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Epipolar curves on surfaces

Peter J Giblin* and Richard S Weiss'

The view lines associated with a family of profile curves of the
projection of a surface onto the retina of a moving camera
defines a multi-valued vector field on the surface. The integral
curves of this field are called epipolar curves, and together with
a parametrization of the profiles provide a parametrization of
regions of the surface. We present an investigation of epipolar
curves on the object surface and in a related ‘spatio-temporal
surface’. We also consider the epipolar constraint in the image
and the resulting epipolar curves there. In particular, we make
an exhaustive list of the circumstances where the epipolar
parametrization breaks down. These results gives a systematic
way of detecting the gaps left by reconstruction of a surface
from profiles. They also suggest methods for filling in these

gaps.

Keywords: surface reconstruction, epipolar constraint, epipolar
curve, spatio-temporal surface

This paper is concerned with some aspects of the
reconstruction of a smooth surface M from a sequence
of profiles (also called apparent contours, outlines and
occluding contours) where the motion of the observer is
known. Such a reconstruction was introduced' for a
simple class of motions, and was generalized®™ to
arbitrary motion. For the general motion case, the
epipolar correspondence played an important role in
matching points from one profile to the next.

Given a smooth surface M and a curve ¢(f) of camera
centres, we have, for each t, a critical set or contour
generator ¥, on M consisting of those points r where the
‘visual ray’ from c(z) to r is tangent to M. The epipolar
plane is the plane spanned by this ray and the tangent to
the curve ¢ of centres, by analogy with the epipolar
plane of stereo, which is spanned by a visual ray to onc
camera centre and the baseline connecting the two
centres (F augeras®, p.170).

On the surface M there is an epipolar curve through r
which has its tangent along the visual ray. As ¢ moves
with time, the visual ray slips along the epipolar curve.
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(We make a precise definition later using an ‘epipolar
field’ on M.) In general, the critical sets and epipolar
curves make a coordinate grid on M: a local parame-
trization r(¢, u) can be found in which the critical sets
are given by ¢ = constant and the epipolar curves by
u = constant (Figure I). It is this ‘epipolar parametriza-
tion’ of M which is used by Blake and Cipolla>? to
reconstruct M from its profiles, which are the images of
the critical sets in a viewplane or viewsphere. It is shown
elsewhere® that reconstruction from the epipolar para-
metrization is readily transformable into an optimal
estimation problem. The epipolar parametrization also
has another very interesting property: the viewlines
associated with points r(z, v) and r(t + 6t, u) of M will
(being lines in space) generally not intersect. However,
for the epipolar parametrization, the point at which
these lines come closest to one another is (as 6f — 0) on
the surface M. So the intuitive idea of reconstruction via
‘intersection of viewlines’ is actually valid for the
epipolar parametrization. (See below, where we show
that this holds for the epipolar parametrization and
only one other.)

The epipolar curves on M have the striking property
that their osculating planes are’ precisely epipolar
planes. The epipolar plane becomes tangent to M at
points which we shall identify as ‘frontier points’, and it
is precisely at such points that the epipolar curve
becomes singular. The ‘frontier’ which is the locus of
such points of M plays an important role in this paper,
since it is along the frontier that the epipolar parame-
trization breaks down. To examine the situation at the
frontier we introduce a ‘spatio-temporal surface’
(Definition 1). ]

Intersections of critical sets (such as ¥ and %, in
Figure 1) are described as ‘centres of spin’ by Rieger’,
and our frontier points can be considered as the limiting
case as t— 0 (Definition 5). However, the frontier
points do not remain stationary as the camera moves,
but slip along the frontier curve. Frontier points have
also been used in special cases®®.

There are other places where the epipolar parametri-
zation breaks down. First, there are points where the
epipolar curve and critical set become tangent. This
results in a profile with a cusp (or higher singularity)
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Figure 1 A surface M and segment of camera path from ¢(0) to ¢ (7).
Also shown are the two corresponding critical sets £, X, a segment of
epipolar curve (drawn heavily), viewlines (dashed) tangent to the
epipolar curve, and a local coordinate grid of critical sets and epipolar
curves

and is also reflected in the geometry of the epipolar
curve: it has a zero of curvature (Proposition 11).
Second, the critical sets themselves can become singular
(having an isolated point or a crossing).

In this paper, we analyse all the situations where the
epipolar parametrization breaks down, showing the
patterns of critical sets and epipolar curves near such
points. Each possible breakdown has its characteristic
pattern, which should make it possible to prescribe a
systematic way of filling in the ‘gaps’ in the reconstruc-
tion of M. We analyse the critical sets, the epipolar
curves and the various breakdowns.

Some of the results of this paper have appeared
earlier'?,

CRITICAL SETS AND THE SPATIO-
TEMPORAL SURFACE

Let M be a smooth surface in 3-space, without
boundary, and let ¢(f) be a smooth path of camera
centres which lies outside M. We use r to denote surface
points, and n to denote the unit (say outward) normal at
r. Then the critical set or contour generator ¥, corre-
sponding to ‘time’ ¢ is the set of points r of M satisfying:

(r—e()) n=0 (1)

(see Figure 1). Writing p for the unit vector in the
direction from ¢(f) to r, we have:

r=c+/p )

for some (positive) number A which represents the ‘depth’
or ‘distance’ of r from c(f). We follow Blake and
Cipolla®? in taking an ‘image sphere’ which is a unit
sphere centred at c(f). For image coordinates we use p,
regarded as a point of the unit sphere centred at the
origin. We can also allow for camera rotation by writing
P = R(f)q, where R(¢) is a rotation matrix depending on

time ¢, with R(0) = identity. Note that as a point in R® -
the image point is ¢(f) + p and that the distance from this
image point to the surface point ris A — 1.

In this paper, we are mostly concerned with ‘local’
results, that is, we can assume our surface M to be
parametrized: (u,v) — r(u, v). Notice that equation (1)
then becomes one equation in three variables ¢, u, v,
defining a surface in 3-space.

Definition 1 The surface M defined by:
r(u,v) —c(®) n(,v)=0 A3)

is called the spatio-temporal surface. It is associated to
M and the motion ¢ of the camera centre (cf. Faugeras'!).
There is a natural projection w:M — M given by
m(u, v, 1) = r(u, v).

Thus M can be regarded as the union of the critical
sets on M, spread out in the #-direction. On M we call
the sets ¢ = constant lifted critical sets, 3,. We shall
often use the (v, v) parameter space of M in place of M
itself. Then 7 becomes (u, v, ) — (u, v).

Example 2 The paraboloid

We shall illustrate this and some later concepts by
means of a simple example. Consider the surface
M :z=x* 4%, parametrized by r(u, v, u* +v*), and let
c() = (1,1,1*) be the path trace out by the camera
centres (see Figure 2, left). Equation (3) of M becomes
S, v, 1) = 0, where:

fa,v,)=w—-1P+0-0*-1 4

Thus for a fixed f the equation /= 0 gives the critical
set X, in the w, v parameter space of M. This is clearly a
circle, and the circles for increasing r move parallel to
the v-axis, forming an envelope given by two lines
u=0, 2 (Figure 2, right). This will be important
shortly, for it is clear that the critical sets cannot form
part of a coordinate grid along these lines. The surface
M is obtained by spreading the u, v critical sets out in
the ¢ direction, and is illustrated in Figure 3.

We want to ask when one of the parameters u, v on M
and on M can be replaced by the ‘time’ parameter 7.
This is one step towards the ‘epipolar parametrization’
of M. The result is as follows:

()

a b

Figure 2 Left: the paraboloid and camera motion in Example 2.
Right: the critical sets (circles) and their envelope (straight lines
1 =0,2) in the u, v parameter space
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Figure 3 The spatio-temporal surface M (sloping cylinder) in the
paraboloid example of Figure 2. The base plane is the (u, v) parameter
plane of M. Also shown are the epipolar curves on M and in the
parameter plane, where they cusp along the frontier (see Example 1)

Proposition 3 (i) ¢t can be used as one of the local
parameters on M unless t is a parabolic point and in
addition the viewline ¥ — ¢ is asymptotic at r.

(i) t can be used as one of the local parameters on M
provided it can be used on M and provided also ¢; -n #£ 0.

Proof See Appendix A.

Note 4

The condition in Proposition 3(i) says precisely that r is
not a ‘lips/beaks’ point, where the critical sets them-
selves become singular'? (pp. 303,458). There is of
course no way in which singular curves can be part of
a coordinate grid on a surface. We shall have more to
say about lips/beaks singularities below.

The condition ¢, -n # 0 in Proposition 3(ii) can be
interpreted in many other ways. Note that in Example 2 it
holds away from the lines u =0, 2 which form the
envelope of critical sets. This is no accident. The critical
sets are given by (r — ¢) - n = 0, and the envelope is found
by adding the condition obtained by differentiating this
with respect to 7, namely ¢, - n = 0 (cf. Bruce and Giblin'3,
p.102). Recall that the epipolar plane is spanned by r — ¢
and ¢,. Since r — cis already tangent to M, this plane is the
tangent plane to M atrif and only if ¢, - n = 0.

Note Here we have to exclude points where the
viewline r — ¢ is along ¢,, for then the epipolar plane is
undefined. At such points the motion is instantaneously
towards the point r on M. In the motion literature, ¢ is
called the focus of expansion and depth cannot be
determined at that point. It turns out that determina-
tion of epipolar curves near to these points is an
extremely delicate problem, and unless otherwise stated
we shall exclude such points from our considerations.

Definition 5 The frontier F of M, relative to the given
motion ¢, is the set of points of M for which ¢,-n= 0.
This can also be described as:

1. The envelope of critical sets on M (i.e. the locus of
intersections of ‘adjacent’ critical sets on M),
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2. The set of points of M where the epipolar plane
(assumed defined) is the tangent plane to M: the set
of ‘epipolar tangency points’;

3. The set of ‘critical values’ of the map = in Definition 1,
i.e. the points of M under the ‘fold line’ of the
projection . Instead of m here we can equivalently
use the linear ‘vertical’ projection of M to the
parameter space of M: (u,v,t) — (u, v).

Thus Proposition (3) says that, except along the
frontier of M and at lips/beaks points, the critical sets
do form part of a local coordinate grid on M. As
remarked earlier, the frontier points do not remain
stationary as the camera moved, but slip along the
frontier. An exception to this rule is motion where ¢
moves in a plane P. If P is tangent to M, then any point
of tangency is a stationary frontier point, but other
frontier points may move around. For orthographic
projection, motion in any plane P has stationary
frontier points where the tangent plane to M is parallel
to -P. This is used by Kutulakos and Dyer'* for
producing a set of stationary points. Joshi et al.'* used
these points to compute structure from unknown
motion.

In Example 2, the frontier is given by u = 0, 2. The
frontier ‘lifts’ to M as F, say, made up of the lines
(0, v,v) and (2, v, v). Note that the surface M is ‘folded’
along F with respect to the linear projection
(u,v, ) — (u,v), as in Definition 5(3). Note also that
the lifted critical sets ¥, do form part of a coordinate
grid on M.

We refer to the whole region of M covered by critical
sets as the visible region of M. In the example, the visible
region is that parametrized by the strip in the (u,v)-
plane between the lines ¥ = 0, ¥ = 2, and in this simple
case the frontier is precisely the boundary of the visible
region.

The paraboloid example does not exhibit all possible
features of the projection from M to M. We collect these
here for future reference.

Result 6: Local forms of the projection from MtoM

For generic M and camera motion, there are four
possible patterns for the way in which the projection =
of M to M carries lifted critical sets 2, to critical sets hIP
These are shown in Figure 4. The cases are:

(i) a non-frontier point, where = is a local diffeo-
morphism; _

(i) anon-parabolic frontier point which is a ‘fold’ (see
Proposition 7)

(iii) a parabolic frontier point which is a fold. Tt
turns out that the same pattern applies to the
case where the motion is instantaneously to-
wards r:1 — ¢||¢,, However, the determination of
epipolar curves is very delicate and we shall not
cover this case; :

(iv) a non-parabolic frontier point which is a cusp
(Proposition 7).
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Figure 4 Local diagrams of the map
n from M to the (4, v) parameter plane
of M. The lifted critical sets in M and
the critical sets in the parameter plane
are drawn as thin lines. Except in (a),
the lifted frontier F in M is a thicker
line and the frontier in M is a heavy
dotted line. Note that the parameter
plane diagrams have been ‘exagger-
ated’ to separate frontier from critical
sets and so, we hope, achieve greater
clarity. The four generic cases are: (a)
non frontier point; (b) non-parabolic
frontier point; (c) parabolic frontier
point; (d) non-parabolic frontier
point, where the additional ‘cusp’
condition ¢, - n = 0 holds

The patterns shown can be deduced from a general
result on families of curves in the plane (or in a
parametrized surface) by Dufour'®; it is a straight-
forward matter to verify that his conditions correspond
with the four cases stated above. We record here the
simple test for fold and cusp points in our situation.
(See, for example, Koenderink'?, pp. 438, 457 and Lu'’
p. 38, for information on fold and cusp points).

Proposition 7 A4 frontier point is a fold point of
n:M— Mifandonlyife, - n=0,¢,-n#0, and a cusp
point if and only if ¢, m=¢,-n=0,¢,,-n£0. [

EPIPOLAR CURVES

The epipolar curves, together with the critical sets, give
us the ‘epipolar parametrization’ of M used by Blake
and Cipolla® 3. Let r be in the visible region of M, lying
on a critical set 3,. Then at r the epipolar field has a
vector along the (tangential) viewline r —e¢. For the
most part, it will not matter what the length of this
vector is: we are interested only in integral curves.
Cleaily, the epipolar field can be many-valued, since r
may lie on several critical sets (Figure I). It is in fact
much better to lift the epipolar field to M:

Definition 8 A4n epipolar field on M is a nonzero

Sy

tangent vector field such that the vector at (u,v,1)
projects, under the differential of the map 7 (see

Definition 1) to a vector parallel to the viewline r — c.
An epipolar field on M is the multi-valued tangent vector
field obtained by the projection n from M. The epipolar
curves on Mare the integral curves of an epipolar field,
and those on M are the projections of these curves
under .

Note We show after Proposition 10 that in some
circumstances any epipolar field on M actually has a
zero, that is, a place where it cannot be continuously
defined as a nonzero vector field. Such points are
isolated, and present the most complex behaviour of
the epipolar curves (case (iii)(d) below).

Example 9 The paraboloid (continued)

We use the notation of Example 2. Given a point r(u, v),
lying on a critical set 3I;, we want the tangent vector to M
which is along the viewline at r, i.e. along the direction
(u, v,u> +v?) — (1,1, 1*). The required vector in parameter
space is therefore simply along (u — 1, v — £). Of course,
we can eliminate 7, but at the expense of making the multi-
valuedness explicit: using equation (4) we find that the
vector at (u, v) in parameter spaceis (u — 1, + /u(2 — ),
which happens to be of unit length. _

To find the epipolar field on M we need to find a
tangent vector to Mat (u, v, ) which projects to a vector
parallel to (u—1,v—r) under the projection
(4, v,1) = (u,v). Using the gradient of f from
equation (4) as the normal to M, we want a vector
parallel to (u — 1,v — t, £) satisfying:
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wu—-1v—1, w—-1,v—t,—(v—1) =0

The solution for & is 1/(v — 1), and the vector solution
can be written so that the curves are parametrized as
(u(), (1), 1). Such a vector is ((u — 1)(v —0,(v— 1%, 1):
we can take the epipolar field on M to be given by this
formula. (In Proposition 10, we give a general prescrip-
tion for finding an epipolar field on M.)

To find the epipolar curves on M we want the
solutions of the differential equation:

dv 3
a—("—f)

Substituting w = v — ¢ turns this into dw/df = w* — 1,
which gives w = —tanh(z + k) for any constant £, i.c.
v=t—tanh(s+%k). There are two ‘exceptional’
solutions, namely v=1t+1, which correspond to
‘k =Foo’. Using equation (4), the corresponding
solutions for u are u = 1 & sech(¢ + k). The exceptional
solutions for v both give u = 1. So the epipolar curves
on M are (for any constant k).

(w,v,£) = (L £sech(t+ k), — tanh(t + k), 1)
(w,v,)=(L, 11,0 &)

Note that these curves are always nonsingular and are
necessarily transverse to the ‘lifted critical sets’ %,
which are given by ¢ = constant. This says that we can
always parametrize M locally with a coordinate grid
consisting of the X, and the epipolar curves: ‘the
epipolar parametrization always works (locally) on M.’

The frontier is given by ¢, - n = 0, where ¢, = (0,1,2¢) -

and n= (2u,2v,—1). The epipolar field on M is
obtained by projection from M (so of course it
becomes zero on the frontier, since v = ¢ there). The
epipolar curves on M are obtained by treating the first
and second components in (5) as parametrizations with
respect to t. For example, consider the curve which, at
t = 0, passes through ¥ = v = 0. This is the curve:

u=1—secht,v=1¢— tanht
which has initial terms in its MacLaurin expansion:

u=—21-t2+...,v:—%t3+....
This curve, like all the epipolar curves on M apart from
the ‘exceptional’ curve u =1, has an ordinary cusp
where it meets the frontier. (The exceptional curve does
not meet the frontier.) The shape of the epipolar curves
in M and in the parameter plane of M is shown in
Figure 3. The visible region here is that between the lines
u=0,u=2.

It is not difficult to find a general prescription for an
epipolar field on M, as follows:

Proposition 10  An epipolar field on M has the form:

_ r-cr,n\  flr—cn,n
<(CI n)< LT )’( - ")< In? >

— H(r—c,r—c)) ©6)
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Here, II is the second fundamental form of M (e.g. see
Koenderink'?, pp. 226, 232 and O’'Neill', p. 208), and
we can take m as any nonzero normal vector, not
necessarily unit length; for example n =r, x r,. For the
proof of the proposition, see Appendix B.

Notes on the formula in Proposition 10

1. The only circumstance in which all three entries in
equation (6) are zero is when ¢,-n =0 (frontier
point, Definition 5) and II(r — ¢,r — ¢) =0, i.e. the
viewline r — ¢ is asymptotic at r. This means that the
corresponding profile is singular'? (pp. 422, 437).'So,
away from singular profiles at frontier points, the
epipolar field on M is smooth and nonzero and the
epipolar curves are smooth. We consider singular
profiles at frontier points in case (iii)(d) below.

2. The epipolar curve on M will be smooth unless the
first two entries in (6) are zero, which happens
precisely at frontier points. This says that the
epipolar curves on M are smooth, except along the
frontier of M, as we observed in example 9. The
frontier itself can be singular (have a cusp), and we
consider that case in case (iii)(c) below (cf. Figure 4).

3. A smooth epipolar curve through r € M will be
tangent to the corresponding critical set X, precisely
when the viewline at r is tangent to X,. This is the
condition for a singular profile. Apart from this, the
epipolar curve will cross critical sets transversally, and
so the epipolar curve will be parametrized locally by t.

4. The formula for the epipolar field on M " looks
impressive, but if we regard M as contained in
M x R then it really says that the epipolar tangent
vector to M is along (¢, - n(r — ¢), — II(r — ¢,x — ¢)).

5. It is a standard fact of surface geometry (ref. 3 eq
(6); ref. 18, pp. 200, 208) that II(v, v), for a tangent
vector v, is just the sectional curvature of M in the

~ direction v, scaled by {Jv]*>. Thus, in our case, the
term II(r—c,r—c¢) in (6) can be rewritten x’/A%,
where k' is the ‘transverse curvature’, ie. the
sectional curvature of M in the direction of view-
ing, and 4 is the depth as in (2). Both quantities here -
can be measured from the image®.

6. Of course, there is a similar formula to (6) in the
case of parallel’ projection with variable viewing
direction w(z). In fact, it is identical to the above
formula, replacing r — ¢ by w and ¢; by w,, except
that, for reasons of orientation, the sign in front of
II becomes +. In the reinterpretation as in the note
above, we have simply II(w, w) = x'. 5

We pause here to mention some geometrical proper-
ties of epipolar curves. Suppose that an epipolar curve
C is (locally) parametrized by ¢ (see note 3 above) as
r(1), say. Then r(?) — ¢(t) = p()r'(¢) for some function
u, where ' stands for derivative. Differentiating this
equation with respect to ¢ shows that r” is in the plane
of ¥ and ¢', which is here the epipolar plane. Now the
plane of #' and r” is the osculating plane of C (ref. 17,
p. 168), so we have shown the first part of the following.
The other parts are not difficult to establish; we omit
the details: Co
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Proposition 11 The osculating plane of an epipolar
curve is the epipolar plane.

The epipolar curve has a zero of curvature at x when the
corresponding profile is singular. The limit of the
osculating planes approaching the point r is the epipolar
plane at r.

The limit of the osculating planes approaching a
[frontier point v (where the epipolar curve is singular (see
note 2 above), is the tangent plane to M at x. In fact this
applies to any cusped curve on a surface.: the limit of
osculating planes at points approaching the cusp is the
tangent plane. Note that this agrees with the interpreta-
tion of frontier points in Definition 5(2).

BREAKDOWN OF THE EPIPOLAR
PARAMETRIZATION

The (local) epipolar parametrization of M near r breaks
down when any of the following occur:

e the critical set and epipolar curve on M are smooth
and tangent to one another;

e the critical set on M is singular;

e the critical sets form an envelope on M.

In the last case, we know (see note 2 on Proposition
10) that the epipolar curves are singular, which also
precludes their use in a parametric grid on M. The
epipolar curves do not themselves form an envelope
(unless we count this ‘singular’ envelope along the
frontier).

We shall examine those cases which can be expected
to happen for a generic surface and generic camera
motion.

Away from the frontier, the patterns of critical sets are
all well-known'? (Ch. 8). The patterns of epipolar curves
are not hard to determine, since the epipolar field is non-
zero (see note 1 on Proposition 10), and we know when it
is tangent to the critical set (see note 3 on Proposition 10).

On the frontier, we have more work to do, but we
have already exhibited the patterns of critical sets above
(see item (6)) and in Figure 4. For the epipolar curves,
we start with the spatio-temporal surface M and use
general theorems on the solution curves of differential
equations. The appropriate theorems are given
elsewhere!®? and in all cases it is a straightforward
(though sometimes lengthy) matter to relate the hypoth-
eses of the theorems to the geometry of our present
situation. It is usually best in these verifications to set
up the surface M in ‘Monge form’, that is, as the graph
of a function: '

z=h(x,y) = apx> + axy + azy® + box’> + b1 X’y
+byxy* + by + ...
We can vgake a path of centres of the form:
() = (o + cr(d), a0, e5(0))

where the ¢; all vanish at ¢t = 0. Thus O = (0,0,0) is on
Yo, and the viewline here is along the x-axis. The
following conditions can be found in Proposition 7 or

in Bruce and Giblin?; some are also implicit in
Koenderink'? (p. 458):

e a frontier point at O corresponds to c¢3(0) =0
(Definition 5);

e a cusp point corresponds to ¢5(0) = ¢3(0) = 0 (and
c(0) # 0);

e a singular profile corresponds to ay = 0 (viewline is
asymptotic (see note 3 to Proposition 10);

e a lips/beaks point corresponds to ay=a; =0
(viewline is asymptotic and O is parabolic — see
note 4 above). Also, 3bby — bf # 0: for <0 we get
lips and for >0 we get beaks;

e a ‘swallowtail’ point corresponds to ap =by =0
(and a; # 0, coefficient of x* # 0); the viewline has
fourfold contact with the surface at O and the
profile has a swallowtail singularity.

We turn now to a more detailed description of the
failures. of the epipolar parametrization.

Case (i)(a)

Cusp on profile at p, surface point ¥ non-parabolic and not
on the frontier.

Thus the viewline r — ¢ is asymptotic at r. The pattern of
critical sets and epipolar curves in M (or equivalently in
M) is shown in Figure 5, where we do not attempt to
convey the shape of M but merely the arrangement of
curves: Note the ‘cusp locus’ L, consisting of points of
M giving profile cusps, passing through the tangencies
of the critical sets and the epipolar curves. The epipolar
parametrization breaks down because of the tangency,
but a new parametrization can be based on the critical
sets and a family of curves containing L. This is used by
Cipolla and Giblin**. When the surface is opaque, half
of each cusp in the image is occluded, and in M the
pattern on one side of the line L is removed.

Case (i)(b)

Swallowtail point on profile at p, surface point v non-
parabolic and not on frontier

Thus the viewline r — ¢ is ‘flecnodal’ at r, that is has 4-
point contact with M there. The pattern in M is shown
in Figure 6. Note that here the line of cusps L is actually
tangent to a critical set, and the epipolar curve through
this tangency inflects the critical set. Between the cusps
on the ‘swallowtail’ figure in the image there is a double
point (self-crossing of the profile), and we can trace the
locus D of points in M which give rise to these. For an
opaque surface the part between one branch of L and
the opposite branch of D is occluded.

Case (ii)

Lips/beaks point on profile at p, surface point r is
therefore parabolic, with viewline asymptotic there
The critical sets here are singular, displaying a ‘Morse’
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Figure 5 Cusp case (i) (a). Left: critical sets ¥ (thin lines), epipolar
curves E (thicker lines), and line of cusps L (thick line) in M. (No
attempt is made here to indicate the shape of M.) Right: a typical
pattern of profiles (thin lines) and epipolar curves (thick lines) in the
image sphere (see Proposition 13). Note that one branch of each cusp
is occluded in the opaque case

D
D L L

(1T z
E

Figure 6 Swallowtail case (i) (b). Critical sets X (thin lines), epipolar
curves E (thicker lines), line of cusps L and line of double points D
(thick lines) in M. Note that the region between one branch of L and
the ‘opposite’ branch of D is occluded for an opaque surface

transition through a crossing or isolated point. The
epipolar curves on the other hand remain non-singular
and the pattern is shown in Figure 7, which also shows
the cusp locus L.

Case (iii)(a)

Frontier point r, not parabolic, frontier smooth at r,
profile smooth at p (see Definition 5) )

The pattern of critical sets is shown in Figure 4, and we
show the epipolar curves in Figure 8. As in example 9
(Figure 3) the epipolar curves cusp along the frontier in
M, which means that in M they have ‘vertical’ tangent
lines where they cross the lifted frontier F.

Figure 7 Lips/beaks case (ii). Left: lips, right: beaks. Critical sets ¥
(thin lines). (For the beaks case, the two halves of one critical set are
labelled %..) epipolar curves E (thicker lines) and line of cusps L (thick
line) in M. For an opaque surface, all to one side of L is occluded
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i

Figure 8 Critical sets (thin lines) and epipolar curves (thicker, cusped
lines) along the frontier F at a non-singular point of F and non-
parabolic point of M. (No attempt is made to indicate the shape of M;
compare Figure 4(b).) No part is occluded for an opaque surface

Case (iii) (b)

Frontier point v, parabolic, frontier smooth at v, profile
smooth at p

The critical sets have a different pattern here (Figure 4),
but the epipolar curves have the same pattern as in
Figure 8. We draw the result schematically in Figure 9.

Case (iii)(c)

Frontier point ¥, non-parabolic, frontier cusped at r,
profile smooth at p

In this case the epipolar curves undergo a ‘swallowtail’
transition, as shown in Figure 10. (The conditions to be
checked come from Theorem 2 of Bruce'’, and, setting
everything up in Monge form as above, they come to:
view direction not asymptotic (ag # 0); camera motion

F

Figure 9 Critical sets (thin lines) and epipolar curves (thicker, cusped
lines) at a parabolic point of the frontier F on M. Notice that the
pattern of critical sets is different from Figure 8; compare Figure 4(c).
No part is occluded for an opaque surface

z |E

Figure 10 Typical critical sets X (thin lines) and epipolar curves E
(thicker lines) near a cusp on the frontier F (thick line). The epipolar
curves pass through a ‘swallowtail transition” while the critical sets all
remain smooth. No part is occluded for an opaque surface
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not towards O (c5(0) # 0); non-parabolic (a% # dapay);
and a genuine cusp point (Proposition 7, ¢4'(0) # 0).)

Case (iii)(d)

Frontier point r, non-parabolic, frontier smooth at r,
profile singular at p

This is the most bizarre case, because the epipolar field
on M is actually singular (zero) at such a point. To
examine the situation, we set up our surface M in
Monge form as above. A straightforward, if lengthy,
calculation shows that the epipolar field on M close to
(x,y,0) =(0,0,0) (using x and y as local coordinates on
M) has the following form, up to linear terms in x and ¢
(all derivatives are at 0):

dx/dr = —lgcharx + Aocht
dy/dt = 622box + 2Agchart

This vector field has a singularity (a zero) at x =t = 0.
Hence, there are generically three possibilities for the nature
of the integral curves: a node, a focus and a saddle (see, for
example, Schwarzenberger”, Ch. 4, or any book on
elementary differential equations). Write 4 for the quantity:

locgbo

2.2
acy

Then the distinction between the three cases is as
follows:

1. node, i.c. the matrix of coefficients in the linearized
vector field above has real distinct eigenvalues of the
same sign, if and only if —3/8 < 4 < —1/3;

2. saddle, i.e. the matrix has real distinct eigenvalues of
opposite signs, if and only if 4 > —1/3;

3. focus, i.e. the matrix has complex conjugate eigen-
values, if and only if 4 < —3/8.

In each case, the behaviour of the epipolar curves is
very complex, and we have restricted ourselves to
illustrating one case in Figure 11, that of a focus. The
locus of places where the (spiral) epipolar curve is
tangent to the lifted critical sets is the lifted locus of

Figure 11_ The ‘focus’ situation for a profile cusp on the frontier.
Left: in M, right: in M. The thin numbered lines are critical sets (or
lifted sets, in M). The frontier F and lifted frontier F are drawn as
thick straight lines. One (spiral) epipolar curve is drawn in M and its
image is drawn in M. The lines L and L are lifted locus of (profile)
cusps and locus of (profile) cusps, respectively

(profile) cusps, L, which passes through the intersection
of lifted critical set 2 and the lifted frontier F. In M the
epipolar curve cusps infinitely often on the frontier F,
and the locus L of (profile) cusps is tangent to F at the
point where critical set 2 is tangent to F. In this figure, L
and L are drawn dashed. For an opaque surface,
everything to one side of these lines is occluded.

We have usually excluded the following case, which
we now mention briefly.

Case (iii) (e)

Point where the camera motion is instantaneously
towards the surface point r:r — cl|c,. Automatically a
frontier point, fromtier smooth, ¥ non-parabolic, profile
smooth-at p

As mentioned above, the pattern of critical sets is
essentially the same as in Case (iii)(b) (parabolic point
on the frontier) above, so we do not repeat them. But
the epipolar curves are more subtle and require recent
results of Bruce and Tari** for analysis. [Added in
proof. The epipolar curves also behave exactly as in
case (iii)}(b).]

EPIPOLAR CURVES IN THE IMAGE SPHERE

For the most part we are concerned here with epipolar
curves in_the surface M (or in the spatio-temporal
surface M), but here we make two remarks on the
situation in the image sphere, one concerning the
epipolar correspondence in the image sphere and the
other concerning the case where the profile has a cusp.
As in equation (2), we can use unrotated p coordinates
in the image; we can also use coordinates q which are
rotating with the moving camera: p = R(¢)q, where R is
a rotation matrix. (In Cipolla and Blake?, p appears as
Q and q appears as Q.)

Let us assume that ¢ and another parameter s are
local coordinates on M, where s = constant gives the
epipolar curves. Differentiating (2) with respect to ¢ and
imposing the epipolar condition r,|ip, we find that p, is
parallel to ¢, + up for some u. But p,-p=0 so that
u=—c¢,-p and we have the tangent to the epipolar
curve in the image sphere in p coordinates is

pll(e; — (e, - P)P)

We could call the vector on the right here the ‘epipolar
field’ on the p coordinates image sphere.

What about q coordinates? For this we shall use the
normal parametrization, where we retain ¢ as one
parameter, but s = constant holds now along the
normals to the profiles in the image. Thus q(s,?) for
t = constant is a profile and for s = constant is the
orthogonal trajectory of the profiles. Then the epipolar
curve in the image will be a curve s = s(f) such that:

p(s(0), ) = R(q(s (), 1)
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R being the rotation, and:

d
ap(s(t), f) is parallel to ¢, —(p-¢)p

(see above). Thus, at 1 = 0, assuming R(0) = identity as
usual:

qs' +q,+Q xq=oa(c,—(p-c)p)

for some real function a. Taking the scalar product with
q, (which is perpendicular to q,) we get:

g4+ [2a.q]
q, ¢

where it is important to remember that q, is measured
perpendicular to the profile, so can be measured from
the image.

Proposition 12 A vector tangent to the epipolar curve in
the image, in q coordinates and with the normal
parametrization, is:

ale, — (¢, q)q) — 2 xq
for the above a. ( Remember that at t =0,p=q.)

Our second observation concerns the form of the
epipolar curve, in p or in q coordinates, when the profile
is singular. We assume that the locus of cusps on M is
transverse to the critical sets, as in Figure 5, and not
tangent as in Figure 6. Then we parametrize M locally
with 7 as one parameter and, say s as the other, where
s = 0 gives the locus of cusps. We are interested in the
epipolar curve in the image sphere close to s =t =0.
Let the epipolar curve on M through r(0,0) be t = T'(s),
say, where T(0) = T'(0) = 0 since the epipolar curve is
tangent to the critical set. The epipolar curve in the
image is p(T(s),s) with tangent p,T"+p;. But
ps(0,0) = 0 since the profile has a cusp, and T'(0) = 0,
so the epipolar curve in the image (p coordinates) is
singular too. Note that this only assumes that in M we
start with a curve tangent to the critical set; it does not
have to be the epipolar curve in fact.

In q coordinates we have p(¢,s) = R()q(¢,s) so that
p, = q,. The tangent to the epipolar curve in q coordinates
is ¢,T" + g, and again thisis zero at s = t = 0.

Proposition 13 If the profile has a cusp then the epipolar
curve in the image, using unrotated (p) or rotated (q)
coordinates, has a cusp at the same point as the profile.

We have illustrated this in Figure 5.

GEOMETRY OF THE VIEWLINES

Consider a regular parametrization of the surface M by
r(u,t) and a camera trajectory c¢(¢) such that for some
fixed ug the view lines ¢(#) + A(uo, 1) p(uo, f) are tangent
to the surface at r(ug, ) are tangent to the surface at
r(up, t) (compare (2)). Note that Proposition 3 gives the
precise conditions under which this is possible. Thus, for
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the parameter curve r(u, t), parametrized by ¢, there is a
one parameter family of viewlines /() such that /(¢) is
tangent to the surface at r(uy, t). Intuitively, reconstruc-
tion algorithms are based on intersections of viewlines.
In practice, these viewlines may not intersect, and the
points where they are closest may not even approach a
point on the surface. However, there are cases where the
closest points do converge to a point on the surface, that
is, if /(¢) is a tangent line in a family, then the point on
1(1) closest to the line /(¢ +¢) approaches r(ug,f) as.
¢ — 0. We show that there are two parametrizations
which have this geometric property: the epipolar
parametrization and the normal parametrization. More
formally, this can be stated as follows:

Proposition 14  The distance from the camera centre to
the surface at the point of tangency is to first order given
by the distance from the camera centre to the point where
this viewline is closest to the viewline for a nearby camera
position if and only if the parametrization satisfies either
the epipolar or normal constraint.

One interesting feature of this result is that it gives a
new formula for the depth (Lemma 15).

Proof Suppose the two viewlines are determined by
(e(D),r(ug, 1)) and (c(t+ &), x(ug, t +¢)), respectively.
These lines in R® will not in general intersect, but it is
possible to solve for the points where they are closest to
each other. Let a be a point on the first line and b a
point on the second line.

a=c(f)+ ap(uo, 1)
b=c(t+¢)+ ppu, t +¢)

1 :
b—a=ec,+ (B — a)p + Bep, + 582(011 +Bp) + 0(83)

If a and b are the closest points, then the line b — a is
perpendicular to each of these two lines. This can be
written as:

(b—a) pQu, ) =0

(b—a) puo, 1+ =0
Here, o and 8 can be thought of as functions of & and
have Taylor series expansions around & = 0. Solving for a
as a Taylor series in ¢ and taking the limit as ¢ goes to 0, we
can solve for the constant term. Since we are considering a

fixed value of 4y and the expansion is around ¢, we omit
those parameters from the expressions:

0=(Mm-2a)p

1
:3cr'p+(ﬁ_°‘)+§32(cn'P+,BP11'P)
0=(b—2a)-p(t+¢

1
=(b—a)-p+e’c-p+pp B +5B—)p-p)
+ O(&)
Manipulating these equations to solve for o gives, for
e— 0
—C Py

B | P
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This is therefore the distance from the camera centre
to the point a of closest approach of the two viewlines,
in the limit. Note that this is defined whenever p, # 0,
including most points of the frontier’, whereas the
standard depth formula A =(—¢,-n)/(p,-n) is not
defined at the frontier. We now complete the proof of
Proposition 14 by showing that this is equal to the
distance to the surface if and only if r(u, ¢) is an epipolar
or normal parametrization, i.e. r,||p or p,|n.

Lemma 15 If vr(u,t) is a parametrization of M with t
being the parameter of a moving camera centre then for a
point not on the frontier:

| L p,-n

if and only if v,||p or p,lIn. (The right side of this is the
standard depth formula of Cipolla and Blake®.)

™

Proof <« Case 1 Ifr|p then differentiating equation
(2), it follows that ¢, is in. the plane of p and p,, so for
some &,

¢, = ¢p +np,

Take dot products with the surface normal and the
tangent to the trace of the epipolar curve:

¢G-n=7p -n
C P, =1P D

Eliminating 7 gives the desired equation.

Case 2 If p||n then substitution gives the desired
equation.

= Equation (7) can be rewritten as:

(—C, ' p[) (pl ' n) - (—C, : n) (pt : pt) =0

This can be written in terms of cross products as:

(p, x (e, xp)) n=0

This implies that v = (p, x (¢; x p,)) is in the tangent
plane to the surface. Since this is a tangent vector and
perpendicular to p,, either p,||n and every tangent vector
is perpendicular to p, or v is a multiple of p:

e Case 1: v||p. By the fact that the cross product of
two vectors is always perpendicular to each of the
factors, v is always in the plane spanned by ¢, and
p,- Then it follows that the triple product
[p,p,,¢] =0. This says that since generically
p, #0, ¢, is in the plane spanned by p and p,.
Using the equation:

r,=c¢ + Ap+p,

it follows that [p,p,r,] =0. Thus, r, is in the
epipolar plane as well, and by definition it is a
tangent vector. Except at the frontier, the intersec-
tion of the epipolar plane and the tangent plane is
just a line in the direction of p. This shows that r,||p.
e Case 2: p,||n. For the spherical image, the normal to
the profile is the normal to the surface, so p, is
normal to the profile. This is the normal correspon-

dence used in Cipolla and Blake® for stationary
curves on the surface, and results in a parametriza-
tion when tracking the profiles of critical sets,
except when the profiles are singular. [1.

CONCLUSION

The epipolar parametrization of a surface M has been
shown elsewhere to be very useful in the reconstruction
process. This paper gives some additional geometric
properties which suggest that the epipolar curves are
easy to compute. We also present the criteria for failure
of the epipolar parametrization, namely, at the frontier
and at a singularity of the profile, e.g. a cusp point. We
have shown that at the frontier we cannot parametrize
M using critical sets as parameter curves, but that the
epipolar curves can be understood using the ‘spatio-
temporal surface’ M, which is (except at a (profile) cusp
point on the frontier) parametrized locally by lifted
critical sets and lifted epipolar curves. In these cases, we
have found the detailed structure of the epipolar curves
around the point at which the epipolar parametrization
breaks down.

We have described which parts of this structure are
occluded when the surface M is opaque. The boundary
due to occlusion, which we call the natural boundary,
has two types of points. These points are cusp points
(where the profile ends) and 7-junctions (where two
points on the critical set project to the same point). As
the camera moves these points trace out curves L, T on
the surface which are the boundary between the parts of
the surface which actually appear on an unoccluded
profile and those which do not. In the case of T-
junctions, it is the point which is farther from the
camera that traces the curve 7. Figures 5, 6, 7, 11 show
examples of lines of cusps (and in one case T-junctions).
The curves L, T meet at special points to form simple
closed curves. For generic surfaces, the special points
are the six codimension-one local and multilocal visual
events: swallowtail, lips, beaks, triple crossing, cusp
crossing and tangent crossing?. For example, at a
swallowtail a line of cusps meets a T-junction trajectory
as shown in Figure 6. At a lips or breaks point, two lines
of cusps meet as shown in Figure 7. At a triple point,
two T-junction trajectories meet.

In general, the reconstruction of surfaces from
profiles leaves gaps. These gaps are bounded by
frontier curves or natural boundaries. Making multiple
passes over the surface can reduce these gaps, but may
not eliminate them if the object has concavities or the
camera trajectory is limited by environmental
constraints. Note that the frontier curve can be
reconstructed by triangulation. Once one has deter-
mined where the frontier and natural boundary curves
are, there are three ways to fill in the gaps. One can
actively move the camera to a trajectory®® that will
reconstruct some missing parts of the surface (if this is
possible). One could also apply different sensors or use
information from surface markings and texture (as in
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multiframe stereo). A third approach is to use other
information which is implicitly present in the profiles.
The profile of a surface from a given view determines a
bounding cone. The intersection of these cones from
different viewpoints can be used to construct the
bounding volume for an object’”?®, Merging of the
appropriate pieces of these two surfaces along the
frontier and the natural boundary can produce a closed
surface which uses all of the information available from
the profiles. Additional information from surface
markings can potentially be combined for visible
regions which are not covered by the critical sets.
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APPENDIX A: CONDITION FOR ¢ AS ONE
PARAMETER ON M AND M (PROPOSITION 3)

(1) Noting thatr, -n=r,-n= 0 since r,,r, are tangent
vectors to M, the Jacobian matrix of the left side of (3) is:

((r—c)-m, —¢ -n) ®

Using the implicit function theorem (see, for example,
Bruce and Giblin'? (p 68), we require one of the first
two entries to be nonzero, and this is equivalent to
saying that the vectors n,,n,, which are automatically
tangent vectors to M, are not both perpendicular to
r — c. If this fails, then (i) n,, n, are parallel, and (ii) their
common direction is perpendicular to r—c¢. Now
n, = —S(r,), S representing the ‘shape operator’'®
(p. 212), so (i) is equivalent to saying that S is
degenerate, i.e. that r is a parabolic point of M where
the gaussian curvature vanishes. Then (ii) is equivalent
to saying that II(r—c,r,)=(@—c¢)-S,) =0, and
similarly for v, where II represents the second funda-
mental form of M. But this means that II(r —¢,v) =0
for every tangent direction v at r and hence r—¢ is
along the unique asymptotic direction there.

(T—C)'llv

(ii) Suppose that (r — ¢) - n, 7# 0 so that v = V'(u, 1) say,
from (i). We require that (i, £) — (u, V' (4, £)) is a regular
change of coordinates on M, ie. that V,#0.
Differentiating  (x(u, V(u,£)) —e()) -n(u, V(u,1)) =0
with respect to ¢ rapidly reveals that ¥, = 0 if and only
ife,, n=0. [O.
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APPENDIX B: EPIPOLAR FIELD ON THE
SPATIO-TEMPORAL SURFACE
(PROPOSITION 10)

The equation of ]}jl is given in (3) so that a general
tangent vector to M at (u, v, ) is say o, §, t where:

or—¢)y-n,+p(x—¢)-n,—1¢,,n=0 Q)

The image of the vector a,f,7 under the projection
M— Mis ar, + fr,. We want this to equal r — ¢, which
determines « and f since r,, r, are independent. Thus (9)
determines 7 so long as ¢, - n # 0; the contrary case of
course occurs precisely at the frontier. The final formula
is independent of the frontier restriction since we can
clear denominators.
Now r — ¢ = ar, + fr, gives:

r—c¢xr,=—fr,xr,; (—c)xXr,=oar,xr,
10)
Hence:
2
[r—c¢,1,,1, X 1,] = —f|1r, X 1|

[r—¢r,r, xr,] =afr, x>
The lifted tangent vector is therefore:

(@, B, ) = (&, B,(a(r — ©) - m,, + B(r — ©) - m,)/c, - m)
which is proportional to:

(¢, -no, ¢, -mf,a(r —¢)-n,+ B(r—c)-ny)

We can now substitute for «, § from (10). Note that n can
here be any nonzero normal vector, for example r, x r,.
Now n, - (r—¢) = —II(r,,r —c) provided n is a wunit
normal (see O’Neill'®, p. 190). Using the linearity of II,
it is a simple matter to reduce the tangent vector to M to
the form given in the statement of the proposition. [1.
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