where z = z(t) and » = u(¢). In this example we set z = ¢ and u = ¢ + ¢
All the ingredients are now present for calculating data. We take a suitable
discrete time step and calculate the position p(t) of the cusp, the normal and
the camera velocity. We then use the same difference method described before for
calculating the derivative p;(¢). This allows us to reconstruct depth, Gauss and
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Figure 4.5: Left figure shows reconstructed rulings along the reconstructed cusp
generator curve. Right figure superimposes model for comparison.

Mean curvature, and compare it with the actual values given above. Note that
in this example the position of the cusp and surface normal are given exactly. In
practice these (especially p(¢)} would be subject to noise.

The following table shows some results.

Time K K A A H
t (actual) | (approx) { (actual) | (approx) | (approx)

0751 =91 —.92 1.423 1.419 92
~.050} —.96 —.96 1.415 1.418 1.04
-.025}1 —.99 —.99 1.415 1.415 1.03
000 | —1.00 —1.00 1.414 1.412 1.03
025 —.99 —.98 1.416 1.422 72
.050 —.96 —.93 1.418 1.429 1.22

If ¢ is the angle between asymptotic directions then it is well known [K, p.361]
that tan¢ = f}‘—f—? The view direction is asymptotic and we have calculated K
and H, so with the surface normal we can reconstruct the direction of the ruling
along the cusp generator. See Figure4.5. This method of construction for ruled
surfaces is expanded on in Chapter 5.
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4.4.4 Example 4

In this example we take a surface of revolution and add noise to the position of
the cusp points in the image. The normal is taken to be exact, as is the camera
position. We use the same technique as in the last example where we fix an
arbitrary cusp locus on the surface and then create a camera motion from that.

The surface is
r(s,0) = ((s* + 1) cos O, (s* + 1) sin b, s),

with normal
_ (—cos0,—sind,2s)

n H
v 14 452
and Gauss curvature,
-2
K =

(14 4s?)*(1 + s2)°
Our cusp generator is taken as the curve x = ¢ and 8 = ¢ + t2. Calculating the

asymptotic direction as before gives the view directions of the cusps p(t). We
extend and take the essentially arbitrary camera path,

c(t) = ((t*+1)(cosf — V2sin8) + 2tv2 + 1 cos,
(t* + 1) (sin 8 + V2 cos §) + 2t/#2 + 1sin b,
VE+1+1)

illustrated in Figure4.6. Taking discrete time steps we calculate the position of
the cusp point on the image sphere p(¢). In this example we introduce some
randoin noise. The noise is introduced artificially and the predominant compo-
nent is along the limiting tangent to the cusp. For an opaque surface the cusp
has only one visible branch and is often referred to as a contour ending. The
principal error is in determining where the profile actually terminates. We can
argue that the uncertainty is therefore in the direction of the limiting tangent.

The noisy points are then projected on to a plane, thus describing the cusp lo-
cus in local coordinates. We wish to fit a curve through these and in the following
work a cubic curve was fitted with least squares estimation see Subsection 4.5.1.
The best-fit curve is a parametrised curve and we are free to analytically calculate
derivatives and do not have to use the difference formula.
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Figure 4.6: Camera motion, view directions and L shown for the surface of
revolution example.

The results are tabulated below.

Time | Depth | Depth K K
t | (actual | (noisy) | (actual) | (noisy)
—-.150 1 1.79 1.80 —-1.64 | —-1.79

=125} L1.77 1.77 -1.74 | —1.79
—-.100| 1.76 1.76 -1.83 | —-1.79
—-.075 | L1.75 1.74 -1.90 | ~1.80
—.050 | 1.74 1.73 —-1.96 | —1.82
—-.025| 1.73 1.73 —-1.99 | —1.82
.000 1.73 1.73 -2.00 | -1.80
025 1.73 1.74 -1.99 | -1.76
050 1.74 1.76 —1.96 | —1.64
075 1.75 1.80 —-1.90 | —1.40

4.5 Multiple Simulations.

We recall Proposition 4.5,

4.6 Proposition: Suppose that q(t), n(t) are given smooth families of orthog-
onal unit vectors, that R(t) is a smooth family of 3-dimensional rotations, and
that c(t) is a smooth space curve with ¢;.Rn # 0 and (Rq);.Rn # 0. Then we
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Figure 4.7: The result of many simulations, each with increasing amounts of noise
(horizontal axis, noise in degrees), showing the resulting relative percentage error

in Gauss curvature (vertical axis).
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can find a smooth surface M in 3-space for which q(t) is the locus of cusps of
profiles arising from camera centres c(t), with rotated q coordinates (p = Rq in
the usual notation) and n(t) is the normal to the profile at the cusp point.

For this set of examples we essentially create data given by unit (perpendicu-
lar) vectors p and n and a space-curve ¢(t). The previous theorem then tells us
that there exists a surface whose cusp locus under this motion ¢ is p. This allows
us to free ourselves of the constraint of calculating cusp loci for a specific surface
and make examples easy to generate. We can readily investigate the addition of
noise to this data.

In practice we take p as,
p(t) = (cos B cos ¢, cos # sin ¢, sin )

with # and ¢ as simple polynomials of £. The family of normal vectors are taken
to be unit and perpendicular to p. Observe that under this setup we can easily
obtain a closed form for the derivative p; and have no need to use the difference
formula previously described.

We add noise to the functions () and ¢(t) and to the normals by taking
time increments {t{_;,...%p,...%} and adding a random amount to #(t;) and
d(tx) k = —i...1, upto a fixed threshold. So adding noise of 0.5° would add
a random value to the angle up to 0.5 degrees to # and ¢. We then estimate
the noisy cusp locus using the procedure that fitted a third degree polynomial
to the noisy data via a least squares method described in Subsection 4.5.1. This
gave us an equation for the noisy cusp locus that we could differentiate. We
note that the formulae for depth and Gauss curvature rely on only the first order
derivatives.

An error of x degrees means that up to x degrees of noise was added to the
cusp locus on the image sphere as just described. For a camera with a focal
length of 20mm and pixel density of 500 pixels per 5mm, we find that an angular
separation of 0.03 degrees is about 1 pixel. So 0.3 degrees of error is equivalent
to 10 pixels, generally seen as a ‘large’ error.

Figure 4.7 shows the result of fifty simulated experiments with varying cusp
loci, and camera trajectories. The increase in error of the Gauss curvature with
angular uncertainty of the cusp point on the image sphere can be seen to be
roughly linear and stable for reasonable noise.
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4.5.1 A Note On Curve Fitting.

As described above we add noise to the cusp locus on the image sphere and fit
a ‘best-fit’ curve to this. The method used was the following.

Let n discrete (noisy) cusp points be given by (X;, Y, Z;). We wish to fit
a curve v(t) = (z(t),y(t), z(t)) to this data, parametrised such that () =
(X;,Y;, Z;). It is common practice to take the functions z(¢),y(¢) and z(¢) as
cubic (sometimes quadratic) polynomials in ¢. There is no advantage to be
gained in taking a higher degree polynomial since the fitted curve can be too
‘wiggly’. Cubic curves can be fitted over intervals if necessary, and for greater
sophistication one would fit a spline.

We let the curve be given,

z(t) = ag+ at+ ayt® + ast’
y(t) = by byt + byt® + bst®
2(t) = co+ et + cpt® + cst?

where the a;, b;, ¢; are to be calculated for each set of noisy data. The following
set of linear equations can then be solved with MAPLE in a least-squares fashion
to give the coefficients.

1t 22000000 0 0

X1
[ a
1 ¢ & ¢ 00 0 00 0 0 0 ay
00 0 0 1 ¢ t ¢4 00 0 0 Qo }{'
as n
bo b
b |
00 0 0 1t # & 00 0 0 by |
by Y
Co 'n
5] Zl
000 00 O0C D0 011t £ & cs
\ ¢ ‘
Zn
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Figure 4.8: Passing from general motion to circular motion (see text).

If A is the large matrix, b the solution vector to the linear equation and z the
vector of coefficients then the following MAPLE commands

with(linalg);
leastsqrs(A,b);

returns the vector z where z best satisfies Az = b for least squares. ie. =z
minimises | Az — b]|.

4.6 Tracking Cusps with Parallel Projection
and Circular Motion.

In this section we show how the formulae of Proposition 4.4 can be used to
reprove those of [GS], which were for the special case of parallel projection. The
reduction is instructive in that it brings out some of the differences between
perspective projection and parallel projection. We also give the formulae for the
case of ‘circular motion’, which is in effect motion of the view direction along a
parallel of latitude on the view sphere.

We recap certain results from Section 2.5; when we use parallel projection
to an image plane, with view direction w, say, there is no longer any canonical
way of using ‘the same’ coordinates in all the images, as there was using the
‘p’ coordinates for perspective projection. Indeed, in the limit as we pass from
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perspective to parallel projection, the directions p, for a fixed camera position,
all tend to the same limit, which is the view direction w. To effect this transition
we altered the image sphere to have a radius ¢ rather than 1. The centre ¢ of
the sphere recedes to infinity at the same time as the radius ¢ tends to infinity,
in such a way that the spherical surface has limit which is our image plane.

Consider the special motion (as in the situation of [GS]), that is, consider the
centre c(t) to be moving on a circle, centred at the origin O, and of radius p,
while the image sphere is, as above, centred at c(t) and of radius ¢. Note that
p here is not to be confused with the p used in Section2.5. Then the ray from
the origin to ¢(t) meets the sphere in a(t) = (1 — o /p)c(t). See Figure4.8. This
point will form the origin in our image plane, which is the limit of the sphere as
p and o tend to infinity in such a way that ¢/p tends to a finite limit. (If the
limit is 1 then all the image planes will pass through O.) In the limit, the image
plane is therefore perpendicular to the vector c().

If r is a point on the surface then we still regard p as the unst vector in the
direction from ¢ to r. However, the image vector we are actually interested in is
say v, where

ct+op=(l—0o/plc+v.

Thus v is the vector from the point a to the point where the visual ray (from ¢
in direction p) meets the image sphere. Hence

¢ = (p/o)v — pp,
and the following expression holds,

[P, ¢, P = [P, (0/0)ve — ppi, i) = [P, (0/0) Ve, Pi)

Now we let p, o tend to infinity, with p/o — 1. For a fixed ¢, the vectors p along
the visual ray through c¢ all become parallel, and their limit is the view direction
w for that value of £. Likewise p; becomes w; (and this is a function of ¢ only,
not dependent on the particular profile point anymore). Thus the formula for K
in Corollary 4.4 becomes:

4.7 Proposition For parallel projection and circular motion,

(wy.n)?

K - [Wa Vi, Wt]2 .
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Figure 4.9: The coordinate frame used for circular motion.

To square this with the formula given in [GS] we take coordinates (Figure4.9):
w(t) = (—cost, —sint,0), w; = (sint, — cost,0),w A w; = (0,0,1).

Let us write £2 = (0,0, 1) (the axis direction) and use coordinate directions wy,
£2 in the image plane, that is write

v = Aw, + B{2,

so that (A, B) are the measured coordinates of the cusp in the image plane. Then
v;.§2 = B, is the speed of the cusp in the direction of the axis (this appears as
X' in {GS}). Writing @ for the angle between the w;-direction and the normal
n to the cusp (tan# appears as m in [GS]), we have w.n = cos @ (note that w,
is a unit vector) and the expression for K above becomes K = —cos* 0/(B,)?,
which is the same as the expression in {GS].

We can rederive the expression for H given in [GS]. The limiting version is,

. Wg.n(vtt.n Well — VeIl Wy 11— 2W.Vt(Wt.n)2)

H =

Z[Wt: w, Vt]2

The only extra complication is that here we have, using the same A, B notation
as above,
V- = (Att - A)Wt.n + Bttﬂ.n.

Note that in this special case, w;;, = —w and so w,.n = 0. We also have
vy = Ayw + Awy + B2, giving v, w = —A and v,.n = A,cosf + B;siné.
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Substituting in the limiting version for H above we obtain

_ COS2 9(“(-‘4# - A) COS 6 fe Btt sin 9)

H SE?

In [GS] we find that W = A and we rederive the formula

(W" + W) + mX"
2X72(1 + m?)*"

H=_

It is not hard to generalise the above to the case of circular motion, which
we take to mean c(t) moves on a ‘circle of latitude’ at latitude § on a sphere,
centre O, of radius p. See Figure4.10. We take an image sphere centred at c(¢),
radius o, and the origin of coordinates on this sphere (and so, as p — oo, on the
image plane) at the point of intersection a(t) of the line from O to c¢(¢) with the
image sphere. This point is a(f) = (1 ~ ¢/p)c(t), as before. However we have

w(t) = (—cos fcost, —cos Bsint, —sin B)c(t) = —pe(t).

The natural choice of axes in the image plane will be along the horizontal vector
e; = (—sint, cost,0) and along e; = (sin B cos ¢, sin Fsint, — cos 3), so that e;.e;,,
w is a right-handed orthonormal triad of vectors. Writing v, as before, for the
vector from a to the image point, so that (1 — o/p)c + v = ¢+ op, and writing
v = Ae; + Bey we find the following formula for K by following cusps under
circular motion.

4.8 Proposition: For parallel prejection and circular motion ot latitude [,
taking the azes as above,

cos® Bcost 6
(Asinf - B,)?’

K =

where, as before, 0 is the angle between the cusp normal and the e;-direction.

In a similar way one can generalise the formula for H in [GS] to the case of
parallel projection and circular motion.
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Figure 4.10: Illustration of circular motion, with the camera moving along the
G circle of latitude.
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Chapter 5

Tracking Cusps
on Special Surfaces.

We thought it not improper, to describe
something more particularly. Preface [Poz]

5.1 Introduction.

We present methods for the global reconstruction of some classes of special sur-
faces by tracking cusps (contour endings) ! of the profile (also known as the
apparent contour and the occluding contour) under a known dynamic monocu-
lar perspective observer.

There has been considerable interest in the computer vision community con-
cerning special families of surfaces ((BGT2], [FMZR}, [GDL], [P], {ZM], [ZN] for
instance). Much of the literature exploits rich image features, such as inflections,
bitangents, the symmetry set, to aid reconstruction and viewpoint-invariant rep-
resentation. While there have been some theoretical results concerning the cusps
of profiles on special surfaces [PC],[R92], there has been little exploitation of the
geometry with regard to reconstruction. Working within a particular family can
present certain challenges, since often certain phenomena can be more degener-
ate than in the generic case, but also the sharply constrained structure can be
exploited to provide powerful results.

''We use the terms ‘contour ending’ and ‘cusp’ synonymously. A cusp is observed in the
image for a transparent surface and for brevity we often refer to ‘cusps’.
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Figure 5.1: Canal surface with a T-junction and a contour ending magnified on
the right. Thanks to Dr.A. Zisserman and his student for this picture.

We examine surfaces of revolution (SOR), canal surfaces (piped) and ruled
surfaces. Fach of these special types of surface is generated in a special way by
a moving curve. For example the ruled surface is generated by a sweeping line,
the SOR, generated by a varying radius circle centred on a straight line and the
canal surface is described by sweeping a circle along a space curve, keeping it
in the normal plane. (The canal surface can also be considered as an envelope
of spheres of constant radius centred along a space curve.) If we can recover
the generator curve then we recover part of the original surface, even resulting
in areas that are unseen and beyond the frontier (Section2.7). O’Neill [ON]
provides a good introduction to the differential geometry of the above classes of
surfaces.

For each class of surface we provide simulated experiments that illustrate the
technique and demonstrate the stability of the reconstruction under extremely
noisy data. This simulates the uncertainty in the detection of the contour ending
that is present in any practical situation. A contour ending can be seen in
Figure 5.1 where it appears as a dark blob, but the observed location is subject
to error.

Some of the material in this chapter has appeared in [FG].
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5.2 Experimental Technique.

In the sequel we present synthetic examples that were calculated to demonstrate
the stability and accuracy of the reconstruction techniques employed. Chapter 4
gives many examples of tracking cusps and the methods that were used in this
chapter are described in Subsection4.4.3. All calculations and diagrams were
performed on MAPLE V.3 the computer algebra package.

The general technique is to draw any curve on the hyperbolic part of a surface
M and extend one flavour of asymptotic direction. This forms a ruled surface,
and taking our camera motion ¢ on this surface transverse to the rulings will
malke our original curve the cusp generator curve with respect to ¢ and M. We
now present a specific calculation that demonstrates this for a canal surface. The
calculation is similar for the ruled surface and surface of revolution.

We parametrise our canal surface by ¢ and ¢ and the usual parametrisation
is
o(t,8) = v(t) + r(N(t) cos§ + B(t)sinb),
where 7 is a constant radius, y(¢) is a smooth space curve (the ‘core curve’), with
non-vanishing curvature, and N and B are from the Serret Frenet frame of -y.
It is then possible (e.g. [ON, p.69]) to show the following where x and 7 is the
curvature and torsion of v respectively,

_ ! - JAH -
T=pr, B=@n, N=BAT,

A
1 i ! H T
— Ay (¥ M)y
K= T = .
i 2 [y Ayl

From [ON, p.230] we have the result that says the direction a,0; +ay0y is asymp-
totic if and only if, I{a,)? + 2ma,a; +n(ay)? = 0 where I, m,n are the usual coef-
ficients of the shape operator. We can calculate {,m,n and up to some uniform
multiple they are,

| = rr*—(1—rkcos@)kcosh
m = rr
n o= 7

'This enables us to calculate ¢, and a, giving,

a = TT:I:\/(l—TKcosﬁ)TK,cosB

ag = 77° —(1—rKrcosf)kcosd
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and we know o; and oy, so we have calculated the asymptotic directions. By
taking a cusp generator curve (¢, () = (¢, + 61t + 05t% + - - -) for example, we
can take all the asymptotic directions along this curve.

We then form the camera motion c(¢) in the following way,

c(t) = o(4,0(2)) + n(B)ar(t, 6(t))or + ax (£, 6(2))og] -

where p(t) is some non zero function of ¢ that gives the depth from the camera
to the cusp generator curve on the surface.

So starting from a core curve (t), a fixed radius r and a cusp generator
curve we can create a camera motion consistent with this. We know the true
depth (u above) and can calculate the true Gauss and Mean curvature on the
surface from the formulae in [ON, p.212]. The method is to add noise to the
view directions up to a fixed angular threshold on the image sphere and note the
effect on the errors in the formulae and subsequent reconstruction. This is done
in MAPLE where random noise can be added to the data and the least squares
tacility can be used to calculate cubic curve approximations to the cusp loci (see
Subsection 4.5.1).

5.3 Surfaces of Revolution.

5.3.1 Theory.

We now show that by tracking a cusp pair on a surface of revolution (SOR)
global information about the surface can be found. More specifically, we assert
that by tracking the cusp pair over parallels of our SOR. we can reconstruct those
parallels. A parallel (section) of a SOR is a plane section of a SOR. perpendicular
to the axis of rotation. It is a plane circle.

We shall need the following lemmas.

5.1 Lemma: If the point r generates an ordinary cusp for a certain camera
position then there exists another point v’ on the same parallel that also generates
a cusp. The surface at v is congruent to that at r', in particulor the Gauss
curvatures are equal. See Figure5.2.

Proof: We can parametrise our SOR by making the axis of revolution the
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Figure 5.2: Profile (projected on to image sphere) and critical set {on surface)
shown for some time. Observe the cusp generator pair r and r’ on the same
parallel.

z-axis (without significant loss in generality) in the following way,

(z,y,2) = (r(t) cos§,r(t)sin 8, t),

with () > 0 for all . Alternatively we can describe the surface by an equation
z* + y* = (r(2))?. Now a view line joining a centre of projection (u,v,w) and a
general point on the surface is,

(1 - A)(rcosd,rsind,t) + A(u,v,w).
We compose this with the equation of the surface to get,
(T = Nrcos@ + Auw)? + ((1 — A)rsind + dv)? = (r(1 — At + dw)? (5.1)

We are interested in the number of derivatives with respect to A that vanish at
A = 0. This tells us the order of contact of the line with the surface [BG, p.19).
A direction is asymptotic at a point p if and only if the line in that direction has
three points of contact at p, i.e. the first two derivatives of equation 5.1 vanish
at A = 0. First and second derivatives of equation 5.1 at A = 0 give,

—r+ucosf+uvsingd = r'(w—1t)
—? 2w — )+ + 0P = (@ +rr")(w - 1)’
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c(t)

Figure 5.3: Cusp generator pair r and r’ on a surface of revolution with surface
normals n and n’ intersecting on the axis.

where a prime indicates d/dt, and =, ¢/, r" are evaluated at £. The last equation
is for ¢ alone. Given a solution for ¢ the first equation is then in the form,

uwcosB+vsinf = k.

If 2% < 4? + v? then this has two solutions

U k
0 =cos!| —— ] F+cos! | ———
(\/u2+v2) (Vu2+v2)

corresponding to two points on the same parallel. These solutions coalesce into
a single solution, giving a higher codimension singularity on the profile, in the
non-generic situation where k% = u? -+ v2. If k? > 4® 4+ 9? there are no cusps. O

This lemma tells us that cusps always appear in the image in pairs, and
resulting from the same parallel. The following lemma will be used in the recon-
struction process.

5.2 Lemma: The normals to a SOR along a parallel all intersect at a point
on the azis, see Figure 5.35.
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The basic reconstruction technique is as follows.

1. We observe a cusp pair in the image. Note that cusp pairs from the same
parallel on the SOR have equal Gauss curvatures by Lemma 5.1, so we can
easily verify from the image which of the cusps we observe do in fact arise
from the same parallel by calculating the Gauss curvature for each cusp.
Clearly if the Gauss curvatures are unequal then they can not be cusps
arising from the same parallel.

2. We reconstruct the depth using Proposition4.4 to get two points r,r’
(These are the so-called cusp-generator points).

3. The surface normals are preserved under perspective projection since the
normal to the profile is parallel to the normal to the surface, and so ex-
tending the normals at r and r’ points must give us an intersection oun the
axis by Lemma5.2.

4. Tracking the cusps over time gives us the reconstructed axis.

5. The parallel through r is then the circle perpendicular to the axis with
centre on the axis and passing through r.

As our camera moves the cusp pair sweeps along the parallels and we are able
to reconstruct them.

5.3.2 Experiment.

It is clear that in practice this technique will be susceptible to errors. The image
may contain several cusps but it is straightforward to select the correct pair since
these cusps arise from points on the surface having the same Gauss curvature
(see Proposition4.4). This provides a consistency check as described in part 1.
above.

In practice when we reconstruct the cusp generator points and extend the
normals we find they do not quite intersect. We take the nearest point in this
instance and fit an axis to the noisy points. The method of curve fitting is
described in 4.5.1.

The reconstruction technique was tested for different amounts of error in the
observation of the cusp images. An error of z degrees means that up to z degrees
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of noise was added to the cusp locus on the image sphere to give a noisy locus.
For a camera with a focal length of 20mm and pixel density of 500pixels per
Smm, we find that an angular separation of 0.03 degrees is about 1 pixel. For
the following SOR experiments errors of 0.3 degrees (10 pixels) and 0.6 degrees
(20 pixels) were used.

We now produce some simulated examples which demonstrate the reconstruc-
tion technique. The surface used was the following,

r(s,8) = ((1 + 5 cos 8, (1 + s?)sin b, s)
and the camera motion,
c(t) = (10 + 2¢,0.3t + 0.1¢%, —5 + 4¢).

Note that the axis of the SOR is the z-axis (0,0,1). We observed a cusp pair
at discrete times and added some noise of various amounts. This was then
smoothed with a cubic curve via a least-squares method to give the observed
cusp loci. Figureb.4 and 5.6 shows the noisy cusp loci sampled over time with
a cubic curve fitted in local coordinates on the image sphere. (Recall that we
track a cusp pair and there is one locus per cusp.) The depth was calculated
and then the nearest intersection point to the normals was calculated. This
gave points on the SOR axis, and a straight axis was fitted. The parallels could
then be generated resulting in a radius function that could be smoothed giving
a complete SOR.

We now illustrate some of the results for an error of 0.3 degrees and 0.6
degrees. The reconstructed axis for an error of 0.3 degrees was calculated as

[.051 —.001%, —.013 + .003u, —1.198 -+ .9994],
recall that the actual axis is [0,0,u]. The axis for 0.6 degrees is

[158 — .012u, —.074 + .013u, —1.142 + .9994].
See Figures 5.5 and 5.7.

5.4 Canal Surfaces.

5.4.1 Theory

Let v(f) be a space curve with nowhere vanishing curvature and N(t) be its
principal normal and B(¢) be the binormal then the standard parametrisation
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Figure 5.4: Cusp locus 1 and 2 showing the noisy data points of 0.3 degrees,
with the axes giving local § ¢ coordinates on the image sphere.
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Figure 5.5: Actual SOR generating curve compared with reconstructed curve
(left) shown in the yz plane. Actual surface (cut away) compared with recon-
structed surface (0.3 degs).

for a canal surface is the following,
r(t,0) = v(t) + r{cos @N(t) + sin 6 B(1)). (5.2)

We can also think of the canal surface as an envelope of a family of spheres of
constant radius r centred on ().

5.3 Definitions. The space-curve 7y is the core curve, the factor r is the (con-
stant) radius of the canal surface. The circle v(ty) + r(cos ON(t,) + sin 8B (%))
18 the characteristic circle for ¢ = {;.

We assert that by tracking a single cusp along the canal surface we can recon-
struct the characteristic circles (and hence the complete surface) as the cusp
sweeps along the surface. We note that this reconstruction technique works with
incomplete viewer information, such as when only one ‘side’ of the canal surface
is visible.

We shall need the following lemma.

5.4 Lemma:
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Figure 5.6: Cusp locus 1 and 2 showing the noisy data points of 0.6 degrees,
with the axes giving local # ¢ coordinates on the image sphere.
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Figure 5.7: Actual SOR generating curve compared with reconstructed curve
(left) shown in the yz plane. Actual surface (cut away) compared with recon-

structed surface (0.6 degs).
1. The radius of a canal surface can be expressed in terms of the Gauss cur-

vature K, and the Mean curvature H,
_H-+H?—K
- e i

2. The normal to a canal surface at a point p passes through the centre of the

characteristic circle of p.
Proof:

We use the parametrisation given in the main text (equation?5.2).

Kcosf
(1 — rrcosf)

from [ON, p.212],
K=
1-2 )
e b 7K COS
2r(1 — r&cos8)

and
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straightforward to show that the normal to the canal surface is along the radius,
i.e. cosdN +sinfB. We use the formulae for the Gauss and Mean curvature

It is




where  is the curvature of the space curve y(¢). These two equations allow us to
eliminate x cos# and we find that Kr? —2H7r +1 = 0. Since K < 0 at the points
we are interested in, the positive root for r is taken as stated in Lemmab.4. O

Recall that we can calculate X and H from tracking cusps using Propo-
sition4.4 and so can recover the radius. The reconstruction technique is as
follows,

1. Track cusp to recover depth, Gauss and Mean curvature.
2. Calculate the radius r via Lemma 5.4.

3. Using the recovered depth we can recover the cusp generator point and
then move along the normal a distance 7 to recover the core curve by 5.4.

4. The core curve and radius completely determine the canal surface.

5.4.2 Experiment.

We simulate the reconstruction process with a simple example. Again noise was
added to the image of the cusp points to simulate the uncertainty in detecting the
cusp points. Figure5.8 shows the cusp points on the image sphere in theta/phi
coordinates. The core-curve used was, v(t) = (2¢,0.6¢%,0) and the radius 1.
Note that the core curve of this canal surface is planar; this is just to simplify
the calculations and does not imply a restriction inherent in the technique used.
An error of 0.5 degrees was added in this example and the recovered radius was
0.973. It is difficult to quantify the error in the core curve, but Figure 5.9 shows
the actual and recovered core curves. The recovered and actual surfaces are
shown in Figure5.9.

It is unclear how best to empirically measure the ‘success’ of the reconstruc-
tion, other than simply a visual inspection. Figure 5.10 shows a series of exper-
iments performed on different canal surfaces all with radius one, and varying
camera motions. The horizontal axis indicates increasing noise added, and the
vertical axis shows the recovered radius. A deviation from a radius equal to one,
shows the effect of the noise. We don’t expect this relationship to be simple
since the radius depends on second derivatives of the cusp locus (Lemma5.4).
We merely wish to assess the stability under large noise.
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Figure 5.8: Image of noisy cusp points with a cubic curve fitted.

Figure 5.9: Actual and recovered core curves (left), and actual and recovered
surfaces (right). Note that the scale and orientation are different in each picture.
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Figure 5.10: Increase in maximum angular error of cusp points (horizontal) with
recovered radius of canal surface (vertical).
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5.5 Ruled surfaces.

5.5.1 Theory.

We now consider tracking a cusp on a ruled surface. As the cusp sweeps across
the rolings we find that we are able to reconstruct the rulings and hence the
whole surface. The crucial observation is contained in the following lemma. from
K, p.361].

5.5 Lemma: If the angle between asymptotic directions at a hyperbolic point
of a surface is ¢, then
V—-K

tanqﬁ = *“*E.——“

Proof: We work with the surface in Monge form, rotated so that one asymptotic
direction is along (1,0,0). Let the surface be parametrised (z,y, h(z,y)) with

1
Wz,y) = 5Qazy + ) + -

Take the line parametrised by u, (z,y,2) = u(1,p,0). We substitute this in the
equation z — h{z,y) = 0 of the surface and find the condition for there to be a
triple root at w = 0. This gives 2a,u*p + asu®p® + - - - where --- denotes terms
of 4% and higher. The first derivative evaluated at u = 0 is zero but the second
derivative gives the equation,

2aq + agp = 0.

If ¢ is the angle between (1,0,0) and (1,p,0) then tan ¢ = —2?“21 and calculating
K and H at the origin gives the result. O

By tracking cusps we can recover K, H, the depth, the surface normal and
one asymptotic direction (namely the view direction). Recall that for a ruled
surface one asymptotic direction is always along the ruling. The ingredients are
now all present along with Lemma 5.5, and the recipe is now given.

1. Track cusp and recover the depth, K and H.

2. The view direction is one asymptotic direction and the other is the ruling.
Calculate the angle between them by Lemma5.5 and since we know that
the ruling lies in the tangent plane this constrains it.
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Figure 5.11: Actual and reconstructed ruled surface with an error of 0.3 degrees.

3. This gives the direction of the ruling, and it passes through the cusp gen-
erator point which can be recovered with knowledge of the depth.

Figure5.11 shows the result of a reconstruction experiment on a ruled surface
where the maximum error in observed cusp points was 0.3 degrees.

5.6 Conclusion

We have shown that the cusps on the profiles of certain classes of smooth surfaces
give enough information to enable the complete reconstruction of the surface by
tracking cusps alone. This work has built on the theory developed in Chap-
ter4 and [CFG2], and has added to the accumulating body of work concerning
differential geometric aspects of special surface classes.

Recognising that cusps are hard to detect in real images we have given an
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analysis with errors that demonstrates the stability and accuracy of the recon-
struction even under large image perturbation.

Future work will include extending the methods to other classes of special
surfaces, and the analysis of real image data.
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Chapter 6

Construction of Surfaces
from Profiles.

Fix one end of a thread in the point O; and extending the other to
the vault, make use of it as a ray from the lamp or candle, for
describing the place of shadows.

The method of drawing the Net or Lattice- Work on vaults [Poz]

6.1 Construction vs Reconstruction.

This chapter considers the froniier of the surface. This curve separates the visible
from the invisible or ‘the place of shadows’.

Computer Vision has seen a great deal of research into the area of reconstruc-
tion of surfaces from profiles, see Chapter 1 for a discussion. Consider a smooth
surface ‘out there’; by taking different projection centres, with the resulting pro-
files, well known methods exist for the reconstruction of the visible portion of the
surface. Figure6.1 shows a schematic for this situation. The underlying smooth
surface is shown dotted and the critical sets are reconstructed and lie on this sur-
face. At the boundary between the visible and invisible region we can see that
they form an envelope called the frontier curve (Section 2.7). We have effectively
reconstructed a smooth surface with boundary. It is folded (close to the frontier)
since two critical sets pass through each point. Also note that the reconstructed
surface, ag a surface parametrised by the critical sets, not the underlying surface,
is singular and the singular curve is the frontier.

We can abstract this concept of reconstruction and we will call this con-
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Smooth surface. Critical sets covering
the visible region.

Frontier curve Invisible region.

Figure 6.1: Surface reconstruction.

struction. We take the principal ingredients for constructing a surface, namely a
camera motion c(t), which is just a space curve, a set of profiles p(s, t), though
these are not now profiles of a surface but some arbitrary family of smooth curves
in the unit sphere, and apply the well known reconstruction technique in order to
construct a surface that previously was not available. In short: given a smooth
set of curves in the sphere p (subject to some minor conditions) and a space
curve ¢ what sort of surfaces can we construct? To draw the reader into the
mystery an example of such a constructed surface is shown in Figure6.2. The
bold curve on the surface is the frontier (in the sense of ¢;.n = 0, Definition 2.15),
and is certainly not the boundary of the visible region in this case! Perhaps the
reader can also believe that at the left of the figure the surface has a cusp edge.
The surface is singular but not along the frontier.

The construction of surfaces is more than an interesting exercise in differential
topology and geometry, what we seek is the exact conditions on p and ¢ for us
to construct a surface that looks like Figure6.1. If we can find these conditions,
then it is possible that we can exploit them in surface reconstruction to get
constraints on the viewer motion.

Some early results appear in [FG2].
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Figure 6.2: Surface construction.
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6.2 Construction

Recall the following notation from Subsection 2.2.3. The family of profiles on the
sphere is p(s, t) and the camera motion is ¢(t). If r(s, t) is a point on the surface
then the vector n(s, ¢) is defined as pAp,. This is the normal to the reconstructed
surface and so ro.n = 0 and r.n = 0. Using the usual reconstruction formula

r=c+ Ap,

we obtain the depth, A = Jth.

In the case of surface construction we choose a c(¢) and p(s,t). If c;.m % 0
and p;.n # 0 then A is well defined and non-zero. If the denominator is zero,
we must also have the numerator zero and then define the value of lambda via
L’Hopital’s rule. Quite simply we can not take for granted the existence of a
function A satisfying Ap;.n + c;.n = 0 for arbitrary p and c.

This immediately puts constraints on p(s,t) and c¢(t), and we insist
in the remaining work that we choose p and c so that there exists a
smooth function A(s,t) with ¢;.n + Ap,.n = 0 holding identically.

We still refer to the ‘frontier’ in the case of construction, and this is the curve
Ct.n = G

One can view the construction process as being equivalent to forming the
cones with vertex c(t) through p(s,t), and then the surface r(s,t)} is the enve-
lope of these cones (indexed by ¢). Let A be a one parameter family of cones
parametrised by u and s, and indexed by £. Then

Alu, s,t) = c(t) + up(s, 1)

and the envelope of cones is got by projecting (A, t) onto the first three compo-
nents. The tangent space in R* is spanned by the vectors (A,,0), (A,,0) and
(A;,1). This contains the kernel direction of the projection provided there exists
« and F such that

al\, + 8A, = =4,
e [BuA,A] = 0
ie. [p,ups,ci+up) = O
ie. (ci+up))un = 0
ie. eitheru=00ru = g‘t—‘rll
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The depth formula v is identical to that for surface reconstruction. If w = 0 then
the curve c(¢) appears as part of the envelope, and w is arbitrary if ¢;.n = p;.n =
0.

In the case of surface construction we will continue to call the p curves the
‘profiles’, even though they are arbitrary curves and one has to prove that they
are in fact the profiles to the constructed surface. We will also refer to a ‘normal’
n(s,t). This is in fact defined as

n=pAap,.

Recall that for reconstruction the surface normal is parallel to the profile normal.
We can still talk about ‘the normal n’, but it is understood to be defined in terms
of the p curves in the manner just described.

6.3 A Specific Example.

In the example we will create a family of profiles on the image sphere starting
from a given surface M and camera motion, and then for a variety of other
camera motions examine the resulting constructed surface. Here we concern
ourselves with the situation when the profiles form an enwvelope.

We now introduce the setup for this specific example. Suppose that the
camera centre ¢(t) is moving in a circle centred at a point on the z-axis, and the
surface M is a sphere centred at the origin, with the whole path ¢(¢) outside M.
See Figure6.3. Then it is clear that the critical sets are all circles, forming an
envelope along two latitude circles on M. The profiles are circles too, which in
the unrotated coordinates will form an envelope on the unit sphere. Given these
profile curves and using other camera motions we will construct different surfaces
M'. We ask the question: will the critical sets necessarily form a frontier, that
is an envelope on M'?

6.3.1 The Profiles.

Our family of profiles consists of circles lying between the parallels of latitude
at say the angles « and # on the image sphere (see Figure6.3). The envelope
is along the two parallels of latitude. We now calculate the parametrisation of
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(SPhGﬂfi e(t)
Contour
Generator

Figure 6.3: Left: Circular motion in the case when M is a sphere. Right: profiles
in the image sphere, arising from the case where the centre of the c(t) circle is
at the origin.

p(s,t). We have two parallels at angle o and 3 parametrised by ¢ given by the
equations,

(cos acos ¢, cos ausin ¢, sin @)

(cos 8 cos ¢, cos Gsin ¢, sin 3).
The centre of the profile (which is a circle) at some time is then,
1 1 P .
(5(005 o + cos ) cos ¢, §(cos « + cos 3) sin ¢, §(szn o +sin ﬁ)) :

We write @ = §(cos @+ cos §) and b = L(sin o+ sin 8) for brevity. The radius of
the circle is the magnitude of the following vector,

%((cos 8 — cos a) cos ¢, (cos  — cos @} sin ¢, sin B — sin @),

which is %\/ 1 —cos(ff — a). We denote this length as p. A horizontal vector
in the plane of the circle is (—sin ¢, cos ¢,0), and the vertical vector is the po-
sition vector of the centre (acos ¢, asin¢,b), cross the horizontal vector, giving

(1/+/a® + b%}(~bcos ¢, —bsin ¢, a).
The parametrisation of p is then,

p(s,t) = (acost,asint,b)
p :

+ ——=(—bcost,—bsint,a)coss (6.1)

Ll )

+

p(—sint, cost, 0)sin s
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where for convenience we have defined,

= (I/ﬂ)\/l—cos(ﬁ~oc)
= (1/2)(cos + cos ()
= (1/2)(sina + sin B)

and note the equation, v/a? -+ b2 = /1 — p?.

6.3.2 The Construction Process.

We use the following family of camera motions, where the velocity is given as,
c;(t) = (—B(¢) sint, B(t) cos t, 0)

and B(t) is some non-zero function of ¢. Therefore we can now choose different
functions B and using the reconstruction formula create some surfaces. If B is
constant this corresponds to our reconstructed surface being a sphere with the
camera following our original circular path.

Recalling the discussion concerning the normal n at the end of the introduc-
tory section we have n = p A p, where ||n|| = p and

n = (—1/1 — p®sintsins — becostcoss — J—lp:gacost ,

—p

+4/1 — p?costsins — bsintcoss — asint,

P
4GOS 8 = ey |
vl—pﬁ)

D
VI—p?

It then follows that,
c;n = By/1— p?sins

and

giving the distance as

_B-pY)

A= (6.2)

The cancellation of sin s is critical since now the depth formula is valid for all s
and ¢ and in fact independent of s. This is why we chose c; in the form described
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above. Note that the sets {(s,?) : p;.n = 0} and {(s,?) : ¢;.n = 0} are equal and
given by the points sins = 0. In the image these points form the envelope of
profiles. We interest ourselves in the pattern of critical sets and the form of the
reconstructed surface.

Given the profiles and camera motion as detailed above we can form the
surface r = c+ Ap and calculate the coefficients of the second fundamental form.
We can use equation 6.2 to eliminate B and then along the envelope of profiles
(at s = 0) the coefficients are,

I = =Apy1—p?

ap
m = dp|b+ ———
p( \/1“92)

S

ol
C
‘DM

a

Apb B2(1 - p?)?

We observe that In—m? = 0. We can not conclude however that the correspond-
ing points on the surface are parabolic, since at a genuine frontier point we have
1, parallel to r, which is equivalent to the condition EG — F? == 0 on the metric
coefficients F, F and G. Thus the formula for the Gauss curvature,

In —m?
- EG-F?
is undefined since the numerator and denominator are both zero. Since A, = 0
then r; = Ap, and r; = ¢; + A;p + Ap:, and the condition for r; and r; to be
parallel is then A; == —¢;.p. Now ¢;.p = Bpsin(t) and if we impose the condition
Ay = —c;.p at points where ¢,.n = 0 (i.e. sin(s) = 0) then we require A; = 0.
In other words the condition for the critical sets to form an envelope for this
example is B'(t) = 0 i.e. B =constant as in our original circular trajectory.

K

6.3.3 The Resulting Surfaces.

We now consider two different camera motions, when B is constant and B =
2+-sint. For the case when B is constant recall that the reconstructed surface is
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a portion of a sphere between two parallels (which form the envelope of critical
sets). For B = 2 + sint the constructed surface is smooth and r, is not parallel
to r, along s = 0, see Figure6.4. We have a curve (s = 0) where ¢;.n = 0 and
another curve where r|r;, and these are not the same curve in the case of surface
construction. This is a general phenomenon in surface construction that will be
investigated further in later sections.

Further inspection of the case B = 2 + sint reveals that in fact the view
directions p(0, t) are asymptotic, and since the points r(0,¢) are parabolic (since
In—m? =0 and EG — F? 5 0) the camera motion is in fact travelling along the
Cylinder Axis Developable. Clearly an extremely non—generic situation.

From [ON, p.230] the direction a,r, + a,r, is asymptotic iff la? + 2ma,a, +
na? = 0. Therefore at a parabolic point the unique asymptotic direction is
—mx; + Iry. For our example this is the direction,

(% o) o+ /= e

Calculation reveals this to be equal to the direction,

‘—B!(l _ p2)3/2 ((a — —L) cost (a — p—b) sint b+ L)
a’ V1I=p? ’ V1=p? TOVI=p)

and parallel to the direction of p(0,£) (equation 6.1).

6.3.4 Summary.

What we have shown in this example is that reconstruction and construction are
fundamentally different. We started with a sphere M, and by taking a circular
camera motion were able to generate a set of profiles of the sphere. These profiles
were circles on the image sphere that had an envelope. Using the same camera
motion we could reconstruct M, or at least the visible part of it. The critical
sets formed an envelope at the boundary of the visible part.

We then used the same set of profiles but changed the camera motion. The
camera motion was essentially arbitrary subject to the provision that p;.n and
c:.n had the same zero sets so that the depth was finite and non zero. Then a
new surface M’ was constructed from this data. The surface M’ was smooth at
the ‘frontier’ (taken as the image of the envelope of profiles) and had cusp edges
separate to this. Moreover the frontier was a parabolic curve and all the view
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Figure 6.4: Left: The part of M’ constructed from a neighbourhood of the
envelope of profiles—note that there is no frontier. Right: the part of M’ in a
neighbourhood of the r,]|r; curve—note that M’, has two cusp edges.

directions at these points were asymptotic. This would make the true critical
sets of M’ with the same camera motion all singular. Recall that the critical set
is singular iff the point is parabolic and the view direction asymptotic. We must
conclude that the p curves are not the true profiles since the true profiles must
also be singular.

6.4 General Theory.

In this section we examine the constructed surface r(s,¢). We will be primarily
interested in the behaviour of r around two curves on the surface, the frontier
and the singular curve. When constructing a surface from p(s,t) and c(t) we
expect a curve of solutions for [¢;, p,pPs] = ¢;.n = 0. In the case of projections
of a genuine surface where we reconstruct, this curve is the frontier or envelope
of critical sets, i.e. the curve that forms the boundary of the visible region of
the reconstructed surface with the invisible region. We show that this is not
necessarily the case when starting from general p and c. We find that the curve

¢;.nn = 0 does not form the boundary to a surface and is not the envelope of
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critical sets. We prove the surprising result that the surface is in fact smooth
at a general point of this curve and in fact the curve is parabolic and the view
directions asymptotic.

For a general p and c we find that the surfaces we construct are singular.
Moreover these singularities occur along a curve, for the following reason. The
construction method we use gives ry.n = 0 and r;.n = 0 holding identically, thus
the condition that r; and r, are parallel is only one condition which we therefore
expect to hold along a curve in (s,t) space. The points r(s, ) where r, is parallel
to r; is the ‘singular curve’ on r. We prove that the dual is smooth at general
points of this curve leading us to suspect that r has a cuspidal edge.

At points where the singular curve and the ¢;.n = 0 curve cross, the behaviour
of r is surprisingly complicated. In a later section we devise a general example to
examine this situation and come to the compelling conclusion that r is a cuspidal
Cross cap.

The following result describes the case where ¢;.n = 0 and r, and r; are
independent.

6.1 Proposition: Given nonsingular p(s,t) with ||p|| = 1 where p(s,tp) has
no geodesic inflections for any fized ty and c(t) a space curve with ¢, not parallel
to p we construct a surface v in the usual fashion (Section 6.2). At points on r
where ¢;.n = 0 (with n = p Ap,), and r is nonsingular then the surface r has a
parcbolic point and p is an asymptotic direction. Also the profile of v consists of
p(s,ty) and another branch.

Proof: We first prove that at nonsingular points where c;.n = 0 the surface is
parabolic and the view direction is asymptotic.

When we construct a surface from profiles it is constructed so that the fol-
lowing identity holds in s and £,

(r(s,t) — c(?)).n(s,t) =0, (6.3)

where n(s,t) is parallel to p A p; and r,n = 0 and r;.n = 0 identically. Dif-
ferentiating (6.3) by s gives, (r — ¢).n, = 0. Note that n; means differentiating
the unit normal in the direction r, and since we have assumed that the sur-
face is non-singular we are free to use the shape operator, and this means that
S(r;) = —n, and hence we can interpret this as I7{r — ¢,r;) = 0 which is the
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standard result about the view direction being conjugate to the tangent to the
critical set.

Differentiating (6.3) with respect to ¢ gives, —¢,.n + (r — ¢).nn; = 0 and since
we are considering points where c;.n = 0 we have II(r — ¢,r;) = 0. Because r,
is not parallel to r; we must conclude that the point is parabolic and the view
direction is asymptotic.

We now prove that the profile of the constructed surface from c(#y) consists of
p(s,tp) and another branch. We wish to find the critical set on the constructed
surface from the projection centre ¢y = c(fy). Using the formula r = ¢¢ + Ap
this is precisely given by the points (s, t) where

(r(s,t) — cg).n{s,t) =0, (6.4)

recalling that n = p A p,. Clearly ¢ = #; is a solution for arbitrary s but is this
the only solution?

In fact (6.4) will be a smooth curve in the (s,t) plane and hence on r unless
the following hold,

(I‘ - CD)'ns

(r—co)ny+cn =

At the point r(sg,?y) where ¢;.n = 0 we see that the curve is not smooth. We
prove below that it is a crossing in the s,? plane. Since we assume that r is
a local diffeomorphism then we will obtain a crossing on the surface. In the
case of reconstruction r is not a local diffeomorphism at frontier points. We
now wish to find out if it is a point or a crossing, and so examine the quadratic
part of (6.4). Setting f(s,t) =lh.s. of (6.4), at ¢t = ¢, we find f,;, = 0 and so
fssfu — & = [c1, D, Dss) 18 always negative and the curve is always a crossing.
It is more degenerate than Morse iff [y, P, Pss] = 0. Since we are at a point
where ¢;.n = 0 then ¢, is perpendicular to n, and p is perpendicular to n by the
construction n = p A p, and so this condition is equivalent to p,,.n = 0 since c¢;
is not parallel to p. We can make ||p,|| identically one then py.p, = 0 and so
PADPss =0, ie. p has a geodesic inflection. O

Notes on the Proposition.

1. We have found that nonsingular points where c;.n = 0 are parabolic points
on the constructed surface. Moreover the view directions at these parabolic

135




points are asymptotic. Recalling Definition 1.16 we see that the camera is
travelling along the Cylinder Axis Developable. For the case when we are
observing an external surface this would be extremely non generic, and
results in all the critical sets being singular along this curve.

. Since the critical sets are singular the profiles are singular. Recall that the

curves p(s,t) were designed to be the profiles and so we must conclude
that there is an extra branch to p in order to make the actual profile
to the constructed surface complete. Starting with some ‘profile’ curves
p(s,t) and constructing a surface in the usual way we find that p is not
the complete profile.

. The condition that the curves p do not have geodesic inflections is to

eliminate the complication of expected ‘parabolic’ points. We expect a
parabolic point on the constructed surface if the profile inflects, since this
is the well known result of Koenderink, Section2.5. We have found that
the ¢;.n = 0 curve is parabolic which is entirely unexpected. In fact when
the ‘real’ parabolic curve (i.e. locus of geodesic inflections on p) hits the
c;.nn = 0 curve we find that this is precisely the point where c;.n = 0 can not
be parametrised by £. Observe that ¢;.n = 0 can not be parametrised by % iff
£ ¢;.n = 0 which is the condition found in the above proof, [c;, P, Pss} = 0.
For our case the profiles do not form an envelope along the ¢;.n = 0 curve,
they are singular as we have shown above.

6.4.1 The Dual.

We now turn our attention to points on the constructed surface where the surface
is singular (r, parallel to r;) and c¢,.n is not equal to zero. We call the dual of
the constructed surface R.

It is possible to view the profiles p(s,t) and the camera motion c(t) as pro-
viding enough information to construct all the tangent planes. If n = p A p,
then the equation of the tangent planes is

(x —¢).n=0.

‘These are planes passing through ¢ and spanned by the view direction p and the
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tangent to the profile p,. We can parametrise these planes in the following way,

R2 — RX82

8t = cmn,n
and if we avoid points where c.n = 0 we can map to R® via,

RxS8 — R®

cn,n +— {(cn)n.

Certainly one advantage in considering the dual is that it does not involve the
depth function A. In the following result we prove that the dual is singular at
frontier points (c¢,.n = 0). The dual is smooth at singular points of r suggesting
that r is no worse than a cusp edge. The singularities of r are dealt with in more
detail in a subsequent section. The following lemma gives the condition for the
normal map to the surface to be singular.

6.2 Lemma: Given smooth p(s,t) and c(t) let the normal (see end of Sec-
tion 6.2) be n = p Ap,. Then n, is parallel to n, if and only if either p has a
geodesic inflection or ¢;.n = (.

Proof: From the definition we can differentiate and obtain,

n, An, = P[P, Pss; Ps| — Ps[Ps Pss» Pi) + P[P, Pss, Psi]-

Thus n, is parallel to n, if and only if p is parallel to p,,, which is the condition
for a geodesic inflection by Subsection 2.5.2, or p, p, and p; lie in a plane. This
is equivalent to [p;, P, ps] = 0, and recalling that n = p A p, we have p.n =0
which is equivalent to ¢,.n = 0 by the global assumption of the existence of A
(c;.n+ Ap;.n = 0). O

6.3 Proposition: The dual surface R(s,t) = (c.n)n is singular if and only if
P has a geodesic inflection or ¢c,.n = 0.

Proof: Calculation gives,

R, = (cngn+ (c.n)n,

R, = (¢gn+cny)n+{cn)n,
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and given c.n # 0, for R to be singular it is necessary to have n; and n, parallel
since n, and n; are perpendicular to n and in addition,

(e + c.ny)(c.n)|n,|| = (c.n, ) (c.n) [Inq]l. (6.5)

If n, and n; are parallel and non zero then (6.5) reduces to the condition ¢;.n = 0.
From the result of the previous lemma we can conclude that if n, and n; are non
zero then R is singular if and only if ¢;.m = 0, using n = p A p,.

Observe that if n;, = 0 then the dual is singular. The condition for this is
PAPss = 0 which is a geodesic inflection. Therefore the condition for the dual to

be singular is that either the profiles have a geodesic inflection or that ¢;.n = 0.
O

6.5 General Example.

In this section we devise a general example for examining the construction of
surfaces from profiles. It is far from obvious how to achieve this since we have
the constraint that there must exist a A(s,t) such that c,.n + Ap;.n = 0 holds
identically. In the following example we take p,.n = 0 and c,.n = 0 along the
5 = ( curve and then using this fact we can perform some calculations detailed
in the text for finding a well defined .

We consider perspective projection but for simplicity we show that we can
work with a family of curves P(s,t) in the plane and not on the image sphere.
These curves, which we call ‘profile curves’ though strictly they do not start
life as the profiles of any surface and one should prove that they are in fact the
profiles of the constructed surface, are given as power series expansions. We make
some assumptions that restrict certain coefficients but these do not restrict the
generality of the example. The camera motion is also given as a general power
series.

Let P(s,t) be a family of curves in the z = 1 plane given as
P(s,t) = (1, X(s,1),Y(s,1)),

then if p(s,t) is the family of profiles in the image sphere we have, p = P/||P|,
see Figure6.5.

We are interested in r around the curve ¢;.n = 0 and the singular curve where
rs is parallel to r;. We now prove some results concerning the plane profiles P.
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x=1 Plane

X

Figure 6.5: Schematic showing the curves P(s,t) = (1, X(s,1), Y (s, 1)).

6.4 Lemma: In the situation above where P = (1, X(s,1),Y (s,t)), p(s,t) =
P/||P| and writing N =P AP, and, n = p A p,; we have, -

- N
1. 0= 1pp,
2. pt.n:O@Pt.NZO,

g cn=0%&c . N=0.
Proof:

1. Firstly p||P|| = P, and differentiating both sides gives, p,[iP| + pfﬁ'ﬁl =

P,. Then crossing with p gives, pAp, = P”"‘ﬁf and using the definitions

of n and N given in the statement we obtain the result.

2. Since p||P|| = P we differentiate to get, p||P|| + plg'lzl'l' = P; and dotting
with n and using the first result of this lemma. gives p,.n = ﬁ)III\T .

3. From the first result of this lemma we see that n is parallel to N, and the
result is straightforward.

O

This lemnma, essentially tells us that we can work with the curves P and still
easily interpret the conditions with respect to the p curves. In setting up this
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general example we shall insist that ¢;.n = 0 and p,.n = 0 is the curve s = 0.
Or to be more precise the curves ¢;.n = 0 and p,.n = 0 have a common non
singular branch that is s == 0. This of course does not restrict the generality of
the example. We thus want to find the conditions on P and ¢ for P;.N = 0 and
c;.IN = 0 along s = 0.

Writing P as (1,X,Y) we have P, = (0,X,,Y,) and P, = (0,X,,Y}), it is
then straightforward to calculate the condition for P,.N = [P,, P, P,] = 0. This
is X,Y; — XiY, = 0. We require this quantity to be identically zero when s = 0.
We can assume P,(0,0) = (0,1,0) so that X,(0,0) = 1 and ¥;(0,0) = 0 and then

write
X:(0,)Y,(0, 1)

X (0,8) 7

where we have now made the denominator non zero at 0. We split ¥ into two
parts ¥ = sY¥3(s, t)+Y3(t) where the function Y; of ¢ only, is given as the following
integral,

Yt(oit) -

v = [ 2

This imposition on ¥; will make the condition P;.N(0,¢) = 0 hold identically,
even for arbitrary Y3(s,z). In fact in the MAPLE program we write,

YE),(S,'LL) = 2199 + Zp1f + 2'2032 R

We now wish to impose a condition on the camera motion c(¢) so that
c;.-IN(0,%) = 0 is an identity. Write c{t) = (ci(t), e5(t), c3(t)) and the condition
c;.N = [¢;, P, P,] = 0 becomes,

—Cy Y + ¢ X + (XY, — X,Y) = 0.

We choose ¢y to take the value that satisfies this at s = 0 and so ¢3 is defined
by the following integral,

. t Cizt};(oat) N Clt(X(O:t)Ys(Oat) - Xs(O,t)Y(O, t))df
= /0 XS(O, t) '

Therefore the functions ¢,.IN and P,.IN are divisible by s and we define the
functions f(s,t) and g(s,?) so that

. IN = sf(s,t)
P,.N = sg(s,t).
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Recall that the depth A is defined as =2 or equally well as the identity

Pe.11
c;.n+ Ap,.n = 0. This is equivalent to ﬁﬁl +)\3|L|:"'|1|\T = 0 and so defining A = W%W
we have,
P
I‘=C+Ap:C+AI|P”W=C+AP=’—-0—£P -

The calculations described can be accomplished with MAPLE. We can specify
P as a power series and ¢; and ¢, similarly. MAPLE can integrate to find Y5(t)
and c;(t) described previously and then find f and g. This gives the ingredients
necessary to construct the surfaces.

We now present a short digression on possible recognition criteria for cusp
edges and cuspidal cross caps.

6.5.1 Cuspidal Cross Caps and Cusp Edges.

In [MO2] the class of maps from the plane to 3-space with cuspidal edges is
studied. The following definition is from [MO2], and we note that the class of
maps we are considering belongs to ‘CE’. Recall that we observed in Section 6.4
that we expect r; and r; to be dependent along a curve in the s, plane.

6.5 Definition: 4 map-germ f: (R? 0) — (R3?,0) has a cuspidal edge if there
is a I-manifold germ (C,0) C (R? 0) such that for each x € C, rankdf, = 1.
The class of all germs like this will be denoted C'E.

One method to distinguish corank one maps is to investigate the doublepoint
space. Intuitively one expects the doublepoint space of the cuspidal cross cap to
be more complicated than that of the cuspidal edge, see Figure 6.6. For a corank
I map of the form h{z,y) = (=, p(z,v), ¢(z,y)) the doublepoint space D%(h) as
a subset of C® = (z,y,¢') space, is defined by the equations

p(z,y) —plz,y) _

, 0

y—y
4y —alzy) _ o
Y-y '

Example: For the cuspidal edge let f(z,y) = (z,9? v*) and for the cuspidal
cross cap ¢g(x,y) = (x,y*, zy*) then one finds that D?(f) is defined by y+ v’ and
y® + gy’ + ™, resulting in a single line y = ¢ = 0. For the cuspidal cross cap
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Figure 6.6: Cusp Edge and Cuspidal Cross Cap.

D?(g) is defined by y+%' and z(y%+yy'+¥") and the double point space has two
branches: the lines y = ¢’ = 0 and the line y = —¢, z = 0, which is recognisably
different to D?(f).

For our surface construction maps we do not expect them to come to this
nice form but we can appeal to a method given in Section 3 of [MO1] which
describes how to obtain D?(h) for a general corank 1 map. We consider pairs of
points (z,y) and (z',y") and for each of the coordinate functions #; (i = 1,2, 3)
of h, we can find functions a;, b; of z,¥,z',7 such that

hi(z,y) — hi(2',y') = (2 — 2')a; + (y — ¥)bs.

Then D%(h) is defined in x, ¥, ', ¥’ space by the equations h;(z,y)— ;(2', ') = 0
t = 1,2,3 and by the vanishing of the 2 x 2 minors of the 3 x 2 matrix whose
rows are the a; and b;. This gives six equations in four unknowns and we wish
to find the solutions to all equations simultaneously. Due to the special nature
of the equations we expect some considerable interdependnece and expect the
solution to be a curve with possible singularities.

We can find the functions ¢ and b in the following way. Let
hs,t') — h(s', 1)

55 ’
b h(SJ t) - h(S: tf)
o -t

and then a and b satisfy,
h(s,t) — h(s,t') = a(s — &) + bt — t).
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Observe that the numerator of ¢ and & above is divisible by s — s’ and ¢t — ¢/
respectively, and so for our method we take the Taylor expansion of these up to
some sufficient jet level.

6.5.2 MAPLE Implementation.

We can use MAPLE to construct the jet of our map r from a given P and c.
Recall that P = (1, X(s,%),Y(s,1)) and in Section 6.5 we described how ¥ was
found from the function ¥3(s,¢). In the MAPLE implementation we write X, Y3
and ¢(t) = (¢, ¢, €a) as power series in the following way,

X = 54Tt + Tog8% + 3118t + Lot + Taps® + Ty 8ot + T198t2 + Tgat’
Yy = 2905+ 21t + 2p08° + 2115t + 2g9t?

c, = Cip+cCpit + ciot?

ey = cCgo+ Corl + oot

Recall from Section 6.5 that ¢ is found from those variables given above.

To do this symbolically is extremely difficult due to the complexity of our
maps and Figure 6.7 only shows the two-jet for one component of r. Whilst the
geometric construction and intuition behind r is straightforward the calculation
in components rapidly becomes intractable even with powerful computer algebra
packages.

We can however devise a suitably general example where numbers are sub-
stituted, and this is what is done in the following. We wish to examine the case
when the singular curve and the frontier cross. We investigate the singularities
of the image of r via the double—point space D?(r). Since initially we are in the
frontier case the profiles form an envelope and we choose suitable values so as
to make P a nice smooth family. Figure6.8 shows the profiles P(s,t) that we
will use plotted for a range of ¢ and the example is set up so that they form an
envelope along s = 0.

Appendix A shows the MAPLE code that was used to generate the example.
We implement the method described above from [MO1] for finding the double-
point curve. We find the functions a; and b; described in Subsection6.5.1 and
then form the six equations in four unknowns that define the double-point curve.
We are able to solve for the variables s’ and ¢ (called s1 and t1 in the MAPLE
code) by substituting in two power series and iteratively solving to find the
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Figure 6.7: The two jet of one component of r (for illustrative purposes only!).
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Figure 6.8:

coeflicients, thus reducing the double-point space to two dimensions and then
looking for the common solution in the remaining equations. On the penultimate
page of the MAPLE listing we see the commands

sl poly = ulQOks+ull*t+u20*s”2+ullxskL+u02+t~2+
u30%8 " 3+u21%s " 2¥t+ul2*s*t " 2+u03*t "3
tlpoly = v10%s+v0l*t+v20%s™2+vilkgkt+v02xt ™2+

v30ks " 3+v21¥s " 2k E+v12% 8%t T 2+v03%t "3

These polynomial substitutions for s; and ¢, are substituted in one of the defining
equations for the double point space, and then the coefficients vij and uij are
solved iteratively. Once the jet of 5, and #; is calculated it is substituted in the
remaining equations of D*(r) to give the double point curve.

Working at the jet level we examine as far as the three jet of the double-point
curve, this is sufficient for determining if the image is a cuspidal cross-cap [MO1].

When we run the MAPLE session MAPLE performs all the relevant integra-
tion described in Section 6.5 to obtain the camera motion. The depth formula
for A is calculated and along the frontier it is still defined. Figure 6.9 shows the
depth A(s, 1) plotted against s for three values of constant £. Note that ) is finite
and non-zero.
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Figure 6.9: The calculated depth A for three time periods.

At the termination of the MAPLE session in Appendix A MAPLE returns
the three jet of the double—point curve. This is a function of just s and ¢. Recall
that the the double—point space is four dimensional with coordinates s, ¢, 8', ¢’ but
we have solved for s’ and ¢’ leaving an equation in two variables. The MAPLE
sesston in Appendix A is for the case when the frontier curve crosses the singular
curve, and we see that the double-point curve is

(t ++ 45)(22937¢ - 1605)%.

There are no terms of degree two or less and the double—point curve is branched
with a multiple root. This is exactly what we expect for the cuspidal cross cap,
where the double root indicates a cusp edge and the other branch is the double-
point curve of the cross cap [MO3|. Moreover we can also conclude that it is
no worse than a cuspidal cross cap. This is a significant result since this rather
general example seems to indicate that when the singular curve and frontier cross
a cuspidal cross cap is the result. It also seems that the only barrier to actually
proving this is a computational one. MAPLE is extremely sophisticated in its
algebraic manipulation but it seems that at present the size of the resulting
expressions precludes a complete general proof. So we must satisfy ourselves
with the overwhelming circumstantial evidence and conclude with the following
hypothesis.
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6.6 Conjecture: In constructing a surfoce v in the usual way from p(s,t)
and c(t), at points where the curves ¢;.m = 0 and r,||r; cross transversely r is a
cuspidal cross cap.

We can of course adapt the MAPLE session from Appendix A to deal with
other situations. At points where the frontier curve does not meet the singular
curve we expect r to have a cusp edge. This is supported by previous work
concerned with the dual of r where it was found that in this case the dual is
smooth, Proposition 6.3.

Running the MAPLE session where we choose our profiles so that they do
not form an envelope and thus ¢;.n # 0 and p;.n # 0, we find that the resulting
double-point curve has quadratic terms with a double root. This is expected
IMO3] and reflects the fact that in this formulation the cusp edge has multiplicity
two in some sense. We conclude therefore that the surface r is a cusp edge away
from the frontier.

We can do some calculations to investigate degeneracies of r. Recall that in
the actual case of reconstruction we have the infinite degeneracy where the two
sheets are folded flat and doubly cover r. What if the frontier curve is tangent
to the singular curve, and so they now share two points in common? We can set
up the MAPLE session to allow for this and we find that the double—point curve
has no cubic terms indicating a worse singularity than the cuspidal cross cap.

As mentioned in Section6.1, in the reconstruction case the frontier marks
the boundary of r, and the singular curve and frontier are identical. We may
perhaps conclude that during reconstruction we are obtaining a cuspidal cross
cap at every point along the frontier and the double-point curves sweep out a
doubly covered surface.

We can also perform the same calculation by adapting the MAPLE code to
calculate the double point space for the dual R of the constructed surface r. We
were able to do this for the general example and found that when the singular
curve (r4]|r;) and frontier curve (¢;.n = 0) cross, the dual also has a cuspidal cross
cap. Recall from Proposition 6.3 that the dual is singular along the frontier (we
proved in Proposition 6.1 that the frontier for surface construction is a parabolic
curve) and smooth along the singular curve of r.

We therefore have a strange self duality. On r there are two curves of interest,
the frontier (though of course in construction this is not the envelope of critical
sets as normally happens) and the singular curve. The constructed surface has
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Surface r Dual Surface R

singular curve rllr, frontier ¢¢.n=0

Figure 6.10: Schematic diagram showing the self-duality property described in
the text.

a cusp edge along the singular curve and smooth parabolic points along the
frontier. Where they cross we find a cuspidal cross cap. On the dual the frontier
curve is a cusp edge and the singular curve is smooth on KE. Where they cross
we get a cuspidal cross cap, see Figure 6.10.

6.6 Conclusion

We set out to investigate what the precise conditions on the profiles p and camera
motion ¢ were in the case when the critical sets formed a frontier. We constructed
an example based on circular camera motion around a sphere, and found that it
is not simply sufficient to assume that the profiles formed an envelope. Indeed
assuming the existence of a depth A(s, t) satisfying

c.n+ Ap,.n=10

is not enough to ensure that the surface is a doubly covered surface with bound-
ary.

We found that the singular curve and the frontier somehow became ‘detached’
in construction, whereas in reconstruction they are identically the same curve.
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Some general results were formed for the cases of singular/non-frontier and non-
singular/frontier cases. This was helped by an excursion into the dual. For the
case of frontier/singular points more sophisticated techniques were used.

From the computer pictures it seemed that at points where the singular curve
and frontier crossed the singularity was a cuspidal cross cap. We then imple-
mented a method from D.Mond for finding the double point space. Performing
everything at the jet level, as we were required, was a formidable task since our
map rapidly increased in complexity. In fact MAPLE was unable to perform
the calculations and we had to substitute values for the profiles. The proofs
concerning the crossing of the singular curve and the frontier are thus for the
‘general example’.

Our initial goal of finding constraints usable in a computer vision context was
perhaps overshadowed by the fascinating differential topology and singularity
theory that was uncovered. Recent results with K.Astrém (not included in
this thesis) show that it is possible to write down a complete necessary and
sufficient condition for the constructed surface to be a doubly covered surface
with boundary, by utilising discrete epipolar constraints. These are obtained by
using tangent planes defined by camera positions at time instants separated by
a finite, rather than infinitesimal, time.
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Chapter 7

The Conjugate Curve Congruence.

These ... are form’d without the Help of Occult Lines, by making
use only of the heights and breadths of the Angles.
The Fifth Figure [Poz]

7.1 Introduction.

A curve congruence is a family of curves on a surface, an example of which is
the principal curve congruence. We introduce a one parameter family of curve
congruences on an oriented surface. This family includes the principal curve
congruence and the asymptotic curve congruence.

We consider all directions » in all tangent planes whose conjugate 7 makes
a fixed angle angle « with v. The angle @ is then the parameter of the family
of congruences which we call C,. Thus the a = 0 conjugate curve congruence
is simply the asymptotic directions, since it consists of all directions whose con-
jugate is equal (i.e. has zero angle) with itself. The o = 7/2 conjugate curve
congruence 1is the principal curve congruence.

The second section describes the configuration of curves at a point of the
surface for a general conjugate curve congruence. It is found that for a given
« up to two conjugate pairs can be seen. For a general angle o we obtain up
to two directions which we label light red and light blue. These directions have
conjugates which we label dark red and dark blue respectively. Since our surfaces
are oriented we can assign a ‘sense’ to the tangent planes, and so we say that
the light directions make an angle « with the dark ones, and the dark ones make
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an angle —a with the light ones.

The third section formulates the conjugate curve congruence in the more
sophisticated setting of a family of Binary Differential Equations. We use results
of Bruce and Tari to provide generic topological pictures. We can view this
section as an investigation into how a fixed congruence varies over the surface.
The previous section investigates how the congruence changes when we fix a
point on the surface and vary «.

The fourth section introduces the spherical image of C, and the critical set
of this is the fold curves. We have a one-parameter family of fold curves, one for
each curve congruence. It is proved that the light red fold curves are the loci of
geodesic inflections of the conjugate (dark red) integral curves.

The fifth section introduces the cubic form I" which is a cubic form on the tan-
gent spaces of our surface, that generalises the classifying cubic form at umbilics.
Initially there seems no connection between this and the conjugate curve congru-
ence, but later results concerning the projections of surfaces reveal a surprising
relationship.

The sixth section characterises geodesic inflections of the critical set of a
parallel projection by means of the singularites of the spherical image of C,.

The seventh section characterises the geodesic inflections of the critical set
of a parallel projection by means of the root directions of I'. We provide a new
characterisation of the subparabolic lines and flecnodal curves of a surface, and
show that the envelope of fold curves is the discriminant of T'.

The eighth and ninth section investigates the zeros of C,, including the saddle
node and Morse discriminant bifurcation, and introduces the umbilical cords of
a surface.

7.1.1 Conjugacy

We now give a short review of conjugate directions in the context of surface
shape.

Eisenhart defines conjugacy in terms of the Dupin Indicatrix. This is a conic
defined at each point of the surface by taking the locus of points t on the tan-
gent plane for which 17/1(t,t) is equal to plus or minus one, where 17 is the
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second fundamental form [K, p.229]. As observed in [E, p.125] one can think
of Dupin’s Indicatrix as the curve one obtains by slicing the surface very close
to a point p with a plane perpendicular to the normal at p. Elliptic points give
an elliptical indicatrix, hyperbolic points hyperbolas, and at a parabolic point
the conic degenerates into two parallel straight lines. The umbilic has a circular
indicatrix. Clagsically one would then consider conjugate directions in the sense
of conjugate directions to the conic. Thus if a and b are directions in the tangent
plane passing through the origin of the conic, then these are conjugate iff they
are conjugate diameters of the indicatrix [K, p.230].

It is straightforward to see that for an elliptical point there is a direction v
whose conjugate makes a minimal angle with v and for a hyperbolic point these
are the asymptotes, and the angle is zero.

Another result concerning conjugacy is that the characteristic [BG, p.102] of
a one parameter family of tangent planes along a curve o through a point p is
conjugate to the tangent to ¢ at p. One often sees this construction in the proofs
in old geometry books.

In the following we say that v and w are conjugate iff IT{v,w) = II(w,v) =
0 or in terms of the shape operator S, S(v).w =v.S5(w)=0.

7.2 Preliminary Results.

Since we only consider oriented surfaces, we can assign a sign to angles in the
tangent space.

7.1 Definition.

1. Ifv € T,M then we uwrite € T,M for the conjugate vector to v with respect
to the second fundamental form, i.e. a vector satisfying II,(v,7) = 0. Note
that T is only well defined upto multiplication by a non zero factor, and that
in the case when v is an asymptotic direction at a parabolic point any vector
1§ conjugate to v.

2. Define the the real valued function © on the tangent bundle TM (strictly
the projectivised bundle),
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TM — [-1,1]

P, U+ Sing

where « denotes the positive angle in [0,7/2] between v and T. Again we
note that © is ill defined at points of the tangent bundie corresponding to
asymptotic directions at parabolic points.

3. The conjugate curve congruence for a fized « is the set ©~!(sin @)
which we denote C,. The conjugate directions to C, are C_,.

Notes on the Definition. Observe that ©@71(1) gives all the principal directions
and ©71(0) gives all the asymptotic directions. For a general angle o, ©~(a)
gives up to two directions at each point on the surface. Thus there are different
‘flavours’ or ‘colours’ of direction at a point for any «. This is analogous to there
being two colours of principal direction at a point. Given a vector v € T,M
we can find the whole conjugate curve congruence that has v as a member by
taking ©~1(©(v)). Also note that ©~(a) is defined for all & and contains the
asymptotic directions at parabolic points for any c.

The following lemma gives a useful expression for the above map ©.

7.2 Lemma: For any v € T,M of unit length (that is not asymptotic at a
parabolic point) and its unique conjugate T let v be the positive angle between v
and 7. We have

Sp(v).v

sin ¢ = —————

[15p ()
where S, is the shape operator at the point p.

Proof: Let e; and e; be the two principal directions and let v = cos fe; +-sin fe,.
Then it is easy to see that the conjugate is T = xy sinfe; + &; cosfe, where x4
and x5 are principal curvatures. Now we have,

lvAD]] = |7 sinc

= sin a.\/ng sin? 8 + &% cos? §
Calculation also reveals that v A7 = (0,0, 5, cos? # + ky sin® §), and so,
K1 o820 -+ Ky sin? @

sina = — . (7.1)
\/£3 sin® 6 + k3 cos? 0
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A short calculation gives,

Spy(v)v cos? @ + Ky sin’ §
1S (Il /iy sin? 8 + K2 cos? 6

which is the same as (7.1). a

We now examine the fibres of the map © that give the individual conjugate
curve congruences. We are interested in the local picture, namely the number
and directions of curves in a tangent plane, and the local topological pictures
of the curves in the vicinity of a point. We first examine the congruence in a
tangent plane.

7.3 Lemma: If the tangent directions v in T,M are parametrised by the angle
8 € [—=,m| between v and a principal direction then the restriction of © to a point
p of our surface can be written,

K1+ (Ko — K1) sin® @

\/ﬂg + (k% — x3)sin @

O(p, v(8)) =
where K1 and K, are principal curvatures in T,M.

Proof: Construct local coordinates where the principal directions are (1,0)
and (0,1), and v = (cos#,sin#). Then using Lemma 7.2 it is easy to verify the
result. a

Notes on the lemma.

e The level sets (where the target is in [~1,1]) of this function ©(p, -} give us
the values of # (i.e. tangent vectors) where the conjugate vector 7 makes
a fixed angle with v(6).

e Observe that at an umbilic the function © becomes %1 and every direction
has the angle 7/2 with its conjugate, i.e. every direction is principal.

We wish to examine the leve] sets of ©(p, -), and in order to sketch the function
we note some elementary facts.

7.4 Lemma:

e O(p,v(#)) has period .
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e If p is not an umbilic then the only values of 8 for which ©(p,v(#)) = £1
are 8 = 0,7/2,m mod 7 /2.

e If p is not an umbilic then the only turning poinis of ©(p,—) occur at

o . . . . . 2 _ -
@ = 0,7/2,7 and when p is an elliptic point, sin® 0 = P

Proof: Clearly © has period 7 since sin? has.

The function is 1 when
(k1 + (kg — 51)5in° 8))% = k¥ + (k} — &%) sin? 4,
i.e. when k, = K, or sin?@ = 1 or sin# = 0. This gives the required resuls.

To find the turning points we differentiate and obtain the result. For sin?§ =

1
i, We have

Ky
0< <1
ﬁll"‘*"‘fﬁg

and consider two cases.
(a) K1+ Ky <0800 2> K > K + Ky and K, < 0 and p is elliptic.

(b) w1+ Ky > 0500 < k; < K+ Ky and &, > 0 and p is elliptic. 0O

7.2.1 Hyperbolic Points.

The following diagram shows the function ©(p,v(9)) and —O(p, v(#)) (left hand
side} for a hyperbolic region of the surface with the accompanying sketches of
the vectors in the tangent plane (right hand side). We see that for @ = 1 the
resulting vectors are the principal directions e; and e;. For © = 0 we capture
the asymptotic directions.

When © takes a value in (0,1) we obtain four directions, or two conjugate
pairs. We can label these pairs, a blue pair and a red pair. (In the absence of
colour diagrams they are represented by black lines for one pair, and grey lines
for the other pair.) Within the pair we can have a light and a dark colour. Then
light is conjugate to dark. Between the red pair there is an asymptotic direction
{(shown dotted) and the same between the blue pair.

For the asymptotic directions we see that the light and dark directions of
the same colour have come together to make a self conjugate direction. In the
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case of the principal directions the two light and two dark directions have come
together.

Conclusion. For hyperbolic points we expect the conjugate curve congru-
ence C, and C_,, to have two directions for an angle 0 or 7/2, and four directions
otherwise.

dark red =

dark blue €,
light red =
light blue
/ g
light blue ™ lightred
A cNM , dark blue dark red
op o LAV, EVA ™0 3 \
. fight red =
fight blue = - \
dark blue : dark red

7.2.2 Elliptic Points.

The following diagram shows the function ©(p,v(#)) and —©(p, v(#))(left hand
side) for an elliptic region of the surface with the accompanying sketches of the
vectors in the tangent plane (right hand side). We see that for © = 1 the resulting
vectors are the principal directions e; and e;. For © = 0 there are no solutions,
indicating that there are no asymptotic directions on an elliptic patch.

When © takes a value in (0,1) we see that there are either no solutions,
corresponding to no vectors v having the property that the angle they make
with their conjugate 7 is the required angle, two solutions or four solutions.

156



It can be shown that the condition for © to have a repeated solution on
an elliptic patch is that ©(p,v(9)) = Zﬂ ie. sina = YK  So for some
given fixed angle we expect a curve of solutions on the surface, since this is one
condition. Thus the elliptic part is split into two regions of four solutions (two
conjugate pairs) and zero solutions, for our curve congruence. We will see later
that when we formulate C, as a binary differential equation this. curve will be

the discriminant (7.8).

For the four solutions, we have a blue and a red conjugate pair as before,
and we can label the members of the pair light and dark. The dotted lines
between the blue and red lines are the directions they converge to when the four
directions become two, shown in the diagram below it. Unlike the hyperbolic
case the coincident directions are not self conjugate, they are of different colours.

Conclusion. For elliptic points for we expect the surface to be divided
into two regions separated by a discriminant curve (possibly singular), with each
point contributing two directions to the curve congruence in one region, one
direction on the discriminant and no directions in the other region.

dark red =

dark blue e,
light red =
light blue
g -~
s \\/ﬁ ¢
light red
o P o wiimy 4 darkred dark blue
0 i 2
9 theta o)
dark blue =
dark red light red
—1
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7.2.3 Parabolic Points.

At parabolic points for a generic surface there is one asymptotic direction and
two principal directions. We discount flat umbilics as non generic in the surfaces
we consider.

The following diagrams show the configurations of directions we expect at
parabolic points in our family of conjugate curve congruences. The asymptotic
direction has been taken as the z-axis, that is # = 0. For © = 1 we have picked
out the principal direction with non zero curvature. This is conjugate with the
asymptotic direction. It is impossible to say what angle the asymptotic direction
makes with its conjugate since it is conjugate to every direction.

For © = 0 we find that the unique asymptotic direction is the only direction
that is coincident with its conjugate, as expected.

We then getf just one pair of conjugate directions for all other angles.

dark blue e,
=light blue

dark blue light blue

dark blue
=light blue
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7.2.4 Umbilics.

For the umbilic we see that © is constant, and the conjugate curve congruence
is empty for all angles except /2, where all directions make an angle 7 /2 with
their conjugate, as expected.

theta

7.3 (., As A Binary Differential Equation.

In this section we consider our family of congruences C, as a family of binary
differential equations (BDEs). Much work has been done on these objects [BF],
[D], [BT1], [BT2] and we seek to apply some of the results to provide generic
pictures of the family of integral curves and discriminants.
We consider BDEs of the form
a(z,y, a)dy® + 2b(z,y, a)dydz + c(z,y, o)dz® = 0

where we think of « as the parameter of our family. The discriminant for some
@ is b* — ac = 0. Figure7.1 shows the family C, for some example surface. In
this section a,b and ¢ always refer to the coefficients of the BDE.

We establish some notation.

7.5 Definition:  The discriminant ¥ — ac = 0 of the congruence C, is
denoted A(C,).
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Figure 7.1: Integral curves of C, with increasing « left to right. The figure
includes many features that will be discussed later in the text.
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We now establish the form of the BDE for a surface in Monge form.

7.6 Proposition:

For a surface in Monge form (z,y, h(z,y)) with E, F,G,l,m and n the usual
coefficients of the first and second fundamental form we can write C, as,

dy*(sina(Gm — Fn) — ny/1 + A2 + h2cosa) +
dydz(sin (Gl — En) — 2m/1 + hZ + ki cos &) +
dz*(sin (Fl — Em) — I3/1 + A2 + h cos &) = 0.

Proof: Let S be the shape operator, r(z,y) = (x,v, h(z,y)) and,
l

m
n

S(ry)ry, E=r,r,
S(ry)ry, F=r,r,

S(r,)r, G=r,r,

il

Let v be a tangent vector.

We let v = (1,b) which means v = r, + br,. Since S
is linear we have,

Sw)x, = S(rgy)ry+bS(r,)r,=1+bm
S(v).r, = S(ry)r, +bS(r,).r,=m+bn.

Define A, = S(v).r, and 4, = S(v).r, and note well that we can not conclude

that S(v) = (A4;, A;) since the Monge parametrisation is not orthonormal at
every point on the surface.

Now for some s; and sy let S(v) = (s1, s2) and perform the following,
S(w)r, = $1E+5F =4,
S('D).I'y = SlF + 82G = Ag.

We can solve the above for s; and s, to get,

1
S(’U) = m(A]_G — AQF, AzE —_ AIF)

1
s+ m)G = (m+ ), (m +bn)E — (1+ bm)F).

We will require S(v).v which is,

S(w)v = S(v)r,+bS(v).r,
= A, + bA,.
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Now if « is the (signed) angle between v and T then recall from (7.2) that,
S(v).w 0.0

SinQx = ===, COS(Y = ——

olllS@)I° Il
Since S{v) and T are orthogonal then if » is normal to the surface we can write
7 = S(v) X » and

Izl = IS (w)Il]l]]- (7.2)
So we have,
cos 0 — vy S(v) Au.v
Izl A=/l
and
sina = Y
1S()H]”
using (7.2) giving, [l5e)
tan o = EORXR (7.3)

We can interpret our vectors in Monge form,
= (1,b) = (1,b, h, + bhy)
v = (hyhy,—1)
S(‘U) = (81, 89, Slhz + Szhy).
Calculation reveals that [v, S(v), u] = (bs; — $2)(1-+hZ+hZ). We can now expand
(7.3) to get,
[v, S(v), u]sin @ = ||u||S(v).vecosa
i.e. (bsy —s2)(1+ A3+ h2)sina =

1+ h2 -+ h2(A; +bAs)cosa
ie. (bALG — bALF — AyE + A1 F)\ 1+ B; + hlsina =
(A; -+ bA)(EG ~ F?) cos o
ie. (bGUI+bm)—bF(m+bn)— (m+m)E+ (I+bm)F)sina =

(I + 2bm + *n)\/1 + BE + Bl cos a,

where the last equivalence is got by noting that in Monge form EG — F? = ||ul].
We can now expand this to get a quadratic in b and b = dy/dxz,

Y (sina(Gm —~ Fn) - ny/1 + h2 + RZcosa) +
b(sin (Gl — En) — 2m,/1 +% +hZcosa) +
sina(Fl —~ Em) — I,/1+ hZ + hZcosa =0.
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This completes the proof. O

Things are considerably simplified if we adopt a very special parametrisa-
tion of the surface; namely parametrising by the principal curves (away from
umbilics).

7.7 Lemma: If k,(2,y) end x,(z,y) are the principal curvatures at a non-
umbilical point of the surface and we adopt a parametrisation away from umbilics
where z-constant and y-constant curves are principal curves, then we can write
the family C, as,

K c08 ady® + (K, — K,) sin adydz + K, cos adz® = 0.

Proof: For this parametrisation we have the following identities,

l=r, E=1
m=0 F=0
n=r;, G=1

If we write v = (v, §) then S(v) = (v1,6n), T = (=Fn,71), so ||S@)| = [[7]l.
Calculation reveals that,

S)w = ¥+
70 = —vyfn+ysl.

If o is the angle between v and 7 then as usual we have |

sin @ S(v)v cos vy
= NP TIIATE @ = e H
1S (@)l }v]} igiigll
and since [|S{v}|| = ||7]| we have,

sin a(yB(1 — n)) = cos a(y*l + *n)
and making the substitutions for [, n we have the family of BDEs,
Kq €08 ady® + (i, — K,) sin adydz + K, cos adz® = 0.

A straightforward calculation gives the following corollary.
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7.8 Corollary: The discriminant of the family is given by

H?sina— K =0

where K 1s the Gauss eurvature and H is the mean curvature.

Notes on Corollary:

Thus we see that all the discriminant curves of our BDE family occur in
the elliptic region of the surface.

The mean curvature H is never zero on the discriminant curves by the
previous note.

When o =0, A(C,) is the parabolic curve.

When o = 7/2, A(C,) consists of the umbilic points.

We wish to calculate the condition in Monge form for our discriminant to
be singular. First we expand the coefficients a, b, ¢ of the BDE in terms of the
coeflicients in the Monge expansion of the surface.

7.9 Lemma: If our surface is given as the graph, h = (1/2)(apz® + 2a,7y +
asy?) + (1/6)(boz® + 3b,2%y + 3byzy® + bsy®) + - - - then the linear and constant

parts

a

of the coefficients a,b, ¢ of the BDE are,

= aysina —aycosa+ (b sina — by cosa)z + (by sina — bz cos @)y
= (1/2)sinafag — az) — ay cosa + ((1/2) sin ce(bg — by) — by cos o)z +
((1/2) sin (b — bg) ~ by cos )y

= —ajsina — agcosa — (by sin a + by cos &)z — (by sin e + by cos @)y

Proof: With the Monge parametrisation we have,

n=gy+bhrt+tby+--- G=14+0(2).

We then just expand the coefficients from Proposition 7.6 to get the result. O

We use the previous lemma in the proof of the following lemmma.
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7.10 Lemma: If our surface is given in the following Monge form with diag-
onalised gquadratic part

b= (1/2)(aox® + agy?) + (1/6)(boz® + 36,7y + 3bozy® + bay®) + - -,
then provided ag # ay the direction of the normal to A(C,) at the origin is
(aobe — agbo, aghs — azby),

and the condition for the origin to be a singular point of A(C,) is,
sin' o = ey
agby — agby = 0,
G0b3 bl ngl = 0

If the point is an umbilic and sin o = +1 then the discriminant is always singular

at the origin.

Proof: Calculate the linear and constant part of b2 —ac from the expansions
in the previous lemma,

P2
s o
b —ac = 1 (ap + as)? — agas +
an 2
s1n”
( 5 (agbg + agbg + ngo + agbg) - G,Ubg et ﬂ.gbg) z -+
a2

sin® o
( 5 (@2b1 + @23 + aghy + agbs) — agbs — azbz) g+
Since the region is elliptic @y and a, are the same sign and never both zero so
ap + as # 0 and so substituting sin® o = (—4—%‘!2—; gives

ap-+az)

(ay — ao)(

(@2 - Go)(
ag + Qo a

b —ac = agby — agby)x + aobs — axb)y + -,

hence result. O

Note on the Lemma: It is heipful to think of the discriminant sina =
K/H? as a surface in z,y, o space. Then the set of discriminant curves arise as
level sets of this (generically) smooth surface. Figure 7.2 shows some discriminant
curves for the family C,, for an elliptic island in a hyperbolic sea, with one umbilic.

We have a one parameter family of BDEs and the previous lemma indicates
that there are three conditions on the coefficients for a singular discriminant.
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/

A(C,) = Parabolic curve
A{Crp) = Umbilic

Figure 7.2: Some discriminant curves shown for an elliptic island with an umbilic
in a hyperbolic sea.

For a generic surface we expect there to be isolated singularities in the family of
discriminants. We also assume in the subsequent work that the singularites will
be no worse than Morse. Since a non-Morse singularity would impose another
condition we do not expect this to be satisfied in general. The condition for
A(C,) to be worse than Morse is extremely complicated.

7.3.1 One Parameter Families of BDEs

We have shown how the family C, can be considered as a one parameter family
of binary differential equations. In this subsection we provide a short synopsis
of the results in [BT2].

The paper [BT2] considers generic 1-parameter families of BDEs of the form
a(z,y, t)dy® + 2b(z,y, )dydz + c(z,y, t)dz® = 0 (7.4)

where the discriminant * — ac = 0 has a Morse singularity at ¢ = 0 and all
the coefficients a,b and ¢ vanish. The local topological classification of solution
curves of BDEs of Morse type is given in [BT1]. This follows earlier work in [BF],
and Davydov classified generic bivalued fields when the discriminant is smooth
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[D].

For the family C, we observe that the discriminant undergoes Morse tran-
sitions where not all the coefficients of the BDE are zero. We expect this to
happen for some o, with 0 < « < 7/2. In this case it is not possible to apply
the results of [BT1]. Consider the BDE

dy® + zyda® = 0,

the coefficients 1 and zy are not all zero but the discriminant 2y = 0 is Morse.
We can not use the results in [BT1] in this case.

We can however apply the results of [BT2] for when & = 7/2 and the discrim-
inant is an umbilic. In this case we have some conditions to check and then we
can use the pictures to give us the topological configuration of C, at an umbilic.
The notion of fibre topological equivalence for families of bivalued vector fields
is used in [BT2]. Two configurations are topologically equivalent if there is a
homeomorphism of the plane taking one set of integral curves to the other. Two
one parameter families of such configurations X; and Y, are called topologically
equivalent if there exists a homeomorphism s = ¢(t) between the parameter o
space and a family of homeomorphisms h, of R? depending on the parameter ¢
such that for all ¢, h; is a topological equivalence between X, and Ys00)-

We now outline the conditions that are required. The results of [BT2] are
only valid for families of BDEs that satisfy a so called ‘versality condition’. We
reproduce this here.

7.11 Proposition: [BT2] We denote by aix -+ asy + l1t, bz + boy + lot and
&% + coy + I3t the linear parts of a, b and ¢ respectively. The 1-jet of equation
(7.4) can be reduced to

(y + )dy® + 2(byz + boy)dydz + ydz?

(with a new pair by, by) if the following “wersality condition’ is satisfied

a; ay L
by by Ip | #0.
1 ©Co l3

Our first job is therefore to verify this for C, at an umbilic, which is accomplished
in the next subsection.
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In [BT2| the BDE is lifted on to a doubly covered surface F' = 0, where
F = ap® + 2bp + ¢, and the lift £ is
) 0 %)
It is then assumed that the cubic

¢lp) = (Fp+ pr)(O, 0,0,p)
= agp3 + (2b2 + Gl)_’p2 + (2b1 -+ Cg)p + ¢

giving the zeros of the field & = £(z,y, 0, p) has no repeated roots and that the
eigenvalues of these singularities are non-zero [BT2|. In the following subsection
we calculate ¢ for C,.

The theorem that we will require from [BT2] is the following

7.12 Theorem: [BT2] Suppose that the family of BDEs is of Morse type at
t =0, the cubic ¢ has no repeated roots, the zeros of & are normal and the family
satisfies the versality condition above. Then the family is (fibre) topologically
equivalent to one of the following normal forms.

I Ay is an isolated point:

(¢) Lemon (1 saddle) (y + t)dy? + 2zdydz — ydz® =0
(b) Star (3 saddles) (y + t)dy? — 2zdydz — ydz? = 0
(¢) Monstar (2 saddles +1 node) (y+ t)dy® + szdydz — ydz* = 0.

(Normality is a technical condition on eigenvalues of the zeros of a vector field
that holds for “most” fields.) There are also results in [BT2] for when the
discriminant is a crossing that we have not reproduced here.

In the next subsection we show that C, generically satisfies the hypotheses
of the previous theorem at an umbilic.

7.3.2 (C, At An Umbilic

Assuming then that A(C,) is of Morse type we expect it either to be an isolated
point or the transverse crossing of two curves. In the case of an umbilic we present
a lemma that tells us that A(C; ;) is (unsurprisingly) an isolated point. First
we will need the conditions given in the following lemma for when an umbilic is
degenerate. The umbilic can be degenerate in essentially two ways, either it is a
non-versally unfolded D, of the distance squared function or is worse than a D,.
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7.13 Lemma: Write our surface in Monge form at the origin with height func-
tion,

h(z,y) = (k/2)(z* + 3?) + (1/6)(bya® + 3b12%y + 3byay® + bay®) + - - -

then the origin is a versally unfolded Dy of the distance squared function iff the
following hold

The cubic byx® + 3b 2%y + 3byxy® + bay® is non degenerate
bybs — b2 + boby — b2 £ 0.

Proof:

The family of distance squared functions on our surface is
1 1
Flz,g.a)=(z—0)’ +(y — @)’ + (h =03 — 5-)" — 5.
If we let f = F(z,y,0) then
-1
f = 3_’{'(1303:3 + 361$2y -+ 3b2$y2 + bsy3) 4+,

We see that f is at least a D, and worse if this cubic form degenerates.

We now wish to unfold the D, in our family F. Recall that in checking versal
unfolding it is sufficient to work at the jet level and in the case of a D, we can
work to the three level. It just becomes a matter of linear algebra. For functions
we require %(x, ¥, 0) to span the real vector space,

&z, y)
€(w,4){0] 0=, 07 [dy)

equivalently,
R+ &(z,y)(0f/0z,0f [0y) + R(OF/a;) = E(z,y).

We now perform some calculations to obtain the following,
oF
da;
OF
Dasy

ar 2
By — k2

of
oz
af
9y

= -2z

— —Zy

-1
?(bgﬁﬂ? + 2b1x’y + bgyg) + -

-1
= -—;(blxz + 202zy + bay®) + - - -,
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We can get four cubics (ignoring higher terms) by taking zf;, yfz, 2 £, ¥ f,, and
then calculate the condition for us to obtain all cubic monomials. This is equiv-
alent to the non-vanishing of the following jacobian,

b[} 2b1 bg 0
b, 25, bs O
0 by 2b b
0 b 2b, bs

Observe that £Jy D 12 so there is no need to consider the cubic parts. It remains
to check the quadratic parts.

Ignoring the constant term of STFs, and using %_,% and g{; we can obtain all
quadratic monomials providing the following jacobian does not vanish

be 2b, by
by 2by by |= biby — b2 + boby — b2
1 0 1

Provided this is not zero we have satisfied the conditions for our family of distance
squared functions to versally unfold the Dy. ]

7.14 Lemma: The discriminant A(Cy/2) is an isolated point at an ordinary
umbilic.

Proof: Corollary 7.8 says that the discriminant is given by the equation sin? o =
K/H?, i.e,
sin® a(Gl + Bn — 2Fm)? = 4(In — m?*)(EG — F?).

Setting @ = 7/2 we can expand the above equation in terms of z and y at an
umbilic giving,

(—2byby + b3 + b% + 4b3)x?
+ (65152 + 2b2b3 hd ngbg =+ 2b1b0)$‘y
+  (4b% — 2b1by + B2 + By 4+

Calculating the discriminant of the quadratic part gives
—16(bybg — b — b3 + byby)?

which is always non positive and the previous lemma says that it is non zero if
the umbilic is ordinary. a
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Using results from [BT2} we can make some strong statements concerning
the topological configuration of C, near an umbilic at @ = 7/2. First we need
to check the ‘versality’ criterion; see Subsection 7.3.1.

7.15 Lemma: The versality condition from [BT2] is satisfied for the family
Crsa+¢ at an ordinary umbilic.

Proof: By Lemma 7.9 the linear part of the coefficients of the BDE at an
umbilic with principal curvature & are,

= bz + by + Kt
b = (1/2)(bo — by)z + (1/2)(by — b3)y
¢ = —bx—by+ kt.

The versality condition is then,

bl bg K
QQ%“QZ ng—ba' 0= K}(b% - blbg — bgbo + b%) }é 0.
—bl —bg ”
This is satisfied if the umbilic is ordinary by Lemma 7.13. a

We can now satisfy the hypotheses in Theorem 3.5 of [BT2], see Subsec-
tion7.3.1. For C,;; we have shown that the discriminant is Morse and an iso-
lated point (note following Lemma 7.10 and Lemma7.14). The previous lemma
showed that the versality criterion is satisfied in this case, and we assume that
the following cubic in p has no repeated roots,

byp® + (2by — b3)p® -+ (by — 2b3)p — by

We also assume that the zeros of the vector field & in [BT2] are normal (a
technical condition on the eigenvalues of the zeros of a vector field which holds
for ‘most’ fields).

7.16 Proposition:/BT2] Consider the family Cy.jay, Let A(Crpo) be an isolated
umbilic. Suppose that the discriminant A(Cy/p) is of Morse type (see note fol-
lowing Lemma 7.10), the following cubic in p,

bop® + (201 — b3)p® + (bo ~ 2ba)p — by
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has no repeated roots, the zeros of & are normal and A(Crjq) is an ordinary
umbilic, then the family of BDEs is (fibre) topologically equivalent to one of the
following normal forms,

(a) Lemon (1 saddle) (y + a)dy® + 2zdzdy — ydz® = 0
(8) Star (3 saddles) (y + a)dy? — 2zdzdy — ydz® =0
(c) Monstar (2saddles + 1node) (y+ a)dy® + (1/2)zdzdy — ydz? = 0.

O

Figure 7.3 shows the normal forms for the three different types of ordinary
umbilics and their deformation within the family.

7.4 The Spherical Image.

Whenever one is confronted with a particular curve congruence it is natural to
examine the spherical image, where the unit directions on the surface get mapped
to points on the standard unit sphere!. If we take one colour of a particular
conjugate curve congruence and take its spherical image then this is locally a
map from the plane to the plane. The singularities of this spherical image tell
us much about the original geometry.

7.17 Definition: The spherical image for o fized angle o is the image of
the vectors ©7(sina) on the unit sphere, where a vector v is mapped to the point
on the sphere corresponding to the direction that v takes in R3.

Notes on the definition. Recall that for some fixed angle « the conjugate
curve congruence may have up to two directions at some points. We can take
one colour of direction consistently (at least locally), say the light red direction,
and then consider the ‘light red spherical image for C,’. Suppose that the light
red directions on our surface M, locally parametrised by (s,t), are v(s,t), then
if & is the spherical map we have,

M — 52
(5,0)
(s:8) — T

Strictly we do not consider our congruences to have oriented curves and thus the sphere
has antipodal points identified and we map to the projective plane.
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Figure 7.3: Schematic showing bifurcations of integral curves of BDEs of type

N

Lemon, Star and Monstar.
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We are thus drawn to the following definition.

7.18 Definition: The fold curve (of a particular colour) for a fized o is the
set of eritical points on the surface under the spherical map §. There are special
points on the fold curve corresponding to cusps of the spherical image. The fold
curves of C, are denoted S,.

In the following we make use of the subparabolic curves of a surface. Recall
that the subparabolic curves are defined to be the set of points on the surface
that gives rise to parabolic points on the focal set [BW]. However we make use
of another characterisation of the subparabolic curve from [BW]; namely they
are the folds of the principal spherical image. This is discussed below.

Examples.

1. Observe that the spherical image where v = % is the principal spherical im-
age and it is known that this is the same as the Gauss map of the focal set
[BW]. Thus the folds and cusps of this map correspond to parabolic curves
and cusps of Gauss respectively on the focal set. Thus the subparabolic
lines (two colours) are fold curves for the conjugate curve congruence cor-
responding to the angle n/2.

2. The spherical image for C, with o = 0 gives the asymptotic spherical image
whose folds correspond to the flecnodal curve, and cusps correspond to the
biflecnodal points [KD, p.283]. The fecnodal curves (two colours) are fold
curves for the conjugate curve congruence corresponding to the angle 0.

The fold curves are characterised in the following result by the loci of geodesic
inflections of the curves of opposite shade. Recall that if we consider the light
red curves of some C, then we can integrate the conjugate directions to get the
dark red curves. We show that the light red fold curve is the locus of geodesic
inflections of the dark red curves. Some examples are given below before the
result to aid navigation in the result proper.

Examples.

1. It is known [RMO2|, [RMO] that a subparabolic line is also the locus of
geodesic inflections of lines of curvature of the opposite colour. In our
present terminology the subparabolic line is a fold curve for the conjugate
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curve congruence C,so. The light red (resp. light blue) fold curve is the
locus of geodesic inflections of the dark red (resp. dark blue) curve.

2. The flecnodal curve (of a particular colour) is characterised as the locus
of points where the asymptotic curve of the same colour has a geodesic
inflection [K, p.282]. In our terminology, the fold curve of Cy is the locus of
points of geodesic inflection of the curve of the same colour, but different
shade.

7.19 Proposition: For some fized angle o consider the congruence C,. Pro-
vided the potnt p is not on the discriminant A(C,) then p is on the light red fold
curve iff the dark red curve has a geodesic inflection at p.

Proof: We examine the condition for a point p to be on &, of a particular
colour. Recall from the definition of a fold curve (7.18) that we have to find the
condition for the spherical image to be singular. We proceed in local coordinates.

Writing our surface in Monge form r(z,y) = (x,y, h(z,y)) we take
h=1/2(apz® + 20,2y + ayy®) + 1/6(bgz® + 30,22y + 3bozy® + bsy®) + -+

We fix our z-axis as a member of C,. The conjugate direction to (1,0) is {(—a,, aq)
and setting « to be the angle between them, we find,

voi+ai

This has fixed the particular congruence we wish to examine; namely all those
vectors whose sine of the angle between them and their conjugate is &. The
z-axis is certainly a member of this congruence.

sing =

(7.5)

We label the conjugate direction (1,—aq/a;) as ‘light red’ (so that (1,0)
is ‘dark red’) and we wish to examine all other light red directions near to
(1,—ap/a1), and take their spherical image. So consider vectors of the form
v(z,y) = (1,b(z,y)), where we write b as,

b= —ap/a; -+ brT +bny +---.

We wish to calculate the jet of

—ap _ S(v)w
ag+ai  [[S)llivll

sine =
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to find the coefficients by and by, .

With S denoting the shape operator and writing £ = r;.x;, F = 1.1y,
G = 1.1y, | = S(r).r,, m = S(ry).r, and n = S(r,).r, a calculation shows
that,
1
S(1,0) = m((A1G — Ay F)rp + (A F — A, Fry)
where A; and A, are,
A =S, =1+bm

Ay =S(w).r, =m-+bn,
More calculation gives the relatively simple result,

S(v)v = A;+b4,
= [+ 2bm + bn.

It is also straightforward to calculate,

vw = FE+2bF + G

1

We can express E, F,G,l,m,n in terms of the Monge form and calculate the jet
of,
[l (w)]I? sin? @ = (S(v).v)*

Using MAPLE we find,

b = arby — agh

0 =

0 agas — 203 — af

boi = agby — a1by
01 - 5

aoas — 263 — af

and a3 - a? # 0 since that would be an asymptotic direction at a parabolic point
which is on the discriminant. The denominator is zero if the congruence we are
considering is the principal one (& = w/2) or the point is on the discriminant,.
In the case of @ = /2 the statement of the result is known [RMOZ2|, [RMO].

We are now ready to take the spherical image. Taking local coordinates
makes this a map from R? to R2. The vectors we are considering are, (1,0) =
T+ bry = (1,b, by + by,). We project on to the yz plane and get the map,

R? — R?
T,y > b Ay bhy.
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The jacobian is singular precisely when the spherical image is singular. We
evaluate the jacobian at the origin and using the derivatives by and by, already

calculated we get

1
a—l(ag — anag)(agbl - boal) =0. (76)
The condition for the spherical image to have a singularity at the origin where

the z-azis ts o member of our congruence is equation 7.6.

We have found the condition for p to be on the light red fold curve. In
these coordinates the dark red curve through p is tangent to the z-axis. We
parametrise it as follows,

(z,02% +--).

Thus ¢ = 0 is the condition for the dark red line to have a geodesic inflection.
Along this curve the the tangent directions u must satisfy

G _ S(u).w
Jai+az 1Sl

and so we simply expand the square of this (to eliminate the square roots in the
denominator) to find the coefficient o. Using MAPLE we find,

sinq =

apb; — boa,
az ~ agay + 203

o =

‘The zero condition for this is the same as for (7.6), and the denominator vanishes
only on the discriminant. This completes the proof. 0

7.5 Cubic Forms.

In this section we study a cubic form defined on the tangent space of our surface.
There is a cubic form for each point on the surface. Our cubic turns out to be a
natural generalisation of the cubic defined at an umbilic that gives the limiting
directions of lines of curvature. It is shown in a later section that the discriminant
of the cubic form is connected to the envelope of fold curves S,.

7.20 Definition: The cubic form ,(u,v) is a function,
Ty

.M — R
(w,9) = Tp(y,v)
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[ I—

defined at the point (0,0) for a surface in Monge form (z,y, Az, y)+B(z,y)+--+)
(with A quadratic and B cubic) as,

94 84

—i @ a

Loolwv)=| o5 5%
dr Oy |(z=uy=v)

7.21 Definition: The cubic form az® + 3bz*y + Scxy® + dy® is,

Elliptic  if there are three distinct roots,

Parabolic three real, two coincident roots,
Hyperbolic one real, two complex conjugate roots,
Cubical three real coincident roots.

Note on Cubic Forms.

Taking our surface in Monge form with height function h(z,y) = A(z,y) +
B(z,y)+... (with A quadratic and B cubic), we can form the following quadratic
form,

a4 94
8x 8y
Hz2+2) =2+
bz ay

where A(z,y) is essentially the second fundamental form, and z? + y? the first
fundamental form. It is simple to deduce that the root directions of this quadratic
form are the principal directions. At an umbilic this form is degenerate, and we
create the following cubic form,

9B o8B

dx dy
22+ A=+ ‘

az Ay

whose roots at an umbilic are the limiting directions of the lines of curvature [W].
Indeed the limiting directions of the subparabolic lines at an ordinary umbilic
are these root directions [WI}, [BW]. We see that the cubic form I' defined above
is a natural generalisation.

We can divide our surface M into two disjoint subsets of points depending
on the number of real solutions of I'. Determining the discriminant of I" is a
complicated condition in local coordinates.
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7.6 Geodesic Inflections of >—Part 1.

We now prove a result that connects the geodesic inflections of the critical set of
a parallel projection, which we systematically denote by £, with the singularities
of the spherical image of the congruence C,. We set up some local coordinates in
the next lemma which will be used in the main proposition. The following lemma
says that the intuitive notion of a geodesic inflection, namely that projecting the
curve into the tangent plane, gives the correct intuition.

7.22 Lemma: The geodesic curvature of o curve on a surface M at a point
p 1s zero iff the parallel projection along the normal at p of the curve into the
tangent plane T,M has an inflection.

Proof: Take a curve vy on our surface (in Monge form) parametrised by ¥,
without loss in generality. We write v as (z(y), y, h{z(y),y)). The unit tangent
to -y is,

B (z',1,hyz’ + hy)

V14272 + (hot' + hy)?

Calculation reveals that T7(0), the derivative of T at the origin, is tangent to
the vector (2", —2'z”, - --) where * -’ is some expression that will not concern us
here. As in the usual frame we take the vector V to be n AT where n is the
surface normal. In our case at the origin we have,

(—1,2',0)
The geodesic curvature is defined to be g = 7".V and so in our case g = 0 at the
origin if and only if 2”(0) = 0.

T

V0)=nAT=

Observe that the projection of v into the tangent plane at (0,0) is (z(v), v))
and this plane curve inflects at 0 iff z”(0) = 0. Hence result. ]

The following lemma gives us the condition for X to have a geodesic inflection
when the projection direction is (1,0, 0).

7.23 Lemma: Given our surface in Monge form with the height function
1 1
hz,y) = —2—(a0$2 + 2a,7y + asy?) + é(ngS + 3byz Yy + 3bozy® + byy®) + ...,
then projecting in the direction (1,0,0) resulls in a geodesic inflection of ¥ iff,

3 a2
boa% - Zblalag -+ Dg0g = 0.
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Proof: Parametrise the line that is in the direction conjugate to (1,0, 0),

z(s) = —mys

y(s) = agps.

The equation of ¥ is (1,0,0).(hg, by, —1) = 0, ie. hy(z,y) = 0. We examine
the contact of & (given by an equation) with the conjugate direction (given as a
parametrisation). Substituting the parametrisation in the equation we obtain,

1
-2~(b0a§ — 9bya1a0 + byal)st + ... = 0.

We see that we have two point contact which is at it should be, and the vanishing
of the coefficient of s gives the condition for three point contact. a

Comment on the proof of lemma 7.23. The reason why this proof is valid
is that the parameter space for a surface in Monge form is the same as the tangent
plane to the surface at 0. The map from the parameter space to the surface is
just the back-projection from the tangent plane. Therefore the projection of X
onto the tangent plane at 0 is given by the equation of X, h (z,y) = 0.

The following result relates the geodesic inflections of ¥ to the singularities
of the spherical image. Suppose we have a projection direction v and the point p
lies on the resulting critical set £. We wish to find out when X has a geodesic in-
flection at p. The following result tells us that we need to examine the particular
congruence C, which has v as a member at p. Clearly v € T, M is a member of
some C, so we examine the spherical image of that C, around p. The following
result says that if the spherical image is folded then ¥ will have an inflection.

7.24 Proposition: Letv € T,M be the direction of a parallel projection, and
v a light red direction of C,. Provided p is not on the discriminant A(C,), the
resulting critical set X through p has o geodesic inflection iff p is on the light red
fold curve of C,. See Figure 7.4.

Proof: We work in local coordinates and find the condition for a point p to be
on the fold curve &,. Recall from the definition of a fold curve that we have to
find the condition for the spherical image to be singular.

Writing our surface in Monge form r(z,y) = (z,v, h(z,y)) we take

h=1/2(a02” + 2013y + azy®) + 1/6(box” + 3b12”y + Bbpy® + bay®) + -+
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Figure 7.4: Left: surface M with projection direction v showing the critical set
¥ (dotted) and projected along the normal into the tangent plane at p (solid).
Right: the image of the spherical image on the unit sphere. The region R is the
image of the spherical image of M of the vectors ©71(©(p,v)). The curve F is
the fold of the map and p’ is the image of the point p under the spherical image
map.

We fix the z-axis as a member of our congruence C,. This will be the direction
of projection v. The conjugate direction to (1,0) is (—a,, ap) and setting « to be
the angle between them, we find

2 aj

S~ & = 5, g

ag + af

This has fixed the particular congruence we wish to examine; namely all those
vectors whose sine of the angle between them and their conjugate is «. The
z-axis is certainly a member of the congruence.

We wish to examine all directions close to (1,0) in the congruence and take
their spherical image. Consider vectors of the form (1,b(z,¥)) with 5(0,0) =0
and write,

b:blg.’.b'-l—bgly"]l""'.

Using Lemma 7.2 we wish to calculate the jet of
af (S(v)-v)°

sin o = =
1 aa+adl  [SWIE]?

to find the coefficients b;g and by, .

With S as the shape operator we write, £ = r,.r;, F' = r,.ry,, G = 1.1,
| = S(ry)ry, m = S(r;).r, and n = S(r,).r, a calculation shows that
1

S(I, b) - m((ﬂqg - AQF)I'I + (AQE - A}_F)I'y)
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where A; and A, are,

Ay = S)r,=14+bm
Ay = S(v).r, =m+bn.

More calculation gives the relatively simple result

S(w)v = A;+bA,
= [+ 2bm + b’n.

It is also straightforward to calculate,

v = FE+2F +bG

1
S(’U)S(?)) = W(G/ﬁ - ZFA]_AQ + EA%)

We can express E, F,G,1,m,n in terms of the Monge form and calculate the jet
of
[o[2[1S(v)]| sin® & = (S(v).v)*.

Using MAPLE we find,

20.0(1;%50 - 20;{2)(11 bl

blU =
2a3a,as — dagad — 2aa,

2a3a,by — 2agaib;
20¢a,09 — dagai — 2a3a,”

bOl =

We are now ready to take the spherical image of the vectors (1,5). The vector
(1,b) in R® is (1,b, h, + bh,) and so we take local coordinates on the sphere by
projecting in to the ¢z plane. The map is thus,

R?> — R?
z,y > bhy - bhy.

The jacobian is singular precisely when the spherical image is singular. We
evaluate the jacobian at the origin and using the derivatives by and by already

calculated above we get
b a2 — 2a a0y + sz
01 140vY1 20 2_ (77)

apay — 2af — aj

The denominator is zero iff p is on the discriminant of the congruence. The
numerator gives the condition for the spherical image to have a singularity at
the origin when the z axis is a member of the congruence.
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We now project in the direction (1,0,0) and find the condition for the critical
set 2 to have an inflection. The equation of ¥ in this case is h, = 0. We know
that ¥ will be tangent to the conjugate direction (—a,,ay), but we wish to find
the condition for it to have extra contact when projected in to the tangent plane
at the origin. We parametrise a line in the conjugate direction,

T = —a18

Y = Qgs.

We substitute this parametrisation into the equation for ¥ and the condition for
three point contact is
bga% — 2b1a1a0 + bgag =0

which is equivalent to (7.7), thus completing the proof. O

Notes on the Proposition. If the projection direction v is a principal
direction then the resulting critical set will have an inflection iff the principal
spherical image has a singularity, which by the examples in Definition 7.18 is a
subparabolic point. This specific result was first noticed in [RMO]. Figure7.5
gives a schematic for demonstrating the intuition behind this result. We first
note that a ‘near and far point’ p is a point on the critical set & (for parallel
projection) whose perpendicular distance to the viewplane is critical. This is
equivalent to the view direction v being perpendicular to the tangent to ¥ which
is equivalent to v being a principal direction at p by the conjugacy of the view
direction and tangent to X. An inflection arises when two near and far points
come together and vanish in an inflection. Thus in Figure7.5 v; is the view
direction at a point on the view sphere where there are two principal directions
resulting in two near/far points. The view direction v moves across the fold and
in to a region of the view sphere where there are no principal view directions v
and thus the near/far points have come together through an inflection at ws.

If v is an asymptotic direction then the critical set will have an inflection if
the point is flecnodal and this is a singularity of the asymptotic spherical image.

7.7 Geodesic Inflections of >¥—Part 2.

In this section we characterise the condition for a geodesic inflection of ¥ (the
critical set for some parallel projection) in terms of the cubic form T', Defini-
tion 7.20. We prove that £ has a geodesic inflection if ¥ is tangent to to a root
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Image
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Figure 7.5:

line of I Using this characterisation the root lines of I' are investigated on
the ellipsoid. Proposition 7.28 gives a new characterisation of the subparabolic
lines and flecnodal curves of a surface. The red subparabolic line is the locus of
tangency points between the roots of I' and the blue principal curves. Proposi-
tion 7.29 proves the remarkable result that the envelope of &, is the discriminant
of T'.

The following lemma gives the condition for £ at the origin to have a geodesic
inflection. We find that there are one or three directions in the tangent plane
where this phenomenon occurs.

7.25 Lemma: If our surface is written in Monge form as (x,y, h(z,v)) where,
Rz, y) = (1/2) (k2% + koy?) + (1/6)(bgz® + 3b12%y + 3boxy® + bay®) + .. -,

with ky # 0 and ke # 0 and our parallel projection I is in the direction (vy, vy, 0)
then E(I1) has a geodesic inflection at (0,0) off

by kavs + (bgm% — Zbgﬁlgfi}]) viv, + (bgl‘i% - 251.‘62&1) Vo3 -+ vibokt = 0.

Proof: For the given surface and view direction the equation of the critical set
¥(I) is,

vk + (1/2)y(boz® + 2byay + bay®) + ...
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+Ugkel + (1/2)?]2(b1$2 + 2b2$y -+ bgy2) +...=0 (78)

where . .. signifies terms of order three. We now suppose that we can parametrise
2 by y. This will fail if the tangent to ¥ is parallel to the z axis at 0. This wiil
happen if »; = 0 in which case we can parametrise by = and the result is the
same or # = 0 and k; = 0, which are excluded. We thus write ¥ as the curve

(:E(y), Y, h(m(y), y)) with
&= a1y + (1/2ay® + ...

Therefore the condition we seek (by lemma 7.22) for the geodesic curvature at 0
to vanish is ay = 0.

Comparing the coefficients of y in equation 7.8 gives us,

—Uzkg —Ug K3
a; = _———
U1Ky U B

Comparing coefficients of y? tells us that
ay =0 & bikivd + (bomg - 2b2fc2n1) viuy + (bghcf — 25152,&1) vovf + v3bykd = 0.
O

The following result gives a characterisation of the critical set having a
geodesic inflection in terms of the cubic form I, (Definition 7.20) derived from
the second fundamental form and cubic parts of the surface.

7.26 Proposition: Given a parallel projection direction v the resulting critical
set X will have a geodesic inflection iff ¥ is tangent to a root direction of the
cubic form I.

Proof: We write
1 1
h(z,y) = 5("515’52 + Koy”) + 6(503?3 + 3b12°y + 3bozy® + b3y’ + .. ..

Recall that lemma 7.25 says that ¥ will have a geodesic inflection at 0 under the
projection (vy, vy, 0) iff

bi3us + (borh — 2bykary ) Vivr + (baw? — 2biscaker ) v + vibor? = 0. (7.9)
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Now the cubic form at the origin is,

boz? + 2b1xy + by byx? + 2bozy + byy?
KT Kol

= _b]_ﬁ'.]_ﬁ'}:g + (bgﬁg — 2b2f§1)$2y + (2b1!€2 —_ E163)$y2 + "G2b2'y3. (710)

' =

The conjugate direction to (vy,vy) is (—kqvs, K1y ), and using the fact that the
tangent to ¥ is conjugate to the view direction we substitute in 7.10 giving 7.9.
J

Definition 7.20 only describes the cubic form I for a surface at the origin in
Monge form. We can use the previous proposition to calculate the root directions
of I at a general point by doing a ‘hands on’ calculation of when the critical set
of some projection has a geodesic inflection. We do this for the ellipsoid.

7.27 Example: Roots of [ on the Ellipsoid.

We choose the ellipsoid because the critical sets under parallel projection are
plane curves. The critical set ¥ will thus have a geodesic inflection at a point p
if and only if the normal at p lies in the plane of . In that case the inflection
will be extremely degenerate, in fact a straight line! We now work through the
calculation.

Our surface is f; + b%z + %; = 1 and has normal (%, %, %). We let the view
direction be (v, v, v3) and the two equations defining the critical set ¥ are,

1172 y2 22
+b2+ =1
™M - 0
-—a:+b2y+ = 0.

We see that the critical set is a plane curve on the ellipsoid. The normal to
the plane is (%, 3%, %) and it passes through the origin. We now calculate the
condition for the normal to the surface to lie in this plane. This is the extra
condition, %z + H#y + %z = 0. We can now write a MAPLE routine that solves
the three equations

(4] = 0
x—l—b4y+ ==
v
—m+b2 Ytz = 0
'U]_‘i"UQ""Ug =1
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Figure 7.6: Root directions of I" shown for an example ellipsoid looking down on
the zy plane.

for vy, vy, v3 if we supply a point z,y, z on the ellipsoid. We then wish to find
the conjugate direction to v which we call 7. This is tangent to the critical set
and is the root direction of I that we seek. So given x,y, z and vy, v9,v3 We can
find the direction (¥,,7,,73). Now 7 is perpendicular to the normal (%, %, %)
of the ellipsoid since it lies in the tangent plane, and it is perpendicular to
the normal of the plane of ¥, (%,%, %), since this then makes it tangent to
Y. We can solve these to find the conjugate directions. These equations were
solved symbolically in MAPLE and then the equations for the vector field were
exported to the ‘Liverpool Surface Modelling Package’ (LSMP) which has a
routine for numerically plotting the solutions to differential equations. For an
example ellipsoid with ¢ = 1,b = 2,¢ = 3 see Figure 7.6 where the zy plane is
shown with the root directions of I'. From Figure 7.6 we can see that at points
where the ellipsoid cuts the axes I' is degenerate. In fact a short calculation
reveals that for any view direction at these points the normal is contained in the
plane of the critical set 3. In other words ¥ always has a geodesic inflection at
these points. The other major feature shown in Figure7.6 is the discriminant
of I' which can be seen as the curve where there are three directions through a
point. Two directions cusp at the discriminant. The ellipsoid is degenerate in
the sense that the region where there are three directions has been compressed
to a curve.
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We now make some connections between the cubic I and the conjugate curve
congruence family and its fold curves.

The key is to exploit the two characterisations of when ¥ has a geodesic
inflection. Namely,

o Iff the projection direction v is a singular point of the spherical image of
the directions ©~1(8(v)). (Proposition 7.24.)

e Iff ¥ is tangent to a root direction of I'. (Proposition 7.26.)

The following proposition provides a new characterisation of the sub parabolic
and flecnodal curves of a surface.

7.28 Proposition: Away from the parabolic curve the fold curve S, for the
dark red directions of o particular conjugate curve congruence C, s the locus of
points where the root curves of I' are tangent to the light red conjugate integral
curves. See Figure7.7.

Proof: Given some « we have the congruence C, which away from A has two
directions at each point called the dark red and blue directions. The conjugate
directions, which we can integrate, give the light red and blue directions. We
first prove that if p is a point on the dark red fold curve &, then this implies that
a root direction of I' is tangent to an integral curve of the light red directions.
First we work away from the discriminant.

Let p be on the dark red fold curve for some given C, so by Definition 7.18
the spherical image for the dark red integral curves is singular at p. By Propo-
sition 7.24 we know that by projecting along the dark red direction at p the
resulting critical set & will have a geodesic inflection. The critical set is tangent
to the light red (conjugate to dark red) direction, and by Proposition 7.26 % is
tangent to a root direction of I'. Therefore the root direction of I' is tangent to
the light red direction. See Figure7.8.

Now we prove the converse. Suppose a root of I' is tangent to the light
red direction of some curve congruence. By (7.26) projecting in the dark red
direction will give a critical set X with a geodesic inflection (since the tangent to
Y. is along the root direction of I'). But (7.24) says that the spherical image of
the dark red directions for this congruence will be singular, and so p is a point
on the dark red fold curve by Definition 7.18.
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Park Red
_ LightRed g

------------ i Rootof T
Dark Red Fold Curve = o

Figure 7.7: Half of the congruence C, is shown, namely the dark red directions
(shown dotted). The conjugate curves (light red) are also shown dotted. The
root curves of I' are solid curves. In this schematic I" has only one real root.
Where I is tangent to the light red directions the point is a fold of the dark red
spherical image.

_ Dark Red

Root Direction of T

Light Red

Critical Set £

Figure 7.8: If we project in the dark red direction at a point of the dark red
spherical image, then the resulting critical set £ will have a geodesic inflection.
It will be tangent to the light red direction since the tangent to £ and the view

direction are conjugate.
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We now prove the result in the case when the point is on the discriminant.
This is most easily accomplished with the surface in Monge form. Writing p = g%
the BDE representing C, can be written F' = ap?® + 2bp + ¢ = 0, which in the
discriminant case is a surface folded over the xy plane. We can parametrise [ = (
by z and p in this case provided the BDE is not zero and we write vy = y(z, p).
When the origin is a point on the discriminant and the z-axis is a member of
the congruence, then MAPLE can be used to solve F'(z,y(z,p),p) = 0 and thus
obtain the derivative g% = %%%;:—gf% at zero. The directions of the congruence
are (1,p, h, + ph,) and we examine their spherical image. This is most easily
obtained by taking local coordinates on the unit sphere, which we take as the yz

plane. We then have a map,

R? — R?

z,p = P, he +phy
whose Jacobian determinant is

dy

Oy
h:z::t: + hmy% -+ phxy + phwa—m.

Evaluated at zero and using the value of g% above we obtain the condition
G%bg - 2agalbl + a%bg =0. (711)

This is the condition for the congruence to have a singular spherical image at
the discriminant where the x axis is a member.

Recall definition 7.20 for the cubic form I',. In Monge form this becomes,

(G;gbi - G,lbg)$3 + (2(1;062 + G,]_b]_ - 2b1G1 - a2b0)$2y -+
(a.gb3 + 2b2&1 — Glbg — 261a2)$y2 + (a1b3 - ngg)ys =0

and the condition for (—a;, ag), the conjugate direction to {1,0), to be a solution
is (a? — agay)(adby + alby — 2a9a:b,) = 0. Away from the parabolic curve this is
equivalent to (7.11), hence the result. 0

Notes on Proposition 7.28. As usual to make sense of the statement it is
wise to specialise to a well known congruence like the principal curve congruence.
Then the result says that the red subparabolic lines are the loci of points where
the root directions of [" are tangent to the blue principal directions.

Similarly the red flecnodal curves are the loci of points where the root direc-
tions are tangent to the red asymptotic curves.
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A7
Envelope of S«

Figure 7.9: Hypothesised configuration of the fold curves forming an envelope
on the surface.

We now dispel any final doubts over the interconnection between the cubic
I' and C,. We show that the envelope of the family of fold curves S, is the
discriminant of I'. An intuitive grasp of this result can be obtained by considering
the different characterisations of geodesic inflections on the critical set X. Recall
that if X is tangent to a root of T’ then a geodesic inflection will result. Also the
inflections are connected with the folds of the spherical image. So the number
of roots of I' at a point p must be connected to the number of fold curves S,.
Figure 7.9 gives a hypothesised configuration of the S, curves on a surface. We
see that on one side of the envelope (which is also the discriminant of I') there
are three directions through a point, and on the other side just one direction. It
seems reasonable that the envelope could be singular at isolated points.

7.29 Proposition: Ifp is on the envelope of fold curves S, away from A(C,),
then at p, I, has at least two coincident real roots.

Proof: We use a local Monge parametrisation. We fix o and consider con-
gruences Cyoy. ‘near’ to C,,. We calculate the family of fold curves and then the
envelope. Consider directions (1,5(z,y, €)) with 8(0,0,0) = —agy/a;. We let C,,
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contain the directions (1,0) and (1, —ag/a;). Thus a straightforward calculation

shows that
a

T 2 NT T
ap -+ ag Qap + aj

We will also require the following,

sinag =

1
sin{ag +€) = ————
v ad + a?
-
v ag +a?

We expand b(z,y,€) as a power series and use the identity

1L, BIPIS (L, )1 sin®(ao + €) = (S(L,5).(1,5))? (7.12)

(—ag cos€ + a; sine)

—ag + are + age? /2 + - ).

to evaluate the coefficients in b.

Calculation gives the following, where E, F, G, 1, m, n are the usual coefficients
of the first and second fundamental forms,

S(1,5).(1,b) 4 2bm + b*n
(1,0).(1,0) = E+2bF +¥b°G
5(1,0).5(1,b) = (1/EG — FH)(G(l+bm)? —
2F(l + bm)(m + bn) + E(m + bn)?)

and we can evaluate these in Monge form and substitute in (7.12).

We follow the proof of Proposition 7.19 and construct the spherical image in
local coordinates. Recall that the vector (1,0) is (1,0, b, + bh,) and we project
on to the yz plane for local coordinates of the spherical image to get the map,

R? — R?
z,y = b hy +Dhy.

This is actually a family of maps since b is a function of x,y and ¢ is the param-
eter. The condition for the jacobian to be singular is,

ab ob
gg(hmy + bhyy) — B_y(hmx + bh,y) = 0. (7.13)
For some ¢ this gives the equation for S, where b satisfies (7.12). Evaluated at

(z,9,€) = (0,0,0) we have & = 0 and MAPLE gives,

o (a% + a?)(aghy — a1byg)
Oz ai(2a} + ad —agay)
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Recall that the condition 2a? + aZ — agas = 0 is the condition for the point p to
be on the discriminant of the congruence AC,. So the condition (in this setup)
for p to be on the fold curve S, is agh; — a6y = 0.

BEquation 7.13 actually gives a family of curves since b is a function of €. To
find the envelope we differentiate by ¢ and evaluate at ¢ = 0. This gives the
envelope condition,

o, , 0b b

axae(al - ayly) — ala—y& =
where everything is to be evaluated at the origin. Using MAPLE to calculate
derivatives of b from (7.12) and enforcing the above condition for S,, agh—a1bg =
0 we obtain 2a2b, — agasby — alby = 0. Using agh; — @10y = 0 we can make a
substitution so that the envelope condition becomes ag(2agby — ayb; — asby) = 0.

0

In this coordinate system the cubic T is,

To(z,9) = 2°(ach — aabo) + z%y(2a0bs — arby — asby)
2y (agbs + a1by — 2a2b1) + 4 (a1bs — aghy).

We sce that the condition for p to be on the light red fold curve ( agh; —a,by = 0)
is that a root direction of I'y is tangent to the dark red direction—in this case
along the z-axis and y is a solution of ;. The condition for p to be on the
envelope of S, (2agb; — a1b; — asby = 0) is that [y has a double root, and the
z* and z%y terms of T'y vanish. This completes the proof. o

7.8 Zeros Of C,.

We now turn our attention to zeros of the BDE C,. Recall (e.g. [D]) that along
the discriminant the integral curves of the BDE cusp, and at special isolated
points the unique direction is tangent to the discriminant. It can be shown that
when the BDE is lifted on to a double cover to make a single valued vector field,
the zeros of this lifted field occur precisely on the lifted discriminant, which
is sometimes called the criminant. These are the standard planar vector field
singularities such as a saddle, node, focus etc. When projected down they become
the ‘well-folded’ saddle, node focus, shown in Figure 7.10.

We investigate the behaviour of the integral curves of C, at the discriminant.
Consider C, with a # 0 or o # #/2. The congruence C, away from A(C,)
consists of two directions at each point, call these light red and light blue. Their
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A(Cq)

Figure 7.10: Schematic showing the integral curves of C, at A(C,) around zeros
of the lifted field.

respective conjugates are the dark red and dark blue directions. At the discrim-
inant A(C,) the light red and blue directions coalesce in to a unique direction.
The integral curves of the light red and light blue directions typically cusp at
A(C,) but there are isolated points on the discriminant where they are tangent
to A, as in Figure 7.10.

7.8.1 Saddle Node Bifurcation

Since we are working in a family, phenomena that were previously non generic
become generic. It is not generic for the zero of a single vector field to be degen-
erate, or non~hyperbolic (in the language of [AP, p.68|). In a family we expect
vector field bifurcations, and the codimension one bifurcation for vector fields
in the plane is the saddle-node bifurcation, see Figure7.11. This bifurcation
is versally unfolded by one parameter. We expect C, to undergo saddle—node
bifurcations and this is now investigated.

We set up some local coordinates and make some preliminary calculations.

7.30 Lemma: If we write our surface in Monge form, (x,y, h(z,y)) with

hz,y) = (agx2 + 2a1z2y + agyz) +

(box® + 3b1xy + 3byzy® + byy®) +

—_ | ol

ﬂ(cc.m‘1 + dey Py 4 Bepx®y? + degry® 4+ cqyt) + -0

and fiz the z-azis as o member of our congruence C, with (0,0) a point on the
non stngular discriminant then,
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Figure 7.11: Saddle node bifurcation.

1. sina=—%_ cosa=—=4—_ and a? — aga, + 2a = 0.
wtat’ Vagra}’ oo e

2. C, has a zero at (0,0) iff the previous conditions in part 1 hold and
bga1 - blflg = 0,

and a degenerate zero if in addition —(—3byagby+biai+5biadal —Thyaladb,+
6b3at+2albs —8ataf —4daadco—4alal —4afa? —dalagcy) = ¢ (dada, +4adad)

3. The origin is a fold point of the spherical image if and only if, a3by, —
2aga1b, + atby = 0.

Proof: (1) We require (1,0,0) to be a member of our congruence. The con-
jugate direction to (1,0) in the zy plane is easily calculated as (—ai,aq). As
usual a denotes the angle between a direction and its conjugate and in this case
the dot product gives, cosa = —=8—, and thus we find that sina = 52—

Now by Corollary 7.8 we equate sin & just given with @ at the origin to get the
condition a3 ~ aga, + 2a3 = 0.

(2) Using Lemma 7.9 we can expand b* — ac, and imposing the results from
part (1) above we find that the normal to the discriminant is

[boﬂ"]_ — blao, b1a1 o bgag]. (714)
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(Observe that the normal given in Lemma7.10 is for a surface written as a
different graph.)

Since we have set up things so that (1,0) is a member of C, then the condition
for a zero of the BDE is that the normal to the discriminant is along the y-axis
and the unique direction is tangent to the discriminant, hence the result.

The calculation required for the degenerate zero is more involved. We follow
[BT1] and construct a lift of the BDE. If we write p = %% then the BDE can
be written F' = ap® + 2bp + ¢ = 0, and this can be viewed as a surface in zyp
space. It is shown in [BT] that at the discriminant the projection map onto the
first two components is equivalent to a fold map, see Figure7.12. As described
in [BT] a suitable lift is the vector field,

o d 0
é'ﬂﬁﬁ;zg;*‘pﬁ;zii——(}a;+'pﬁé)55,

and at a smooth point on the discriminant we have F' = F, = 0, I}, # 0 and
the surface F' = (0 is folded over the zy plane. We wish to take local coordinates
on F' =0 and provided F, # 0 we can use x and p as local coordinates. A short
calculation shows that the condition F, # 0 is equivalent to b1a, — byay # 0 and
we see from (7.14) that this can not be zero otherwise the discriminant would
be singular. Therefore in practical terms we may write ¥ as a power series in z
and p and solve the equation F'(z,y(z,p),p) = 0 with MAPLE to find successive
coefficients of y. This will give us the first few terms of the planar vector field
e —(F, + pr)a%. By imposing the condition b;aq — bya, = 0 found above,
the vector field will be singular. The condition for a transition singularity of the
bifurcation of vector flelds requires that the Jacobian has zero eigen-values [AP].
The Jacobian is the following,

Y 8

Fp+ Fp 2 Fpp + Fpy 3t
_Fm_nyg:%_pﬂm—pryg‘% “sz”meg}pi"Fy_prp_pry%%

The determinant gives the required condition.

(3) The spherical image has been discussed in an earlier section but only away
from the discriminant. At the discriminant we can not parametrise the directions
of C, by z and g, and it is necessary to introduce another variable p = %. We
closely follow the proof of part (2} and use the surface F' = 0, and parametrise by
y. A point (z,y,p) on F corresponds to the direction r, + pr, = (1, p, b, + phy)
in zyz space. Since (1,0,0) is a point in our congruence things are set up so that
T =y =p=01is a solution of F'. Now the direction (1, p, h, + ph,) gets mapped
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Figure 7.12: Schematic showing the lifted surface F' folded over the zy plane at
the discriminant. The dotted curve in the zy plane is the discriminant and the
integral curves cusp here. The dotted line on the surface is the lifted curve called
the criminant. The solid curves in the zy plane are the integral curves of the
BDE, and on the surface F' are the lifted integral curves forming a single valued
vector field. The solid curves in the zp plane are the projections of the lifted
integral curves on to this local coordinate system.
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to the unit sphere, and we can introduce simple local coordinates (that do not

change the singularities of the spherical image) by taking the y and 2z components.

So we have a series of mappings: (z,p) are local coordinates of F' = 0 and map
- - 0 1

to (z,y(z,p),p), then this maps to the direction N (1,p, by + phy),

and local coordinates on the unit sphere gives us a map to (p, by + ph,). The
composite is a map,

R — R?
z,p — D, hg -+ phy,

whose Jacobian is,

Ay

B’

which is the equation of the fold curve. The derivative %% can be calculated by
solving F'(z,y(z,p),p) = 0 as described in the proof of part (2) and we obtain
the condition

8
b+ hmy£ + Phay + Phy,

agbg - 2(190,151 -+ G%bo = 0.

Note On the Lemma.

e The condition in part 2 of the statement of the lemma is the condition for
a degenerate zero, i.e. a bifurcating zero where a saddie and node meet.
Recall the discriminant of C, is defined by sin’« = {5 and so for any
elliptic point p we find that there is some « solving this equation, and so
there is a discriminant of some congruence passing through p. It is then
two conditions for p to be a zero of (,, and one further condition to be
a degenerate zero, making a total of three conditions. In a one parameter
family of BDEs on a surface we have three variables, so we expect saddle-
nodes to be generic in our family. For the bifurcation to not be versally
unfolded requires the satisfaction of a further two conditions, see [AP,
p.203]. We thus conclude, from a naive counting of conditions, that our
bifurcations are versally unfolded generically in C,.

It is in fact straightforward, though tedious and ultimately unilluminating
at this stage, to calculate the versal unfolding conditions (see [AP, p.203]).
On observing the complexity of the condition for a degenerate zero in the
statement of the lemma, one holds little hope at this stage of interpreting
the versality conditions geometrically.
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Zeros Degenerate Zero Discriminant

Figure 7.13: Bifurcating saddle node zero on C,.

Figure7.13 shows an example of C, bifurcating through a saddlé node. On
the left we see two zeros, the centre picture one zero, and the right hand side has
no zeros. The discriminant in each case is marked as the boundary of the shaded
region. As far as we know this is the first picture of the saddle node bifurcation
in a one parameter family of BDEs.

This concludes our discussion of the saddle node bifurcation of C,.

7.8.2 Singular Discriminant

We have already discussed some results concerning the singular instances of the
discriminant. Lemma7.14 tells us that the discriminant of C;/; at an ordinary
umbilic is a point. As discussed in the note following Lemma 7.10 our discrim-
inants arise as the level sets of some smooth surface, and we therefore expect
there to be Morse transitions through a point or a crossing.

The following result characterises the singularities of the discriminant as the
points where the tangency points of the fold curves with the discriminant meet
the singular points of C,.

7.31 Proposition: With v + 0 and « # 7/2 the following are equivalent,

1. A point p is a singular point of A(C,)

g

2. The lifted surface F = ap® + 2bp + ¢ = 0 is singular.
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3. The point p is a zero of C, (so consequently on the discriminant) and the
fold curve S, of C, passes through p.

Proof: (1)}&(2). We take our surface in Monge form identical to the previous
lemma. Writing F' = ap® + 2bp + ¢ = 0 for the lifted surface it is straightforward
to calculate the derivatives and we make use of lemma 7.9,

F.(0) = —bsina—bycosa
F,(0) = —bysina—b cosa
F,(0) = sina(ag—ay) — 26, cos .

If we set sinox = 22— and cosa = —==2= then the z axis will be a member
ag+ay Vag+a}
of the congruence and the derivatives of F' will be zero if and only if,

F:c = bgal — b1a0 = ()
Fy = blal - bgag =0

F, = ai ~ agay + 2a% = 0.

Now from Lemma 7.30 part 1 F, vanishes iff the point is on the discriminant,
and in fact this is the condition for F = 0 to be folded. One can use Lemma 7.9
to expand b* — ac as described in the proof of Lemma 7.30 to get

b —ac= (boa; — brag)z + (bray — baag)y + -+ - .
‘Thus we see that the discriminant is singular iff ' = 0 is a singular surface.

(3) & (2). Recall from lemma 7.30 part 2 that the condition for a zero of C,
in this coordinate system is

b0a1 - bla.o = 0. (715)

In the proof of Lemma 7.30 the condition for a fold of the spherical image at the
discriminant is calculated and found to be (equation7.11)

G;gbg - Zagalbl + Q%bo = 0.

Solving (7.15) for by, and substituting in the above we obtain the condition
ao(aobg — azbl) = { which is what we seek. (W

Figure7.14 shows the bifurcation of the discriminant through a Morse cross-
ing.
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Figure 7.14: Bifurcation of discriminant through a Morse crossing.

Consider the lifted surface F' = 0. The BDE lifts to a single valued field on
the lifted surface and at the discriminant the surface is folded over. Technical
proofs are outside the scope of this thesis but we present a plausible pictorial
argument to describe the annihilation of the zeros in Figure 7.14.

Reading from left to right in Figure 7.14 we can consider this as the breaking
of a handle on the lifted surface through a singularity. Figure7.15 shows this
with the solid area representing the region shown in Figure7.14 and the dotted
lines extend to give more of a global view of the topology.

We now use the Poincaré-Hopf Theorem, which states that for a compact
manifold M and w a smooth vector field on M with isolated zeros, the sum of
the indices of w is equal to the Euler number of M [MI]. Passing from left to right
we can see that the Euler characteristic has increased by two. From 7.14 we see
that we have also lost two singularities and so we conclude that we have lost two
of index —1. In other words two saddles have come together in this transition.
Projected on to the surface they become well folded saddles. Figure7.16 shows
the lifted field and the lifted discriminant, the criminant.

7.9 A Global View

In this section we examine the evolution of the zeros of C, on the discriminants,
with a view to making global statements connecting the cusps of Gauss and
the umbilics on a surface. At this stage we are lacking some technical results,
including a complete classification of the generic bifurcations of C,, but the
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Figure 7.15: Lifted surface showing the destruction of a handle as the discrimi-
nant (not shown) passes through a Morse transition on the surface.

A W

Criminant
{one hidden)

Figure 7.16: Lifted field and criminant shown for this Morse transition.

general idea is by far the most important.

Consider an isolated zero on the discriminant of C,,. This is the zero of a
vector field and will persist if we perturb the family, so that C,,,. will have a
zero as well. It will also be the same type, i.e. saddle, node or focus. We call the
path that the zeros make as we evolve the family, the umbilical cord. (Later
when we consider umbilics we think of these curves as extending from them.)
Figure 7.17 shows a smooth discriminant evolving with a zero on. The locus of
the zero points gives an umbilical cord. Observe that since the discriminants
of C, occur only in the elliptic region the umbilical cords only occur here, and
moreover they end at the cusps of Gauss.

Umbilical cords are not arbitrary curves on the surface; they are severely
constrained by their definition. It is only possible for two different umbilical
cords to meet if that then defines a legitimate bifurcation of lifted vector fields.
Thus it is not possible for two different focus umbilical cords to meet since this
indicates two foci on the lifted surface coming together which in general is not a
legal bifurcation of plane curves.

We now proceed by presenting pictorial examples that increase in complexity.
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/ Umbilical Cord

A(Cop+d

A (COLO)

Figure 7.17: Crosses on the discriminant indicate zeros of C,, and the umbilical
cord is the locus of zeros.

A(Co)

Figure 7.18: Saddle (s) and node (n) cusp of Gauss on the parabolic set A(Cy).
The zero curve is tangent to the discriminant at the saddle node bifurcation.

As indicated earlier these are hypothesised results and we lack the technical
proofs. Our first example illustrates a configuration of umbilical cords at the
saddle node bifurcation.

Example: Consider two cusps of Gauss on the parabolic curve, one a node,
and the other a saddle. We have written earlier on the saddle node bifurcation
of C, and Figure 7.18 shows a schematic for what we expect the zero curves to
be in this case.

Recall Proposition 7.16 where we established the bifurcations of C, at an
umbilic. For a Lemon we have a saddle appearing, a Star 3 saddles, and a
Monstar 2 saddles and a node. Thus a saddle umbilical cord is born at a Lemon,
three saddle umbilical cords are born at a Star, and at a Monstar a node umbilical
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Cusp Of Gauss

e Lemon Umbilic

Umbilical Cord §

Parabolic Curve

Figure 7.19:

cord and two saddle umbilical cords are born. The following example considers
this umbilic situation.

Example: Consider a very simple surface patch consisting of a simple closed
parabolic curve enclosing a Lemon umbilic. Consider perturbing the discrimi-
nant A(Cr/2), we know from above that a saddle is born. Figure7.3 shows the
configuration. The discriminant close to the umbilic is a closed curve encircling
it. We assume that there are no other Morse transitions on the discritninants,
so the discriminant expands as a series of concentric curves from the umbilic to
the parabolic curve. The umbilical cord also evolves until it meets the parabolic
curve, and that then indicates a saddle cusp of Gauss. See Figure7.19.

Example: Now consider a simple closed parabolic curve enclosing a Mon-
star and no other Morse transitions of the discriminants. There are two possible
configurations. Either when the umbilical cords (2s+1n) are born they progress
unimpeded to the parabolic curve, or a saddle and node bifurcate and disappear.
Figure 7.20(left) shows the first of these and the right hand side shows the second
option. We thus either have a saddle cusp of Gauss or two saddles and a node
cusp of Gauss.

Observe that if we now introduce two or more umbilics in the closed parabolic

204



Figure 7.20: (Left) Three cusps of Gauss surrounding a Monstar. (Right) One
saddle cusp of Gauss and a saddle node bifurcation.

curve the discriminant will have to undergo a Morse crossing. These were inves-
tigated in Section 7.8.2. Recall that in evolving C, from 0 two saddles are born
in the Morse crossing situation. The next example considers three umbilics in a
closed elliptic region.

Example: Consider a closed parabolic curve enclosing a Lemon, Star and
Monstar. There will be at least two Morse crossings of the discriminant and
we assume that there are no more. In other words we assume that there are no
isolated Morse points of the discriminant other than the three umbilics. Consider
evolving C, from the umbilics at 7/2. The Lemon gives birth to one saddle,
the Star three saddles and the Monstar a saddle and a node. As we evolve
towards the parabolic curve the Morse crossings each eat two saddles. A possible
configuration is shown in Figure 7.21 where we have 3 cusps of Gauss. It is also
possible (not illustrated) for one saddle and a node to bifurcate and disappear
leaving just one cusp of Gauss.

We now show how a simple index theorem could be derived. Consider gen-
eralising the last example, with n umbilics of various varieties enclosed by a
parabolic curve, n — 1 Morse crossings and no other singular discriminants. Let
the number of lemons be [, the number of stars s and monstars m and therefore
[+ s+ m —1is the number of Morse crossings. Let S be the number of saddle
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Figure 7.21: Three umbilics, Lemon, Star, Monstar left to right, with two saddles
and a node cusp of Gauss on the parabolic curve.

cusps of Gauss and N the number of node cusps of Gauss. The number of saddles
born in the umbilics is [ 4 354+ 2m. i.e. one for every lemon, 3 for every star and
2 for each monstar. For the nodes we have m nodes born, since only monstars
give birth to nodes. The Morse crossings eat 2 saddles each. So examining the
quantity of saddles and equating with S the number of saddle cusps of Gauss we
have,

I+3s+2m—-2(l+s+m—-1) = §
ile.s—0{4+2 = 5

and the nodes,
m = N.

Unfortunately things are further complicated by the appearance of saddle
node bifurcations. As we evolve from the umbilics we either have a saddle and
node being eaten which we call sn™ or a spontaneous birth of a saddle node,
which we denote sn*. Figure7.18 shows a snt because as we evolve from the
umbilic (i.e. decreasing o) a saddle and node are born. Figure 7.20(right) shows
a sn”. So a sn™ increases the saddle and node count by one each, and sn~
decreases by one. We therefore have the following formulae for the saddles and
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nodes,

s—1{+24snT—sn” = S

m+snt —sn~ = N.

Obviously we do not intend for this to be a general statement since only spe-
cial cases have been considered, but with a better understanding of the generic
behaviour of C,, theorems of this nature could be proved.

Comment: We recall from [BGM] that cusps of Gauss can occur as foci.
What happens here? The short answer is that we do not know! We assume
everything is compact, so the surface is compact, and the family C, is compact
in the sense that C;/s = C_,/5. Thus if we have a focus cusp of Gauss on the
parabolic curve it must evolve and trace out an umbilical cord. Where does this
curve terminate? As yet we have found no bifurcations involving foci, and this
problem requires further investigation.

7.10 Conclusion

We have introduced the conjugate curve congruence C, which is a smooth family
of curve congruences connecting the asymptotic curves with the principal curves.
We have found that it is most naturally written as a one parameter family of
binary differential equations.

The discriminants of the C, were investigated and these included both the
parabolic curves and the umbilics. Other Morse transitions of the discriminant
were found to occur. Results of Bruce and Tari were applied to the case of
Cxs2 and topological pictures were found. In the case of the more general Morse
transition we lacked the formal results, but were able to provide some pictures
and a topological argument for the zeros that we expect.

The family of spherical images was investigated and the notion of a fold
curve was introduced. It was found that the fold curves were the loci of geodesic
inflections of the conjugate integral curves. This naturally generalised the result
that the red subparabolic lines are the loci of geodesic inflections of the blue lines
of curvature, and the red flecnodal curves are the loci of geodesic inflections of
the red asymptotic curves. It was also proved that the critical set of a parallel
projection has a geodesic inflection if the point is on a fold curve and the view
direction is along the direction corresponding to that.
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We introduced the cubic form I' which naturally generalised the classifying
cubic defined at umbilics, for the whole surface. It was found that the critical
set ¥ of a parallel projection has a geodesic inflection if and only if it is tangent
to a root of I'. This immediately connected C, with I through the geodesic
inflections of ¥. Indeed it was found that the dark red fold curve is the locus of
intersections between the roots of I" and the light red curves. This provided a new
characterisation of the subparabolic and flecnodal curves. The intimacy between
I' and C, was further revealed by the result that showed that the discriminant
of I is the envelope of fold curves.

The zeros of C, were investigated, in particular the saddle node bifurcations
and singular discriminant bifurcations. Conditions were found in each case and
pictures provided. There are no published results concerning the singular dis-
criminant case and the technical results are outside the scope of this thesis, so a
more discursive analysis was presented. The surprising result was found that in
general the fold curve is not tangent to the discriminant at a zero. This is the
case at a parabolic curve, where the flecnodal curve is tangent to the parabolic
curve at a cusp of Gauss.

The chapter finished with a discussion on the global consequences of C,. In
particular it seems that the zeros of C, may provide a link between the nmbilics
and the cusps of Gauss of a smooth surface.

There is much further work to be done. Some possible items include,
e Condition for geodesic inflection of the critical ¥ set under perspective

projection. The fold curves in this case may well become ruled surfaces.
c.f. the CAD and FS.

o Generic degeneracy of the geodesic inflections of . Is it the case that X
has a degenerate inflection at point of the envelope of fold curves, and even
more degenerate at a cusp of the envelope?

o Satisfactory pictures of the root lines of the cubic I A coordinate free
description of T'.

e Pictures of the envelope of fold curves.

e Clearer pictures for the generic configuration of C, at a saddle node bifur-
cation.
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Possible generalisation of the focal set. Is it possible to construct a caustic
surface for each C,?

Results extending the work of Bruce and Tari to include all Morse transi-
tions of the discriminant.

A full catalogue of the generic bifurcations that C, undergoes, with a view
towards an index theorem.

A geometrical understanding of the singular discriminant case, and the sad-
dle node bifurcation. A more geometrical understanding of the connection
between the fold curves and the zeros of C,.

Pictures of how the subparabolic curves deform in the family of fold curves
at an umbilic.
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Appendix A

# Example of finding the double point space
# in the case when the fromtier and the singular curve cross.

# We find the functions a_i and b_i and then calculate the
cubic¢ terms of the double point space.

# These values of x avoid logs and trig functions in Y and c_3.
# Give values to the coefficients of p.

# Integers here seem to mean mostly ratiomal coefficients
later apart from the odd root 2.

x01:=2: x20:=-1: x11:=0: x02:=3: x30:=-2: x21:=-3:

x12:=0: x03:=-4: =z01:=-2: z10:=-4: 220:=-2: zl1l:=-3: =z02:=1:
# Give values to the coeff’s of c.

ciO:=1: cll:=2:c12:=2: c20:=1: c21:=-4:

# Work out c22 in the case where we want
to make the surface singular

€22:= (-3#c21%z01 " 2%z20-4*c21*z01%=z10" 2%xli+

6kc21%z01*xz10xz11-8%c21l*z10"2%202+16%c21%z10"3%x02+

3%z01 " 2%cili*z10-14%z01+x01%z10 " 2%c11+16%z10"3%c11*x01"2)/
(8+z10" 2% (2%xz10%x01-z01)):

# Give a value to the "constant of integration" ¢30 = c3(t=0).
Probably make this < 0.

c30:=~6:
#with(plots):

X:= s+x014t+x2045" 2+x11%g5t+x02%t " 24+x30%5" 3+
x21%s5”" 24t+x12%84t " 2+x03%t"3:

Y3:= z10%s+zQ1lxt+z20%s " 2+zll*xgxt+z02%t "2
cl:= clO+cll*t4+cl12%t72: c2:=c20+c2i%t+c224t72:
cit:=diff(cl,t): c2t:=diff(c2,%t):

V OV V VYV VYV VY VYV VVYVVY VY VY VY VYV VY Y VY VY Y Y Y
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VoV VIV VOV VY YV OV VOV Y WYV Y VYV VY VY VY VY Y Y Y VY Y VY Y Y Y Y VY Y Y Y Y Y

¥Y3t:=diff(¥3,t): Y3s:=diff(Y3,s):
Y30 :=subs({s=0},Y3):

Y1:=5%Y3:

X0:=subs({s=0},%):

Yis0Q:=subs( {s=0},Y¥3 ):
Xt0:=diff( subs({s=0},X), t ):
Xs0:=subs({s=0}, diff(¥,s) ):
Xe:=diff(X,s):

Lt:=diff(X,t):

Y2t :=simplify( XtO*¥1s0/Xs0 ):

integrand:= subs( {t=u}, simplify( Xt0*Y1s0/Xs0) ):
g:=XKs*Y3t-X1*¥3s+ simplify((Xs*¥2t-Xt*¥3)/s J:
g:=simplify(g):

Y2:=int( integrand, u=0...t):

Y:=sxY3+Y2:

Y:=simplify(¥):

Y0:=subs( {s=0},Y):

c3t:=( c2t*Y1is0-clt*(X0*Y1s0-Xs0*¥2 ) )/Xs0 :

fi= —c2t*¥3s+cit*( XxV3s-Xs+¥3)+
simplify( ((Xs*Y30-XsO*Y3)*c2t+
clt* (X+V3%Xs0~%0%Y30%xXs) ) /(s*Xs0) )

fi=simplify(£):

lambda:=simplify(-£/g):
f01:=subs({t=t1},5):
f11:=subs({s=s1},{t=t1},f):
g0l :=subs{{t=t1},g):
gll:=subs{{s=s1},{t=t1},g):
%01 :=subs ({t=t1},X):
X11:=subs({s=s1},{t=t1},X):

YO01:=subs({t=t1},Y):
Y11:=subs({s=s1},{t=t1},Y):
$#kkkokokskokokskosokdokdedeokkkekokdkok Now calculate the a’s
al:=(f11*g01-£01%g11)/(gli*g0i*(s-51)):
al:=simplify(al):
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subs({s=s1}F,al): # Should not give an error division by zero.

a2:=(£11%g01+X11-£01+g11%X01) / (gli*g0i* (s-51)):
a2:=gimplify(a2):
subs({s=s1},a2): # Should not give an error division by zero.

a3:=(f11%g01*Y11-£01xg11*¥01)/(gl1+g01* (s-s1)):
a3:=simplify(a3):

subs({s=s1},a3): # Should not give an error division by zero.

# rkcksokdoklololokdor ok kb dokdolokksekkkdkok finished calculating the a’s

# Now evaluate c3 by splitting up c¢3t and integrating each part.
c3t_a:= simplify( c2t*Y¥Y1s0/Xs0 ):

c3t_b:= simplify(clt*(X0*Y1is0) /Xs0):

c3t_c:=expand(simplify( clt*Y2 )):

c3_a:=int(c3t_a,t=0...u):

c¢3_b:=—int(c3t_b,t=0...1u):

c3_c:= int(c3t_c,t=0...u):

c3:=c3_a+c3_b+c3_c:

¢3:=c30+subs( {uv=t},simplify(c3)):

# Rkkkkckkokkkoopio kool Now start calculating the b’s
cl_1:=subs{({t=t1},cl):

c2_1:=subs{{t=t1},c2):

c3_1:=subs({t=t1},c3):

bi_1l:=simplify((cl-cl_1)/(t~t1)}:

b2 _1:=simplify((c2-¢2_1)/(t-t1}):
b3_1:=simplify((c3-c3_1)/(t-t1)):
b1_2:=simplify((f01*g-f*g01)/(gxg0lx(t-t1))):
subs({t=t1},b1_2): # Should not give a divide-by-zero error.
b2_2:=simplify ((£01#g*X01-£+g01+X)/ (g*g0l*(t-t1))):
subs({t=t1},b2_2): # Should not give a divide-by-zero error.

b3_2:=5implify ((£01#g*Y01-£*g01i*Y)/(gxg0i*(t-t1))):
subs({t=t1},b3_2):

bl:=bl_1+bl1_2:

b2:=b2_1+b2_2:

b3:=b3_1+b3_2:

VOV VOV VYV YV VY YV VYV Y YV YV Y VY Y VY VY Y Y Y Y Y Y VY VY Y VY Y Y Y Y Y Y Y
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> # sekkookiookkiookkiolkokkdokkgkkdk finished calculating the b’s
> rl:= cl+lambda:

r2:=c2+lambda*X:

r3:=c3+lambda*yY :

# Check that rl, r2, r3 really are of the form
ri = (s~-sl)ai + (t-t1)bi

al:=simplify{al):
a2:=simplify{a2):
a3:=gimplify(a3):
bl:=simplify(bi):
b2:=simplify(b2):
b3:=simplify(b3}:

rl:=simplify(xrl):
rl1ill:=gubs({s=s1,t=t1},r1):
diff_1:=simplify(riii-ri}:

r2:=gimplify(xr2):
r211:=subs({s=81,t=t1},r2):
diff 2:=simplify(r211-r2):

r3:=simplify(r3):
r31l:=subs{{s=s1,t=t1},r3):
diff_3:=simplify(xr311-r3):
numer _1 :=numer (diff_1):
numer_2:=numer (diff_2):
aumer 3:=numer (diff_3):
numer_4:=pumer{ai*b3-ald+bl):
numer_4:=simplify(numer_4):
numer_5:=numer{al*b2-a2xh1):
numer_5:=simplify(numer_5):

# Work out the Jacobian matrix of the map
from R"4 to R"3 defining D"2(r)

readlib(coeftayl):

m_14:=coeftayl (numer_3, [s,t,s1,t11=[0,0,0,01,[0,0,0,1]):
m_13:=coeftayl (numer_3, [s,t,s1,t1]=[0,0,0,0],[0,0,1,01):
m_12:=coeftayl (numer_3, [s,t,s1,%1]1=[0,0,0,0],[0,1,0,01):
m_11:=coeftayl(numer_3, [s,t,s1,t1]1=[0,0,0,0]1,[1,0,0,01):

V VMV V V VV V V V V V V V YV VYV VYV VYV VOV VY VOV VY VY Y Y YV Y Y Y Y Y
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>

>

v

V VV V VV V VV V VYV V VYV VOV OV VY VYV OV VY OV VOV VYV VY VY Y

m_24:=coeftayl(numer_4,[s,t,s1,t1]1=[0,0,0,01,[0,0,0,1]):
m_23:=coeftayl (numer_4,[s,t,s1,t1]=[0,0,0,0]1,[0,0,1,0]1):
m_22:=coeftayl (numer_4,[s,t,s1,t11=[0,0,0,0],[0,1,0,0]):
m_21:=coeftayl (numer_4,[s,t,s1,t1]=[0,0,0,0],[1,0,0,0]):
m_34:=coeftayl(numer_5,[s,t,s1,t11=[0,0,0,0],[0,0,0,1]):
m_33:=coeftayl(numer_5, [s,t,s1,t1]=[0,0,0,0],[0,0,1,0]):
m_32:=coeftayl(numer_5, [s,t,s1,t13=[0,0,0,0],[0,1,0,0]):
m_31:=coeftayl(numer_5, [s,t,s1,t11=[0,0,0,0],[1,0,0,0]):

# Truncate the LARGE expressions for numer_4 and numer_5
to make the computations faster.

readlib(mtaylor):

trunc_numer_5:=mtaylor( numer_5, [s,t,sl1,t1], 4 ):
trunc_numer_4:=mtaylor( numer_4, [s,t,si,t1], 4 ):
trunc_numer_3:=mtaylor( numer_3, [s,t,sl,t1], 4 ):
trunc_numer_1:=mtaylor( numer_1, [s,t,si,tl], 4 ):

trunc_numer_2:=mtaylor( numer_2, [s,t,si,tl], 4 ):

# Substitute in polynomial in s and t in the
two ‘nice’ surfaces to get sl and tl

# as functions of s and t.

s81_poly:=ulO*s+ullxt+u20*s” 2+ull*s*t+ul2*t ™2+
u30%s”3+u21*s " 2kt+ul2*s*t " 2+u03*t"3:

tl_poly:=v10#s+v0l*t+v20%s 2+vllkakt+yv02xt ™2+
v30%873+v21*37 2%t +v124s*t " 24+v03%L 73

T4:=expand( subs( {sil=si_poly, ti=tl_poly}, trunc_numer_4 )):
T5:=expand( subs{ {si=si_poly, ti=tl_poly}, trunc_numer_ 5 )):
# Now expand and solve the coeff’s u and v.

solve( {coeff( coeff(T4,s,1),t,0),
coeff( coeff(T5,s,1),t,00},{v10,uid} ):

assign(™);

solve( {coeff( coeff(T4,s,0),t,1),
coeff( coeff(T5,s,0),t,1)},{v01,u01} ):

agsign(");

solve( {coeff{ coeff(T4,s,2),t,0),
coeff( coeff(TH,s,2),t,00},{u20,v20})

assign(');

solve( {coeff( coeff(T4,s,1),t,1),
coeff( coeff(TS,s,1),t,0},{vil,uli} ):

assign(");

solve( {coeff( coeff(T4,s,0),t,2),
coeff{ coeff(T5,s,0),t,2)},{v02,u02} ):

assign(");
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solve{ {coeff( coeff(T4,s,3),t,0),
coeff( coeff(T5,5,3),t,00},{v30,u30} ):

assign(");

solve( {coeff( coeff(T4,s,2),t,1),
coeff( coeff(T5,s,2),t,1)},{vei,u21} ):

assign(™);

gsolve( {coeff( coeff(T4,s,1),t,2),
coeff( coeff(T5,s,1),t,2)},{vi2,ul2} ):

assign('");

solve( {coeff( coeff(14,s,0),t,3),
coeff( coeff(T5,s,0),t,3)},{v03,u03} ):

assign("};

# Now that we have calculated sl and ti
in terms of s and t we can substitute these expansions

# in the third equation -
which is the singular surface in D~2 space.

expand( subs( {sl=sl_poly,tl=tl_poly}, trunc_numer_3 )} }:
mtaylor( ", [s,t],5):

expand( subs( {si=sl_poly,ti=tl_poly}, trunc_numexr_1 ) ):
solnl:=mtaylor( ",[s,t],4):

factor(");

22037

T 1579817897 2
T57os178a7 (¢ T 45) (2293784 160s)

> expand{ subs( {sl=sl_poly,ti=t1_poly}, trunc_numer_2 ) ):
> soln2:=mtaylor( ",[s,t],4):
> factor(");

91748

T OOARARIAT 2
Tagsaael (¢ T 4s) (22087t +160s)
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