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Chapter 1

Introduction

1.1 Mathematical introduction

This thesis studies affine differential geometry and singularity theory. In 1872, Felix
Klein stated his famous “Erlanger programme”: geometry is the study of invariants
with respect to a given transformation group.

Classical Euclidean differential geometry is the study of differential invariants
with respect to the group of rigid motions. Affine differential geometry is the study
of differential invariants with respect to the group of affine transformations, i.e. non-
singular linear transformations together with translations.

We shall study the group of affine special linear transformations: also called the
group of equi-affine or unimodular transformations. This group consists of volume
preserving linear transformations together with translations.

This group shall be denoted by ASL(n,R) := SL(n,R) x R". As a topological
space ASL(n,R) has the local structure of a Cartesian product, i.e. SL(n,R) x R".
However, as a Lie group it has the structure of a semi-direct product.

Throughout the thesis we will use the following notation: let {vy,...,v,} be n-
vectors in R”, we denote by [v1,...,v,] the oriented volume spanned by the vectors
v;. This is the determinant of the n x n matrix whose i-th column is the vector v;.

Singularity theory is a very diverse area of mathematics. It deals with, amongst

other things, the classification, up to certain kinds of equivalence relation, of func-
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8 CHAPTER 1. INTRODUCTION

tions and families of functions. The thesis will follow a purely geometrical path, as
put forward in the wonderful book “Curves & Singularities” (see [4]). However [4]

deals with Euclidean differential geometry, and not affine.

1.2 Chapter overview

In chapter 2 we consider plane curves v : I — R2. These are the simplest of objects
and can be studied with relative ease. We consider an affine arc-length parameter.
Given a curve without Euclidean inflexions (k # 0) we can define a unique parameter
for the curve. Using this affine arc-length parameter gives an affine tangent and an
affine normal vector. These give a basis for the ambient space. The derivatives of
this frame give information about the invariants of the curve. A family of affine
distance functions is defined, and the singularities of it are studied. We see that
exactly analogous results to the Euclidean theory are discovered. We construct affine
Monge-Taylor mappings. These carry with them all of the infinitesimal information
about the curve. We use them to prove that generically affine inflexions are isolated
and finite in number. The idea of using these Monge-Taylor mappings to prove such
results is due to J. W. Bruce and P. J. Giblin in [4].

In chapter 3 we consider space curves v : I — R3. The theory proceeds in a
similar fashion to that of the plane curve case and Euclidean space curve theory. We
define affine arc-length and affine curvatures, we find an affine frame which spans
the ambient space. A family of affine distance functions is also defined. Following
the work of S. Izumiya and T. Sano in [12] we introduce a slightly modified affine
frame which makes the expression of singularities of the distance functions much
more natural. Again we consider the affine Monge-Taylor mappings. Conditions for
the family of affine distance functions to be versal are computed.

In chapter 4 we consider space curve v : I — R". This chapter has already been
published in the Proceeding of the Royal Society of Edinburgh 2006 (see [8]). Again
we introduce the usual machinery to study the affine differential geometry of curves
in R". The unique thing here is that a new basis is computed which makes the

Ay conditions for the family of affine distance functions very simple to write down.
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Moreover, the conditions for versality are trivial in this basis. We also define, and
consider, the family of affine height functions. The new basis is very complicated to

write down, but expressions have been given.

In chapter 5 the emphasis shifts to surfaces in three-space. We give a brief intro-
duction to the theory. This begins with a very general approach using connexions
and metrics. This approach was put forward by K. Nomizu amongst others (see [13]
and [14]). In Riemannian geometry the idea is to introduce a metric, and to study
the properties of that metric. In affine differential geometry we introduce volume
forms which are defined in a very natural manner. The compatibility of these volume
forms with certain induced connexions gives rise to a unique transverse vector field.
This transverse vector field, along with the tangent plane, allows us to describe the
geometry of our surface. Other standard notions are given in this chapter too, such
as the affine shape operator, affine principal direction, affine principal curvatures,

asymptotic directions, etc.

In chapter 6 we consider the so-called Pick normal form. In Euclidean geometry

we can put a surface into a special form, i.e. z = %(lﬁﬁ + koy?) + -+, where the
k; are the Euclidean principal curvatures. We can also put a surface into a special
form in the affine theory. However, since the special affine group is larger than the
group of rigid motions we have more degrees of freedom. We compute explicitly the

transformation which takes our surface into Pick normal form.

In chapter 7 we introduce the family of affine distance functions and the family
of affine height functions. The former is a three-parameter family of functions of
two variables, the later is a two-parameter family. The generic singularities are A,,
Az, Ay and D,. These are the only interesting simple singularities with miniversal
deformations (see [1]) of dimension less than or equal to three. We compute the
conditions for certain singularity types and the geometric implications. Although the
calculations are very explicit, they are also very general, and so the final expressions

are very beautiful. Again, the results are almost identical to the Euclidean theory.

In chapter 8 we consider the family of affine surface parallels and the affine focal
set. If we consider the set of all points at an affine distance A from a given surface

point then we get a plane. Doing this for every surface point gives a two-parameter
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family of planes. These generically have an envelope (i.e. a surface tangent to each
of them). This envelope is the affine surface parallel of distance A\. We parametrise
this surface, and compute conditions for it to be singular. We also find the curvature
of the affine surface parallels, i.e. conditions for them to be hyperbolic, parabolic, or
elliptic. The affine focal set is the set of points given by the infinitesimal intersection
of nearby affine normal lines. If these lines were rays of light then the focal set
would be the points where the light was focused. We calculate a parametrisation
for this set, and show that it is the bifurcation set of the family of affine distance
functions. We show the connexion between this focal surface and the affine principal
curvatures and directions. The affine principal directions are the directions in which
infinitesimal intersection takes place. The principal curvatures are related to the

affine distance of the intersections from the surface.

In chapter 9 we look at special curves which arise from the affine shape opera-
tor. We consider the Euclidean parabolic curve (which is actually an affine invariant
t00), the repeated A-direction curve (where the affine shape operator has repeated
eigenvalues), and the affine parabolic curve (where the affine shape operator has
at least one zero eigenvalue). We give results for the generic interaction of these
three curves on a surface. In classical affine differential geometry, and even in more
recent work (see [13] and [14]), only hypersurfaces with non-zero Gaufian curva-
ture are considered. For surface in three-space these are surfaces without Euclidean
parabolic points. The unique part of this chapter is that we study the limiting
structure of the repeated A-direction curve and the affine parabolic curve as we
tend towards the Euclidean parabolic curve, and especially Euclidean cusps of Gausfl.
Given certain conditions these curves become singular. We use standard techniques
to identify these singularities. The techniques include A-equivalence and resolutions

via blowing-up.

In chapter 10 we consider affine sectional curvature. This is an idea which is
common place in many undergraduate Euclidean differential geometry modules. In
the Euclidean theory, you choose a direction in the tangent plane, then intersect the
surface with a plane which contains this direction and the Euclidean unit normal

vector at that point. This cross-section gives a plane curve, the Euclidean curvature
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of this plane curve at the surface point is defined to be the Euclidean section curvature
of the surface at that point in the chosen direction. The exact analogue fails for the
affine case. It is seen to fail because using this idea we lose all analogous properties.
We use singularity theory and the family of affine distance functions to reword the
standard interpretation. Once this is done, an idea of affine sectional curvature is
found which has many analogous properties to Euclidean sectional curvature. We
rewrite the affine sectional curvature in terms of metrics (see [13] and [14]).

In chapter 11 we consider in greater detail the affine parabolic curve. We study the
generic transitions in a one-parameter family of surfaces. If we have a one-parameter
family of surfaces then as the surfaces change so too do the affine parabolic curves.
This chapter mirrors the work by J. W. Bruce, P. J. Giblin, and F. Tari in [5] and
relies heavily on work by J. W. Bruce in [2] and [3] for its motivation and proofs.
All of the generic cases are considered. Each case uses a different method of proof,

and this chapter is a nice show piece for singularity theory and its role in geometry.
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Chapter 2
Plane Curves

We consider the differential invariants of the action of the affine special linear group
ASL(2,R) on the plane R?. The affine special linear group is the special linear group
SL(2,R) combined with the group of translation of the plane. We can recognise
this group as the semi-direct product ASL(2,R) = SL(2,R) x R?. Special linear
transformations are also called equi-affine, or unimodular.

The study of curves in R? is standard (see [11]). In this chapter we recall the stan-
dard machinery for dealing with plane curves. The affine Monge-Taylor mappings

have not been studied before.

2.1 Affine arc-length

Since equi-affine transformations preserve area it is natural to seek some parametri-
sation of plane curves which uses area, since it would be affine invariant.

Let I C R be an open interval, and let v : I — R? be a smooth plane curve.
The simplest way to parametrise such a curve is to use a parameter, called affine
arc-length and denoted by s, such that [y/(s),7"(s)] = 1 for all s € I. Here the
prime represents differentiation with respect to the affine arc-length parameter s,
and [y',~"] denotes the determinant of the 2 x 2 matrix whose columns are the

vectors ' and " respectively.

Definition 2.1.1 Let v : I — R? be a smooth plane curve parametrised using an

15



16 CHAPTER 2. PLANE CURVES

arbitrary parameter. A curve point y(t) is called an inflexion if [¥(to),(to)] = 0.
The curve 7y is said to be without inflexions if [,5] # 0 for all t € 1.

Definition 2.1.2 Let vy be a smooth plane curve defined using an arbitrary parameter

t without inflexions. The affine arc-length parameter is given by

s(t) = / (8). 5 (0]t

Proposition 2.1.3 Let~y be a smooth plane curve without inflexions which is parametrised
by affine arc-length. Let prime denote differentiation with respect s, so that ~' =
dv/ds etc. Then [y'(s),7"(s)] =1 for all s € I.

Proof Using the chain rule, we see that

i _ iy By _ Py () -
ds  dsdt ds?  ds? dt ds ) dt?2 ’

Putting these two expressions together gives

’ ds dt’ ds? dt ds) dt?2|

Using elementary properties of determinants, we see that

o= (%) .

From the definition of affine arc-length ds/dt = [, %]"/3. The result now follows. [

Remark 2.1.4 Parametrisation by affine arc-length imposes an orientation. Con-

sider the standard Euclidean curvature of a plane curve:

/(). 4"(3)]

[ ()

Since [7'(s),7"(s)] = 1 for all s, it follows that x(s) = [|7"(s)||™® > 0 for all s. The

Euclidean curvature is always positive.

k(s) =
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This is illustrated in the following:
Example. Consider a branch of a hyperbola given by 7(t) = (a cosh(t), bsinh(t)),
we have 4(t) = (asinh(¢),bcosh(t)) and 5(¢) = (acosht,bsinh(t)). This means

asinh(t) acosh(t)
beosh(t) bsinh(t)

= —ab .

[3,4) = [

Affine arc-length is then given by s(t) = —(ab)'/3¢. This implies that ¢t = —(ab)~/3s.

2.2 Affine tangents and affine normals

Let v : I — R? be a smooth plane curve without inflexions parametrised by affine
arc-length. The vector +/(sg) defines the affine tangent to v at y(sg) and the vector
v"(sp) defines the affine normal to v at 7y(s¢). Equation 2.1 now gives the affine
tangent and affine normal vectors for a curve with an arbitrary parametrisation.
Assume the arbitrary parametrisation to be Euclidean arc-length, so that ||§|| = 1

for all ¢ in the domain of definition. The last section can be used to show that
ds = [3,5]'*dt = [T, sN]'/2dt = K'dt

where T denotes the unit tangent, N the unit normal and « the Euclidean curvature.
This last expression gives the relationship v = k= /*T.

For any regular parametrisation let k& = [¥,7], so that k~'/3 = dt/ds. Tt then
follows that 7/ = k~'/34 gives an expression for the affine tangent vector in terms of
an arbitrary parameter t. Furthermore 7" = k~2/3%5 — %l.s:k*‘r’/?’f'y gives an expression
for the affine normal vector in terms of this arbitrary parameter.

The affine tangent line to v at 7(¢o) is the line parallel to 7'(s(t9)) which passes
through (o). Writing v(¢) = (X (¢), Y (¢)), the affine tangent line to v at (o) is

{x e R : [x — y(to), ¥(to)] = O} .

The affine normal line to 7 at y(tp) is the line parallel to 7" (s(#)) which passes
through ~y(¢9). Using the expression for 7" we can find the equation of the affine

normal line.
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Proposition 2.2.1 Given a plane curve v = (X,Y) parametrised by an arbitrary

parameter t. The equation of the affine normal line to v is:
(y = Y)(EX = 3kX) + (z — X)(3kY —kY) =0.

Proof Let y=(X,Y) so that

A = gk_5/3(3kX — kX, 3kY — kY) .

The line passing through a point of v which is parallel to " is given by

3kX — kX 3kY — kY
r—X y—Y

lk—5/3

3

Multiplying through by k~%/3/3 leads to the desired expression:

3kX — kX 3kY — kY
r—X y—Y

The affine normal vector can be related to Euclidean geometry. We have had
v = k=235 — kk5/3% /3. Let ~ be parametrised by Euclidean arc-length, so that
k=[T,sN] = and k = [T, N — x2T] = &, then it follows

1
A" = k'PN — gim_E’BT .

At an Euclidean inflexion x = 0, and so in the limit 4" points in the direction of T,

which is the same direction as 7/, and it is of infinite length.

2.3 Affine curvature

As with Euclidean curvature, which remains unchanged by isometric transformations,

an affine curvature can be defined which is unchanged by equi-affine transformations.



2.3. AFFINE CURVATURE 19

Recall, by the definition of affine arc-length [y, "] = 1. Differentiating with respect
to affine arc-length gives [y,

"] = 0. This means the vectors 7/ and 7" are parallel.

There must exist p : I — R, such that v (s) + u(s)7y'(s) = 0 for all s € I. The real
valued function p : I — R is called the affine curvature of . Since v + puy' = 0, it
follows that u = [v",~

III]

Definition 2.3.1 Lety : I — R? be a smooth plane curve without inflexions parametrised
by affine arc-length. The curve 7y is said to have an affine inflexion at v(so) if
wu(so) = 0. An affine inflexion is called ordinary if p'(so) # 0. An affine inflexion is
called higher if 1'(so) = 0.

Definition 2.3.2 Lety : I — R? be a smooth plane curve without inflexions parametrised
by affine arc-length. The curve vy is said to have an affine vertex at y(so) if p(so) # 0

and p'(so) = 0. An affine vertex is called ordinary if p"(so) # 0. An affine vertex is
called higher if 1" (sg) = 0.

Example. Consider an ellipse parametrised by affine arc-length, where

0= oo ) )

From the definition of affine curvature, and use of the chain rule

160760 = (a7 (eos? (2 ) oo () ) = a2

Since (ab)~2/3 > 0 for all ab # 0 it follows every ellipse has positive constant affine
curvature.
The ellipses are not the only family of plane curves to have constant affine cur-

vature.

Remark 2.3.3 Let GG be a Lie transformation group acting on a space M, with the
action ¢ : G x M — M. It has been shown that if x € M belongs to a non-degenerate
orbit of the action of G and if {g;, : t € I} is a one-parameter Lie subgroup, then
all of the differential invariants of ¢(g¢, ) will be constant. Let G := SL(2,R) and
M := R?, then given a one-parameter subgroup of GG, the action of it upon any point

other than the origin will give an ellipse, a hyperbola, or a parabola.
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Consider a smooth plane curve in Monge form without an Euclidean inflexion
close to the origin, i.e. for a; € R, as # 0, given by

1 1
(t) = (t, §a2t2 + -+ Ea’“tk + tk+1g(t)> ,

where g : I — R is a smooth function.6 We can calculate the affine curvature of v
at (0), this is given by
3asay — Ha3
wo) = ——5—
9ag/ 3
This means that the affine curvature function is a fourth order affine differential

invariant of the plane curve 7.

Proposition 2.3.4 Let v be a smooth plane curve without inflexions paramatrised
by an arbitrary parameter t. Writing k = [¥,7] allows the affine curvature to be

written as

1 .. .
p=5(8kk — 5k* + 9k[y, Tk . (2:2)

Proof Using the expressions for 4" and v” we have

5. 1. .
Y= <§k2k3 — 51@192) U T B i

= ; 1 III]

Furthermore, since k = [¥,5] we have k= [, 7] etc, we may simplify pu = [y,

The result then follows from direct computation. O

Corollary 2.3.5 The affine curvature of a plane curve can be written in terms of
the Euclidean curvature in the following way:

1
= 5(3/{;@ — 542+ 96Nk 83

Proof Let v be parametrised by Euclidean arc-length. This means k = k, k = & and

k =k, also [¥, 7] = [kN, &N — £2T] = k3. Then the result follows by substitution

into equation 2.2. [
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2.4 Affine distance

It is possible to define affine “distance” using the affine distance function. Affine
distance uses area to give a value; to find area one needs at least three points or
one point and one vector. Thus the definition of the affine distance function involves
vectors. This is the reason there is no concept of affine distance between two points.
Denoting differentiation with respect to affine arc-length by a prime, we get the

following

Definition 2.4.1 Let v : I — R? be a smooth plane curve without inflexions which
18 parametrised by affine arc-length. The family of affine distance functions A :
R2 x I — R s given by

Alx,s) =[x—7,7].
This gives a two-parameter family of functions defined over the curve . Given a point

xo € R? and sy € I, we say that the affine distance from x to v(sg) is A(xg, 50)-

Proposition 2.4.2 Let v : I — R? be parametrised by an arbitrary parameter, say
t. Then the family of affine distance functions is given by

A1) = =7, 410,317

Remark 2.4.3 The family of affine distance functions is clearly invariant under

special affine transformations since it is given by a determinant.

Definition 2.4.4 Let v : I — R? be parametrised by affine arc-length. Given a
fired xg € R%, if there exist distinct s1,5y € I such that A(xg,s1) = A(xg, S2) and
Ag(x0, 51) = Ag(x0,82) = 0, then the corresponding function A(xg,s) has a multi-

local singularity, written in Arnold’s Ay notation as As1As.

Definition 2.4.5 Given a fived xo € R?, if there exists s; € I such that Ay(xg, 51) =
Ags(xg, 1) = 0, then the corresponding function A(xo, s) has a degenerate singular-

ity, written in Arnold’s Ay notation as Ass.

It is natural to seek the full bifurcation set of this family of functions. The bifurcation
set is the closure of points in parameter space which give rise to functions having
either multi-local or degenerate singularities. The bifurcation set is the closure of
points in R? which satisfy either Definition 2.4.4 or Definition 2.4.5 or both.
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2.4.1 Conditions for A,

Every point x € R? gives a function with an A, singularity of the affine distance

function. The A, singularities come from solving A4(x, s1) = 0, where

As(x, 1) =[x —(s1),7"(s1)] -
Thus A4(x, s1) = 0 if, and only if, x — y(s;) is parallel to 7”(s;). This means x is on
an affine normal line to v at y(s).

For an A, at s = s one needs Aj(x, 51) = Ags(x, 51) = 0, where

Ass(x,51) = [x = 7(s1),7" (s1)] = 1.

Given Ag(x, s1) = 0 it follows x — y(s1) = My"(s1) for A € R, and so

Ags(x,51) = [M"(s1), 7" (s1)] = 1= An(s1) — 1.

Hence A (x,s1) = Ag(x,s1) = 0 if, and only if, u(s1) # 0 and x = v(s1) +
w(s1)719"(s1). The closure of such points is the affine evolute and this is part of
the bifurcation set of the affine distance function. Similar methods calculate condi-

tions for A>3 etc.

Remark 2.4.6 If x gives a function with an A3 singularity at s = s; then there is a
conic having six-point contact with v at y(s;). The point (s;) is called a sextactic

point and x will be an ordinary cusp on the affine evolute. See [15] for more details.

2.5 Affine Monge-Taylor mappings

The aim of the section is to establish something analogous to the Euclidean Monge-
Taylor mapping, cf. [4] Chapter 9. The section concludes will a result on the generic

behaviour of smooth simple closed plane curves without inflexions.

Definition 2.5.1 A simple closed plane curve v : S* — R? without inflexions is said

to be conver.
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Proposition 2.5.2 Lety be a smooth plane curve without inflexions which is parametrised
by affine arc-length. Given the family of affine distance functions as above, for a

generic point x € R? we have
x =7+ As(x,8)7 — Ax, 8)7" .

Proof We have [y/(s),7"(s)] = 1 for all s € I. There exist families of functions
u,v: R2 x I — R such that

x = y(s) + u(x, 5)7'(s) + v(x, s)7"(s) .

It follows that

u(x,5) = [x=7(5),7"(s)] = Aslx, ) ,
v(xs) = [V (s),x=7(s)] = —Ax,5) .

O

Proposition 2.5.2 shows that {7/, 7"} can be used as a one-parameter family of bases
for a one-parameter family of new coordinate systems, whose origins are at some point
on the curve 7. Thus fixing sy € I, a point x is given by (A,(x, o), —A(x, So)) in
one of these new sets of coordinates.

Restricting x to the curve, so that x = (r) for some 7 := s — s, it follows that

u,v: R x I — R where

u(r,s) = [y(r) = (s),7"(s)] = As(r, 5) ,
v(rs) = [(s),7(r) = v(s)] = =A(r,s) -

In what follows it is important to remember that » = s—sq, and so expressions of the
form +'(r) are simply /(s — sq). Thus the prime is reserved for differentiation with
respect to s. The use of r is designed to simplify notation, and is not an independent
variable: it is a translate of s. Fixing s, € I gives a parametrisation for the curve
in terms of one of the new coordinate systems, namely v(r) = (A4(r, so), —A(r, s¢))-
Each choice of coordinate system gives a parametrisation for a curve tangent to one
of the basis vectors at the origin, i.e. tangent to 7'(sg) at y(sg). The curve can be

put into Monge form.
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For a fixed sy € I, the function u can be considered a function of r, where
u(r) = [v(r) — v(s0),v"(s0)], it follows that u'(r) = [v'(r),7"(s¢)]. Thus u'(sp) = 1
and so u'(sg) # 0. This allows u(r) to be taken as a local parameter for the curve

close to 7 = s¢. This means v(r) = V' (u(r)) for some function V. Differentiating u

and v leads to the following:

vo= 'V,
U” — U”Vu + U/IQVuu;
Um — UI”Vu + 3UI’LL”Vuu 4 Ul3vuuu ]

Expressions can also be calculated for d'v/dr* where 1 < ¢ < k. Solving each equation,

in turn, for V{; it follows that:

Ve, = v/,
Vuu — (UIU” o U”’U’)/U’3 ’
Vuuu — (uIQUm o UI’UI’U,,” + S(UI’LLHQ o UI’LL”’U”))/’U,’5 )

Expressions can also be found for higher order derivatives of V. Here, u®(r) =
[V (r), 7" (s0)] for all 1 < i < k and v (r) = [/(s0), 7" (r)] for all 1 < i < k. Thus:

w'(so) = 1,
u"(s)) = 0,
u"(so) = —p(so)
u(s0) = —p'(s0)
u®(s0) = —pu(s0)* = 1" (s0) ,
U(G)(So) = Ap(so)i'(s0) — 1" (s0) -
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v'(s0) = 0,
v"(s0) = 1,
v"(s9) = 0,
vW(so) = —p(s0)
v (s0) = =24/ (s0) ,
’U(G)(So) = pu(s0)” = 3p" (s0) -

From this it follows that

Vau(u(so)) = 0,
Viu(u(so)) = 1,
Vauwu(u(s0)) = 0,
Vin(u(so)) = 3pu(so)
Vis)(u(s0)) = 31/ (s0) ,
Viey(u(s0)) = 45u(s0)* + 54" (s0) -

Next, notice that by Taylor’s theorem:

k

V) = 3 0D ) ey 4 g(utr)

n=0

for some smooth function g with zero k-jet. Given the current coordinate system

V(u(so)) = Vu(u(sg)) = 0. Thus one may consider the finite approximation:
Vi (u(50))
n 0 n
Vi(u(r)) ~ z_; — (u(r) — u(so))

for some 2 < k < oco. This allows the construction of a mapping into jet space.

Expanding V' about wu(sg) gives a k-jet, the coefficients of which give a point in
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J*(R,R). Expanding about all other points u(s) gives a curve in J*(R,R). This
mapping is jS(SO) : C®°(R) — J¥(R,R) where

V(u(r)) s (Vu(u(s())), Viu(u(s0)) M) |

or T gl

Then expanding about all other points on v gives the curve

The curve 7, : I — J¥(R R) is an equi-affine invariant of the original curve
v : I — R?. This is clear from the construction. The main use of this affine Monge-
Taylor mapping will be in the case of ovals (smooth simple closed convex plane
curves), where I = S' so that v : S' — R? and 7, : S' — J¥(R,R). It can be used

to prove analogous affine results to the Euclidean ones presented in [4].

Writing a;(u) = Vi;)(u)/i!, it follows that a;(u) = as(u) = 0 and ay(u) = 1/2
for all u. Thus one may consider only the points (a4(u),...,ar(u)) C J¥(R,R), from
now on consider the subset (ay,...,a;) C J¥(R,R) and write Jj.

Letting k = 5, the condition for v to have a higher affine inflexion is that pu(u) =
p'(u) = 0 for some u. In an arbitrary coordinate system, a curve v = (u, V(u)) has
©(0) = 0 if, and only if, 4a5(0)as(0) — 5a3(0)? = 0. Also £/(0) = 0 if, and only if,

2a3(0)* — 3as(0)as(0)as(0) + as(0)az(0)> =0,

In the affine Monge-Taylor coordinates these conditions become a4(0) = 0 and
as5(0) = 0 respectively. Thus v has a higher affine inflexion at some point pro-
vided n,(S") passes through (0,0) € J5. If 1 passes through the point (0,0) then it

follows that a small deformation of v, into ¥, will ensure 75(S") misses (0, 0).
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Moreover, letting £ = 6, the condition for v to have a higher affine vertex is that
1(0) # 0 but £/(0) = 1"(0) = 0. We have p"(0) = 0 if, and only if,

10a3azas — 24asaja, + 1lay + 6asa; — 3aga6‘u:0 =0.
In the affine Monge-Taylor system a; = a3 = 0 and a; = 1/2, thus the condition
becomes 4a,(0)* — ag(0) = 0. The points

N = {(a4,0,4a3) : ay € R — {0}} C Jg

give two segments of a parabola. If 7,(S') passes through N then ~ has a higher
affine vertex at some point. If 7, (S') passes through (0,0,0) which is in the closure
of N, v has a very high affine inflexion (corresponding to u = p' = " = 0). If n
is transverse to N then it follows that a small deformation of v, into 7, will ensure
n5(S') misses N.

It remains to establish how deformations of v deform 7,. Here we use standard
polynomial deformations which were used in [4]. Let P denote the set of maps
7 : R — R? of the form 7(xy,29) = (71 (21, 22), T (21, 22)) Where 7y, T € Rlxy, z9)

with degree < k, for example

The coefficients of the various monomial give a coordinate system on the space P.
It follows there are (k+1)(k+ 2)/2 possible choices for m; and likewise for 7o, hence
dim(Py) = (k+1)(k +2).

Assuming k > 1 it follows that the identity map id(zy, z5) = (21, x2) is contained
in P;. Consider an open neighbourhood B C P, with id € B, then for sufficiently

small B it follows that 7 o« will be smooth for all 7 € B and will still be an oval.

Theorem 2.5.3 (Bruce and Giblin [4]) Let M be a submanifold of J, = RF3.
For some open set B C B with id € B, the mapping n:Stx B — R¥=3 given by

N(u, T) = Nroy(u) is transverse to M.
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Proof The submanifold M is of no importance here, since 1 can be shown to be a
submersion. Since S! is compact and being a submersion is an open condition it is
enough to consider a point (u,id) € S* x B. Using an isometry, the curve v may be
put in terms of it affine graph (the so called affine Monge form) so that locally the
curve is the graph of a function zy = V(1) where V(0) = V,,(0) = 0. It follows that
n(uid) = jgV.

Given F(z1) € Rlzy] with 4 < deg F' < k, let m(x1,29) = (21,29 + tF(z1)) for
t € R. Then for small ¢, it follows that m; € B. Now consider the curve ' : R —
S' x B given by T'(t) = (u,m(x1,22)). Then 7 (zy, V(1)) = (21, V(zy) + tF(xy)).
Since deg F' > 4 it follows that the affine Monge-Taylor expansion of (m; o v)(S') at
(i 0)(u) = 0is j&(V + tF). The tangent vector in J¥(R, R) at n(u,id) is

KV +tF) — kv kY 4tk E — kv
i Jo VA EE) =gV GV At E —
t—0 t t—0 t

=joF = F(u) .

Since the choice of F' was arbitrary and 4 < deg F' < k this clearly shows that 7 is a

submersion at (u,id) and whence the result. O

Lemma 2.5.4 (Thom) Let X C R, Y C R? be smooth manifolds and B an open
set in R" with G : X x U — R? a smooth map transverse to Y. Then for almost
all b € B (all b outside a set of measure zero) the maps Gy : X — R? given by
Gy(z) = G(x,b) are transverse to Y.

Applying Lemma 2.5.4 to Theorem 2.5.3 shows that for a dense set of deforma-
tions 7 € U the maps 70, : S' — Ji will be transverse to M. If codim (M) > 2 this
implies that 70, (S") misses M.

Definition 2.5.5 A property P is said to be dense or to hold for a dense set of
smooth plane curves if the following holds. For any such v : I — R? there should be
some neighbourhood B C R* with 0 € B, and a family of plane curves ¥ : I x B — R?
such that (u,0) = ~(u) and for some sequence {b,} in B with lim, . b, = 0
property P holds for the sequence of curves ¥(u,by,).
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Definition 2.5.6 A property P is said to be open or to hold for an open set of
smooth plane curves if given a curve v : I — R? with property P and any family
y : I x B — R? of smooth curves the property P holds for all curves ¥(u,b) with
be B.

Definition 2.5.7 A property P is said to be generic or hold for a generic set of

smooth plane curves if it s both open and dense.
Before stating the main result of this section, we need the following

Proposition 2.5.8 Let X be compact and Y C R™ be a smooth manifold which is
a closed subset of R™, and consider the set of smooth mappings f : X — R™. The
property f MY is open.

Proof See [4] Chapter 8 pp 223. O

Proposition 2.5.9 If f: X — R™ is a smooth map, Y C R™ is a smooth subman-
ifold, f is transverse to Y, and dim(X) + dim(Y) = m then the points f~1(Y) are
isolated. That is, each x € f~1(Y) has a neighbourhood U with U N f~1(Y) = {x}.
Furthermore, if X is compact f~'(Y) is finite.

Proof Let g: R"™ — R” be a smooth map with regular value z € R" such that
g '(z) = Y. It follows from the implicit function theorem that Y is a smooth manifold
of dimension m — n. Since dim(X) + dim(Y) = m it now follows that dim(X) = n.
If f MY then by the definition of transversality z is a regular value of the map
(go f): X — R". Since dim(X) =n and (go f) : X — R" has z as a regular value
it follows by the inverse function theorem that (go f) is a local diffeomorphism, and
so dim(X) = 0. Hence the points f~'(Y) are isolated. The fact that if X is compact

f7HY) is finite follows from the definition of compactness. O

Corollary 2.5.10 An open dense set of ovals v : St — R? have only finitely many
ordinary affine inflexions and ordinary affine vertices, and no higher affine inflexions

or higher affine vertices. Thus these properties are generic.
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Proof Given anovaly: S* — R2, applying Lemma 2.5.4 to the map 7 : S*xB — J;
with M the submanifold of higher affine inflexions (resp. affine vertices) proves that
a dense set of curves have only ordinary affine inflexions (resp. affine vertices).
Furthermore, by Lemma 2.5.4, for a dense set of 7 € B the map e @ St — Jp
is transverse to M. Thus by Proposition 2.5.9 the set 7 '(M) of ordinary affine

inflexions (resp. affine vertices) is finite for a dense set of 7 € B.

Considering the cases of ordinary affine inflexions and ordinary affine vertices
individually we may prove these properties are open. Let M denote either the point
(0,0) € Js (higher affine inflexions) or the set a5 = 4ay — ag = 0 in Jg (higher
affine vertices, together with very high affine inflexions, (0,0,0) € Jg). It follows
that M is smooth and closed in both cases. Let 7 : S x B — R? be a family of
curves with 4y having only ordinary affine inflexions and ordinary affine vertices. Let
n: S*x B — J, be the corresponding family of affine Monge-Taylor mappings. Then
the compactness of S, together with the fact that 7, is transverse to M, implies by
Proposition 2.5.8 that n(S* x {b}) misses M for b in some open neighbourhood of 0.
Hence nearby curves 7, in the family also possess no higher affine inflexions and no

higher affine vertices.

Finally one may show that having finitely many ordinary affine inflexions and
vertices and no higher ones is open. First note that, if v has an ordinary affine
inflexion (resp. affine vertex) at ¢ € S', then the image of the map n : S* — J;

meets the a4 (resp. as) axis at n(u) and is transverse to that axis.

Let 7 : S x B — J5 be a family of curves with 4, having finitely many ordinary
affine inflexions and vertices, and no higher ones, so that 7y : S* — J5 is transverse
to the ay-axis and as-axis. Since transversality is an open condition when the source
is compact and the relevant submanifold closed (see Proposition 2.5.8) it follows that
ny : ST — Js will also be transverse to these axes for all b in some neighbourhood B of
0 € B. Hence, if M is either of these axes the set 1, ' (M) of ordinary affine inflexions
or vertices of 7, is finite and also there are no higher ones (see Proposition 2.5.9).

This proves the result.

O
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Corollary 2.5.11 Let v : I — R? be a smooth plane curve without inflexions. As-
sume that v(0) = (0,0) and 7'(0) o (1,0). If u(0) # O then v is affinely equivalent
to

(t, 2 + agt* +ast’ + -+ -)

(1)

where a; € R and ay # 0. If 1(0) = 0 but 1/ (0) # 0 then v is affinely equivalent to

(t, 1 4+ ast® + agt® + -+ +)

~(t)
where as # 0. If p(0) = 1/(0) = 0 but p"(0) # 0 then v is affinely equivalent to

(t, ¢ + agt® + art” +--)

7(t)
where ag # 0. If nD(0) = 0 for all 0 < i < 2 then v is affinely equivalent to
V() = (6,1 + art’ +agt® + )
where a7 # 0.

Proof This comes directly from the computation of the V{; (u(so)) on page 25. [
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Chapter 3
Space Curves

Here we look at the affine invariant differential geometry of space curves. Let I C R
be an open interval. Let v : I — R® be a smooth embedding. We can follow the
2-dimensional case to construct a 3-dimensional theory.

The study of curves in R?® is not as standard as curves in R?, although they
have been considered (see [12]). In this chapter we recall the standard machinery
for dealing with plane curves. We give some Euclidean interpretations and compute

conditions for Aj singularities of the family of affine distance functions.

3.1 Affine arc-length

We seek a parametrisation for -, using the parameter s, so that [y, v", "] =1 for
all s € I, where prime denotes differentiation with respect to this special parameter.
Consider some arbitrary parameter ¢, we have
dy dtdy d*y  dPtdy L[ % 2y
ds dsdt’ ds® ds?dt ds) dt?’
By Ptdy L g 2t d>y [ dt\? By
ds3  ds3 dt ds ds? dt? ds) dt3

where dy/dt = 4, dvy/ds =" and so on. It then follows that

at\® ..
(g) [y 4 =0 2" 2"

33
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Furthermore, since [/, 7", 7] = 1 we conclude that ds = [, ¥, ¥]/5dt and so
(0= [ 4. 71

3.1.1 Euclidean interpretations

Let the parameter ¢ be Euclidean arc-length. It follows that ¥ = T, ¥ = kN and
¥ = kN + k7B — k2T. Here B is the unit binormal vector and 7 is the Euclidean

torsion; T, N and k have already been defined. Thus
%, %, 7] =[T, &N, &N+ k7B — £’T| = &1 .
Using Euclidean arc-length also gives us

1 2Tk + KT
I "n_ -1/3ng _
7= H1/37-1/6T’ v =rRT N 6H5/3T4/3T :

As with the plane curve case, affine arc-length can only be defined given certain

conditions (in the plane curve case it was that x # 0). Since (dt/ds)[y,7, 7] =
Y\
affine arc-length cannot be defined at points where k7 = 0.

III]

, and [¥,%, 7] = k?r, if k7 = 0 it is impossible for [y/,7”,7"] = 1. Thus

3.2 Affine curvature and torsion

If [/, 7", 4" = 1 for all s € I then [y',7",7*] = 0 for all s € I. There exist functions
p,v : I — R such that v + vy + puy" = 0 for all s € I. We may give names to
these objects. For example v is the affine tangent vector, v" is the principal affine
normal and 4" is the affine binormal. The function v is the affine torsion of v and
1 is the affine curvature.

From this we may construct some Serret-Frenet type formulae, these are
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3.3 Affine distance

Let v : I — R? be a smooth space curve parametrised by affine arc-length. Then we

have the following

Definition 3.3.1 Given a point x € R® we define the distance from x to v(sq) to be

1

A(x, 50) = [x —7(50),7(50),7"(50)] -

The three-parameter family of functions A : R® x I — R is a family of affine distance

functions on 7.

Proposition 3.3.2 Let v : I — R? be parametrised by an arbitrary parameter, say

t. Then the family of affine distance functions is given by
A(Xa t) = [X -7 ;}/7 /Y] [’77 ;}‘/: ;‘}/.]71/2 :

3.3.1 Conditions for A;

Using Arnold’s standard A; notation, we say that A : R® x I — R has an A,
singularity at xg if there exists so € R such that 9" A/ds"(xq, s9) = 0foralll <n < k
and OFTLA /st (xp, s9) # 0. We can compute the conditions for Ay. Notice that

As(xs) = [x—=77.7"],
Aws(x,8) = [x=79" 7"+ x=77, -1,
Agss(x,8) = [x =77, =y =" —vix—7,7"7]-1.
Since [7',v",¥"] = 1, the first three derivatives of v are always linearly indepen-

dent, they form a basis for R*. We can write x — +y as a linear combination of o/, 7",
and 7". Then A (x,s) = 0 if, and only if, x = v 4+ ay' + 7" for some o, € R.
In this case the family of affine distance functions has an A, singularity at x. Also
Ay(x,8) = Agy(x,5) = 0if, and only if, x = v+ ay' + 7" and a — Su = 0, that
is x = v+ By ++"). In this case the family of affine distance functions has an
A, singularity at x. Finally Ag(x,s) = Ay(x,5) = Agys(x,5) = 0 if, and only if,
x=v+4B(uy ++"),v—p #0,and g =1/(v— 1), that is

p L

Y+ il
—u v

X:’}/‘f—y
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In this case the family of affine functions has an A3 singularity at x.
Notice that the condition v — i’ # 0 is necessary for an A-3. Assume x is such
that A has an A, singularity, i.e. x is such that A; = Ay = 0. For an A>3 we need

to solve Ay, = 0 given Ay = Ay, = 0, i.e. solve

III]

[x =7 =Y = " = vx = 7,97 T =1

given x = v + B(puy' + +"). In this case the A>3 condition becomes (v — ') = 1.
This cannot have a solution if v — p/ = 0. It follows that there cannot be an As;

singularity when v — u' = 0.

Focal sets

Given a space curve -, the focal set of ~y is the closure of points x € R? such that A

has an A, singularity for some s € I. From this we make the following

Definition 3.3.3 The affine focal set of v is

{x e R®: 3 s¢cI suchthat Ay = A,y =0} .

Remark 3.3.4 The affine focal set of a generic space curve with kT # 0 is a ruled

surface.

Proposition 3.3.5 Given a space curve 7y the affine focal set is parametrised by

x =7+ +7") .

3.3.2 Intrinsic affine frames

”’] = 1. Any set of vectors {vl, V2, ’03}

The set {7',+",~""} has the property that [/, 4", v
with the property that [vy, vy, v3] = 1 is called an equi-affine frame. Here we seek
to find a new equi-affine frame for a space curve 7 which is more analogous to the

Euclidean orthonormal frame of {T, N, B}.
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Notice that for functions o, : I — R we have [y, 7", " + o' + 57"] = 1.
Writing v := 4" + o' + 7", it follows that

dv

- 57111 (5/ )/yll ( / l/)’yl,

d‘ ! 2 1 / /
o5 = v+ +a—pu—0)'+( —v—ap)y .

Then dv/ds depends on v unless f is identically zero. Hence it is a good idea to

n

take f =0 and so v := " + oy for some o : [ — R.

Consider v := " + a~/, then it follows that

1

vi= (o —v)Y + (a—p)y

For v to be analogous to the Euclidean binormal, its derivative should be dependent

n

on one vector only. Hence set a := p so that v =~" 4 py and v/ = (¢ —v)7’. Thus

we define a new vector called the intrinsic affine binormal, denoted by B := piy/+~".

We also let T := ~" and N = ~". Clearly [T,ﬁ,ﬁ] = 1 for all s € I. The value
v — i plays an important role. Thus we relabel k, := u and set 7, := v — p’, where
Kq is the affine curvature and 7, is the intrinsic affine torsion (from now on called
the affine torsion). Then if T represents the affine tangent vector and N the affine

normal we have the following:

p T 0 1 0 T
— | N |=| -k, 01 N
ds - -

B —1, 0 0 B

Reformulation of A, conditions

Using the new equi-affine frame {'I‘, 1<I, ]§} the conditions for Ay singularities can be

reformulated, for (o, ) € R?, as

A>1 <~ X:’Y—FOZT‘f‘ﬁﬁ,
Asy <= x=7+fB,

A23 < X:’7+—:§

Ta
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3.3.3 Local structure of the bifurcation set

Here we classify the singularities of the bifurcation set. Using the basic ideas of

unfoldings found in [4] we have the following:

Criterion 3.3.6 Let F': (R* x R, (x¢,50)) = R be an n-parameter unfolding of f,
which has type Ay at so. Then F is (p)-versal if, and only if, every real polynomial

p(s) of degree < k — 1 and without constant term can be written in the form

)= Y et (G )

i=1

$=S0

for real constants c¢;, where j*~1 denotes the (k — 1)-jet.

Proposition 3.3.7 Let j*='(0F/0z;(x¢, 50))(50) = Q18 + Qg;8° + - + ag_1 ;8571
for1 <i<mn. Then F is (p)-versal if, and only if, the (k—1) xr matriz of coefficients
(aj;) has rank k — 1.

Proposition 3.3.8 Let F: (R" X R, (xq,50)) — R be an n-parameter unfolding of
the function f = Fy,. Let R[s| denote the ring of polynomials in s and let m denote
the mazimal ideal consisting of polynomials with zero constant term. Finally let (s*)
denote the ideal of polynomial multiples of s*. Then F is (p)-versal if, and only if,
the (k — 1)-jets in Proposition 3.3.7 span the real vector space m/(s").

Remark 3.3.9 Given a family F' : R* x R — R, we wish to consider the local
structure of the bifurcation set. Let Xq be a point of the bifurcation set with corre-
sponding value sy (i.e. OF/0s = 0*F/0s* = 0 at (xq, s0)). It is possible to decide if
F (p)-versally unfolds f at sy by finding OF /0x; and using the matriz condition in
Proposition 3.3.7. If the condition is satisfied then near to xqo the bifurcation set is

locally diffeomorphic to a standard model, determined by n and k.

Proposition 3.3.10 Let F': (R* X R, (xg, S9)) = R be an n-parameter unfolding of
[ = Fyx, which has an Ay singularity at so. If F is a (p)-versal unfolding then

1. If k = 2, then the bifurcation set is locally diffeomorphic to R*~' x {0}.
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2. If k = 3, then the bifurcation set is locally diffeomorphic to R" 2 x C.

3. If k = 4, then the bifurcation set is locally diffeomorphic to R" 3 x S.
Where C is an ordinary cusp and S is a swallow tail:
C = {(Wwvu*):ueR},
S = {(u,2v® +uv, 30" + uv?) : (u,v) € R?} .
Proposition 3.3.11 Consider a smooth space curve, with kT # 0, parametrised by

affine arc-length. The 3-parameter family of affine distance functions defined on the
curve, A : R® x I — R, is (p)-versally unfolded provided 7, # 0.

Proof Consider A(x,s) =[x —~,7,7"]. Writing v(s) = (X (s),Y(s), Z(s)):

X/ X/’

Ay(x,8) = [0 Y Y" |,
o 7z zZ"
0 X/ X”

Ayx,s) = |1 YY",
o 7 Z"
0o X' X"
Ax,s) = |0 Y Y
Z’ Zl’

Writing Ax(x,s) = (Az(x,5), Ay(x, ), A,(x,s)) it follows that Ax(x,s) =" x "
Differentiating with respect to affine arc-length yields
Axs(x,8) = o' %",
Axss(x,5) = 7" x 9" = p(y' x9"),
Agsss(X,8) = (v =) (v x ") = p(v" x ") .
Writing these in terms of the basis {T, N, ]§} gives

Axs(x,5) = TxB,
Ages(x,5) = Nx B,
Agsss(X,8) = TxN-k,TxB.
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Given vectors u, v and w, an elementary calculation shows that
[uxv,uxw,vxw|=[uv,w?.
Thus [T x N, T x B,N x B] = [T, N, B]? = 1, which gives
[Axsss(X,8), Axs(X, 8), Axss(X, 8)] = 74,

{Axs(X,8), Axss(X, 5), Axsss(X, 5)} are linearly independent if, and only if, 7, # 0. It
follows that the 3 x 3 jet matrix

T x B
J = 5 (N x B)
3 (7T x N — £,T x B)
in Proposition 3.3.7 is non-singular if, and only if, 7, # 0. The result follows. U

Corollary 3.3.12 Assume that 7, # 0 along . At points where x = v + oT + ﬁﬁ
and o # 0 the affine focal set will be locally a smooth surface. At points where
X =7+ 51<1 and  # 1/7, the affine focal set will locally be a cuspidal edge. At
points where x =y + (1/7,1)1(1 the affine focal set will locally be a swallow tail.



Chapter 4
Curves in R"

The aim of this section is to generalise some of the affine invariant machinery pre-
sented above, for space curves in R”. These include affine arc-length, affine curva-
tures, and affine distance. These ideas have been published, the reader is referred to
D. Davis [8]. This chapter is by far the author’s proudest mathematical achievement.

In this chapter we find a new basis for a space curve which has some very nice
properties. This new basis allows us to carry out versal unfolding calculations which

would otherwise be very complicated indeed.

4.1 Affine arc-length

Let I C R be an open interval, and v : I — R" a smooth space curve. We seek
an affine invariant parametrisation for v of the lowest possible order. As is the
convention for n = 2, 3 we choose a parametrisation, in terms of the affine arc-length
parameter s, such that [y/,7",...,7™] = 1 for all s € I. Throughout this paper,
prime denotes differentiation with respect to the affine arc-length parameter s, thus
7' = dvy/ds etc, whereas a dot is reserved for differentiation with respect to an
arbitrary parameter t, thus 4 = dvy/dt etc. Using basic properties of determinants,

it is easy to show that

n(n+1)/2
dt) | (4.1)

' ()] — 14 & (n) et
YA =y ]<d5

41
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Assuming that [y/,7",...,7™] =1 we obtain

s(t) = / B4 A /mt)) gy

Thus for ¢; <t < t,, affine arc-length is given by

t
/ ZH, By M) gy

t1

Remark 4.1.1 Let J C R and consider a curve o : J — R" parametrised by
Euclidean arc-length. We define the tangent vector V; to be the unit vector in the
direction of &. The second basis vector Vs is in the subspace (&, &), is of unit length,
is perpendicular to V4, and together with V; spans an area of +1. The third basis
vector V3 is in the subspace (&, &, @), is of unit length, is perpendicular to V; and
V5, and together with V; and V5 spans a volume of +1. Proceeding in this fashion,
the (k + 1)-st basis vector is in the space (d‘a/dt' : 1 < i < k), is of unit length,
is perpendicular to {V; : 1 < i < k}, and together with {V; : 1 < i < k} spans a

volume of +1.

Definition 4.1.2 Given a smooth curve parameterised by Fuclidean arc-length, the
FEuclidean curvature is given by k = V.-V, and the higher Fuclidean torsions are
given by T; = Vi—l—l Vg forall1 <i<n-—2.

Remark 4.1.3 Letting ¢t be Euclidean arc-length and writing x for the Euclidean

curvature of v and {r,...,7,_2} for the higher Euclidean torsions gives
n—2
(4,5, oy y™] = 1 H Tl
i=1

Then Equation (4.1) shows that if [§,%,...,7™] = 0 for some ¢, then the affine arc-
length parametrisation in unobtainable, since 0 # 1. Hence, if any of the Euclidean
curvatures or Euclidean torsions become zero at certain points, the affine arc-length
parameter can not be defined at such points. Hence, in all that follows, I C R shall
be chosen such that the image of v has everywhere non-zero Euclidean curvature and

Euclidean torsions.
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4.2 Affine curvatures

Here we define the affine curvatures of a curve. Let v : I — R" be parametrised

by affine arc-length, so that [y',+",...,7™] = 1 for all s € I. Then differenti-

(n—=1)

ating with respect to s gives [7,...,y , 7" *1] = 0. Hence the set of vectors

{7,7---,7(n_1)
i I — Rfor 1 <i<mn—1such that

,fy("“)} is linearly dependent. Therefore, there must exist functions

(n+1)

VY 4y ey e e =0 (4.2)

The functions p; are called the affine curvatures of ~. Notice that
pi = (=1 T D]

The pu; are given by determinants; an equi-affine transformation of R" leaves the
affine curvatures unchanged. These affine curvatures are truly affine invariants.

These definitions give Serret-Frenet type formulae. Let I' = (v/,",...,7™)7T
where T denotes transpose; then for M € Mat(n, R)

' = MT . (4.3)
It follows that if M = (m; ;) then
1 ifj—i=1,
mij =9 —n; fi=n, j#n, (4.4)

0  otherwise .

Hence det(M) = (—1)"p;.

4.3 Affine distance functions

Here we give a general definition of the affine distance function introduced in two

and three-dimensions in [12].
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Let v : I — R" be parametrised by affine arc-length. Given x € R" and s € I,
we get A : R*" x I — R, an n-parameter family of affine distance functions defined
on the curve, where

Ax,s) =[x —7,7,...,7/"Y]. (4.5)

The zero level-set of A(x, sq) is given by x € R" such that for some \; € R
x = v(s0) + MY (s0) + Aoy (50) + -+ Au 1™ V(s0)

This is the set of points x € R" of affine distance zero from ~y(sg). It is easy to see

that the other level-sets are hyperplanes parallel to this one.

Given an open interval J C R, and an arbitrary parametrisation for the curve

v:J — R", the family of affine distance functions A : R* x J — R is given by

A(X’ t) = [X -7 ;Ya s 77(n_1)][’.}/7 ;}./7 s ’,Y(n)](l—n)/(l—l—n) .

4.4 Affine height functions

Let v : I — R" be parametrised by affine arc-length. Let S" ! = {x € R" : ||x|| = 1}
be the unit hypersphere in R". We can define a family of functions on the curve,
parametrised by S"~!. This family H : S"~! x I — R is the family of affine height
functions, where

H(X’ S) = [X7 ,ylﬂ ,YH’ tet 7,}/(71_1)] °

Remark 4.4.1 In the definition of the family of affine height functions we took
x € S™!: even though hyperspheres do not always go to hyperspheres under affine
transformations. This was done for simplicity. We should have x € T, \R" — {0}.
However it turns out that the singularities of H depend only on x up to a non-zero
multiplicative constant, i.e. x can be taken as a member of the projectivisation
P(T,oR* — {0}) := (T} R* — {0})/ ~ where x; ~ x;, for all x; € T,/ R* — {0}
if, and only if, there exists o € R, o # 0, such that x; = ax,. Since S ! can be
used to parametrised P(7’,,)R* — {0}) (in fact it gives a double cover) we shall write
S™~1 with the understanding that it is an abstract parameter space and should not

be considered to be in R™.
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Let J C R be an open interval, then for an arbitrary parametrisation, the family

of affine height functions is given by H : S"~! x I — R where

H(x, 1) = [, 9,5, 7" ), A, A0/

4.5 Equi-affine frames

Let x € R™ and let {vy,...,v,} be a list of vectors v; € T4R". The vectors are said
to constitute an equi-affine frame if [vi,...,v,] = 1. It is clear that {v',...,7™}
forms an equi-affine frame with each () ¢ T, R for all s € I.

The aim here is to define a new equi-affine frame for . This is motivated by later
applications to singularity theory. Furthermore, the affine Serret-Frenet formulae
with respect to this new equi-affine frame will be more analogous to the Euclidean
Serret-Frenet formulae. For example, if the Euclidean torsion 7,_5 is zero then the
curve can be contained in R?~!. This means the last basis vector, say V,,, is constant.
(If n = 3 then the binormal vector B is constant and + is then a plane curve.) Given
the affine Serret-Frenet formulae in Equation (4.3) and Equation (4.4), if u,_1 = 0,

n—1)

this in no way means that ~( is constant.

Given any smooth functions A;; : I — R, the vectors
i—1
~D 4 Z)\i,ﬂ(]) forall 1<:<n
7j=1

form an equi-affine frame. The classical case is when \;;(s) = 0 for all s € I and

(i,7) € [0,n] x [0,n]. Consider the vector given by i = n, that is
v = ry(n) _|_ )\n,lf}/ _|_ )\n’2/yl’ + .. _|_ )\n’nilry(nfl) .
We wish the derivative of v to depend on only one other member of the equi-affine

frame. Setting \; ; =0 for all ¢ <0 or j <0 gives

n—1

v'o= Z()\;” — )Y D + XY

i=1

—_

n—

- (X"J —m) + )‘n,n—ﬂ(n) + (an — p; + An,i—l)’Y(i) :

i

||
N
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If v" is to be independent of v it follows that A,,_; = 0. In order to remove de-
pendency on other derivatives set A, ;1 = p; — )‘;z,i for all 2 <7 < n — 1. Starting
with ¢ = n — 1 gives Ay 9 = 1 — )\;wfl = fbyp_1. In turn, putting 1 = n — 2
gives A\pn—3 = fin—2 — [th,_,. Putting i = n — 3 gives Ny —a = fn—s — f,_o + plr_4.
Continuing this process for 2 < i < n — 1 gives

i—1

i = 3 (=170,

J=1

Then finally, the vector v" becomes

n—1
v'= (Z(—l)iuﬁ“>) Y = 0on1?, say . (4.6)

=1

Thus the derivative of v depends only on one vector and is more analogous to the
Euclidean Serret-Frenet system.

This has found a new basis vector, namely v. Let us call it T,, and search for a
new basis {T ..., T,}. It is clear that T; = +/; this gives the affine tangent vector.
Thus we have the identity T) = —0,-1T;.

We wish to find a new equi-affine frame which satisfies the additional vector
differential equations T7 = Ty, T, = T,y — 0; 1T for all 2 < ¢ < n — 1. These
can be written as T}, = T,y — 0;_1T; if we set 0p = 0 and T, ,; = 0. From the
affine arc-length construction, the functions p; : I — R arise naturally. Thus the
o; : I — R will be expressed in terms of the p; and their derivatives.

Consider the affine Serret-Frenet formulae in matrix form IV = MT, where I" and
M are defined above in Equation (4.3) and Equation (4.4). Each new basis vector

T, can be expressed in terms of I :
1—1
T, = ’y(z) + Z )\i,jym forall 1<i<n
j=1
This can be written in matrix notation as 7' = A" where T is the matrix whose i-th

row is the vector T,;. Furthermore we can write 77 = X7 where ¥ is derived from the
identities T} = Ty, T, =T;4; — 0, 1T forall2<i<n-1,and T/, = —0,, 1 T;.
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Thus we have I" = MT', T = AT, and 7" = XT. It follows that A'T + A" = 7.
In turn, this gives A'T + AMT = ¥T. This finally yields A'T + AMT = AT, or
simply A" + AM = Y A. Here M is known to us, and is given by the identity

A oy + -+ 1y =0

Writing ¥ = (0, ;) gives 0, j =1 forall j —i =1, 0,7 = —o;_; for all 2 <7 < n,
and o0;; = 0 otherwise. Writing A = ()\;;) gives \;; =1foralli—j=0and \;; =0
for all j —7 > 0, i.e. A is a lower triangular matrix with 1 in each position along the
leading diagonal.

Let X = (z;;) where X = A"+ AM — ¥A; we wish to make X into the zero
matrix. On the leading diagonal of X we have z;; = \i;_1 — Aiy1,4. Since Ao =0
it follows that A;;_1 = 0 for all 2 < ¢ < n. This implies that A has zero along the
diagonal i — j = 1. Thus each T; will not have a component of 1),

Consider z; ; such that ¢ — j = 1. It follows that z, , 1 = A n2 — fln—1, Tii1 =
Aiico — Aig1-1 for all 3 < ¢ < n—1, and 29, = 01 — A3;;. Since z;; = 0 for all
(i,7) € N x N it follows that

Hn—1 = )‘n,n—2 = )\n—l,n—3 =...= )\i,i—Z =...= )\3,1 =01 .

Considering each diagonal in turn, 2 — j = 1,2,3,...,n — 1 gives the following

expressions for the o;, we have

01 = OG11Hp-1 ,
!
Oy = Qo1fy_1+ G22ln 2,
n !
03 = Q31Mp_1 T A32My_o + A33[n 3 ,
i
_ (i—3)
o; = E Qi Pp—j° s
=1

where the a;; are entries in an (n — 1) X (n — 1) lower triangular matrix, we have

a;j =1 forall i = j and a;; = 0 for all i < j. When ¢ > j we have

ai; = (=1)"" ( n_.jfl ) = (-1 (n—j—1)

- (- Nn—i-D
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It follows that the o; are then given by

! i [ n—J—1 i
UZ:ZHW( - )u;;-)-

j=1 t=1

Given the existence of X and M is known, it is easy to find A for alli —j > 1

= n—j—k—1
\ = —1) =gk
o= e (T
In the present section we have proved the following

Proposition 4.5.1 Given a curve v : I — R" parametrised by affine arc-length. An
equi-affine basis {T1,...,Tp} satisfying the vector differential equations T) = Ts,
T, =T;1—0; Ty forall2<i<n-—2, and T, = —0, 1T, can always be found.

4.6 Singularities of A(x,s) and H(x,s)

Given a curve v : I — R", we consider the full bifurcation set of the family of affine
distance functions A : R x I — R. Given a fixed x, € R", if there exists sq € [
such that A’(xg, sg) = A”(x¢,s0) = 0 then the family of affine distance functions
is said to have a degenerate singularity at x = xo. Given a fixed x, € R”, if there
exists (s, s9) € I x I such that A(xg, s1) = A(Xo, s2) and A’(xg, s1) = A'(xg,52) =0
then the family of affine distance functions is said to have a multi-local singularity
at x = xy.

The full bifurcation set is then the closure of points x € R” such that A : R* x I —
R has either a multi-local or degenerate singularity at x. The bifurcation set is thus
a subset of the parameter space. Similar ideas apply if we replace A : R" x I — R
by H:S" ' x TR

We use the standard Ay (k > 2) notation for a degenerate singularity and A%,
Ay As ete for a multi-local singularity.

Next we consider the condition for A : R” x I — R to have an Aj singularity.
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Theorem 4.6.1 Let vy : I — R" be a smooth space curve parametrised by affine arc-
length. For 1 < k <n —1, the family of affine distance functions A : R* x I — R
has an Ay singularity at x € R" if, and only if,, for \; € R

X=7+ )\1T1 +--- 4 )\n—k—lTnfkfl + )\nTn and )\n,k,1 75 0.

The family of affine distance functions A : R* x I — R has an A, singularity at
x € R" if, and only if, 0,1 #0, 0/, | #0, and

X =+ T, .

On—1
Lemma 4.6.2 Consider the equi-affine basis {T1,..., Ty} C T,R" with the property
that T\ = Ty, T, = T;11 —0;_1Ty forall2 <i<n-—1, and T} = —0,-1Ty. For

)

al0<m<n-—1
A =[x -5 Ty,...,Toom, Tacmits---, Tl .
Proof [Of Theorem 4.6.1] Consider the equi-affine basis {T,...,T,} C T,R" :
Ax,s)=[x—77 A" YV =[x—7Ti,...,Thoi] .

Recall that T} = Ty, T, =T,y —0; 1Ty forall2<i<n-1,and T, = —0, | T;.

)

It follows, using also (x — 7)' = —T; that

n—1
A =Y x =Ty T, T T, T
1=2
n—1
= Z [X_Wa Tl:"':Tz'flaTi+1 —0'1‘,1T1,T1‘+1,...,Tn,1] )
1=2

= [X—’)/,Tl,...,Tn_Q,Tn] .
From Lemma 4.6.2 we see that for \; € R, A =0 if, and only if,
X—=79= )\ITI +eee )\n—m—lTn—m—l + )‘n—m—l—lTn—m—l—l +ee )‘nTn .

This means that x € R", for 0 < k <n — 1, gives an A singularity if, and only if,,
for some )\; € R

X=7 + )\ITI +o 4+ )\nfkflTnfkfl + )\nTn .
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The additional condition for exactly Ay is A\,_r_1 # 0.

Thus A’ = ... = A=Y = 0 if, and only if, x — v = AT, for some A € R. This
gives the condition for A, ;. We now consider the case A,. It can easily be shown
that

A — [=T1, Ty,..., Ty +Z[X — Ty, ..., Ticy, =01 Ty, Tiga, .., T
i=2

It follows that A’ = ... = A =0 if, and only if,, for some A € R
[)\Tna T2, ceey Tnfl, —O'nflTl] =1.

This condition becomes, assuming o,,_; # 0, that Ao,_; = 1 and thus A = 1/0,,_;.
Finally, we need the condition for A1) = 0. Given the expression for A and the
fact that we will substitute x = v + AT,, into the derived expression for A1) e

need only consider

n—1
o = Z [X_77T2a"'7Ti—17T;aTi+la"'7Tn—1a_an—1T1]7
=2

n—1
= Z [x =7, To, ..., Tim1, Tiss —0ia Ty, Tiga, ..., Ty, —0n 1 T,
1=2
= [X -7 T27 AR Tn727 Tn: _O—nflTl] .
Then A(n+1) = o+ [X -, TQ, ey Tn—la _O-;z—lTl — O'n_lTQ]

= [X -7 T2a sy Tn—?a TTL7 _Jn—lTl] + [X -7, T2a Ty Tn—la _U;L_lTl] .

Then A’ = ... = A®™ = 0 implies that
A — ol Ty, —o, T4,
= [0, Tp,..., Ty 1,—0, | T1],
= 0;—1‘7;—11 .

Thus A : R" x I — R has an A,, singularity at x if, and only if, 0,,_; # 0 and

X =7+ T, and o), | #0.

On—1
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Theorem 4.6.3 Let v : 1 — R" be a smooth space curve parametrised by affine arc-
length. Then for 1 < k < n—1, the family of affine height functions H : S"1xI — R
has an Ay, singularity at x € S~ if, and only if,, for some \; € R

X = )\1T1 + ...+ )‘n—k—lTn—k—l + )\nTn and )\n—k—l 7& 0.

Moreover, the family of affine height functions has an A, singularity if, and only if,
there exists A € R, X\ # 0 such that

x=AT,, 0, 1=0 and o, #0.

Proof This is proved similarly to Theorem 4.6.1. OJ

4.6.1 The (p)-versality condition

Here we consider the conditions for the two above families to be a (p)-versal unfold-
ings. Due to the uniqueness of bifurcation sets, see [4], if a family of functions is
a (p)-versal unfolding then each neighbourhood of its bifurcation set will be locally
diffeomorphic to a standard model. Hence the local structure of the bifurcation set
is determined up to diffeomorphism. Recall the basic ideas of unfoldings found in [4].

The can be found in Criterion 3.3.6 on page 38.

Theorem 4.6.4 Given a smooth space curve v : I — R" parametrised by affine
arc-length. The family of affine distance functions A : R* x I — R defined on the

curve is (p)-versal if, and only if, 0, 1 # 0, where o, 1 is given in Equation (4.6).

Proof Let~:I — R"besmooth, and let v(0) = 0. Consider the frame {T4,...,T,}
where Tll = TQ, T; = Ti—i—l — Ui—lTl for all 2 S 1 S n — 1, and T,In = _Jn—lTl- The

affine distance function may be rewritten in terms of the T;, thus

A(Xa S) = [X_f)/:fy’a"':fy(nil)] = [X_’Y: Tla"':Tnfl] .
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Let A,, = 0A/0x;, and consider the vector Ay = (A, ..., A,,). Then by Proposi-
tion 3.3.7, to show that the family A(x, s) is (p)-versal, one needs to shows that the

first n derivatives of Ay, with respect to s, are linearly independent.

Let ey = (1,0,...,0), e2 = (0,1,0,...,0), etc, where ¢; € T,R". Consider Ay, we

have

AX = ([61,T1, .. .,Tn_l], ey [en,Tl, .. -aTn—l]) .

Notice that each [e;, Tq,..., T, 1] is independent of x. In what follows, it is enough

to consider A, = [e;, Ty, ..., T,_1] alone.

n—1
A;l = Z[ei;Tla---;ijlaT;;TjJrl---:Tnfl]:
j=1

n—1
= E [61‘, Tl; caey ijl, Tj+1 - O'jflTl, Tj+1 ceey Tnfl] s
Jj=2

= [eia T17 ) Tn72: Tn] .

Next, consider A7, which is found in the same way. Given that [e;, T}, Ty,..., T, o, T\] =
[62', Tl: TQ, cee TH,Q, T;T] = 0, we have

n—2
Agl = Z[ei,Tl,...,T]’_l,T;,Tj+1...,Tn_Q,Tn],
j=2
n—2
= Z[ei,Tl,...,ijl,Tj+1 _O-jflTlaTj+1---7Tnf2:Tn] s
j=2

— [eia Tl: ) Tnf?): Tnfla Tn] .
Continuing in this fashion gives the general answer:

A = le;, Ty, ..., Tyt Toomits - s Ty

T
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for all 1 < m < n — 1. Thus we need only consider the final case m = n. Notice that
AP = le;, Ty, ..., T,], and so it follows

n

A = Y fe, T,y Ty, T, Tygn,. . Tol
j=2
n

= Z[GZ‘, TQ, ceay ijl, Tj+1 — O'jflTl, Tj+1, ceey Tn] s
7j=2

n
= —E Uj—l[eiaT2a---aTj—laTlaTj+1a---aTn]a
j=2

n

= Z(—l)jﬂaj_l[ei, Tl, ey T]’_l, Tj_|_1, ey Tn] s

7j=2
= Z(—l)j+10j_1A§?_j)-
=2

The aim here is to show that [Al, ..., A;")] # 0. Due to the fact that

n

AP — Z(—l)jﬂaj,lA("_j) ,

=2

it follows that A" is a linear combination of {Ay, AL, ..., A" Y. It follows that
(Al A =0 = oun[AL. L AP A =0,

The aim now is to show that [A! ..., AP, Ay] # 0. Consider the n x n matrix
X = (z,,) where

zij=lej, T1 .., Ticy, Tiga, .., Tl

It follows that det(X) = [AV™V AP AL A = £[AL .. APTY AL Let
T be the matrix whose i-th column is T;. Furthermore, let A = (a; ;) be the adjoint

matrix of 1. Since
ai,j = (—1)i+1[ej, Tl; ey Ti—la Ti—i—la ey Tn]

it follows that a;; = (—1)""a; ;, which implies det(X) = +det(A). Next consider
the well known identity 7! = det(T)~' 4, it follows that det(7T)"~! = det(A). Thus
det(X) = +det(T)"! = +1 # 0. The result now follows. O
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Theorem 4.6.5 Given a smooth space curve v : I — R" parametrised by affine
arc-length. The family of affine height functions H : S"™' x I — R defined on the

curve is (p)-versal if, and only if, o,_1 # 0, where o,_1 is given in Equation (4.6).
Proof This follows from the proof of Theorem 4.6.4 since Hy = Ay and

H(x,s)=[x,7,..., 7" V] =[x, Ty,..., Tp_1] .



Chapter 5

Basics of Surfaces

5.1 Embeddings and groups

Let U C R? be an open simply connected domain. We consider smooth embeddings
X : U — R?, i.e. injective immersions. Since X is an embedding, the vectors X,
and X, are always linearly independent. The partial derivatives X, and X, form a
basis for the tangent plane to the surface at any given point.

We will study the differential invariants of X under the action of the special affine
group SA(3,R) := SL(3,R) x R®.

5.2 Affine normal for a hypersurface

Here we consider a very general approach to affine differential geometry. This follows
from the work of Nomizu in [13] and Nomizu & Sasaki in [14]. Let X(A) denote the

space of smooth vector fields over some smooth manifold A.

5.2.1 Connexions

Definition 5.2.1 A connexion on A is a bilinear map V : X(A)? — X(A), given by
(X,Y) — VY, such that for all smooth functions f: A — R and all X,Y € X(A)
we have VixY = fVxY and Vx(fY)=df(X)Y + fVxY.
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Remark 5.2.2 The condition that V;xY = fVxY says that V is C*°(A, R)-linear
in the first variable. The condition that Vx(fY) = df(X)Y + fVxY says that V

satisfies the Leibnitz rule in the second variable.

Definition 5.2.3 Given X,Y € X(A), let [X,Y] denote the Lie bracket. A connex-
ion V : X(A)* — X(A) is called torsion free if for all X,Y € X(A)

VxY — VyX = [X,Y].

In what follows, we assume that A is n-dimensional, and that A C R**!. More-
over, we assume that the Gauflian curvature is everywhere non-zero. Let D :
X(R"1)2 — X(R™*!) be the standard covariant derivative on R"™!. This is often
called the standard affine connexion on R**'. We can show that D is a torsion free
connexion. This is a standard result: see [13] or [14]

Let & be a transverse vector field over A. For X| Y € X(A) we can write
DyY = VxY + (X, YV)E, (5.1)

Definition 5.2.4 The connezion V in Equation (5.1) is called the induced connezion
on A with respect to €. The bilinear form h is called the affine fundamental form on

A with respect to &.

Proposition 5.2.5 The connexion D 1is torsion free if, and only if, the connexion

V is torsion free and the bilinear for h is symmetric.
Proof From Equation (5.1) we see that
DxY — Dy X =(VxY - VyX)+ (M(X,Y) — h(Y, X)) .

It clearly follows that DxY — Dy X = [X,Y] if, and only if, VxV — Vy X = [X, Y]
and h(X,Y) = h(Y, X). O

Remark 5.2.6 Since D is torsion free the induced connexion with respect to £ is

torsion free and the affine fundamental form on A with respect to £ is symmetric.
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In an affine space R¥ neighbouring tangent spaces, and therefore tangent vectors,
can be canonically identified by translation, i.e. T,RF — T,R* via the translation
taking p to ¢. For a manifold this construction does not exist.

A connexion gives a method of identifying (or connecting) neighbouring tangent
spaces. This is done by means of parallel transport.

Let v : [t1, 2] — A be asmooth curve segment in A. Consider X € X(A) restricted
to y(I). We say that X is the parallel transport, with respect to the connexion V, of
X (t1) along y([I) if X (t) is a solution of the system of ordinary differential equation
V;X =0forall t e l.

Remark 5.2.7 In ordinary Euclidean space EF, equipped with the standard covari-

ant derivative as its connexion, parallel transport keeps vectors parallel.

5.2.2 Volume forms

Let Q : X(R"™)"*! — R be the standard volume element of R*™!. Given an (n+1)-
tuple of vectors Xy,..., X1, if we measure (X, ..., X, ;1) before and after the
parallel transport with respect to D of the X; along some curve, then the measure-
ments will be the same. This can be expressed by D2 = 0 where D) = 0 if, and
only if, DxQ = 0 for all X € X(R"*!). The volume element € and the connexion D

are said to be compatible.

Definition 5.2.8 Let X; € X(A) and & be a transverse vector field. The induced

primary volume form w : X(A)" = R on A is given by
(,U(Xl, Ce :X'n) = Q(Xl, Ce 7Xn7£) .

We seek the condition(s) that the induced primary volume form w and induced

connexion V to be compatible, i.e. Vxw =0 for all X € X(A).

Definition 5.2.9 Given a transverse vector field &, the affine shape operator S and

the transversal connezxion form 0 are given by the identity

Dyx¢& = —5X +0(X)¢ .
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Lemma 5.2.10 (Nomizu [13]) For every X € X(A) we have
Vyxw=0X)w .

Corollary 5.2.11 The induced primary volume form w and induced connexion V

are compatible if, and only if, the transversal connexion form is identically zero, i.e.
Vw=0 <<= 6=0.

Using the decomposition Dx& = —SX + §(X)E, we see that Vw = 0 if, and only if,
Dx¢ is tangent to A for all X € X(A).

We define a second volume element on A :

Definition 5.2.12 Let X; € X(A) and £ be a transverse vector field. Let H be the
nxn matriz, say H := (h;;), where h; j := W(X;, X;). The induced secondary volume

form v : X(A)" — R is given by
(X1, ..., X,) = |det(H)['? .

Example. Consider Euclidean 2-space with the usual flat affine connexion D, where
h is the scalar product: h(X,Y) = X - Y. We wish to calculate v(X,Y). We have
h(X, X) = ||X]||% h(X,Y) = h(Y,X) = ||X]||||Y]|-cos § and h(Y,Y) = |[Y||?, where
f is the angle between X and Y. It follows that

H:( 1] ||X||-||Y||-cose>
XU coso Iy

In turn we see that det(H) = || X|?||Y][*(1 — cos? §) = || X||?||Y||? sin? f. Finally we
see that v(X,Y) = || X]|| - ||Y]| - sinf. An elementary trigonometric argument shows

that the area of the parallelogram with sides X and Y is exactly v(X,Y).

Remark 5.2.13 The last example gives motivation for the definition of the induced
secondary volume form. To a metric it associates a volume form which in the case
of the scalar product is the geometric volume. The induced secondary volume form
can be defined for an abstract manifold with metric, not necessarily an embedded
manifold. However, once we have an embedding and a transverse vector field we get

a metric, and so the induced secondary volume form.
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Theorem 5.2.14 (Nomizu [13]) There is, up to sign, a unique transverse vector

field &, for which the following two conditions are met:
1. Vxw=0 forall X € X(4),

2. w(Xy, ..., X)) =v(Xy,...,X,) foral (Xi,...,X,) € X(A)".

Remark 5.2.15 We may decide upon the choice of sign by giving a local orientation

to our hypersurface and then using this orientation to co-orient &.

Definition 5.2.16 The unique (after co-orientation) transverse vector field in The-
orem 5.2.1/ is called the affine normal vector field, and shall be denoted by A. The

affine normal vector field is also known as the Blaschke normal field.

Remark 5.2.17 In all that follows we consider smooth surfaces embedded in R?

with non-zero Gauflian curvature.

5.3 Asymptotic directions

Asymptotic curves on the surface are affine invariants. A curve is called asymptotic if
at each point its osculating plane when considered as a space curve coincides with the
tangent plane to the surface. A direction is called an asymptotic direction if it is the
direction of the tangent line to an asymptotic curve through that point. Asymptotic
directions are also the direction of lines which have order of contact greater than two
with the surface at that point.

Let I C R be an open interval, and v : I — U an embedding. The curve
X ov: I — R?is an asymptotic curve if, and only if, [X,,X,, (X 0 7)y] = 0 for all
t € 1. Let y(t) = (u(t),v(t)) then using simple properties of determinants

[Xu: Xva (X o /Y)tt] — [Xu: Xva U2qu + QU/UXU’U + 7‘)2va] .
Let L := [Xy, Xy, Xyu], M = [Xy, Xy, Xy, and N := [X,, X,, X,,], then

Xy, Xy, (X 079)y] = Lu® 4+ 2Muv + No? .
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A curve X o 7 is therefore an asymptotic curve if, and only if,
Li? + 2Mub + Nio* = 0 .
A direction (du : dv) is an asymptotic direction if, and only if,
L du®+2M du dv+ N dv’ =0 .
The Gauflian curvature K and the functions L, M, and N are linked, we have

K<0 < ILN-M?*<0,
K=0 < LN-M*=0,
K>0 < LN-M?*>0.

Affine fundamental form

Proposition 5.3.1 Let A be a surface in R® paramatrised by X : U — R, with
the affine normal vector field A. The matrixz corresponding to the symmetric bilinear
form h with respect to the basis {Xy, Xy, A} is given by

1 L M
LN —M2[/A\ pr N )

Proof Due to the properties of any curvature free connexion (see [14]), we need
only consider Dx, X, = Xyu, Dx, X, = Xyy, Dx, Xy = Xy, and Dx, X, = X,,. We

then solve

Xy = F%,IXU + Filxv + F?,IA ;
Xy =T1,Xy +T7,X, +T1,A
X = F%,IXU + Fg,lxv + Fg,lA ;
X = 15,X, +T5,X, +15,A .

for smooth functions T'}; where T'}; = T'* .. The matrix corresponding to h is then
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(I'%,). Consider the equation Xy, = I'] X, +I%,X, + '} A, we have

X0y Xy, Xou] = XX, T1,X, +T2,X, +T3 A,
= [Xu; Xy, F?,IA] )
= F?,I[Xua X, A]
Since X has no parabolic points we have [X,, X,, A] # 0 and it follows that

3 [Xu:Xmqu] - L
1,1 — [Xu,XmA] - |LN_M2|1/4 :

The same methods calculate the F?’j. U

Corollary 5.3.2 At points where LN — M? # 0 the affine fundamental form can be

erpressed as
L du® +2M du dv + N dv?
LN — M2|/t

The denominator makes it invariant under the action of the infinite-dimensional

pseudo-group of reparametrisations.

5.4 Affine normal vector

The affine normal vector field A, for a smooth surface in R® without parabolic
points, has an explicit formulation. If A denotes the second differential operator
of Beltrami, then A = %AX. Explicitly it has a complicated expression. Assuming
that LN — M? # 0 we have

A LN — M?| (g (qu—Mxv> £<LXU—MXU>>
" 9yIN — M2 \Ou \ /LN — M2 VON-M?2))"

+ ov
This vector field is invariant under the action of the special affine group and the
infinite dimensional pseudo-group of reparametrisations. Two other key facts are
that R® = (A) @ (X,,X,) (i.e. [X,,X,,A] # 0), and A,, A, € (X,,X,). Since

the transverse connexion form is identically zero, we see that Dx A = —SX for all
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X € X(A). This affine shape operator is of great interest, and will be studied at
length in chapter 9 page 101 — 129.

For non-degenerate quadrics the affine normal vector always points towards the
centre of the quadric. In this way ellipsoids and hyperploids take the place of spheres,
and paraboloids the place of planes, in the Euclidean theory. In the case of a
paraboloid the centre is at infinity, and so all of the affine normals are parallel:
they point towards a point on the ‘plane at infinity’.

Let the affine normal line be the line passing through X(u,v) and parallel to
A(u,v). There is a natural geometric interpretation of this in the elliptic region
(see [7] and [15]). Consider a surface in the neighbourhood of an elliptic point p.
Consider the one-parameter family of planes parallel to the tangent plane 7),X. Let
P, be the family of planes, and let P, = T,X. The intersection of P, for sufficiently
small ¢, with X bounds a two-dimensional convex domain in P;. The locus of centres
of mass of these domains is a curve v in R® terminating at p. The limiting tangent

line to y at p is the affine normal line to X at p.

5.5 Pick normal forms

Consider a non-parabolic surface point p. Take a coordinate system on R?, based at
p, which has X,,, X,, and A as its basis. If p is hyperbolic, then via a special affine
transformation we can put X into the form
1 o !
X(u,v) = (u, v, §(u2 —v?) + 8(u3 + 3uv?) + Z aiut v+ 0(5)) : (5.2)
i=0
Where, for k£ € N, and the notation O(k) means terms of order k or higher. If p is

elliptic, then via a special affine transformation we can put X into the form
1 o !
X(u,v) = <u, v, §(u2 + %) + E(UB — 3uv?) + Z a;ut vt + 0(5)) . (5.3)
i=0

Once a surface point has been chosen, the Pick normal form is unique up to the sign

of 0. A rotation of either +7/3 changes the sign. In chapter 6 on page 67 we take
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a surface in Monge form and, via a series of affine transformations, put the surface
into Pick normal form.

Once in Pick normal form, we find that X,(0,0) = (1,0,0), X,(0,0) = (0,1,0)
and A(0,0) = (0,0,1). These are some of the desired properties which first gave rise

to the Pick normal form. See [7] for more details.

5.6 Affine shape operator

Since A, A, € (X,,X,), we may introduce a linear operator ¢, : T,X — T,X
given by ¢,(v) := —D,A. If X, and X, are taken as an ordered basis on 7,X
then there exist functions a,b,c,d : U — R such that ¢(X,) = aX, + bX, and
#(X,) = X, + dX,. Notice that ¢(X,) = —A, and ¢(X,) = —A,.

Take X, and X, as an ordered basis for the tangent plane 7, X. We have A, =
aX,+bX, and A, = cX,+dX,. Since A, = aX, +bX, it follows that [A,, X,, A] =
[aX, + bX,,X,, A] and it turn [A,, X,, A] = a[X,, X,, A]. At non-parabolic points
[Xy, Xy, A] # 0 and we can solve for a. Similar methods give expressions for the

functions b, ¢, and d. The expressions are as follows:

C[ALX, A
“ 7 X.X, Al
) [Xu A Al

X, X, A’
o ALX, A
X, X, A’
L [XuALA]
[Xu, Xo, A]

S
<

Definition 5.6.1 FEigenvalues of the affine shape operator are called affine principal

curvatures.

Definition 5.6.2 The reciprocals of the affine principal curvatures are called the

affine radii of curvature.

Definition 5.6.3 The eigendirections of the affine shape operator are called affine

principal directions.
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Definition 5.6.4 A surface point is called an affine parabolic point if at least one

affine principal curvature is zero at that point.

Definition 5.6.5 A point is called a repeated A-direction point if there is a single

repeated affine principal direction.

Definition 5.6.6 A point is called an affine umbilic if every direction is an affine
principal direction. Fquivalently, when the affine shape operator is a scalar multiple
of the identity.

Here we give the values of a, b, ¢, and d at the origin of a surface in Pick normal

form. Consider a hyperbolic point, let X be in the form of Equation (5.2), then

a c B 6a0—a2—%2 3(ar — as)
Lt )

2as—a1)  6ay—ar— %
Consider an elliptic point, let X be in the form of Equation (5.3), then
(‘Z Z) :<6“°+a2_%2 (01 + o) ) (5.5)

%(a1+a3) a2+6a4— %2
Equation (5.4) and Equation (5.5) give the matrix representation with respect to the

(0,0)

(0,0)

basis {X,, X, } of the affine shape operator, at the origin, of a surface in Pick normal
form. The actual functions themselves are far too long to be practicably included

here, but can be calculated using the Maple computer algebra package.
Definition 5.6.7 The Dupin indicatriz is given by
L du® 4 2M du dv + N dv* = |LN — M?*}Y/*
Using this we can prove the following

Proposition 5.6.8 Consider a non-parabolic and non-affine umbilic surface point.
When they are real the affine principal directions are conjugate diameters of the

Dupin indicatriz.
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Proof Consider a surface in Pick normal form in a neighbourhood of a hyperbolic
point (see Equation (5.2) on page 62). In this form, the affine shape operator matrix
has the property that S + ST is a diagonal matrix (see Equation (5.4) on page 64).
All eigendirections must be of the form (« : 8) and (8 : «) in this special form.
Let the two affine principal directions be (cosh# : sinh#) and (sinh6 : cosh#).
The Dupin indicatrix has equation du? — dv? = 1. Consider the line with direction
(cosh @ : sinh @), this meets the indicatrix at the point (cosh 6, sinh #). The tangent
line to the indicatrix at that point has direction (sinh # : cosh 6). Thus the conjugate
diameter must have direction (sinh 6 : cosh #). The result now follows.

Consider a surface in Pick normal form in a neighbourhood of an elliptic point
(see Equation (5.3) on page 62). In this form, the affine shape operator matrix is
symmetric (see Equation (5.5) on page 64). All eigendirections must be perpendicular
in this special form. Let the two affine principal directions be (cos 8 : sin §) and (sin 6 :
— cosf). The Dupin indicatrix has equation du? + dv? = 1. conjugate diameters of a

circle are always perpendicular. The result now follows. 0]

Corollary 5.6.9 At non-parabolic points, away from affine umbilics, we have:
1. All repeated affine principal directions are asymptotic directions.

2. If an asymptotic direction is an affine principal direction then the point must

be a repeated A-direction point.

Proof 1In the elliptic region this is trivially true. There are no repeated A-direction
points which satisfy the hypotheses. Over the hyperbolic region, only the asymptotes
of the hyperbolic Dupin indicatrix are conjugate to themselves. The only directions
which may be repeated eigendirections of S are the asymptotes. These asymptotes

are the asymptotic directions. 0]
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Chapter 6

Pick Normal Form

6.1 Finding the Pick normal form

Consider a surface in a neighbourhood of a non-parabolic point p. We can locally
parametrise the surface in the form of Equation (5.2) or Equation (5.3) on page 62.
This Pick normal form is unique (up to the sign of o) for a surface point under

the action of the special affine group SL(3,R) x R?.

Next we give a method for putting a surface in general position into Pick form.

6.1.1 The elliptic case

Consider a surface in the neighbourhood of an elliptic point. We can assume that
the surface is given as a graph z = f(z,y) where

f(z,y) = apr® + a1zy + azy® + box® + biz’y + bowy® + byy® + -+ - .

Since the surface is elliptically curved in a neighbourhood of the origin 4agas > a?.
We wish to make a linear transformation of (z,y, z)-space such that the surface can

be written as z = 22 +y2 + - - - . Consider the following linear transformation

x +— xcos(f) —ysin(h) ,
y +— xsin(f) +ycos(d) ,

z = Z.
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Performing this transformation, and evaluating the coefficient of the zy term gives
ar(cos?(0) — sin?(0)) + 2(az — ao) sin(#) cos(f) .
Thus if the xy term is to be absent from the quadratic terms
ay(cos?(0) — sin®()) + 2(ay — ag) sin(#) cos() = 0 .
Using well known trigonometric identities this becomes
a1 cos(26) + (ag — ag) sin(260) =0 .
Assuming that a; # 0 and ay # a, means that
ay

tan(26) = .

if a; # 0 but ag = ay the condition becomes
cos(20) =0,

finally if a; = 0 the xy term will already be absent.
Let 6, be a solution to one of these three cases, and let us consider the 22 and y?
coefficients. Let the post-transform surface be given by z = Aga? + Asy? +--- . We

have

Ay = agcos®(0y) + ay sin(fy) cos(By) + agsin® ()

Ay = agsin®(0y) — a1 sin(fy) cos(6y) + ag cos? ()

If a; # 0 and a¢ # as then we can find 6y, however no general statements can be

made about Ay and A,. If a; # 0 and ag = ay then we have cos(26y) = 0 and hence
T
by € {(271—!—1)1 :nEZ} .
It then follows that
1
AO = 5((10 + aq + CLQ) s

1
A2 = §(ag$a1+a2) .
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In any of the three cases, it is now possible to perform a second transformation

of the form (z,y, 2) — (ax, By, 2) for (a, B) € R? so the surface will be given by
2 ="+ 9 + boa” + biz’y + boxy® + by + - -
Calculating the direction of the affine normal for x = y = 0 gives

A(0,0) = (3b0 + bQ : bl + 3[)3 : —8) .

For this to be directed along the z-axis by = —3b3 and by = —3by. We wish to find a

transformation which puts the surface into this form.

Consider a linear transformation of (z, y, z)-space that preserves the z = 0 plane:

T = pr—+qy+uz,
Yy = rr+syt+uvz,

z = wz.
Writing the image of the surface under this transformation as a graph z = g(z,y) :
g(x,y) = Agx® + Ayzy + Agy® + Bia® + Box®y + Bawy? + Byy® + -+ - .

Substituting and comparing coefficients gives

2 | .2
AO = b rr ’
w
A = 2(pg + rs) |
w
2 | 2
A2 - 4 ts .
w
Setting s := wcos(t), p := wcos(t), ¢ := —wsin(t), and r = wsin(t) it follows

that Ag = w, A; = 0, and A, = w. Next we can calculate the B; coefficients. The
conditions that By = —3By and B; = —3B5 become

8u = —w(by+ 3by) ,
v = —’LU(bl +3b3) .
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In particular, if the surface z = f(x,y) had its affine normal directed along the z-axis
for x = y = 0, then we get v = v = 0. The condition for B; = 0, and hence B; = 0
is that

w?((by — b3)(4cos®(t) — 3cos(t)) + (by — by)(4sin(t) cos*(t) — sin(t))) =0 .

Assuming w # 0 and by — by # 0, using well known identities this becomes

by — bs
by — by

tan(3t) =

This equation imposes a condition on ¢. There are three choices for ¢, and these can
be shown to correspond to the famous tangents of Darboux. If w # 0 and by —by = 0
then we must solve

(by — b3)(4cos®(t) — 3cos(t)) =0,
this is just (b — b3) cos(3t) = 0. Thus either b; = b3 or cos(3t) = 0. Letting 0 < 5 <
27 be a solution to this equation, gives

w2

By = I((bg — by) cos(3tp) + (by — bs) sin(3ty)) -

Consider once more the linear transformation

T = pr—+qy+uz,
Yy = rr+sy+tuvz,

Z = wz.

From our investigations this can be written as

x wecos(t) —wsin(t) —w(by + 3by)/8 x
y | = | wsin(t) wcos(t) —w(b + 3b3)/8 Y
z 0 0 w z

The determinant of this transformation is w?. This transformation needs to be com-
bined with

x +— xcos(f) —ysin(h) ,

y +— xsin(f) +ycos(d) ,

zZ = Z.
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This has matrix form

x cos(f) —sin(d) 0 x
y | — | sin(f) cos(f) O y
z 0 0 1 z
The composite transformation then becomes
x wcos(f +t) —wsin(0+1t) —w(by + 3bg)/8 x
T: |y | = | wsin(@+t) wcos(@+t) —w(b, + 3b3)/8 Y
z 0 0 w

where 6 and ¢ are solutions to the equations

aj cos(20) + (ag — ag)sin(20) = 0,
(by — b3) cos(3t) + (by — bg) sin(3t) = 0.

The transformation 7 : R® — R? takes a surface in the form
2 = aox? + a1z + azy® + box® + bty + byxy® + by’ + - - -
and rewrites in the new form
2z = wr? +wy? + By(2® — 3wy?) + - -

where By = (w/2)*((bg—ba) cos(3t)+ (b;—b3) sin(3t)). The final step is to set w := 1/2
and introduce o := 3((by — by) cos(3t) + (by — bs) sin(3t)) /8, it follows that the surface

will be given by

1
z:§(z2+y2)+%(:v3—3zy2)+--- :

i.e. 7 puts the surface into its Pick normal form.

Similar methods using the hyperbolic trigonometric functions will give the trans-

formation which takes a hyperbolic surface patch into Pick normal form.



72

CHAPTER 6. PICK NORMAL FORM



Chapter 7

Affine Distance and Height

Functions

7.1 Singularities of the affine distance functions
Here we consider the family of affine distance functions defined on a surface X.

Definition 7.1.1 Given (u,v) € U and x € R® we define the family of affine dis-
tance functions A :R3 x U — R to be

X — X: Xu; Xv]

A(X, (u,?))) = [ [Xu,XmA]

(7.1)

The family of affine distance functions are also known as the family of support
functions relative to A (see [15] for a review of relative differential geometry). It
gives the A component of the chord joining x € R? to some surface point.

We may consider the singularities of the family. We always assume to be working
away from Euclidean parabolic points.

For simplicity, let us write F' := [X,, X,, A] and consider
A-F=[x—XX.,X,] .

Using implicit differentiation, we can calculate the conditions on x such that A has

an A; or A, singularity for some (u,v) € U.
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Proposition 7.1.2 The affine distance functions have an Asy singularity if, and
only if, x = X + AA for some A € R

Proof For an As; we want an x € R® such that A, = A, = 0. Calculating partial

derivatives we have

AuF + AFu - [X - XaXuva] + [X - Xaxuaxuv] s
AF+AF, = [x—X, Xy, Xy + [x — X, Xy, Xy -

Away from parabolic points we can write x = X + M X, + A2 X, + A3A for suitable

A; € R. Putting this into the above expressions we see that

AUF+)\3FU - —)\1L - )\2M+)\3Fu ,
AyF+XF, = —MM — N+ \3F, .

Assuming that F' # 0 means we can write

()50

Hence A, = A, = 0if, and only if, A\ = Ay =0, i.e. x = X 4+ A\3A. O

Proposition 7.1.3 The affine distance functions have an Asq singularity if, and

only if, x = X + AA where )\ is a solution of the quadratic
1+ (a+d)X+ (ad — bc)\> =0 ,

where a, b, ¢ and d are given by A, = aX, + bX, and A, = cX, + dX,.

Proof Let us assume that the affine distance functions have an A, singularity, so
that x = X + AA, and in turn A, = A, = 0. The condition for an A, singularity
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is that the Hessian matrix of A is singular. Calculating partial derivatives gives

AuF + 20, Fy + AFy = L+ [x— X, Xyuu, Xo] + 2[x — X, Xyu, Xow] +

[x — X, Xy, X

M + [x = X, Xyuo, Xy + [x = X, Xy, X)) +

[x — X, Xy, Xuw]

M + [x = X, Xyup, Xy + [x = X, Xy, X)) +

[x — X, Xy, X

ApF +2A,F, + AF,, = N+[x—X, Xy, Xo] + 2[x — X, Xup, Xpo] +
+ [x— X, Xy Xy -

+

A F + AF, + AF, + AF,,

+

Ay F + AF, + A F, + AF,,

+

Now we can set x = X + AA in all of these equations. These then become

AwF + AF,, = L+ AFy +aL+bM) |

AwF +AFyy = M+ NFyy+cL+dM)
ApF +AFy, = M+ MFy +aM +bN)
ApwF +AF,, = N+ MF,,+cM +dN) .

Using this to construct the Hessian matrix, we have

1 < (14 Aa)L + AbM )\cL+(1+)\d)M)
- .

H=—
(14 Aa)M + XN XM + (14 Md)N

This matrix can be rewritten simply as

1({ L M 1+Xa e
H=— )
F\ M N M 1+ M

Away from parabolic points, det(H) = 0 if, and only if,

1+ (a+d)X+ (ad — be)\> =0 .
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Remark 7.1.4 Proposition 7.1.3 shows that the functions with degenerate singu-
larities are given by A(x, —) : {x} x U — R with x = X + AA where ) is an affine

radius of curvature of X.

Proposition 7.1.5 The function A(x, (u,v)) treated as a function of u and v has
no linear terms and no quadratic terms if, and only if, X gives a function with a

degenerate singularity and the base surface point is an affine umbilic.

Proof We have seen from Proposition 7.1.2 and Proposition 7.1.3 that A(x, (u,v))
will have no linear terms and a degenerate quadratic part if, and only if, x = X+ A

where ) is a solution of the quadratic
1+ (a+d)X+ (ad — be)\* =0 .

This is equivalent to x being an As, point. The extra condition that A(x, (u,v))
has no quadratic part at all means that the Hessian matrix 4 is not only singular,

but is the zero matrix. The Hessian matrix is given by

1 (L MY [1+x X
H=— .
F\ M N A 14 Ad

Since LN — M? # 0 it follows that % = 0 if, and only if,

1+ Aa Ac — o
Ao 14+ )M '

By Definition 5.6.6 on page 64 the base point is an affine umbilic.

Remark 7.1.6 Generically we have a D singularity in Proposition 7.1.5.

7.2 Singularities of the affine height functions

Here we consider the family of affine height functions defined on a surface X.
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Definition 7.2.1 Given (u,v) € U and x € S? we define the family of affine height
functions H : S2 x U — R to be

H(x, (u,0)) = % | (7.2)

See Remark 4.4.1 on page 44 about the use of S? as an abstract parameter space.
Of course we must replace S"~' by S?, R" by R?, and ~(s) by X(u,v).

The family of affine height functions gives a conormal covector field on X. A
conormal at a point p € X is a non-zero covector f € T;]R?’ whose kernel is the
tangent plane 7,X. A conormal is defined up to a multiplicative constant. We
normalise the conormal by the condition that f(A,) = 1 where A, is the affine
normal at p. This defines a conormal covector field on X that can be considered as
a covector-valued function on U.

We may now consider the singularities of the family. We always assume to be
working away from Euclidean parabolic points.

For simplicity, let us write F' := [X,, X,, A] and consider
HF = [x,X,,X,] .
Using implicit differentiation, we can calculate the conditions on x such that H has

an A; or A, singularity for some (u,v) € U.

Proposition 7.2.2 The family of affine height functions has an As, singularity if,

and only if, x lies on the affine normal line, i.e. x = A\3A for some A3 # 0.

Proof For an A, we want an x € S? such that H, = H, = 0. Calculating the
partial derivatives of the function HF' we have
HuF + HFu = [Xa qua Xv] + [X7 Xua Xuv] )
H’UF + HFv = [Xa Xuva Xv] + [Xa Xua va] .
We can write x = A\ X, + Ao X, + A3A for suitable \; € R, not all zero. Putting this
into the above expressions we see that
HuF‘f‘ )\3Fu = —)\1L - )\2M+ )\3Fu s
H,UF—‘— )\3F'u = —)\1M - )\2N+ )\3F'u .
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Given that F' # 0 by assumption, we may write

Hence H, = H, = 0 if, and only if, A\; = Ay =0, i.e. x = \3A for A3 # 0. O

Proposition 7.2.3 The family of affine height functions has an Asy singularity if,
and only if, for some A € R with A\ # 0, we have x = AA and ad — bc = 0, i.e. the

base point is an affine parabolic point.

Proof Let us assume that the affine distance functions has an A-; singularity,
so that x = AA for A # 0. This gives H, = H, = 0. The condition for an A,
singularity is that the Hessian matrix of H of second order partial derivatives is

singular. Calculating partial derivatives gives

HyF +2H,F,+ HF,, =[x, Xy Xo] + 2%, Xow, Xoo] + [%, X Xuw] S
HyF + H Py + HFy + HEyy = % Xy, Xo] + % Xou, Xoo] + XX, Xo]
Hy F + H,Fy+ H,F,+ HEyy = %, Xy, Xo] + [X, X, Xoo] + %, Xy Xyuo]

HyF +2H,Fy+ HFyy = [X, Xy, Xo] 4 2[%, Xy, Xoo] + [X, X, Xy -

We may set x := AA in all of the above equations. Respectively, they become

HywF + Ay = M Fuu+al +bM),
HyF 4+ AFyy = MFyy+cL+dM) ,
HyF 4+ AFyy = MFypu+aM +0bN)
HyF +AF,, = MFyy+cM +dN).

Using this to construct the Hessian matrix, we have

’H—)\ alL+bM cL+dM
B aM +bN ¢M +dN |~
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This matrix can be rewritten simply as

e v )0

By the non-parabolic point assumption det(#H) = 0 if, and only if, ad — bc = 0. O

Proposition 7.2.4 The function H(x, (u,v)) treated as a function of u and v has
no linear or quadratic part if, and only if, X s in the direction of the affine normal

vector and the base point is both an affine umbilic and an affine parabolic point.

Proof We have seen from Proposition 7.2.2 and Proposition 7.2.3 that the affine
height function has no linear part and a degenerate quadratic part if, and only if,
x = AA and det(H) = 0, where A # 0 and

2 (n ()

Clearly, the degenerate quadratic part is identically zero if, and only if, H is the zero
matrix. By assumption LN — M? # 0, and so the first matrix in the product has rank
equal to two. It follows that # is the zero matrix if, and only if, a = b=c=d = 0.

O

Remark 7.2.5 Generically we have a Di singularity in Proposition 7.2.4.

A word of caution is needed. In the Euclidean setting, the Euclidean shape
operator has two zero eigenvalues if, and only if, the family of Euclidean height
functions has a D, singularity or worse, i.e. no linear or quadratic part. This is not

the case in the affine setting. We shall see this in the following propositions.

Proposition 7.2.6 Over the elliptic region and working in the direction x = AA for
A # 0, the affine shape operator has two zero eigenvalues if, and only if, the family

of affine height functions has a D, singularity or worse.
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Proof Working in the direction x = AA for A # 0 means there are no linear terms.

The Hessian matrix of the height functions is then

v ) ()

Let us assume that the affine shape operator has two zero eigenvalues. Taking elliptic
Pick normal form and evaluating at w = v =0, we have L =M = F =1, M = 0,

and ¢ = b. The characteristic polynomial of the affine shape operator matrix is
ad —b* — (a+d)p+ p* .

This has ;1 = 0 as a double solution if, and only if, a + d = ad — b* = 0, i.e. if, and
only if, d = —a and a? + b* = 0, i.e. if, and only if, @ = b = d = 0. This shows
that the affine shape operator has two zero eigenvalues if, and only if, it is the zero

operator. The result now follows by Proposition 7.2.4. 0]

The last Proposition is so because over the elliptic region, the affine principal
directions are distinct. Two zero eigenvalues of a 2 X 2 matrix with a two dimensional
eigenspace means it must be the zero matrix. This is just like the Euclidean case

where the Euclidean principal directions are always orthogonal.

Proposition 7.2.7 Owver the hyperbolic region and working in the direction x =
AA for X\ # 0, the affine shape operator can have two zero eigenvalues while the

corresponding height function has only an Asq singularity.

Proof Working in the direction x = AA for A # 0 means there are no linear terms.

The Hessian matrix of the height function is then

A L M a c
H=2= .
F\ M N b d
Taking the hyperbolic Pick normal form and evaluating at u = v = 0, we see that in

the affine shape operator matrix ¢ = —b. The characteristic polynomial is then

(ad + %) = (a+d)u+p* .
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This has = 0 as a double solution if, and only if, a + d = ad + b* = 0, i.e. if, and
only if, d = —a and v — a? = 0, i.e. if, and only if, b = +a and d = —a. The affine

shape operator matrix is then
a =a
S = .
Fa —a

If a # 0 then S has a repeated eigendirection, namely (1 : F1). This means that
we have some point which is both an affine parabolic point, and a repeated affine
principal direction point.

In the hyperbolic Pick normal form with © = v = 0, we also have L = F' =1,
M =0, and N = —1. The Hessian matrix of the affine height functions is then

a =a
H=A .
(ia a)

This gives the quadratic terms of the affine height function, they are
aX(u? £ 2uv + v?) = aX(u £ v)? .

Clearly if a # 0 the height function has degenerate, yet non-zero, quadratic part.
This gives an A, singularity. UJ

Proposition 7.2.8 If the affine height function has an Ao singularity, i.e. treated
as a function of u and v with x = AA it has no linear terms and a non-zero degenerate
quadratic part, the direction of the line given by the zero level of the degenerate

quadratic part is a kernel direction of the affine shape operator.
In order to prove this, we need the following

Lemma 7.2.9 Let u = (u,v) be a vector in R, and X a symmetric 2 x 2 real
matriz. Consider the quadratic form uXu'. If det(X) = 0 then uXu' will be a
perfect square. Assuming that X has rank one so that uXu' = (au+ fv)? for some
o, € R, not both zero, then the direction (f : —«) is the kernel direction of X.
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Proof [Proposition 7.2.8] Consider the Hessian matrix, as calculated in the proof
of Proposition 7.2.3. The family of affine height functions is smooth thus its second
order partial derivatives are continuous. This means that H,, = H,, and so the
Hessian matrix is symmetric. In fact one may also take the surface in Pick normal
form and make the calculations.

Given x = AA, the quadratic terms are given by the quadratic form whose matrix
is the Hessian matrix calculated in the proof of Proposition 7.2.3.

If we further assume that ad — bc = 0 for the A, condition we may apply
Lemma 7.2.9. Notice that since we only have an Aj singularity with £ > 2, the rank
of the Hessian is one (and not zero).

Lemma 7.2.9 implies that the direction of the line given by the zero level of the
degenerate quadratic part is a kernel direction of the Hessian. Since LN — M? # 0,
the kernel of the first matrix in the product of the expression of the Hessian has a
trivial kernel. Thus the kernel of the Hessian is the kernel of the affine shape operator

matrix. O

Along the affine parabolic curve, away from affine umbilics, there is a unique
kernel direction of the affine shape operator. In the Euclidean setting, this kernel
direction is the asymptotic direction. Proposition 7.2.8 shows that in the affine case,

this kernel direction is linked to the affine height function. This leads to the following

Proposition 7.2.10 Assume that a member of the family of affine height functions
has an Ass singularity away from a parabolic point. The family has an Ass singu-
larity of, and only if, the kernel direction of the affine shape operator is tangent to

the affine parabolic curve.

Proof Proposition 7.2.2 and Proposition 7.2.3 show that the family of affine height
functions has an A, singularity in the direction x = AA for A # 0 if and only
ad — bec = 0. At such points, the kernel direction of the affine shape operator is given
by Proposition 7.2.8. We now show that the condition for this direction to be tangent
to the affine parabolic curve is that the family of affine height functions has an A

singularity in the direction x = AA for \ # 0.
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The condition for an As, is that H, = H, = H,,H,, — H2, = 0. Assuming
H, = H, =0, i.e. we are taking the direction x = MA for A # 0, the equation for

the affine parabolic curve is H,,H,, — Hgv = 0. The tangent direction is
(Huuvva + Huquvv - 2Huvvav . 2HuvHuuv - Huuquv - HuuHuvv) .

We want this to be a kernel direction of the Hessian of the height function, and thus
a kernel direction of the affine shape operator. Let us assume that H,, # 0. Then

we have H,, = H2,/H,,. The tangent direction to the affine parabolic curve is then
(HZUHUUU + quvav - 2HuuHuvHu1m : 2HuuHuvHuuv - szHuuu - quHuvv)

The Hessian matrix of the height function is then

HUU HU’U
H = ) .
H’U/U Hu*u/H’U,U/
Multiplying a tangent vector of the affine parabolic curve by this Hessian matrix

gives another vector. This vector is the zero vector if, and only if,
SHuuHSUHuuv + ngvav - 3H5uHuvHuvv - HSUHuuu = 0 .

This is then the condition for the kernel direction of the affine shape operator matrix
to be tangent to the affine parabolic curve.

The condition for a function of two variables with an A, singularity to have an
A>3 singularity is that the square root of the degenerate quadratic part divides the
cubic terms. The quadratic terms of the affine height functions are (uHy, + vH,,)?
and so we need u = —H,,,/H,,v to be a zero of the cubic terms. The cubic terms of

the affine height functions are
Lo 2 2 3
é(u Hyuu + 3u v H ey + 3uv”Hypy + 07 Hyyy)

Making the substitution v = —H,,, /H,,v, the result is zero if, and only if,

3HuuH2vHuuv + ngvav - 3H2uH’u’UH’u’U1] - HgvHuuu — O .
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If H,, = 0 we can assume that H,, # 0. If H,, = H,, = 0, then the quadratic
terms form a perfect square if, and only if, H,, = 0 also, i.e. a D4 or worse. However,
the proposition deals with an A>,. Assuming that H,, # 0 we continue as above in

order to arrive at the same result. O

Definition 7.2.11 (Affine Gaufl Map) The affine Gaufl map can be defined as a

map U — S? where

A
(u,v) —» —— .
||A]|

Proposition 7.2.3 shows that the Jacobian matrix of the affine Gaufl map and
the affine shape operator matrix have the same singular locus. Thus ordinary affine
parabolic points (A of the affine height function) give fold points of the affine Gauf}
map since the kernel field of the Jacobian is transverse to the singular locus. When
the affine height functions have an A3 the kernel field of the Jacobian is tangent to
the singular locus, and so the affine Gaufl map has a cusp point. This gives rise to

the following

Definition 7.2.12 (Affine Cusp of Gauf}) If the family of affine height functions

has an Ass singularity (or worse) then the corresponding surface point will be called

affine cusp of Gaup.

Remark 7.2.13 Clearly the kernel direction of the affine shape operator at an affine
parabolic point is also an affine principal direction. Thus, the affine cusps of Gauf}
points are points where the affine principal curves are tangent to the affine parabolic

curve.

Remark 7.2.14 We see that the bifurcation set of the family of affine height func-
tions is the set of affine normal directions at affine parabolic points. This is exactly

analogous to the Euclidean setting.



Chapter 8

Affine Parallel Surfaces and the
Affine Focal Set

In this chapter we consider the affine surface parallels for a given surface, we also
consider the affine focal set for a given surface. A connexion between the singularities
of the former and the points of the latter is established. The reader is referred to §5.6
on page 63 for the definitions associated with the affine shape operator, e.g. affine

principal direction etc.

8.1 Affine surface parallels

We can define the family of affine surface parallels in terms of the family of affine
distance functions. Recall the definition of the family of affine distance functions
(see Equation (7.1) on page 73). Given a surface point X(ug, v9) we can consider the

set of points x € R? of constant affine distance k. This is then
{x € R : A(x, (ug,v0)) = k} .

Away from parabolic points we can write x = X + A X, + A X, + A3A, where we

evaluate (u,v) = (ug, vy). It now follows that
x =X+ MX, + XX, + kA, where (u,v)= (ug,vo) .

85
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Thus, for each point on the surface, we have a plane parallel to the tangent plane.
A two parameter family of planes in three space generically has an envelope. To see

this, consider the two-parameter family of planes given by
A(u,v)z + B(u,v)y + C(u,v)z = D(u,v) .
The envelope points (z,y, z) are solutions to

A B (C T
B, C
C

S
S
S

D
A y | =1 Du
A, B D,

<
<
<

A solution exists if, and only if, the determinant of the matrix on the lefthand side
is non-zero. This is, of course, generically true.

The envelope for the family of planes A = k is found by further imposing the
conditions that A, = A, = 0. From Proposition 7.1.2 on page 74 this envelope is
given by

Pri={xcR :x=X+FkA}.

For a fixed k£ € R the envelope P, may be smooth, or it may be singular. Notice
that Py = X and provided X is smooth Py will be smooth. By continuity, for e < 1,
the P, will all be smooth for —e¢ < k < €. The singularities on the parallel surfaces
Py are given by points of regression. Points of regression come from imposing the
extra condition that the Hessian matrix of the affine distance function be singular.

From Proposition 7.1.3 on page 74 it follows that

Sing(Py) = {x € R’ : x = X+ kA} where 1+ (a+d)k+ (ad—bc)k* =0 .

8.1.1 The curvature of affine parallel surfaces

Here we consider the quadratic form L du? + 2M du dv + N dv? on the parallel
surfaces to a given surface. Let X : U — R? be the parametrisation of a smooth
piece of surface, then the affine parallel surfaces are given by Y := X + kA for some

k € R. We can then treat the functions L, M, and N as a one parameter family of
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functions L, M, N : U x R — R, where

L((u,v),k) = [YU:Y’UaY’uu] s
M((u,v),k) = [Yu, Yy, Yu!,
N((uav)’ k) = [YuaYvava] .

Recall that there are smooth functions a, b, ¢, d : U — R such that

A, = aX,+bX,,
A, = X,+dX,.

Using this, we can then calculate the following

Yo

u

Y
YU’U
Y

S

VU

Y?]’U

= (14 ak)X, + bkX, ,

= ckX,+ (1+dk)X, ,

= aukX, + b kX, + (14 ak) Xy + 0kXy,

= kX, + bkX, + (1 4 ak) Xy, + kX, ,

= kX, + dukXy, + ckXyy + (1 + dk) Xy,
ok Xy + dyk Xy 4 kX + (14 dk)X,, -

Notice there are two different expressions above, which are actually equal, Y,, =
Y,.. Notice that Y, and Y, are linearly dependent when 1+ (a+d)k+(ad—bc)k? = 0.

This means 1/k is an eigenvalue of the affine shape operator.

Proposition 8.1.1 Consider an affine surface parallel Y = X + kA. Using the
above notation for the partial derivatives of A, and writing Ly, := L((u,v), k), My :=
M((u,v), k), and Ny := N((u,v), k) it follows that

LNy — M} = (LoNy — M3)(1 + (a + d)k + (ad — be)k?)* .

Proof

(14 (a+d)k + (ad — be)k?) (1 + ak) Lo + bk M) ,
(14 (a+d)k + (ad — be)k*) ((1 + ak) My + bkNy)
(14 (a+d)k + (ad — be)k?)(ckLo + (1 + dk) M) ,
(14 (a+d)k + (ad — be)k?) (ckMg + (1 + dk)Ny) .



88CHAPTER 8. AFFINE PARALLEL SURFACES AND THE AFFINE FOCAL SET

Using this, and crucially the two choices for M, we see that

L | r4ak bk 1+ak bk Lo
M, | ck 14+ dk ck 14 dk M, |’
M\ | 1vak bk 1+ak bk M,
N, B ck 14+ dk ck 14 dk N, |’

Setting a := 1 + (a + d)k + (ad — be)k? gives

Ly, 1+ak bk Ly
= ,
My, ck  1+dk My
Ni, 1+dk —ck Ny
= (04 .
— My, —bk 1+ ak — My

LN M2—(L M) N
kiVkE — k — k k .
_Mk

Finally, we can see that

.
1+ak bk L+ dk —ck N,
LiNe—= M = o (Lo My ) “.
ck 1+ dk bk 14ak )\ —M,

LiNy — M} = o*(LoNy — M3)(1 + (a + d)k + (ad — be)k?) |

It is clear that

And hence Ly Ny — M2 = (LoNo — M2)(1 + (a + d)k + (ad — bc)k?)3. O

Corollary 8.1.2 Consider a surface in a neighbourhood of a non-parabolic point.

The affine surface parallels Y = X + kA will have no non-singular parabolic points.

Proof We have seen that Ly Ny — M? = (LoNoy — M2)(1 + (a + d)k + (ad — be)k?).
If LoNg — M # 0 for all (u,v) € U, then Ly N, — M? = 0 if, and only if, 1 + (a +
d)k + (ad — bc)k? = 0. This corresponds to Y, and Y, being linearly dependent. [
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Remark 8.1.3 Consider a fixed (ug,v9) € U. Generically as k varies Y (ug, vo) will
be hyperbolic then singular then elliptic or vise versa. Let f(k) := LNy — M2, then
f(k) = f'(k) = 0 if, and only if, (a — d)? + 4bc = 0 and

J— a+d
~ 2(bc —ad)

If X(ug,vq) is a repeated A-direction point then Y (ug,vg) will be hyperbolic then
singular then hyperbolic or elliptic then singular then elliptic.

8.2 Affine focal surfaces

Here we consider the affine focal set in a number of ways. It is first realised in
an analogous way to the Euclidean focal set. We can consider the “infinitesimal
intersection” of affine normal lines. This will generate a point set (usually made
up of two surfaces) which we call the affine focal set, or affine focal surface. It can
also be shown that the affine focal set, as considered as the infinitesimal intersection
of affine normal lines, can also be realised as the bifurcation set of the family of
affine distance functions, i.e. the set of x € R*® such that A(x,—) has a degenerate

singularity for some (u,v) € U.

8.2.1 Focal surfaces, principal curvatures, and principal di-

rections

Here we consider the affine focal set as the infinitesimal intersection of nearby affine
normal lines. Pieces of the affine focal set can be parametrised by X + AA where
A : U — C. Here we use an infinitesimal argument to find the function A and also
the directions in which we need to move so that the two nearby affine normal lines
remain coplanar, and hence have an intersection point.

We wish to find conditions so that nearby affine normal lines intersect. That

means we wish to find conditions such that

X(u, v)+A(u, v)A(u,v) = X(u+du, v+0v)+A(u+du, v+0v) A(u+du, v+dv) . (8.1)
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Proposition 8.2.1 It is true that

1. The directions (du : ov) such that Equation (8.1) has a solution are affine

principal directions.

2. The values of A such that Equation (8.1) has a solution are the affine radii of

curvature.

3. The directions (du : dv) and the function \ satisfy A\,ou + A\,0v = 0.

Proof
Expanding X(u + du, v + dv), AMu + du, v+ dv), and A(u+ du,v + dv) as power

series in du and dv gives

X(u+du,v+6ov) = X(u,v) + Xy(u,v) ou+ X, (u,v) v+ -+,
AMu+odu,v+0v) = Au,v)+ Ay(u,v) ou+ Ay(u,v) 0v+ -+,
A(u+du,v+6ov) = A(u,v)+ Ay(u,v) du+ Ay(u,v) dv+---

Substituting these expressions into Equation (8.1) we have
X, ou+X, ov+ AA, du+ \A, v+ A du+ A NAdv+---=0. (8.2)
If we let (u(t),v(t)) be a smooth curve in the uv-parameter plane, then
. L. o
ou = u5t+§u5t +-
: 1. .o
v = v5t—|—§v5t +oee
Then Equation (8.2) becomes
(X + 0Ky + MitAy + MoA, + \yitA + A\yDA) 0t +--- =0

where the higher order terms are divisible by §¢2. Dividing through by 6¢ and then
letting 0t — 0 we have

uX, + X, + MA, + ANVA, + \UA + A\0A =0



8.2. AFFINE FOCAL SURFACES 91

We can write the equation in two ways, they are
(At + Ay0) A + (4X,, + 0X,) + AN(aA, +0A,) = 0, (8.3)
(At 4+ A0)A + (X + A0+ (X, +AA)0 = 0. (8.4)
Equation (8.3) says that A, X, + X, and ©A, + A, are linearly dependent, i.e.
(A, uX, +0X,, 1A, +0A,] =0.

This has eliminated A and gives an equation in terms of % and v. In fact it will give
a quadratic in these, the solutions of which are the directions we need to move in for
there to be a solution to equation (8.1). Notice that @ = du/dt and v = dv/dt, so

[A, X du + Xydv, Aydu+ Aydo] =0 .

Using the identities A, = aX, + bX, and A, = ¢X, + dX, means we can rewrite

this last expression as
(b du® + (d — a) du dv — ¢ dv?)[X,,X,,A] =0 .

Thus (du : dv) is an eigendirection of the affine shape operator.

Equation (8.4) says that A, X, + AA,, and X, + AA, are linearly dependent, i.e.
[A, X, + My, X, + AA,] =0 .

This has eliminated @ and v. This will give a quadratic in A. The solutions give
values of A for which Equation (8.1) will have a solution. Using the identities A, =

aX, + bX, and A, = c¢X, + dX, means we can rewrite this last expression as
(14 (a+d)X+ (ad — be) \*)[ Xy, X,, A] =0 .

Thus 1/ is an eigenvalue of the affine shape operator.

Finally, the second and third summands in Equation (8.3) and Equation (8.4)
are purely tangential components. It follows that the A component must be zero for
the equations to hold. It follows that \,du + \,dv = 0.

O
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Corollary 8.2.2 The affine focal set as seen as the infinitesimal intersection of

nearby affine normals is the bifurcation set of the family of affine distance functions.

Proof Proposition 7.1.3 on page 74 gives a means of finding the bifurcation set
of the family of affine distance functions in terms of affine principal curvatures.

Proposition 8.2.1 shows that this corresponds to the affine focal set. 0

Theorem 8.2.3 At smooth points of the affine focal set (Y = X + AA where 1 +
(a+ d)\+ (ad — be)N? = 0), the affine normal line at the base point is contained in
the tangent plane to the affine focal set.

Proof At smooth points of the affine focal set the tangent plane is spanned by Y,
and Y,. Using the identities A, = aX, + X, and A, = ¢X,, + dX, we find that

Y, = (1+2)X,+ X, + NA,
Y, = AX,+ 1+ X)X, + A .

Consider the vector rX, 4+ sX, + tA for some r, s,t € R. We seek the condition that
rX, + sX, + tA is contained in the span of Y, and Y,, namely

[rX, +sX, +tA,Y,,Y,]=0.
Since [X,, X,, A] # 0 this condition becomes

r 1+ MXa Ac
S b 1+ |=0.
t A Ay

Since 1+ (a+ d)A+ (ad — bc)\? = 0 it follows that 7 = s = 0 gives a solution to this
equation, i.e. (A) C (Y., Y,). 0O

Theorem 8.2.4 At smooth points of the affine focal set the tangent plane to the
sheet of the affine focal set corresponding to one affine principal curvature meets the

tangent plane to the the surface in the other affine principal direction.
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Proof First let us consider the case where X has two distinct affine principal
directions at the origin, and assume that X is parametrised in such a way that
X.(0,0) and X, (0, 0) are affine principal directions of X at X (0, 0). Moreover, assume
that the focal set is smooth at both corresponding focal points. In such a case we
see that 5(0,0) = ¢(0,0) = 0. For brevity, let us assume that all of the following

expressions are evaluated at ©u = v = 0. We see that

Y, = (1+X)X,+ A,
Y, = (1+X)X,+M\A .

For u = v = 0 the affine radii of curvature are simply A = —1/a, —1/d. The affine
principal direction X, corresponds to the affine radius of curvature A = —1/a, and the
affine principal direction X, corresponds to the affine radius of curvature A = —1/d.

Let 7 : R® — R? be the projection along A so that 7 : rX, + sX, + tA —
Xy + sX,. It follows that 7(Y,) = (1 + Aa)X, and 7(Y,) = (1 + Ad)X, where
either A = —1/a or A = —1/d (depending on which focal sheet we are considering).

Let us assume, without loss of generality, that A = —1/a, so that 7(Y,) = 0
and 7(Y,) « X,. Notice that 7(Y,) = 0 if, and only if, a = d, i.e. if, and only
if, the origin is an affine umbilic. This contradicts the assumption that the affine
focal set is non-singular. Thus, the tangent plane to the sheet of the affine focal set
corresponding to A = —1/a intersects the tangent plane to X in the direction X,.
However, X, is the affine principal direction which corresponds to the affine radius

of curvature A = —1/d.

Next, let us consider the case where X has the origin as a repeated A-direction
point which is not an affine umbilic. Let us assume that X,(0,0) is the single
repeated affine principal direction. In such a case we see that 5(0,0) = 0, ¢(0,0) # 0
and a(0,0) = d(0,0). For brevity, let us assume that all of the following expressions
are evaluated at v = v = 0. We find that

Y, = (1+Xa)X,+\A,
Y, = AX,+ (14 X)X, + A .

It follows that 7(Y,) = (1 + Xa)X, and 7(Y,) = AeX, + (1 + Aa)X,. In this case
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the repeated affine radius of curvature is A = —1/a, and so it follows that 7(Y,) = 0

and 7(Y,) o< X,. This is, trivially, the other affine principal direction. O

Corollary 8.2.5 At smooth points of the affine focal set the tangent plane is spanned

by the affine normal vector to the surface and the other affine principal direction.

Theorem 8.2.6 Consider a neighbourhood of an elliptically curved point. There are
two real distinct affine principal curvatures and affine principal directions if, and only

if, the Pick normal form coefficients satisfy the equation
(Cll + a3)2 + (ag — a4)2 7£ 0.

Proof Take a surface in the form of Equation (5.3) on page 62. Direct computation
using the affine shape operator matrix in Equation (5.5) yields the required result.
O

Theorem 8.2.7 In the elliptically curved region of a smooth surface the focal points

coincide if, and only if, the base point is an affine umbilic.

Proof This follows from the proof of Theorem 8.2.6. U

Corollary 8.2.8 Away from affine umbilics there are two distinct real affine focal
points for every point in the elliptic region. For a generic surface affine focal points

will be isolated and so the focal set will have two sheets except at isolated points.

Theorem 8.2.9 Consider a neighbourhood of a hyperbolically curved point. There
are two distinct affine principal curvatures and affine principal directions if, and only

if, the Pick normal form coefficients satisfy the equation

(2ag + a1 — a3 — 2a4)(2ag — a; + az — 2a4) # 0 .
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Proof Take a surface in the form of Equation (5.2) on page 62. Direct computation
using the affine shape operator matrix in Equation (5.4) yields the required result.
O

Corollary 8.2.10 For each point in a hyperbolic region, there are usually two dis-
tinct focal points. These need not be real. The affine focal points are real and
distinct when the Pick normal form quartic coefficients have the properties that
2a0+a1—a3—2a4 and 2ag—aq+az—2a4 have the same sign and are non-zero. They are
complex conjugate focal points when 2ag+a; —as—2a4 and 2aq— a1 +a3—2a4 have op-
posite sign and are non-zero. If either 2ag+a1—az—2a4 = 0 or 2ag—a;+az3—2a4 = 0

then there is a single repeated affine focal point.

The curves along which 2ag + ay — a3 — 2a4 = 0 or 2a9 — ay + a3 — 2a4, = 0 are
the repeated A-direction curves. These two curves correspond to the affine principal
directions being along one of the two axes of the Dupin indicatrix. We shall study

these in much more detail later on. See chapter 9 on page 101.

8.3 Singular points of the two sets

8.3.1 Singular points of the affine surface parallels

Here we show that the singular points of affine surface parallels sweep out the affine
focal set. Let us consider a smooth surface X : U — R® in a neighbourhood of a

non-parabolic point. For a fixed £ € R we have the parallel surface Y = X 4+ kA.

Proposition 8.3.1 The affine surface parallel of distance k is singular if, and only

if, 1/k is an eigenvalue of the affine shape operator.
Proof Given that Y = X + kA it follows that

Y, = Xu+kAu7
Y, = X,+EkA,.



96CHAPTER 8. AFFINE PARALLEL SURFACES AND THE AFFINE FOCAL SET

Since we are working in non-parabolic regions, we have A, = aX, + bX, and A, =
cX, + dX,. It follows that

Y, = (1+ka)X,+kbX, ,
Y, = keX,+ (1+kd)X, .

The surface Y is singular if, and only if, Y, and Y, are linearly dependent. This is
the case if, and only if, 1 + (a + d)k + (ad — bc)k? = 0, i.e. if, and only if,

8.3.2 Singular points of the affine focal set

Here we consider the affine focal set and its singular points

Proposition 8.3.2 The affine focal set is singular at a point if, and only if, the
deriwative of an affine principal curvature in its affine principal direction is zero at

the corresponding base point.

Proof Let the affine focal set be parametrised by Y := X + AA where 1/ is an
eigenfunction of the affine shape operator, i.e. 1+ (a + d)A + (ad — bc)A? = 0. The

affine focal set is singular if, and only if, Y, and Y, are linearly dependent, where

Y, = (14 2Xa)X,+ X, + A,
Y, = AX,+ 1+ X)X, + A .

It follows that the affine focal set is singular if, and only if,

14+ Aa b A
rank <2
Ac 14+Xd M\,
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Since 1+ (a + d)X + (ad — be)A\? = 0 by assumption, it follows that that the affine

focal set is singular if, and only if,

14+da A o
aa A ~0. (8.5)
A 1+ad )\ A

Let (« : ) be the corresponding local principal direction field, i.e.

14+ Xa e « _0
M 1+ M g

The derivative of A in the direction (a : §) is simply a\, + 8A,. It follows that
ady+0A =0 <= (a:08)=(Ny:=Ay) or Ay =X, =0.

But (a: ) = (A : —Ay) or Ay = A, = 0 if, and only if, Equation (8.5) is satisfied.
U

Remark 8.3.3 Proposition 8.3.2 gives the same result as in the Euclidean case.
Points where a Euclidean principal curvature’s derivative is zero in the corresponding
Euclidean principal direction are called ridge points. Proposition 8.3.2 gives an affine

analogue of this. See [10] for more details.

Proposition 8.3.4 Let Y and (a : ) be as above. Consider the differential map
dY : TU — TR®. We have that a\, + )\, = 0 if, and only if, (a: 8) € ker(dY).

Proof With respect to the basis {X,,X,, A} on R®, dY is given by the matrix

14+ Aa e
Jy = b 1+ Md
Ay Ay

It follows that Jy(a, 3)T = (0,0,a)\, + 8A,) ", and so

(a:p) €ker(dY) <= a\,+ [N\, =0.
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8.4 Examples

In this section we give explicit parametrisations for surfaces whose family of affine
distance functions versally unfold an Ay, A3, A4, and a D] and a D} singularity.
They are the only only simple singularities which have miniversal deformations
(see [1]) of dimension less than or equal to three. Since the family of affine distance
functions is a three-parameter family we expect it to versally unfold such singularities.
All of the following examples have been calculated using the Maple computer
algebra package. The details of the calculations are not given here. The following
examples can be seen as existance statements, i.e. each of the singularities As, As,
Ay, D and D, can be versally unfolded by the family of affine distnace functions;

there are no geometric restrictions.

8.4.1 The A, case

In the case of a versally unfolded A, singularity, the affine focal surface will be locally

smooth. The surface
1 5 2 29,14 2 3
X(u,v)zi(u +v%) — uv +§v + uv

has the directions (1 : 0) and (0 : 1) as affine principal directions when v = v = 0.
The respective affine principal curvatures are —1 and 1. The family of affine distance

functions has a versally unfolded A, singularity at x = (0,0, 1).

8.4.2 The A; case

In the case of a versally unfolded A3 singularity, the affine focal surface will be locally

diffeomorphic to a cusp edge. The surface

1 1
X(u,v) = §(u2 +v?) — u?v? + 51)4
has the directions (1 : 0) and (0 : 1) as affine principal directions when u = v = 0.
The respective affine principal curvatures are —1 and 1. The family of affine distance

functions has a versally unfolded Az singularity at x = (0,0, 1).
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8.4.3 The A, case

In the case of a versally unfolded A, singularity, the affine focal surface will be locally

diffeomorphic to a swallow tail. The surface
1 1 45
X(u,v) = §(u2 +v?) — u?v® + 51)4 + u?v® + §u204

has the directions (1 : 0) and (0 : 1) as affine principal directions when v = v = 0.
The respective affine principal curvatures are —1 and 1. The family of affine distance

functions has a versally unfolded A, singularity at x = (0,0, 1).

8.4.4 The D] case

In the case of a versally unfolded D] singularity, the affine focal surface will be

locally diffeomorphic to a purse singularity. The surface
Lo, o 2,2 2,3, 5
X(u,v) = §(u +0%) +u v + uv’ 4+ v

has an affine umbilic at the origin. Every direction is principal at the origin and the
repeated affine principal curvature of 1. The family of affine distance functions has
a versally unfolded Dj at x = (0,0, 1).

8.4.5 The D, case

In the case of a versally unfolded D, singularity, the affine focal surface will be

locally diffeomorphic to a pyramid singularity. The surface
Loy, 9 2,2 2,3, .5
X(u,v) = g(u + %) + uv? — v’ v

has an affine umbilic at the origin. Every direction is principal at the origin and the
repeated affine principal curvature of 1. The family of affine distance functions has
a versally unfolded D} at x = (0,0, 1).



100CHAPTER 8. AFFINE PARALLEL SURFACES AND THE AFFINE FOCAL SET



Chapter 9
Some Special Curves

Here we consider some invariant curves on a surface. These are the affine parabolic
curve, the repeated A-direction curve, and the ordinary Euclidean parabolic curve.
We give results on the structure of these curves and on their interactions. We give
results on the nature of the affine parabolic curve and the repeated A-direction curve
as we approach the Euclidean parabolic curve at both ordinary Euclidean parabolic
points and at Euclidean cusps of Gaufl. For brevity, we shall call affine parabolic
points A-parabolic points. Euclidean parabolic points will be called parabolic points

and Euclidean cusps of Gauf§ will be called cusps of GauSf.

When looking at the limiting behaviour of the sets above, it will be useful to take

the surfaces in a form different to Pick normal form. We shall take surfaces

3 4
X(u,v) = (u, v, u® + Z biu* vt + Z ciu vl + 0(5)) : (9.1)
i=0

J=0

The origin is a parabolic point and the unique asymptotic direction at the origin
is u = 0. The parabolic set is smooth in a neighbourhood of the origin if, and only
if, either by # 0 or b3 # 0. The origin is an ordinary parabolic point if, and only if,
bs # 0. It is a cusp of GauB if, and only if, b3 = 0. If b3 = 0 we assume by # 0. If the

origin is a cusp of Gauf} it is an ordinary cusp of Gauf if, and only if, b2 — 4¢, # 0.

101
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9.1 The repeated A-direction set

The affine shape operator matrix has a repeated eigendirection if, and only if,
(a—d)* +4bc=0.

The leading terms in the power series expansion of this function give the tangent

cone to the level set.

Proposition 9.1.1 In the hyperbolic region of a generic surface, the repeated A-
direction set is made up of smooth pieces of curve, which can meet to form a trans-

verse crossing.

Proof Consider a surface given in Pick normal form (see Equation (5.2) on page 62),
and consider the power series expansion of g(u,v) := (a — d)? + 4bc at v = v = 0.

The expansion is
g(u,v) = (2ag + a1 — a3 — 2a4)(2a9 — a1 + a3 — 2a4) + O(1) .

The origin is a repeated A-direction point if, and only if, 2a9 + a; — a3 — 2a4, = 0 or
2a0— a1 a3 —2a4 = 0. Assume that 2a¢+a; —a3—2a, = 0 and 2ag—aq +az—2ay4 # 0.
Solving 2ag + ay — a3 — 2a4 = 0 in terms of ag means that 2a¢g — a; + a3 — 2a4 # 0 if,

and only if, a; — a3 # 0. Expanding to higher powers:
g(u,v) = (a1 — a3)(au+ pv) + O0(2) ,

for some generically non-zero functions, a and 3, of the fifth order and lower Pick

coefficients at u = v = 0. Since a; — a3 # 0, it follows that g—'(0) is smooth.
Assume that 2a9 — a; + a3 — 2a4 = 0 and 2ay + a1 — a3 — 2a4 # 0. Solving

2a9 — a1 + a3 — 2a4 = 0 for ag means that 2aq + a1 — a3 — 2a4 # 0 if, and only if,

a; — az # 0. Expanding to higher powers:
g(u,v) = (a1 — az)(yu + ov) + O(2) ,

for some generically non-zero functions, v and d, of the fifth order and lower Pick

coefficients at u = v = 0. Since a; — a3 # 0, it follows that g='(0) is smooth.
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Assume that 2ag — a1 + a3 — 2a4, = 0 and 2ag + a1 — a3 — 2a4 = 0, i.e. ag = a1
and a; = a3z. We find that for a, 8,v,6 € R that

g(u,v) = i(au + fv)(yu + é6v) + O(3) .

Direct computation shows that generically ad— 3y # 0; so that g is a Morse function.

The repeated A-direction set forms a transverse crossing. UJ

Proposition 9.1.2 In the elliptic region of a generic surface the repeated A-direction

set consists of isolated points, which are the affine umbilic points.
Proof Consider the power series expansion
9(u,v) = 4(ag — as)* + (a1 + a3)” + O(1) .

For the origin to be a repeated A-direction point we need ¢(0,0) = 0, i.e. ag = a4

and a; = —a3. Assuming this to be the case
g(u,v) = (au® + 2Buv + yv?) + O(3) ,

for some generically non-zero functions, «, 3, and +, of the fifth order and lower Pick
coefficients at u = v = 0. We find that ay— 32 is a perfect square and so ay — /3% > 0.
Generically ay — 32 > 0. O

9.2 The A-parabolic and repeated A-direction sets

Here we consider only the hyperbolic region of a surface, since otherwise the repeated
A-direction set is generically made up of isolated points. Let the surface X have the

form of Equation (5.2) on page 62.

Proposition 9.2.1 If the A-parabolic set and the repeated A-direction set meet, then
one is smooth if, and only if, the other is smooth. If they are smooth, then they will

be tangent.
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Proof For the origin to be both an A-parabolic point and a repeated A-direction
point we need to solve the equations ad — bc = 0 and (a — d)? + 4bc = 0 when
u = v = 0. There are two different solutions, they arise from the choice of solutions
for (a — d)* + 4bc = 0 (see the proof of Proposition 9.1.1). The first solution is given
by 2a; = 6ag — 0? + 6a, and a3 = a; — 2ag + 2a4. The second solution is given by
2a9 = 6ag — 0 + 6ay and a3 = 2a9 + a; — 2ay.

Imposing these conditions upon the Pick normal form gives parametrisations X,
for 1 < < 2. Calculating the power series at u = v = 0 of the functions ad — bc and

(a — d)? + 4bc with respect to the X; gives
ad —bc = pu+qv+0(2),
(a —d)?+4bc = ru+sv+0(2) .
where {p;, ¢;, 73, s;} are all generically non-zero functions of the coefficients in the Pick

normal form at v = v = 0 with p;s; — ¢;7; = 0. The linear parts being generically

non-zero and linearly dependent, the result now follows. 0]

9.3 Limiting behaviour of A.

Proposition 9.3.1 The limiting direction of the affine normal vector approaching

an ordinary parabolic point is the unique asymptotic direction.

Proof Consider a surface in a neighbourhood of a parabolic point in the form of
Equation (9.1) on page 101. It has (0 : 1 : 0) as its asymptotic direction at the origin.
Assume that b3 # 0 so that the origin is not a cusp of GauB. It is easy to compute
the affine normal vector A. Let A = (A;, Az, A3), and define

~ A

A

VAT AT A2

Putting u = rcosf and v = rsinf into A gives a vector with variables r and 6.

Letting r — 0 gives a limit independent of 6. In fact

~ b
lim A (r cosf,rsinf) = (O, ——3,(]) .
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The limiting direction is then (0 : 1 : 0). The result now follows. O

Corollary 9.3.2 The limiting direction of the affine normal vector approaching a

cusp of Gaufs along the parabolic curve is the unique asymptotic direction.

Proof Cusps of Gauf} are isolated points on the parabolic curve. O

If we approach the cusp of Gaufl along in an arbitrary direction the limit is not
defined. Consider a surface parametrised in the form of Equation (9.1) on page 101,
but with b3 = 0 so that the origin is a cusp of Gaufi. Let (u,v) = (rcos @, rsin6) for
some 6 € [0,27), then as r — 0 the limiting direction of A is

(=b35cos 8 : (2b1by — 3c3) cos + (3b5 — 12¢4) sin 6 : 0) .

This is a map S* — R? which is the restriction of a linear map R? — R? to the unit

circle S'. The linear map is given by
(u,v) = (=bau, (2b1by — 3ez)u + (363 — 12¢4)v) .

This has matrix representation of

—b3 0
M = 2 .
2b1[)2 — 303 3b% — 1204

Notice that det(M) = 3b3(4cy — b2), i.e. det(M) = 0 if, and only if, the parabolic
curve is singular or the cusp of Gauf} is degenerate. The eigendirections of M are
(0:1) and (4(3cy — b3) : 2b1bg — 3c3). We shall return to this in § 9.5.

9.4 The parabolic and A-parabolic sets

Here we consider surfaces with a parabolic point at the origin. Consider a surface in
the form of Equation (9.1) on page 101. Assume that either by # 0 or by # 0 so that

the origin is a parabolic point on a smooth parabolic curve.
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Let us define p: U — R, where p(u,v) := ad — be, so that the A-parabolic set is
the real part of the complex closure of X({(u,v) € U : p(u,v) = 0}). The function
p: U — R is not defined over the parabolic set. Calculating p, we find that p can be
factorised, say p = pips. The function p; is not defined over the parabolic set, where

as the function ps is. In fact

VILN = M?]

PL="0N — )

There is no such expression for py; it is a very complicated function.
The approach is to consider only the function py : U — R and its zero-level set.
If a point belongs to the parabolic set and the A-parabolic set, we must show that
this point is isolated in the intersection of the parabolic set and the A-parabolic set.
Given a surface in the form of Equation (9.1), we can parametrise the parabolic

curve by v by writing u as a function of v. In fact

v(v) = —36—1?1) +0(2) .

First, assume that b3 # 0, i.e. the origin is not a cusp of Gaufl. We then see that
(p2 0 7)(v) = b3(3b1bs — b3) + O(1) .

We want (py07)(0) = 0, but (py0v)(g) # 0 for all 0 < |¢| < 1. Solving 3b,b3 — b3 = 0
for by gives (p2 07y)(v) = av 4+ O(2) where « is a generically non-zero function of the
third order and lower Monge form coefficients. By Hadamard’s Lemma (see [4]) we
can write (py o v)(v) = vf(v) for some smooth function f with f(0) # 0. The zeros
of (pa0v)(e) for 0 < |e| < 1 are given by f(g) = 0. Since f is smooth and f(0) # 0,
we see that f is non-zero in a sufficiently small neighbourhood of zero.

Let us assume that b3 = 0, i.e. the origin is a cusp of Gaufl. Here we have

b% - 664 2

Y(v) = =—F——v"+0(Q3) .
by
Making the substitution as above, up to a non-zero constant we have

(P2 07)(v) = (b — dea)*v* + O(3) .
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Provided the origin is not a degenerate cusp of Gaufl we have (ps o 7)(v) = v2g(v)

for a smooth function g with g(0) # 0. We may now follow the previous argument.

Proposition 9.4.1 Consider a point which is both a parabolic point and an A-

parabolic point. We have

1. If the parabolic point is an ordinary parabolic point or a non-degenerate cusp

of Gaufl then the A-parabolic set will be non-singular.

2. If the parabolic point is an ordinary parabolic point then the parabolic set and

the A-parabolic set will meet transversely.

3. If the parabolic point is a non-degenerate cusp of Gaufl then the parabolic set
and the A-parabolic set will be tangent.

Proof Consider a surface in the form of Equation (9.1). Expanding as a power

series about u = v = 0 gives

The origin is an A-parabolic point if, and only if, either b3 = 0 or 3b;b3 — b2 = 0.
Let us assume that b3 # 0 and 3b,b3 — b3 = 0, then

po(u,v) = Au+ O(2)

where A is a generically non-zero function of the third order and lower Monge form
coefficients. The zero-level set is non-singular. The tangent line to the A-parabolic
set is the u = 0, but since b3 # 0, this is not the same tangent direction as that of
the parabolic set.

Let us assume that b3 = 0. Since b3 = 0 the tangent line to the parabolic curve at

the origin is given by v = 0. We find that
p2(u,v) = by (b3 — 4eq)u + O(2) .

The zero-level set is smooth, and has tangent line v = 0 if, and only if, b3 (b3—4c4) # 0,
i.e. if, and only if, the parabolic set is non-singular and the cusp of Gauf} is not a

degenerate cusp of Gau$f.
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If by = 3byb3 — b2 = 0 then b3 = by = 0 and this contradicts the assumption that

the parabolic set is a smooth curve close to the origin. UJ

9.5 The parabolic and repeated A-direction sets

Let us define ¢ : U — R, where q(u,v) := (a — d)? + 4bc, so that the repeated A-
direction set is the real part of the complex closure of X({(u,v) € U : q(u,v) = 0}).
The function ¢ : U — R is not defined over the parabolic set. Calculating ¢, we
find that ¢ can be factorised, say ¢ = ¢1q2. The function ¢; is not defined over the

parabolic set, where as the function ¢, is. In fact

VILN =

N=TIN )

There is no such expression for ¢o; it is a very complicated function. Note the power
of six in the denominator, instead of the fifth in p;.

Consider a surface in the form of Equation (9.1) on page 101. In what follows we
consider only the function ¢, : U — R and its zero-level set. We show the validity of

this approach after the following

Proposition 9.5.1 The repeated A-direction curve and the parabolic curve meet only

at cusps of Gaufs.

Proof Consider the power series expansion of ¢, about u = v = 0, which has the
form

¢ (u,v) = by + O(1) .

It follows that g,(0,0) = 0 if, and only if, b3 = 0. O

Remark 9.5.2 For some cusps of Gaufl the only repeated A-direction point in a
neighbourhood is the cusp of Gauf itself. This is because the repeated A-direction

set is complex.



9.5. THE PARABOLIC AND REPEATED A-DIRECTION SETS 109

We can parametrise the parabolic curve by writing v as a function of v. The
origin is a repeated A-direction point if, and only if, it is a cusp of Gaufl. Let us

assume that b3 = 0, then as in §9.4 we have

b2 - 6(34
2 ’U2

v(v) = n +0(3) .

Up to a non-zero constant, we have

(g207)(v) = (05 — 4c)"v" + O(5) .

If the origin is a non-degenerate cusp of Gauf§ then by Hadamard’s Lemma (see [4])
we can write (go 0 7)(v) = v*f(v) for some smooth function f with f(0) # 0. The
origin is an isolated point in the intersection of the parabolic set and the repeated

A-direction set.
Remark 9.5.3 When b3 = 0 the linear terms of ¢y also vanish, meaning ¢ € O(2).

Proposition 9.5.4 Let the origin be a cusp of Gauf (i.e. by = 0). If 16¢c, —
3b2 # 0 then the repeated A-direction set has the Euclidean asymptotic direction with
multiplicity two as its tangent cone. If 16¢, — 3b5 = 0 then the repeated A-direction
set has the Fuclidean asymptotic direction with multiplicity one and a line transverse

to that with multiplicity two as its tangent cone.

Proof Given that b3 = 0 we have
g (u,v) = b3(3b5 — 16¢4)*u® + O(3) .

By assumption by # 0. Thus {u = 0} is the tangent cone with multiplicity two if,
and only if, 302 — 16¢4 # 0. Assume that 3b2 — 16¢4 = 0, then

@ (u, v) = byu(4(2b1by — 3c3)u + Thov)? + O(4) .

Since by # 0, the line u = 0 can never be given by 4(2b,by — 3¢c3)u + 7b3v =0. O
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Remark 9.5.5 If 16¢, — 302 = 0 then the eigendirections of M become (0 : 1) and
(=703 : 4(2b1by — 3c3)). These are exactly the directions given by

biu(4(2b1by — 3es)u + Thaw)* =0,
i.e. the directions in the tangent cone of ¢; = 0 at the origin.
The next result show what to expect when 16¢, — 3b3 # 0.

Remark 9.5.6 Cusps of Gaufl where 3b2 — 16¢, = 0 are non-generic for a given

surface. They will arise in generic one-parameter families of surfaces.

Before we continue we give an example of completing the square. This method
will be used in a following proof.
Example. Consider the function germ f(u,v) = u? + 2u?v + 2uv?. We can complete
the square on the u?, uv, and v? terms to give (u+ uv+v?)% — (uv + v?)?. We relabel
u+ uv + v? := 4. We can solve the equality @ = u + uv + v? for u as a formal power

series in @ and v. See [17] for more details. In this example
u=1a—av—1a +v°+0(4).

Substituting this formal power series into f and rewriting u as u we have
u? — 2uv® — u*? — vt +O(5) .

Completing the square on the u?, uv?®, and u?v? terms gives
1 2
<u - §uv2 - 1)3) — vt +0(5) .

We relabel u — (uv?)/2 — v* := 4. We solve 24 — 2u + uv? + v* = 0 for u as a formal

power series in 4 and v. In this example we have
1
u:ﬂ+§ﬂv2+03+0(4) :
Substituting this formal power series into f and rewriting u as u we have

u? —v° +0(6) .
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Substituting v for —v gives u?+v°+0(6). Therefore u?+2u?v+2uv? has type A4, and
hence is a degenerate cusp of Gauf}. It is easy to check that the three substitutions

were diffeomorphic changes of variable.

Proposition 9.5.7 Let the origin be an ordinary cusp of Gauf with 16¢c, — 3b3 # 0.

1. If b2 — 3¢y < 0 then repeated A-direction set will be a single point, namely the
cusp of Gaufs.

2. If b3 — 3cy > 0 then near the cusp of Gauf the repeated A-direction set will be
locally diffeomorphic to a tacnode, i.e. the {(z,y) € R* : 22 — y* = 0}. The

singular point is at the cusp of Gaups.

Proof The condition for an ordinary cusp of Gauf} is that b3 — 4cy # 0. Let us
assume that this holds.

The proposition says that the function germ ¢, : U,0 — R, 0 has an Af,,t singular-
ity. We now employ the method of the example on page 110.

We find that qu(u,v) = b3(3b3 — 16¢4)?u?® + O(3). Moreover, there is no v* term.

3, u?v, and uv? terms and relabelling as @

By completing the square with the u?, u
the 4-jet becomes au? + O(4) for o # 0. Then rewrite the variables as v and v once

more. The new v* term is absent if, and only if,
b (b2 — 3cy) (b2 — 4cg)? = 0.

By assumption by(b3 — 4cq) # 0. If b3 — 3¢y # 0 then there is a v* coefficient.

3

Completing the square with the u?, u?, v?v, u?v?, and uv® terms and relabelling as

@ gives a 4-jet of A\a? + pv?* for A > 0 and p # 0. In fact
p = —by (b — 3ca) (b — 4ca)?

so the sign of 3¢, — b3 dictates the choice of A;f. rewriting the variables as v and v
and making a final scaling brings the 4-jet into the form u? 4 v*.
It is easy to check that all of the mappings induced by the completing the square

and relabelling are diffeomorphisms. 0
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Remark 9.5.8 If 16¢4 — 303 # 0 but b3 — 3¢y = 0 then g will not be A-equivalent
to u? + v*. Tt will have a more degenerate singularity type. Since 16¢, — 3b2 # 0,

there will be a u? terms, so ¢o will always have an A;.

Next we consider the case when 16c4 — 3b2 = 0. The tangent cone here is the
Euclidean asymptotic direction with multiplicity one and a line transverse to this
with multiplicity two. The classification of singularities of this degeneracy is much
more complicated. Here we use the techniques of blow-ups to classify the normal

forms. See [17] for more information about blow-ups.

9.5.1 Blow-up calculations

We assume that by = 0, 16¢, — 3b2 = 0, and by # 0. The power series expansion is a

non-zero constant multiple of
q2(u, v) = by u ((8b1by — 12¢3)u + Thav)* + O(4) .

We wish to perform a linear transformation to simplify this. Let u — u and

1
Vb= —2((1263 — 81)11)2)@ — ’5) .

Under this transformation, we find that
¢, 7) = b3uv? + O(4) .

In order to use the resolution of singularities and the blowing-up techniques, we need
to examine more than just the cubic term, we need to examine all of the monomials

which lie on the convex hull of the Newton Polygon. Consider
Asuv® + Bou' + Biulv + Bou*v? + Bsuv® + By + O(5) .
We have seen that ¢ can be brought into this form by a linear change of coordinates.

Proposition 9.5.9 If By # 0 then the repeated A-direction set has branches locally
diffeomorphic to a straight line and an ordinary cusp, the singular point of the ordi-
nary cusp being at the cusp of Gaufs, and the limiting tangent line to the cusp at the

singular point transverse to the smooth branch.
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T L J
u

Figure 9.1: Newton Polygon for B, # 0.

Proof Calculating the Newton Polygon, we find that only the monomials uv?, u?,
and v?* lie on the convex hull, all other monomials lie above it. This can be seen
in Figure 9.1 which shows the Newton Polygon and its convex hull. In Figure 9.1
only the third and fourth order monomials have been included. Any higher degree

monomials will lie above the ones shown, and so will play no part. Let us write
F := Asuv® + Bou' + Byt + - - - .

The terms in the tail are multiples of monomials of the form u™v™ where m+n > 4
and (m,n) # (0,4). These are the terms above the Newton Polygon. We apply the
blowing-up method to this function. Let us remark that A, is a non-zero constant
multiple of b3 and so is always non-zero by assumption. Also, By is a non-zero
constant rational number. Thus, we may conclude that A;By # 0.

We now use the standard blowing-up method. For the first blow-up we make the

substitution (u,v) ~> (ujvy,v;). This gives the total transform

F, = A2ulvf + Bguilvf + Bwi1 4+

The terms in the tail are multiples of the monomial of the form u7v!*" where

m+mn >4 and (m,n) # (0,4). Clearly, v? divides F; and so

F1 = ’U%(Agul + Bgulll’l)l + B4U1 +-- ) ,
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where the terms in the tail are multiples of monomials of the form w3 The
exceptional divisor Ej is the line v; = 0 counted thrice, this shows that {F = 0} has

intersection number three when u = v = 0. The proper transform C() is
{AQUI + BoUilUl -+ B4Q)1 4= 0} .

Notice that CV) is a smooth curve close to u; = v; = 0. Provided A, # 0, which it
is, the proper transform and the exceptional divisor meet transversally at a single
point, and so form a normal crossing divisor.
By the Implicit Function Theorem we can write v; as a function of u; close to
u; = v; = 0. By Hadamard’s Lemma (see [4]), there exists a smooth h € O(5) such
that
Ay AyBy

U1 (Ul) = —Eul + ?Ul + h(ul) .
4 4

Using the blow-down map (uy,v;) — (uqv1,v1) we find that

A
(ug,v1(uy)) — (ul, —gju% 4. ) _

This is clearly a smooth branch of {F = 0}.
We now consider the alternative blow-up map. Let us make the substitution

(u,v) ~ (u1,u1v7). The total transform of F' is then
F1 = U?(AQ’U% + Bou1 + B4U1’U11 =+ .- ) ,

where the terms in the tail are multiples of monomials of the form «!"*"~*v7. The
monomials above the convex hull of the Newton Polygon are of the form u™v™ where
m+n >4 and (m,n) # (0,4). For such monomials m + n — 3 > 0. The exceptional

divisor Fj is the line u; = 0 counted thrice. And C( is
{AQ'U% + B(]Ul + B4U1’Ui1 + = 0} .

Although the proper transform C(V) is a smooth curve close to vy = vy = 0, it is
tangent to the exceptional divisor Ejy; they do not form a normal crossing divisor.
Their positions can be seen in the schematic diagram in Figure 9.2. It is therefore

necessary to blow-up at least once more.
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E, c
Figure 9.2: The picture after the first blow-up

For the second blow-up, make the substitution (uj,v1) ~> (ugve,vs). The total

transform of the equation of C(V) is
F2 = ’UQ(AQUQ + B(]UQ + B4’U/2U§ + - ) ,

the terms in the tail are multiples of monomials of the form uf* ™™ 3¢7"*?"=4 The
terms above the Newton Polygon have m + 2n — 4 > 0. The exceptional divisor E;

is the line vy = 0. The proper transform C® ig
{AQ’UQ + Boug + B4u21;;1 4+ ... = U} )

The image of Ej is the line uy = 0. Again C'? is a smooth curve close to us = vy = 0.
However, C®, E, and the image of E; do not form a normal crossing divisor because
all three meet at one point. Their positions can be seen in the schematic diagram in
Figure 9.3. It is necessary to blow-up at least once more.

Before we do that, we need to check that no branches have been sent to infinity,
i.e. to the origin in the other chart. We make the substitution (uq,v1) ~ (ug, ugvs).

This gives a total transform
FQ = ’LLQ(B() + AQUQ'U; + B4’LL3U§ =+ - ) .

If By # 0 the proper transform does not pass through the origin in this chart.
For the third blow-up, make the substitution (us,vs) ~» (usvs,vs). The total

transform of the equation of C® is then

F3 = ’U3(A2 + B0U3 + B4U3U§) + - ) ,
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v, C( 2)

E,

Figure 9.3: The picture after the second blow-up

C( 3)

Figure 9.4: The picture after the third blow-up

where the terms in the tail are multiples of monomials of the form ug**"~3y2m+3n=8,

Again we find that for terms above the Newton Polygon 2m + 3n — 8 > 0. The

exceptional divisor F, is the line v3 = 0. The proper transform C®) is
{Ay + Byus + Byusvs +--- =0} .

The image of E; does not appear in this chart. The image of Ej is the line ug = 0.
The proper transform C®) is a smooth curve, and together with E, and the images
of F; and Fy, we have a normal crossing divisor. We can see their positions in the

schematic diagram in Figure 9.4. It is necessary to blow-up at least once more.
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Checking the other chart we make the substitution (ug,vs) ~ (ug, uzvs). This

gives the total transform
F3 = Ug(BU + A2U3 + B4U§U§ +-- ) .

Again, since By # 0 by assumption, the proper transform does not pass through
the origin in this chart. We have not lost any branches by making the original
substitution.

Assume that By # 0; by the Inverse Function Theorem we can write uz as a
function of v3. By Hadamard’s Lemma (see [4]), for a smooth function h € O(5), we

can write
A2 A2B4 4
B, B vy + h(v3) .

We need to find the image of C® under the blow-down map. In this case, the blow-
down map is the composite of the three individual blow-down maps. This yields

(us, vs) — (usv?, uzv3). Clearly the image of C®) is

A A
(U3(U3)7’U3) — <—B—z?)§—|— ’—§ZU§’ -+ ) .

By the k-determinacy of plane curve germs, we find that this is locally diffeomorphic

to the normal form (¢2, %) and is therefore an ordinary cusp. O

Remark 9.5.10 Consider the normal form of a Di (see [1]), this is given by (u,v) —
v(u® £ v*7?) where the normal forms for odd k give equivalent functions. A Dj has
normal form v(u? + v3); this is a line and an ordinary cusp meeting at the origin.
The limiting tangent to the cusp at its singular point being transverse to the line.

This is exactly the case in Proposition 9.5.9 on page 112.

We now consider the case when By = 0. Provided that Cy # 0, we find that the
first candidate for the Newton Polygon contains the monomials uv?, v?v, v*, and u®.
This can be seen in Figure 9.5. Only the third, fourth, and fifth order monomials are

shown. However, direct computation shows that B? — 44,Cy = 0; the polynomial
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Figure 9.5: Newton Polygon for By = 0 and Cy # 0.

Ayuv? 4+ Biuv + Cyu® has a repeated root. Given that Ay # 0 by assumption (recall
that this means that the parabolic set is non-singular) and that B? —4A4,Cy = 0, we

have

B 2
Ayuv? + BiuPv + Cou’® = Asu <v + jﬁ) .
2

We need to make a change of variable, let u — % and

This is a diffeomorphic change of variable. If
F(u,v) = Ayuv? + Byu*v + Bouv? 4+ Bsuv® + Byv' + Cou® - -+

then making the substitution we find that

3B?B; B,C
F(a,ﬁ):A2M2+B464+< 4;123_ 222+D1>a6+...,
2

where the quintic terms in F(u,v) were .7  Dju® "v’. The terms in the tail of
F(a, ) are multiples of monomials of the form @™%" where 2m + 5n > 12 and
(m,n) # (0,3) or (0,4), and so lie above the Newton Polygon. Generically the
coefficient of 4% is non-zero. To simplify the notation replace @ by u and @ by w.

The monomials on the new Newton Polygon are uv?, v*, and u®. The diagram can
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Figure 9.6: The new, post-transform Newton Polygon

Figure 9.7: The local picture for By = 0 and €2 # 0.

be found in Figure 9.6. Only the monomials of order less than or equal to five are
shown. In particular, notice that there is no u® term. Let  denote the new u®

coefficient.

Proposition 9.5.11 If ) # 0 then the repeated A-direction set will be locally diffeo-
morphic to a straight line and a rhamphoid cusp, with the singular point at the cusp

of Gaufs.

A picture of this can be found in Figure 9.7.
Proof Consider
F = Aouv® + B + Qub + -+ |

where the terms are multiples of monomials of the form u™v™ where 2m + 5n > 12
and (m,n) # (0,3) or (0,4). For the first blow-up, make the substitution (u,v) ~>
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(uyv1,v1). This gives the total transform of F, namely
Fy = v3(Ayuy + Byvy + Qubo? 4+ .-+ |

where the terms in the tail are monomials of the form v™v™*t"~3. For all of the terms
above the Newton Polygon, we have m +n — 3 > 0. The exceptional divisor Ej is

the line v; = 0 counted thrice. The proper transform C() is
{AQUl + B4’l)1 —+ Qu?v% + ... = 0} ]

The proper transform is smooth close to the origin since A B, # 0. The exceptional
divisor and the proper transform form a normal crossing divisor. By the Implicit
Function Theorem, we are able to parametrise C(!) close to the origin by writing u;
as a function of v;. Looking for a formal power series solution:

By BQ

ul(vl):—A—2@1— A (HETERR

The blow-down map is (u1,v1) — (ujvq,v1), and so

B B
(u1(v1), 1) <—A—;1vf+--- ,—A_;lvl +> _

This is a smooth branch tangent to the u = 0 axis.
For the other blow-up, make the substitution (u,v) ~» (u1, ujv1). The total trans-

form of F' is given by
F1 = ’U/?(AQ’U% + B4’U/1Uil + QU? + - ) y

where the terms in the tail are multiples of monomials of the form »™*"3v". For all
of the terms above the Newton Polygon m +n — 3 > 0. The exceptional divisor Fy

is the line u; = 0 counted thrice. The proper transform C(V is
{Av? + Byuv! 4+ Qud +--- =0} .

The proper transform is singular, it is generically a cusp, with its singular point at
the origin. The schematic diagram can be seen in Figure 9.8. It is necessary to

blow-up at least once more.
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v

C(]) EO

Figure 9.8: The Picture After The First Blow-Up

For the second blow-up, make the substitution (uy,v) ~ (ug, usvs). The total
transform of Fj is

F, = ug(Agvg + Bw%v% +Quy+---),

where the terms in the tail are multiples of monomials of the form u™*2" 5", For
all of the terms above the Newton Polygon m + 2n — 5 > 0. The exceptional divisor
E is the line us = 0 counted twice. The image of Ey does not appear in this chart.

The proper transform C® is
{Ayv3 + Byuivs + Qug + -+ =0} .

The proper transform C® is a smooth curve close to the origin, however it is also
tangent to the exceptional divisor F; : they do not form a normal crossing divisor.
The schematic diagram can be seen in Figure 9.9. It is necessary to blow-up at least
once more.

The only point in this chart which is missing is the origin in the other chart. We

find that the total transform with respect to the substitution (u;,vy) ~ (ugvg, v9) is
Fy = v2(Ay + Byugvd + Quive + -+

The proper transform does not pass through the origin, and so nothing had been

missed in the original chart.
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C(Z)
E, E

Figure 9.9: The Picture After The Second Blow-Up

For the third blow-up, make the substitution (us, ve) ~ (u3vs, vs). This gives the

total transform
F3 = v3(Aqvs + B4u§vg + Qug+-++)

where the terms in the tail are multiples of monomials of the form u™*m Sym+3n-6,

For monomials above the Newton Polygon m + 3n — 6 > 0. The exceptional divisor
Ej is the line v3 = 0 counted once. The image of E is the line u3 = 0. The proper

transform C'®) is

{Asvs + Bauiv$ + Quz + -+ =0} .

This is always smooth close to the origin since Ay # 0. However Es, the image of E
and the proper transform C® all meet in a single point. They do not form a normal
crossing divisor. The schematic diagram can be seen in Figure 9.10. It is necessary
to blow-up at least once more.

First, we need to check that nothing has been missed by the chosen chart. Make

the substitution (ug,ve) ~ (us3, ugvs) this gives the total transform
Fy = ug(Asugv? + Byudvs +Q +---) .

The proper transform does not pass through the origin, and so was not missed by

the original choice of chart.
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C(3)

E, E

Figure 9.10: The Picture After The Third Blow-Up

For the fourth blow-up, make the substitution (usz,vs) ~ (u4, ugvy4). This gives
the total transform
Fy = ug(Aqvy + Buufo§ +Q+---)

where the terms in the tail are multiples of monomials of the form u?m+4n—12ym+3n—6

For monomials above the Newton Polygon, we have 2m+4n—12 > 0. The exceptional
divisor Fj is the line uy = 0 counted once. The image of Fj is the line vy = 0. The

image of F; does not appear in this chart. The proper transform C'¥ is
{Agvy + Byufol + Q+--- =0} .

The proper transform C™® along with all of the E; form a normal crossing divisor.
The schematic diagram can be seen in Figure 9.11. Since A, # 0, this is a smooth
curve close to (u4,v4) = (0,—/Ay). By the Implicit Function Theorem, we can
parametrise the proper transform C'¥) by writing v, as a function of u4. Looking for
a power series solution, we find that

Q  BQ°

vy (ug) = 4, A—;U4+"' :

We need to check that this chosen chart has not missed anything. Making the

substitution (ug,vs) ~> (uqvy4,v4), the total transform is

F4 == ’U4(A2 —|—B4U§1’02 +QU4—|— ) .
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Vs

I C(4)

Figure 9.11: The Picture After The Fourth Blow-Up

Nothing passes through the origin, and so we conclude that the original choice of
chart did not lose any branches during the blow-up.
The blow-down map can be calculated. We have (uy, v4) — (uivg, ujv}). Thus

Q 03
(14, v4(us)) — <—A—2ui+-.. ,_A_%ui+...> _

Using k-determinacy, we find that the image is a rhamphoid cusp, i.e. a singular

curve which is locally diffeomorphic to {(z,y) € R? : 22 — y° = 0}. O

Remark 9.5.12 Following on from Remark 9.5.10 on page 117 we see that the
normal form for a DT singularity is v(u? & v®). This is a line and a rhampoid cusp
which meet at the origin. The limiting tangent to the rhampoid cusp at its singular

being transverse to the line. This is exactly the situation in Proposition 9.5.11.

9.6 Examples and pictures

Here we give examples and plots of certain cases.

Example. Consider a surface

X (u,v) = (u, v, u? + u?v + uv? + uv® — vt) .
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This has an ordinary cusp of GauB at the origin (b3 — 4c, # 0). Also we have
b3 — 3¢y < 0. The repeated A-direction set is locally diffeomorphic to a tacnode (cf.
Proposition 9.5.7). In Figure 9.12 the repeated A-direction set (RADC) is made up
of two branches, the A-parabolic set (APC) is a smooth curve, and the parabolic set
(EPC) is also a smooth curve. The A-parabolic curve is tangent to the parabolic
curve at the cusp of Gaufl and meets it transversely away from the cusp of Gauf} (cf.

Proposition 9.4.1).

RADC

RADC yd

APC

Figure 9.12: Some of the special curves in the uv-parameter plane

Example. Consider the surface is given by
Lo, oy, 1,3 2
X(u,v) = u,v,i(u +v )+6(u — 3uv?) | .

The origin is an elliptically curved point. The origin is an affine umbilic. The
parabolic curve is an oval, and has three ordinary cusps of Gauf}. The affine parabolic
curve stays inside the elliptic region. The three curves can be seen in Figure 9.13.

Example. Consider the surface is given by

1 1
X(u,v) = <u, v, §(u2 —v?) + é(u?’ + 3u1)2)> :
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APC /

Figure 9.13: Some of the special curves in the uv-parameter plane

The origin is a hyperbolically curved point. The origin is an affine umbilic, the
repeated A-direction set has a transverse crossing at this point. This picture shows
many phenomena. The repeated A-direction set and the affine parabolic curves meet
twice away from the parabolic curve; both curves are smooth and tangent at these
places (cf. Proposition 9.2.1 on page 103). The affine parabolic set is tangent to
the parabolic set at an ordinary cusp of Gaufl. The repeated A-direction set is also
tangent there, and is locally diffeomorphic to a tacnode. The three curves can be

seen in Figure 9.14.
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APC

RADC

Figure 9.14: Some of the special curves in the uv-parameter plane
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Chapter 10

Affine Sectional Curvature

10.1 Motivation

Here we consider an analogue of the Euclidean sectional curvature. Given a smooth
surface X : U — R?, and a point p € X(U), the tangent plane to X at p is given
by T,X = (X,,X,). The Euclidean normal vector IN is the unit vector based at
p and perpendicular to 7,X. Given some tangent vector v € 7,X we consider the
plane (v, N), and its intersection with X(U). The plane curve curvature, at p, of this
intersection is the Euclidean sectional curvature of X at p in the direction v.

We state the following well known proposition:

Proposition 10.1.1 Let k,(0) be the Euclidean sectional curvature of a surface X
at p € X in the direction v € T,X where v makes an angle 0 with some fized vector
in the tangent plane T,X. Furthermore, let H,(X) be the Euclidean mean curvature
of X at p. Then

™

Proof 1t is well known (see [6]) that if we take principal coordinates and allow
the fixed vector to be one of the principal directions, say corresponding to the first

principal curvature x; we see that
Kp(0) = Ky cos* O + kg sin? 6

129
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Integration gives the required result. O

Remark 10.1.2 The Euclidean sectional curvature can be found by looking at the
restriction of the family of distance squared functions F' : R?* x U — R to the plane
spanned by v and the Euclidean normal vector. We look for the point x in the plane
such that F' has an A, singularity at p. This point x will be the centre of curvature
of the cross sectional plane curve. Hence the reciprocal of the distance from p to x
gives the curvature of the plane section curve at p. See [4] for more details on the
family of Euclidean distance squared functions and the geometrical interpretation of

the singularities.

10.2 The affine case

Here we prove an analogue of Proposition (10.1.1). The key here is to use Re-
mark 10.1.2. If we take planar cross sections and then calculate the affine curvature
of the plane cross sections using the standard planar affine curvature we do not get

an analogous result. First we consider the following

Definition 10.2.1 Let P denote the plane spanned by A € T,R* and some non-zero
vector v € T,X. We define the affine sectional curvature of X at p in the direction
v to be the reciprocal of the affine distance from p to the Asy point of the restriction
of the family of affine distance functions A : R> x U — R to the plane P and the

intersection curve.

Proposition 10.2.2 Consider a smooth surface X and a point p € X, such that p

is not an (Euclidean) parabolic point. Let J be the 2 X 2 matriz where

(1)

Let S be the affine shape operator matriz, i.e. the matrix Then the affine sectional

curvature of X at p in the direction v, provided v is not a (Euclidean) asymptotic
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direction, is given by
(Sv)TJv

viJv

(V) = (10.1)

Proof Let p=X(0,0). Consider the plane P := (v, A) containing the affine normal
A at p and some non-zero vector v € T,X. Let v := aX, + X, say. Let I C R be
an open interval containing 0 and v : I — U be given by ~(t) = (u(t),v(t)) where
v(0) = (0,0) and %(0) = (a, ), such that (X o v)(¢) parametrises {X(U) N P}.

We wish to consider the restriction of the family of affine distance functions
A :R® x U — R to the plane P and the curve (X 0+)(¢). Doing this gives the family
A: Px I — R We wish to calculate x € P such that A(x,?) has an A, singularity
at t = 0. Notice that A : P x I — R is a two-parameter family of functions from the
real line to the real line.

Let F = [X,,X,,A], so that AF = [x — X,X,,X,] by definition. We can

calculate the derivatives of A implicitly, we see that

AF 4+ AF, = [x — X, iXyy + 0 X, Xo] 4+ [x — X, Xy, 01Xy + 0Xy] . (10.2)
When t = 0 we can write x — X = \;v + A\ A for suitable \; € R. Substituting this
into Equation (10.2) we see that for ¢ = 0

- A
A = —Fl(oﬂL +2a3M + B%N)

since 4(0) = « and ©(0) = 5. Assuming that p is not a parabolic point and that
(o = B) is not an asymptotic direction of X at p we conclude that A (x,0) = 0 if,
and only if, \; = 0. Thus A(x,?) has an A, singularity at ¢ = 0 if, and only if,
x = X(0,0) + AMA(0,0) for some A € R.

Next we consider Ay,. Implicit differentiation leads to some lengthy expressions.
Solving A=A, =0 withx — X =)\A gives

W2L + 2ad M + 02N
[0 s + X gy X, 1A, + 0AL] + [Xoy, 01Xy + 6Ky 1A, + 0A,]

Making the substitutions A, = aX, + X, and A, = cX, + dX, gives

WL + 20dM + 92N

A= .
w(at + c0)L + (u(bt + dv) + v(at + c0)) M + 0(bi + do)N
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Assuming that p is not a parabolic point, and v is not an Euclidean asymptotic

direction, A(x,t) has an A, singularity at ¢ = 0 if, and only if, x — X = M\yA where

B a’L +2a8M + 32N
a(ac+ ¢f)L + (a(ba + dB) + f(ac + ¢f))M + f(ba + dB)N

From the definition given of affine sectional curvature, the reciprocal 1/\ gives

the sectional curvature of X at p in the direction aX, + $X,. Simplification shows

1 (Sv)TJv

A vIiJv

From Proposition 5.3.1 on page 60 we see the matrix of the bilinear form A, with
respect to the basis {X,, X, A}, is proportional to .J. That is, v' Jw o h(v,w) for
all v,w € T,X. In fact

LN — M?|V4(vT Jw) = h(v,w) .

It follows that
h(Sv,v)

Np(v) = h(v,v)

Locally the affine sectional curvature is a map U x RP' — R, where R = RU{oc}.
The global structure, say for a compact surface, is quite different. Consider the
tangent plane 7,X. We define the projectivised tangent space P(T,X) = 7,X / ~
where for all vy, vy € T,X we have v; ~ vy if, and only if, there exists a non-zero

A € R such that vi = Av,. The tangent bundle of X is given by
TX ={(p,v):pe Xand veT,X}.
Hence, we define the projectivised tangent bundle as
P(TX)={(p,v):pe Xand ve P(T,X)} .

In a global setting, the affine sectional curvature is a function p : P(TX) — R,

Equally p : P(TX) — S* where S' is the circle. In what follows, we may consider
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the domain of definition locally. This allows us to study a product as opposed to a
projectivised fibre bundle.

It is clear that the derivatives of A fall in the tangent plane to X. The zeros
of affine sectional curvature tell us when second order derivatives of A fall in the

tangent plane. We have the following

Theorem 10.2.3 Away from asymptotic directions p,(v) = 0 if, and only if, DZA :
Dy (DyA) lies in the tangent plane to X at p.

Proof We know that D,A = —Sv, and so —D2A = V,(Sv)+h(v,Sv)A.Tt follows
that D2A € T,X if, and only if, h(v,Sv) = 0, i.e. if, and only if, h(Sv,v) = 0.
U

Theorem 10.2.4 Let v € RP' and let H,(X) be the affine mean curvature of X
at an elliptic point p, i.e. the mean average of the eigenvalues of the affine shape

operator matriz S. If p, is as in Equation (10.1) then

) by =)

™

Proof Let X be in Pick normal form, as in Equation (5.3) on page 62, we prove

the equality by explicit calculation: The shape operator matrix is given by

s = ((F 000 Aol )

—%(a1+a3) %—02—6(14

It follows that the mean curvature is given by

0.2
%(](X) = 7 - 3@0 — a9 — 3@4 .

Since RP! can be identified with the unit circle S* we can put v = cos X, +sin X,.

Calculating the sectional curvature gives

0.2

3
po(0) = 5 6(ag cos® O + ay sin® ) — §(a1 + az)sin260 — as .
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The result follows by direct integration. O

In order to give a similar formula over the hyperbolic region, more delicate anal-
ysis is required. Notice that there are two distinct asymptotic directions at a hyper-

bolic point and so there are two simple zeros of v'.Jv.

Theorem 10.2.5 Let v € RP' and let H,(X) be the affine mean curvature of X
at a hyperbolic point p, i.e. the mean average of the eigenvalues of the affine shape
operator matriz S, then we have the following equality involving the principal value

of an integral:

1
— p.v/ pp(v) dv =Hy(X) .
™ RP!

Proof Let us take our surface in Pick normal form, as in Equation (5.2) on page 62.
In this basis the 2 x 2 matrix J(0,0) has +1 then —1 along the leading diagonal,

with zeros in the other two places. The affine shape operator matrix at the origin is

smﬂh:(§_&“+@ —5“‘%)>.

%(al —03) %2‘*‘(12 —604

The asymptotic directions are (1 : £1). The function su,(v) has two simple poles in

these directions. The non-asymptotic directions can be parametrised by

vi(t) = (cosht:sinht),
vo(t) = (sinht: —cosht)

where ¢ € R. These parametrise the same directions as (cosf : sin f) where we take
—31/4 < 0 < —7/4 and —7/4 < § < /4. These directions are all of RP' with the
exception of the asymptotic directions. We may now integrate, but we must take a

normalising factor

L= g [ i)+ mvate) dt.

1 § '
I, = » {3(@3 —ay) cosh® t + 2 (—02 — 3ag + as — 3a4> t] :
r -r
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The limit of I, as r — oo is easy to calculate, since the final expression is independent

of r before the limit is taken! It follows that
2

lim I, = 2 — 3ay + as — 3ay .
r—00 2

Direct computation shows that this is also the mean of the eigenvalues of S(0,0). O

Since there are no real asymptotic directions over the elliptic region and RP' is

compact, the affine sectional curvature function must have extrema.

Theorem 10.2.6 At an elliptic point which is not an affine umbilic the affine sec-
tional curvature i, RP! — R has a turning point at v € RP' if, and only if, v
is an affine principal direction of X at p. The value of p,(v) at such a point is the

corresponding affine principal curvature.
In order to prove Theorem 10.2.6 we need the following

Lemma 10.2.7 Let A and B be two nxn matrices with B either positive or negative

definite, furthermore let v be an n x 1 vector (vy,...,v,) . Then the function
v Av

has the property that (Vf)(v) = 0 if, and only if, v is a relative eigenvector of the

two symmetric matrices A+ A" and B + BT, with relative eigenvalue f(v).

Proof [Lemma 10.2.7] Note that v' Av = f(v)(v'Bv). Let ¢; := dv/dv;, then

0
e] Av+v' Ae; = a—f(vTBv) + f(v)(ef Bv +v'Be;) .
Ui
The expressions v' Ae; and v' Be; are real numbers, so v'Ae; = (v Ae;)" and

v Be; = (v Be;) . Tt follows that

eT(A+ AT)y = g—f(vTBv) b ) (e (B+BTW) . (10.3)

1
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If this is to hold for all 1 <7 < n, then in matrix notation
(A+ A"V =Vf(v)(v'Bv)+ f(v)(B+B")v .

If Vf(v) = 0 then v is a relative eigenvector of A + A" and B + BT with relative
eigenvalue f(v). If v is a relative eigenvector of A+ AT and B+ B with eigenvalue
f(v) then because B is either positive or negative definite it follows that Vf(v) = 0.

UJ

Proof [Theorem 10.2.6] For simplicity, let p = X(0,0). Over the elliptic region it
is true that v'.Jv # 0 for any v € RP'. Hence Lemma 10.2.7 can be applied. By
Lemma 10.2.7 we see that yo : RP! — R has a stationary point at v € RP if, and
only if,

(STT+JS —2p(v)J)v=0.

Taking the Pick normal form in Equation (5.3) we see that S(0,0) is a symmetric
matrix and J(0,0) is the 2 x 2 identity matrix. Thus s : RP' — R has a stationary
point at v € RP! if, and only if,

2(5 = po(v)E)v =0,

where E denotes the 2 x 2 identity matrix. Hence, v is an eigendirection of the affine
shape operator matrix with eigenvalue po(v). Thus v is an affine principal direction
with affine principal curvature py(v). The affine shape operator matrix S has distinct
eigendirections and eigenvectors if, and only if, 4(ag — a4)® + (a; + a3)® > 0. This
occurs at all elliptic points, except of course affine umbilic points. Thus, the zeros

of Vi, (v) must be isolated over RP' and so give simple turning points. O

Theorem 10.2.8 At a hyperbolic point which is not an affine umbilic the affine
sectional curvature p, : RP! — R has a turning point at a non-asymptotic v € RP?
if, and only if, the non-asymptotic v is an affine principal direction of X at p. The

value of p,(v) at such a point is the corresponding affine principal curvature.
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Proof This is analogous to the proof of Theorem 10.2.6. U

Over the hyperbolic region there are two distinct real asymptotic directions. In
such directions p,(v) is generically undefined. Tt follows that p, : RP' — R is
unbounded for most hyperbolic points. The exception is when the numerator and
denominator in the definition of affine sectional curvature are both zero. This hap-
pens when (Sv)TJv and v'.Jv share a common solution v € RP'. In general, we

expect to have curves along which v'.Jv and (Sv)T.Jv have a common root.

Proposition 10.2.9 The quadratic forms v'.Jv and (Sv)".Jv have a common root

at a hyperbolic surface point if, and only if, the point is a repeated A-direction point.

Proof The only zeros of v' .Jv are asymptotic directions. Assume that our point is
a repeated A-direction point, then by the corollary of Proposition 5.6.8 on page 64
the unique affine principal direction will be asymptotic. Let vy € RP? be the unique
affine principal direction which is also asymptotic, then by definition Svy = Av for
some A € R. Trivially we have vJ Jvo = 0, but in addition (Svq) " Jvy = A(vq Jvg) =
0.

Next assume that for some vy € RP! we have v§ Jvy = (Svo)".Jvy = 0. Notice
that v, Jvo = 0 if, and only if, v, is asymptotic. Let us therefore assume that v
is asymptotic. Define a linear map f, : 7,X — R given by f,(w) := w'.Jv,. Since
det(J) # 0 and vy # 0 it follows that ker(f,) = (vq). Hence (Svy) ' Jvo = 0 if, and
only if, Svy € ker(f,), i.e. if, and only if, Svy € (vp), i.e. if, and only if, v, is
an affine principal direction. The corollary of Proposition 5.6.8 shows that an affine

principal direction is asymptotic if, and only if, it is repeated. O

At repeated A-direction points, the asymptotic direction which is affine principal
will give a well defined affine sectional curvature. In the other asymptotic direction
tt, will have a simple pole.

It is of interest to discover what happens when the two repeated A-direction

curves meet, i.e. at an affine umbilic. In this case the quadratic forms v'.Jv and
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(Sv)TJv have the same roots. We see that p1, : RP' — R is well defined at an affine

umbilic - it is equal to the unique affine principal curvature.

Theorem 10.2.10 The affine sectional curvature function i, RP' — R is constant
if, and only if, p is an affine umbilic. Furthermore, the affine sectional curvature s

equal to the unique affine principal curvature at such points.

Proof Note that p,(v) = ) for all v if, and only if, (Sv)"Jv = Av'Jv for all v,
i.e. if, and only if, v (STJ)v = Av'.Jv for all v, i.e. if, and only if, STJ = \J for
all v, i.e. if, and only if, S = AE. 0

To follow the Euclidean analogue, we make the following

Definition 10.2.11 If 4,(v) = 0 at a surface point p then the direction v is called

an affine asymptotic direction of the surface at p.

We have seen from Proposition 10.2.9 that the forms v'.Jv and (Sv)'.Jv have
a common root at point p if, and only if, p is a point with repeated affine principal
directions. Thus, away from these points, the affine asymptotic directions are given

by solutions to (Sv)'.Jv = 0.



Chapter 11

Generic 1-Parameter Family

Transitions

Here we consider the generic one-parameter transitions of the family of affine height
functions. This is done by looking at the standard two-parameter family of affine
height functions but defined over a one-parameter family of surfaces. We look at
the As, A, and D, cases here. These are the only interesting simple singularities
which have miniversal deformations (see [1]) of dimension less than or equal to three.
A one-parameter family of surfaces gives a three-parameter family of affine height
functions, and so we expect A3, A4, and D, singularities to be versally unfolded by

the three-parameter family of affine height functions.

11.1 Basics of unfoldings

In what follows we only consider functions from a surface, and so we only consider
function in two variables. The reader is referred to [4] for unfoldings of functions

from the line to the line, and to [1] for the more general theory.

Definition 11.1.1 Let f : R?,0 — R, 0 be a function germ. A function germ F :
R? x R¥,0 — R s called a k-parameter potential unfolding of f if F((u,v),0) =
f(u,v) for all (u,v) close to 0.

139



140 CHAPTER 11. GENERIC 1-PARAMETER FAMILY TRANSITIONS

The term potential is used because the actual value of the function is not the impor-

tant thing, only its singularities are considered.

Definition 11.1.2 Let F : R?> x R*,0 — R be a k-parameter unfolding of the germ
f:R2,0— R 0. The big-bifurcation set of F, denoted by gF, I8

{(U,’U,l‘l,,,,’l‘k)eRQ XRk :Fu:Fv:Fuquv_quvZO} .

Definition 11.1.3 Let F : R?> x R*,0 — R be a k-parameter unfolding of the germ
f:R2,0—=RO0. Let 7 : R?2 x R¥ — R* be the canonical projection. The bifurcation
set of F, denoted by B, is given by the restriction of m to Bs.

Br={(21,...,2:) € R : I (u,v) €eR? s.t. Fy = F, = FyFy, — F2, =0} .

Example. The standard normal form of an A3 singularity is ¢(u,v) = u? + v*.
A basis for the local algebra is given by {v,v?}. A miniversal unfolding is then
d:R? x R?,0 — R given by

®((u,v), (z,9)) = v® £ v* + zv + yv? .
The big-bifurcation set Bs is a smooth curve in R? given by
(u,v,2,y) = (0,v, £8v%, F60?) .
The bifurcation set By is a cusp in R? given by
(z,y) = (£80°, F60?) .

Definition 11.1.4 Consider two unfoldings F,G : R?> x R¥,0 — R. If there erist

map germs
AR xR0 — R%0,
B:RF,0 — RF.0,
C:RF.0 - R

with B : RE,0 — R*,0 and A(u,0) : R%,0 — R2,0 diffeomorphism germs, and if
F(u,x) = G(A(u,x), B(x))+C(x) then F and G are said to be equivalent unfoldings.
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Proposition 11.1.5 If F : R? xR*,0 - R and G : R2 x R¥,0 — R are equivalent
unfoldings then By is locally diffeomorphic to Be.

Proof Let F have variables u; and u,, with unfolding parameters zq, ..., x;. Let
G have variables v; and vy with unfolding parameters vy, ..., y;. Since they are
equivalent unfoldings, there exist map germs as in Definition 11.1.4. As place holders,
let v; = A;(u,z) for 1 < <2 and y; = Bj(x) for 1 < j < k. We have

F(u,x) = G(A(u,x), B(x)) + C(x) .

To compute the big-bifurcation sets, we must differentiate this identity. If VF' de-
notes the column vector whose entries are the first order partial derivative of F' with
respect to u; and ue, VG denotes the column vector whose entries are the first order
partial derivative of G’ with respect to vy and vy, and J4 is the 2 X 2 Jacobian matrix

of first order partial derivatives of the A; with respect to the u; we find
VF =J, VG .

We know that A(u,0) : R*,0 — R?,0 is a diffeomorphism germ, so det(.J4) is non-
zero for all (u,x) close to 0. Thus VF is the zero vector if, and only if, VG is the
zero vector. Next consider the Hessian matrices.

Let Hpr denote the 2 x 2 Hessian matrix of second order partial derivatives of F'
with respect to u; and us. Let Hg denote the 2 x 2 Hessian matrix of second order
partial derivatives of G with respect to v; and v,. Assuming that VF and VG are
both the zero vector we find that

Hp=Js He JJ .

It follows that det(Hr) = 0 if, and only if, det(Hg) = 0.

It now follows that (u,z) € Bp if, and only if, (A(u, z), B(z)) € Bg. Thus the map
germ (A, B) : R2 x RF 0 — R? x R¥, 0 takes By onto Bg. It is also a diffeomorphism

germ by assumption since F' and G are equivalent unfoldings. U
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Proposition 11.1.6 If F :R2 xRF.0 = R and G : R2 x R¥,0 — R are equivalent
unfoldings then Br is locally diffeomorphic to Bg.

Proof This follows from the previous argument and the fact that B : R¥, 0 — RF, 0

is a diffeomorphism germ. O

Remark 11.1.7 In the example given on page 140 we had a smooth curve for the
big-bifurcation set. Proposition 11.1.5 shows that any other two-parameter unfolding
equivalent to that one must have a smooth curve for the big-bifurcation set close to

the origin.

11.2 The geometry

We shall consider the family of affine height function. Let U C R? be an open simply
connected domain, and X : U — R?® an immersion. The family of affine height

functions is given by H : U x S? — R such that

[X7 XUa Xv]
H =T
)T X, X, AT
where x is chosen so that ||x|| = 1. In Chapter 7 we saw that away from (Euclidean)

parabolic points H, = H, = 0 if, and only if, x is in the direction of the affine normal
line. Furthermore, if we also impose the condition that H,,H,, — H2, = 0 then the
base point must be an affine parabolic point. Thus, the big-bifurcation set gH is the

set of affine normals at affine parabolic points.
Proposition 11.2.1 Consider the map germ F : U x S?,0 — R®,0 given by
F(U, v, T, y) = (Hu7 HU7 Huquv - ngu) .

The germ F has 0 as a reqular point and 0 as a reqular value if, and only if, the

affine parabolic curve is smooth close to X(0,0).
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Proof 'The proof is by direct computation using the Maple computer algebra pack-
age. Consider a surface in Pick normal form (see page 62). There are two families
of surfaces having an affine parabolic point at the origin: in the elliptic case they
depend on whether 02 — 2a; — 12a4 is zero or non-zero, and in the hyperbolic case on
whether 02 + 2ay — 12ay4 is zero or non-zero (cf. the expressions for the affine shape
operator in Equations (5.4) and (5.5) on page 64). From now on we assume that the

origin is an affine parabolic point.

The Jacobian matrix for F' is a 3 x 4 matrix, and to have rank less than three
we need all four 3 x 3 minors to be singular. This gives four conditions on the Pick
normal form coefficients. Let p : U,0 — R, 0 be the defining equation for the affine
parabolic curve, i.e. p := ad — bc. If we compute p, and p, we find that imposing the

condition that all four 3 x 3 minors of Jp are singular gives p,(0,0) = p,(0,0) = 0.
We can solve the equations p,(0,0) = p,(0,0) = 0 in terms of the Pick normal

form coefficients. When we do so we find there are four families of such solutions
(depending on whether certain expressions are zero or non-zero in either case). Im-
posing these families of solutions on Jr yields, in each case, a 3 X 4 matrix with rank

less than three.

O

Remark 11.2.2 Considering a k-parameter family of surfaces X : U x R¥ — R3,
gives a (k + 2)-parameter family of affine height functions H : U x S? x R* — R.
Proposition 11.2.1 shows that the affine parabolic curve of X(u,v,0) is smooth if,
and only if, the big-bifurcation set of H(u,v,,y,0) is smooth.

Corollary 11.2.3 Remark 11.1.7 and Proposition 11.2.1 show that any two-parameter
family of affine height functions giving an unfolding of an Asz that is equivalent to
the one in the example on page 140 must have a smooth affine parabolic curve close

to the origin.
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11.3 Technical notions

Here we recall the idea of a stratification, and define what it means for a function

on a stratified set to be generic. The following may be found in [16].

Definition 11.3.1 (C* stratification) Let Z be a closed subset of a differentiable
manifold M of class C*. A C* stratification of Z is a filtration by closed subsets

L=04D 24122212 Z

such that each difference Z; — Z;i_y is a differentiable submanifold of M of class C*
and dimension i, or is empty. FEach connected component of Z; — Z; 1 is called a

stratum of dimension i. Thus Z is a disjoint union of the strata, denoted {Xa}aca-

Definition 11.3.2 (Frontier condition) A stratification Z = J . 4 Xa is said to
satisfy the frontier condition if: for all (o, 8) € A x A such that X, N Xz is non-
empty, one has X, C X—ﬁ As the strata are disjoint this means that X, = Xz or
Xo C Xp— X

Definition 11.3.3 (Locally finite stratification) One says that a stratification

18 locally finite if the number of strata is locally finite.

Definition 11.3.4 (Whitney’s condition (a)) Take two adjacent strata X and
Y, i.e. two C' manifolds of M such that Y C X — X. The pair (X,Y) is said to
satisfy Whitney’s condition (a) aty € Y, or to be (a)-reqular at y if: for all sequences
{z;} € X with limit y such that, in a local chart at y, {T,, X} tends to v, T,Y C 7.

Definition 11.3.5 (Whitney’s condition (b)) Take two adjacent strata X andY,
i.e. two C' manifolds of M such that Y C X — X. The pair (X,Y) is said to
satisfy Whitney’s condition (b) aty € Y, or to be (b)-regular at y if: given sequences
{z;} € X and {y;} € Y with limit y such that, in a local chart at y, {T,, X} tends to
T and the lines T;y; tend to A, then \ € T.

Definition 11.3.6 (Whitney stratification) When Z = |, Xo is a locally fi-
nite stratification such that all pairs of adjacent strata satisfy the frontier condition

and are (b)-regular at all points, we say we have a Whitney stratification of Z.
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Theorem 11.3.7 (Whitney 1965) FEvery analytic variety (in R" or C") admits a

Whitney stratification whose strata are analytic (hence C*°) manifolds.

Hironaka proved that the same is true of every subanalytic set (in particular every

semialgebraic set). See [16] for references.

Next we introduce the idea of a generic function on a semialgebraic set, the reader
is referred to [3].

Let Z be a semialgebraic Whitney stratification of some open neighbourhood U
of the origin 0 € R”, with 0 being a stratum. If A~ : R*,;0 — R, 0 is the germ of a
submersion at 0 we wish to consider the way in which the level sets of h meet our

stratification. We have the following

Definition 11.3.8 (Generalised transverse) The function h is generalised trans-
verse to Z if given two adjacent strata X and Y and any sequence {x;} € X with
limity € Y such that, in a local chart at y, {T,, X} tends to T then dh : 7 — R has

mazximal rank at y. (So the smooth hypersurface h='(h(y)) meets T transversally.)

Definition 11.3.9 (Generic function) A function h is said to be generic on Z,

close to 0, if it is generalised transverse to Z, close to 0.

Clearly if h is generalised transverse to Z at 0 then h is generalised transverse to Z

in some neighbourhood of 0.

11.4 The non-versal A; case

Consider a function germ f : R?,0 — R 0 with an A singularity. This function
germ is A-equivalent to one of the normal forms g. (u,v) = u? + v*. The set {v, v?}
can be chosen as a basis for the local algebra of this normal form. Thus miniversal

unfoldings of the normal forms are given by G4 : R? x R?,0 — R, 0 where
Gi=u?+ v+ av+yo? .

We need at least a two-parameter unfolding of an A3 singularity if there is any hope

of it being versal.
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In this section, we consider a one-parameter family of surfaces X : U x I — R?,
with family parameter ¢ € I. This gives a three-parameter family of affine height
functions H : U x S? x I — R. We assume that for x in the direction of A(0,0) and
t = 0, the function H : R> — R has an A7 singularity at the origin. Finally, we

assume that the affine parabolic curve is singular at the origin for ¢t = 0.

Proposition 11.4.1 For t = 0, the family of affine height functions H|i—g : U %

S? — R cannot be a versal unfolding of an As.

Proof 'The big-bifurcation sets of the unfoldings G are smooth. By Proposi-
tion 11.2.1 the affine parabolic curve of a surface whose family of affine height func-
tions versally unfolded an A7 would have to be smooth. This implies that the

restricted family H|,—q cannot be versal. d

Let us now assume that the whole family H : U x S? x I — R does versally unfold
an AF. In what follows we have a situation where projection of the bifurcation set
onto the t-parameter does not give a generic function: the ¢-constant sections will
not be generic sections. The first level of degeneracy is when the projection yields a
Morse function (see [4]). The following results allow us to know when this projection
does indeed yield a Morse function. The conditions for a function to be Morse on
By can be found in [3], on page 144.

It is important to note that, in the three-parameter versal A;f case, the big-

bifurcation set is smooth and the bifurcation set is diffeomorphic to a cuspidal edge;
i.e. diffeomorphic to (X,Y) — (X% X3 7).

Proposition 11.4.2 Let f : S2x I — R be a smooth function and 7w : U x S2x I —
S? x I be the canonical projection. If the restricted composite f o 7T|5H :B > R is
Morse, then f :S? x I — R is Morse on By.

Proof We find the conditions for the restricted composite f o 7T|5H to be Morse,
and show that this implies that the function f is Morse.
Consider a function f : S? x I — R given by

f(z,y,t) == o + any + aot + Box? + By + Boxt + Bay® + Payt + Bst® + -+ .
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The big-bifurcation set is given by a manifold germ which is A-equivalent to (X,Y") —
(X2, X3Y). Thus

(fO7T|gH)(X,Y) = 042Y+040X2—|—55Y2 e,

This is a Morse function if, and only if, as = 0 and a5 # 0.

Let us assume that ap = 0 and a¢fs # 0. There is a single one-dimensional
stratum for the cuspidal edge, i.e. the t-axis, and two two-dimensional strata. For
the function f : S? x I — R to be Morse on By we need the restriction of f to each
of the strata to have isolated non-degenerate singularities. Clearly, our assumptions
show that f is Morse on the two two-dimensional strata. We should consider the

one-dimensional stratum. We have
£(0,0,t) = agt + Bst* 4 -+ .

This is singular for ¢t = 0 if, and only if, ap, = 0. This is a non-degenerate singularity

if, and only if, 85 # 0. These conditions are satisfied by assumption. 0]

We are interested in when the projection to the t-parameter yields a Morse func-
tion. We have seen that it is enough to check that f o 7r|gH : By — I is Morse. This
may not be directly possible. To simplify the problem, consider the following

Proposition 11.4.3 Consider the canonical projection ™ : U x S? x I — S? x 1.
The restricted composite f o 7r|gH : gH — I 1s suspension contact equivalent to the

mapping Fy : U x S? x {0} — R3 given by
Fo(u, X) = (Hua Hva Huquv - HSU)|t:0 .
In order to prove this, we need the following

Lemma 11.4.4 (J. W. Bruce [2]) Let (Y,0) be the germ of a smooth manifold
and (M;,0) be germs of submanifolds, i = 1,2, with TyM, C To My or To My C Ty M;.
If fi: (Y,0) — (P;,0) are germs of submersions with (f7'(0),0) = (M;,0) then f; :
(M3,0) — (P1,0) and fo: (Mq,0) — (P2, 0) are suspension contact equivalent. That
is after adding a trivial factor (R",0) — (R™,0) to fi or fo ( say fo(z) = (fo(z),u))

f1 and f2 become contact equivalent.
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Proof [Of Proposition 11.4.3] In the language of Lemma 11.4.4, let Y = U x S? x I,
P =1 P =R fi(uxt) =t and fo(u,x,t) = (H,, H,, H, H,, — H2,), so that
My, =U x §? x {0}, and M, = By.

We need to show that ToMy C TyM,. Let the 3 x 5 Jacobian matrix of f; have
columns {¢i,...,¢5}, these must have rank three since By is smooth. The four
columns {¢y,...,¢c4} are the columns of the 3 x 4 Jacobian matrix of Fi. These four
columns must have rank less than three since gH|t:0 is singular. It follows that c;

must be linearly independent of {cy, ..., ¢;}; any solution to the vector equation
acy + /ECQ + YC3 + 564 + ecy = 0

must have ¢ = 0. It follows that any tangent vector to By must have its final
component zero, i.e. must be contained in U x S? x {0}. It follows that Ty My C ToM;.

Lemma 11.4.4 tells us that f, : My — P; and f, : M; — P, are suspension
contact equivalent. This means that the restricted projection f o 7| By By — 1 is

suspension contact equivalent to the mapping Fy : U x 5% x {0} — R3. O

Recall that 50 points of a map are corank one critical points such that the restric-

tion of the map to the critical set is a submersion.

Proposition 11.4.5 The map Fy: U x S? x {0} — R? has only Z*° points if, and

only if, f o 7r|gH : gH — I has only Morse singularities.

Proof Consider two map germs ® : R? x R?>,0 — R*,0 and ¢ : R?,0 — R,0.

Assume that ® and ¢ are suspension contact equivalent. It follows by definition that
K
¢(u7 v) :E, y) ~ (qs(u? v)) :E, y) *
we find that Xg = Xj x R?. Next, consider ®|s: and Pls;- We have

Ol : TEx R0 R0,
olsy + T50—=RO.

It follows that ¢|E; is regular if, and only if, <I>|Z(1I) is regular. UJ
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Propositions 11.4.2, 11.4.3, and 11.4.5 show that if Fy : U x S? x {0} — R?, where
Fg(ll, X) = (Hm Hva Huquv - Hiv)|t:0

has only X% points then the function f : S? x I — R given by (z,y,t) — t will be

Morse.

Proposition 11.4.6 The map Fy: U x S? x {0} — R has S50 points if, and only

if, the affine parabolic curve undergoes a Morse transition.

Proof The proof is by direct computation. Here we sketch the steps of the proof
while omitting the actual expressions. Recall from the proof of Proposition 11.2.1

on page 142 that if D := H,, H,, — H?

uv?

then the Jacobian of Fj is given by

H, H, H, H uy
JFO = Huv va va Hvy
D. D, D, D,

Let p: U x I — R be the defining equations of the affine parabolic curves. Assume
that p(0,0,0) = 0 so that the origin is an affine parabolic point for ¢ = 0. Since
we are considering the non-versal A3 we have p,(0,0,0) = p,(0,0,0) = 0, i.e. the
affine parabolic curve is singular at the origin for ¢ = 0. The condition for a Morse
singularity at the origin for ¢ = 0 is (pyuPws — P2,)(0,0,0) # 0. The condition for a
Morse transition is then p;(0,0,0) # 0.

In the proof of Proposition 11.2.1 we also saw that the last two columns of .Jg,
always have rank two away from Euclidean parabolic points. Let Jp, have columns
{c1,..., ¢4}, then the singular points of Fy are given by [c1, ¢3, ¢4] = [¢o, €3, ¢4] = 0.

Let us define a map G : U x S? — R? where

G(u,v,x,y) = ([01503504]: [02503764]) .

The singular points of Fy are then given by G'(0). We can compute the 2 x 4
Jacobian matrix Jg, and we find that generically all of the 2 x 2 minors have non-

zero determinant. In fact, the Jacobian matrix fails to have maximal rank if, and
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only if, the affine parabolic curve has a degenerate singularity at the origin for £ = 0.
This means that generically we can use any two of {u,v,x,y} to parametrise G~'(0).

Let us assume that the last two columns of J; are linearly independent so that
we may write z and y as functions of u and v, i.e. write x = z(u,v) and y = y(u, v)
such that G(u,v,z(u,v),y(u,v)) = 0. We need only know the jets of z(u,v) and
y(u,v) up to some order. This is done by making a power series substitution and
then comparing all coefficients to zero.

Next we consider Fy(u,v,z(u,v),y(u,v)) : U — R® and the 2 x 3 Jacobian
matrix. we find that the Jacobian matrix has maximal rank if, and only if, the affine
parabolic curve has a Morse singularity at the origin when ¢ = 0. Moreover, we have
a Morse transition if, and only if, the family of three parameter family of affine height
functions is a versal unfolding; which it is by assumption in the A3 non-versal case.

In the case where the last two columns of .J are not linearly independent we can
similarly find two columns which are, and write those variables as functions of the
others. O

Corollary 11.4.7 If the affine parabolic curve undergoes a Morse transition then

the affine Gaufl map will undergo a lips or beaks transition.

Example. Consider a one-parameter family of surfaces, X : U x I — R?® say, in

Pick normal form, all with elliptic points at the origin,

a(t) -

X(u,v,t) = (u, v, %(u2 +v%) + T(UB — 3uv?) + Zz:: a;(t)u' "'+ - ) .
It is possible to compute the conditions on the Pick coefficients for
H(u,v,0,0,0) = u? 4+ v* + O(5). Let us assume this to be the case.

For a non-versal Aj, we require that H(u,v,x,y,0) is not a versal unfolding of
the AT. This is so if, and only if, ¢(0) = 0. In this case, the affine parabolic curve at
the origin, for ¢ = 0, is singular if, and only if, o(0) = 0. This was of course predicted
in Proposition 11.2.1 on page 142. Let us assume that ¢(0) = 0.

We want, H(u,v, r,y,t) to be a versal unfolding of the A3 . This is so if, and only
if, a2(0) + 6a4(0) # 0. We assume this to be non-zero.
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Let the family of affine parabolic curves have equations p(u,v,t) = 0. Given our
assumptions, the affine parabolic curve, for ¢ = 0, has a Morse singularity at the
origin if, and only if, (puupws —p2,)(0,0,0) # 0, i.e. if, and only if, as(0)+3a2(0) # 0.
In addition, the family undergoes a Morse transition if, and only if, p,(0,0,0) # 0,
i.e. if, and only if, a2(0) +6a4(0) # 0. This is also the versality condition. The Morse
transition is automatic.

The sign of (pyupws — P2,)(0,0,0) distinguishes between an elliptic Morse transi-
tion, i.e. something of the form {(u,v) : u® + v* 4+ h(t) = 0} where /(0) # 0, and a
hyperbolic Morse transition, i.e. something of the form {(u,v) : u*> — v? + h(t) = 0}
where h(0) # 0. Now we give two examples of one-parameter families. A family with
an elliptic Morse transition is given by

X(u,v) = (u, v, 1(uQ + %) + 11)4 + (t — 2)u*v* + 1u6 + 4uv* + 31)6> .
2 3 3 15
As t passes through zero, the affine parabolic curve (A.P.C.) undergoes an elliptic
Morse transition, the affine Gaufl map (A.G.M.) undergoes a “lips” transition. These

can be seen in Figure 11.1 on page 151.

Figure 11.1: Elliptic Morse. Above: A.P.C. Below: A.G.M.

A family with a hyperbolic Morse transition is given by

1 1 1 11
X(u,v) = (u, v, g(u2 +v?) — §u4 + (1 + t)uv® — 61)4 + Bufj) .
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As t passes through zero, the affine parabolic curve (A.P.C.) undergoes a hyperbolic
Morse transition, the affine Gaufl map (A.G.M.) undergoes a “beaks” transition.

These can be seen in Figure 11.2 on page 152.

><
<

Figure 11.2: Hyperbolic Morse. Above: A.P.C. Below: A.G.M.

XS

11.5 The versal A, case.

Consider a function germ f : R2,0 — R,0 with an A, singularity. This function
germ is A-equivalent to the normal form g(u,v) = u? + v°. The set {v,v? v3} can
be chosen as a basis for the local algebra of this normal form. Thus a miniversal

unfolding of the normal form is given by G : R? x R*,0 — R, 0 where
G =u>+v° +av+yv? + 20° .

We need at least a three-parameter unfolding of an A, singularity if there is any hope
of it being versal. For this reason, we consider a one-parameter family of surfaces.
Let X : U x I — R?® be a smooth one-parameter family of surface parametri-
sations, with family parameter ¢ € I. This gives rise to a three-parameter family
of affine height functions H : U x S* x I — R, where H(u,x,t,) is the normal

two-parameter family of height functions coming from the surface X(u, t).



11.5. THE VERSAL A, CASE. 153

Let us assume that for ¢ = 0, the family of affine height functions has an A,
singularity at u = (0,0) in the direction A(0,0). Furthermore, let us also assume
that the family H : U x S? x I — R versally unfolds this singularity.

Since the family is versal, it must be equivalent, as a potential unfolding, to the
unfolding of the normal form normal form, i.e. to G : R? x R®,0 — R, 0 given above.
The big-bifurcation set By must be diffeomorphic to Be close to the origin. The
bifurcation set By must be diffeomorphic to B¢ close to the origin.

First, we prove some facts about the unfolding of the normal form.
Proposition 11.5.1 The big-bifurcation set gg of the following unfolding is smooth
G(u,x) = v +v° + 2v + yv’ + 207 .

Proof Solving G, = G, = GGy — G%, = 0 gives
(u,v, 2,9, 2) = (0,v, 150" + 320, =100 — 320, 2) .

This is clearly always smooth. 0]

Proposition 11.5.2 Let 7 : R? x R* — R® be the canonical projection (u,x) — X,
and let g : R® — R. The function g is generic on Bg if, and only if, the restricted

composite g o 7r|gG : Bg — R is a submersion.

Proof The bifurcation set Bg is parametrised by (150 + 3202, —10v® — 3zv, 2). The
singular locus of this set is parametrised by (—15v%, 2003, —10v?). The self intersec-
tion locus is given by (5v*, 0, —10v?/3). At the swallow tail point, i.e. at (0,0,0), there
is a unique limiting tangent direction to these strata. That direction is (0 : 0 : 1).
Therefore, a function ¢g : R*> — R given by ¢(z,y,2) = ax + by + ¢z + - -+ is generic
on Bg if, and only if, ¢ # 0.

Recall the parametrisation of gg, we had
(u,v,7,y,2) = (0,v, 150" + 320, =100 — 320, 2) .
It follows that the restricted composite g o 7T|EG : gg — R is given by

(v, 2) = a(150* + 320%) — b(100* + 320) +cz + - .
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This latter function is a submersion if, and only if, ¢ # 0. U

Proposition 11.5.3 Consider the family of affine height functions with a three-
parameter versal unfolding of an Ay. Let o : U x S? x I — S% x I be the canonical
projection, and g : S* x I — R some function. Then g is generic on By (H as above)

if, and only if, g o 7r2|gH 18 a submersion.

In order to prove this proposition let us consider the normal form for an A4, and
the miniversal unfolding G = u? + v® + zv + yv? + 203, Let m; : R2 x R? — R? be
the canonical projection. Let f : R® — R be some function. Since G and H are

equivalent unfoldings we may construct the following diagram:

R xR s R LR

)| o [

UxS2x] 24 8257 2R

for suitable A and B, see Definition 11.1.4 on page 140. We have the following

Lemma 11.5.4 Consider the normal form for an A4, and the miniversal unfolding
G = u? +v° + av + yv? + 203, Let m, and f be as above and H, 5, and g be as in
Proposition 11.5.3. Then

1. f is generic on Bg if, and only if, g is generic on By.
2. fo 7T1|5c s a submersion if, and only if, f is generic on Bg.
3. fo 7r1|gG s a submersion if, and only if, g o 7r2|gH 1S a submersion.

Proof [Of Lemma] To prove 1, let us consider the following diagram of differentials:

TR % 7R

s |

To(S? x I) —225 TyR
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The function f : R* — R is generic on Bg if, and only if, the zero level of {f = 0}
is transverse to the unique limiting tangent direction of the singular strata of Bg.
Let v € TyR? be a non-zero vector in this unique direction. The map f is generic if,
and only if, v ¢ ker(dyf). Clearly the function g : S? x I — R is generic on By if,
and only if, dgB(v) ¢ ker(dog). Next, we find that dof(v) = (dog o doB)(v). Thus
v ¢ ker(do f) if, and only if, v ¢ ker(dyg o dyB). Moreover, v ¢ ker(dyg o dyB) if, and
only if, dyB(v) ¢ ker(dyg).

It follows that f is generic on B¢ if, and only if, g is generic on By.

Statement 2 is proved in Proposition 11.5.2 on page 153.

To prove 3, let us consider the following diagram:

RExR -, R —L,R

™ o |

UxS?2x] 23 82x] —2 4R

From this diagram, we find that fom = gomy o (A, B). Since (A, B) is a diffeomor-
phism germ at (0, 0), it follows that f o is a submersion if, and only if, g o 7y is a

submersion. O

Proposition 11.5.5 Consider the map F : U x S? x I — R® given by
F(u7 X7 t) - (Hu7 H’U’ HUUH'U'U - H’z’u)

and the canonical projection g : S? x I — I given by (x,vy,t) — t. The restricted
map Fy : U x S% x {0} — R given by (u,v,z,y) — (Hy, Hy, HyHyy — H2,)|i=o
s a submersion if, and only if, the restricted composite g o 7T|1§H : gH — I is a

submersion.

Proof The map Fj is a submersion if, and only if, the Jacobian matrix of the map
has maximal rank, i.e. rank three.
Since By is smooth, tangent vectors of By are kernel vectors of the Jacobian

matrix of F. For 1 < i < 5, let ¢; denote the 7" column of the Jacobian matrix of F.
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Let (v, 3,7, 0,¢) be a kernel vector of the Jacobian matrix of F. Then
acy + ey + yes +0cy +ec5 =0 . (11.1)

The restricted composite g o 7T|EH : gH — R is a submersion if, and only if, Equa-
tion (11.1) has a solution with ¢ # 0.

Assume that ¢ o 7T|5H is a submersion, then there exists a solution of Equa-
tion (11.1) which has € # 0. Thus ¢5 can be written as a linear combination of the
other ¢;. Since EH is smooth {cy,...,c5} have rank three, but ¢5 can be written as
a linear combination of the other ¢;, so {¢1, ..., ¢4} must also have rank three. This
implies that Fj must be a submersion.

Next assume that Fj is a submersion. This implies that {c;,...,¢;} have rank
three. Every vector in R® can be written as a linear combination of them. There-
fore, c5 is a linear combination of them. Therefore, there must exist a solution to

Equation (11.1) with € # 0. This implies that g o 7|5z must be a submersion. [

Proposition 11.5.6 If H is a versal unfolding of the A, singularity, giving a locally
smooth affine parabolic curve for t = 0, then the projection along the t-parameter is

a generic section of the bifurcation set of H.

Proof In Proposition 11.5.1 on page 153 we saw that the big-bifurcation set of
the standard miniversal unfolding was smooth, and so by Proposition 11.1.5 on
page 141, any three-parameter versal unfolding of an A, will also have a smooth
big-bifurcation set. In proposition 11.5.2 on page 153 we saw that the function
g : U x I — R is generic on the bifurcation set of H if, and only if, the restricted
composite g o 7T|5H : EH — R is a submersion. In Proposition 11.5.5 on page 155
we saw that this was true if, and only if, the map F : U x §? x I — R?® given by
F(u,x,t) = (H,, H,, H,,H,, — H2,), restricted to the ¢ = 0 section is a submersion.
In Proposition 11.2.1 on page 142 we saw that this was true if, and only if, the affine

parabolic curve for t = 0 was smooth. 0
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Example. Consider the one-parameter family of surfaces X : U x I — R? given by
Lo, 9 4 3., 4 32,9 94
X((u,v),t) = 5(“ +0%) + Ut + tuv’ +uv + uty +§u vt

One can check that H(u,v,0,0,0) is A-equivalent to u? + v and that H(u,x,t) is a
versal unfolding of the given singularity.

Example.

The Swallow tail transition can be seen in Figure 11.3. This occurs in the image

of the affine Gaufi map. The affine parabolic curve remains smooth throughout.

Figure 11.3: The Swallow Tail Transition.

11.6 The D transitions

Consider a function germ f : R?,0 — R,0 with a D singularity. This function
germ is A-equivalent to the normal form g (u,v) = u?® + uv?. The set {u,v,u?} can
be chosen as a basis for the local algebra of these normal forms. Thus miniversal

unfoldings of the normal forms are given by G4 : R? x R*,0 — R, 0 where
Gy =u® £ uv? +au+bv+ cu? .

We need at least a three-parameter unfolding of a D singularity if there is any hope

of it being versal. For this reason, we consider a one-parameter family of surfaces.
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11.6.1 The D] case

Here we consider the singularity with u? 4+ uv? as its most familiar normal form. The
set of (u,v) such that u® +wuv? = 0 comprises three lines through the origin, one real
and two complex. For simplicity of calculation, we shall consider the slightly different
normal form of u?+v?. The set {u, v, uv} can be chosen as a basis for the local algebra.

Thus miniversal unfolding of the normal form is given by G : R? xR*, 0 — R, 0 where
G=u®+v+au+ pv+Tuv .

We shall adopt the method used by Bruce, Giblin, and Tari in [5]. When we
consider sections of the bifurcation set in order to find the evolution of the affine Gauf
map, we have the problem of a smooth modulus. There is no discrete classification
of the image of the Gaufl map. The equivalence of natural stratified equivalence,
instead of local diffeomorphism, gives two distinct types of generic function on the
bifurcation set of the D .

We have the geometric unfolding H : U x S? x I — R, and the miniversal
unfolding G : R? x R* — R. If H is a versal unfolding (and hence miniversal) of the
Dj, then G and H must be equivalent as unfoldings. There must exists map germs
as in Definition 11.1.4 on page 140.

We wish to find a certain order jet of B : R*,0 — S? x I,0. If we know the
condition for a function to be generic on the standard bifurcation set, and we know
the diffeomorphism between the standard and the geometric bifurcation sets, then
we know the condition for a function to be generic on the geometric bifurcation set.

Consider two versal unfoldings of a D}, namely F : R?> x R*,0 — R and the
standard one G : R? x R*,0 — R, 0. Let F have variables x and y, with unfolding
parameters a, b, and t. Let G have variables u and v, with unfolding parameters «,
£, and 7. We know that

G(u,v, e, 8, 7) = F(A(u,v, e, 8, 7), Blew, B, 7)) + C(v, 5, 7) (11.2)

where x = Aj(u,a),y = Ay(u,a),a = By(a),b = By(a), and t = Bs(a).
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Applying the chain rule to Equation (11.2), we find that
0G _ 0F0A, 0F0A, OFOB, 0FOB, 0F0B, OC
oa Or O Oy O da Oa  Ob o dc da  Oa
0G _ OF9A, 0F0A, OFOB, OFOB, 0F0B, 0C
op oxr 0B Oy 98  0Oa 0B  9b 9B  Oc 9  Of
oG OF 0A, OFdA, O0OFO0B, O0FO0By, OFO0B; 0C
o= T T 2 T T T T T T

or oxr Ot oy Ot Oa Ot ob or oc Ot or
We know that 0G /0o = u, 0G/0f = v, and G /It = wv. Thus, we compute the u,

v, and uv coefficients on the right hand side. To do this, we first compute a certain

order jet of the diffeomorphism which takes F'(x,y,0,0,0) onto u® + v3. The jet is
sufficient since we will compare coefficients, and so a sufficiently high order jet will
yield the same result as the whole diffeomorphism.

The method here is to impose the conditions that the cubic part of F(z,y,0,0,0)
has factors p;x + q;y for 1 < 7 < 3, where p; € R for all 1 <1 < 3, ¢» € C with
G2 # G2, and g3 = @3. This gives a zero level set of three lines through the origin,
one real and two complex, but with F' still real. This means that F' will have D} . If
F is the geometric unfolding coming from the family of affine height functions, this
further imposes conditions on the Pick normal form coefficients.

There is, of course, an affine transformation taking three distinct lines onto any
three distinct lines. Thus, a linear transformation in the source and a scaling in the
target are all that are needed to take the cubic part 23:1 iz + gy onto ud + v3.
Applying this to the geometric unfolding, we find that there are no u, v, or uv
coefficients in the partial derivatives of A, A,, or C.

In the geometric case, we need to compute the coefficients in

0G _ OF OB,  OF OB,  OF 0B

o da da  Ob Oa  Oc Oa

0G _ OFOB, 0FOB, OF OB

ap da 0f ob 0p dc 9B

0G _ OFOB  OFOB,  OF0D,

or da Ot ob Ot dc 0T
The left hand side is known to us, the right hand side can be calculated. Let
X(0F/0a) be the column vector whose first entry is the u coefficient of 0F/0a,
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whose second entry is the v coefficient of OF/0a, and whose third entry is the uv
coefficient of 0F/0a. Then

1
_ (OFN OB | (OF\ 0B,  (OF\ 0By
= X\ 8a ) 8a TN\ ) 8a T\ 8¢ ) Ba
0
_ (OFN OB | (OF\ 0By  (OF\ 0By
~ X\ aa) a5 T\ ) a5 "X\ ac ) a5
0
0
o | = (2F\9B  (9F\O9B,  (OF) OB
— Noa) ar T\ ) ar "X\ o) or
1

For brevity, let us write F, for 0F/0a, etc, I for the 3 x 3 identity matrix, and Jp

for the 3 x 3 Jacobian matrix of B : R*,0 — R3, 0. We now have the matrix equation

Iy = (X(Fo) | x(Fy) | x(F2)) Jp -

We can compute (x(F,) | x(Fp) | x(F.)) without difficulty. Knowing that it is the

inverse matrix of Jg allows us to compute Jg. Of course B : R*,0 — R3,0 is the

diffeomorphism which takes the bifurcation set of G onto the bifurcation set of F.
Consider a one-parameter family of surfaces X : U x I — R? given in Pick normal

form at elliptic points, we have

X((u,v),t) = (U, v, 1(u2 +v%) + ?(ff — 3uv?) + Z a;(t)u' "' + - ) )

2 -
=0

The conditions for there to be no quadratic part of the height function at the origin

in the direction of the affine normal when ¢t = 0 are
Cll((]) +Cl3(0) =0 ,

o(0)? — 12a¢(0) — 2a5(0) = 0,
0(0)? — 2a3(0) — 12a4(0) = 0.
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After following the method outlined above, assuming that the height function for
t = 0, at the origin, in the direction of the affine normal has a D] singularity, we
find that the determinant of (x(F,) | x(F3) | x(Fe)) is zero if, and only if, the family
is non-versal. This is clear, a bifurcation set of an unfolding of a D} is diffeomorphic
to the bifurcation set of a versally unfolded D} if, and only if, it is versal itself.
Notice that the versal condition is dependent on o(t), the a,(t), the b;(¢), and their
first order derivatives, all for ¢t = 0.
Example. Consider a one-parameter family of surfaces in Pick normal forms, all
with an elliptic point at the origin. We can compute the conditions on the Pick
coefficients so that H(u,v,0,0,0) = u® + v3 + O(4). In such a case, H is a versal
unfolding if, and only if, a;(0) + a3(0) # 0. Adopting the method above, we compute
the Jacobian matrix of B. This third component of B then has 1-jet

4 3
?U((m3 +5bs + 1)a + %(8 + 9005+ 2005)8 — 5 (i + )7

t=0

The kernel vector of Bs is

4 3. )
(g(aag + 5bs + 1), %(8 +90ay + 20bs), —5 (@ + a3)>

=0
Regarding this as a point in the real projective plane, with coordinates (A : Ag : A3),
as in [5], we divide the plane into four regions by the three lines A; = 0. The regions
containing the points (1 : —1 : —1), (1 : 1 : 1) give one generic function, and the
regions containing the points (1 : 1 : —1), (1 : —1 : 1) give the other. Assuming
versality, i.e. a;(0) + a3(0) # 0, we have the point

<802a3 + 400b5 + 80 180%as + 400bs + 160 1)
9(ay + as) ' 9(a + as) '

It follows that (cas + 5b5 + 1)(90as + 2005 + 8) > 0 corresponds to the first of these
cases, and (oas + bbs + 1)(90as + 20b5 + 8) < 0 the other. The family of surfaces

1
X(u,v,t) = (u, v, i(u2 +0?) + tuv® + utv — 2uP0? — 2uv® + uv4>

has (0as+5b5+1)(90a3+20b;+8) > 0. We can see the transitions of the A-parabolic

set, and its image under the affine Gaufl map in figure 11.4. The family of surfaces
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TL TL

Figure 11.4: D, case 1. Above: A.P.C. Below: A.G.M.

1 1 3
X(u,v,t) = <u, v, §(u2 +v?) + tun® — §u4v —2utv? + u0® + unt — EUE’)

has (0a3+5bs+1)(90asz+20bs;+8) < 0. We can see the transitions of the A-parabolic

set, and its image under the affine Gaufl map in figure 11.5.

11.6.2 The D, case

Consider the D} case, this singularity has normal for v*> — uv?. A miniversal defor-

mation is given by
G(u,v,a, B,7) = u® — wv® + au + v + Tu’ .

Proposition 11.6.1 Consider a generic one-parameter family of surfaces. Let the
three-parameter family of affine height functions be a versal unfolding of a D, . Then

the t-constant sections of the bifurcation set are generic sections.

Proof First, consider G above and some other miniversal unfolding of a D, say
F. Since F' and G are both miniversal unfoldings we can find map germs
AR xR, 0K 0,D:R,, 05K, 0 andC:R,, 0— R, where

z,Y) a,B,7?
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TL TL

Figure 11.5: D, case 2. Above: A.P.C. Below: A.G.M.

D is a diffeomorphism germ, A(u,v,0,0,0) : R2,,0 = R ,0 is a diffcomorphism

.Y

germ, C' is smooth, such that the following identity holds:
G(u,v,D(a,b,t)) = F(A(u,v,a, 8,7),a,b,t) + C(D(a,b,t)) .
Introducing new map germs A, D, and C, this can be rewritten as
G(u,v,D(a,b,t)) = F(A(u,v,a,b,t),a,b,t) + C(a,b,t) . (11.3)

Consider the function f : R}, , — R given by f(a,b,t) = t. We require that this
function is generic on Br. Consider the image of the ¢ = 0 plane under the diffeo-
morphism D, we get (D;(a,b,0), Dy(a,b,0), Ds3(a,b,0)) C ]Ri”gﬁ. This surface has a
tangent plane spanned by

D, = <8D1 oD, 8D3> and Dy = <8D1 oD, 8D3>‘

da = Oa’ Oa ob " Ob’ Ob

The bad direction, i.e. the limiting direction of the singular strata to Bg,is (0: 0 : 1).
Since D is a diffeomorphism, and the plane ¢ = 0 is smooth, it follows that D, # 0
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and Dy # 0. Thus [ is generic if, and only if, (0,0,1) ¢ span(D,, Dy), i.e.

8D1/8a 8D2/8a 8D3/8a
dD,/8b OD,/0b ODs/db | #0 .
0 0 1

Now we calculate the 0D;/0a and 0D;/0b, for 1 < i < j < 2. To do this, we

simply apply the chain rule to Equation (11.3). Let X : ]R?C’y x I, — R® be a one-

parameter family of surfaces, and F': R2 | xSz, x I, = R the three-parameter family
of affine height functions. Let X be given in Pick normal form.
Differentiating Equation (11.3) by a, we find that
0D, 0D, oDs , O0F0A, 0F0A, OF oC

U+

S Pt PR 11.4
oa 8av+8au 8x8a+8y8a+8a+8a ( )

Evaluating at u =v =a=0=1 =0 gives F, = F, = F, = 0, hence C, = 0. Taking
the derivatives with respect to b and ¢, then evaluating at u =v=a=0b=1¢t=0
shows that C, =C; =0whenu=v=a=0b=1t=0.

We can also evaluate at « = b = t = 0 and compare coefficients since the D,
depend only on a, b, and t. First, we compare the u coefficients in Equation (11.4).
Direct computation shows that Fy(z,y,0,0,0) € m?, as too is Fy(z,y,0,0,0). Since
x = A1(u,0v,0,0,0) and y = As(u,v,0,0,0) and the A;(u,v,0,0,0) both begin with
(linearly independent) linear terms in u and v, it follows that F(A;, A2,0,0,0) and
F,(Ay, A9,0,0,0) begin with quadratic terms in u and v. Their u coefficient is zero.
The u coefficient of F, can be found. we find that F, = —x + --- , and so the u co-
efficient of F, is minus the u coefficient of A;(u,v,0,0,0),i.e. —9A;/0u(0,0,0,0,0).
Moreover, C, depends on only a, b, and ¢, so has zero u coefficient. Equation (11.4)

shows that
0D, B 04,

da ~ Ou
foru =v =a =0b =1t = 0. Similar methods show that the v coefficients of F, F},

and C, are zero. Equation (11.4), for u =v =a=0b=t =0, then gives

o0, _ o,
da  Ou
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Differentiating Equation (11.3) with respect to b and employing the same methods,
foru=v=a=b=1t=0, gives

oD, _0A ., 9D: 04
b ov Y Tar T o

Since A(u,v,0,0,0) : R*,0 — R?,0 is a diffeomorphism germ, it follows that

0D, 0D, B 0D, 0D,
Oda 0Ob ob Oa

£0

foru=v=a=b=t=0. ]
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