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1 Introduction

For a smooth closed curve in R
2 (resp. a smooth closed surface in R

3), M , the symmetry set

is the closure of the set of centres of circles (resp. spheres) tangent at more than one point to
M . The medial axis of M is the subset of the symmetry set for which the circle (resp. sphere)
is maximal in the sense that its radius equals the absolute minimum distance from its centre
to M . Both these constructions, which are essentially euclidean because of the use of spheres,
have been the subject of extensive investigation both in the mathematical and in the computer
vision literature. See for example [3, 8, 23, 24] for some different viewpoints. They also have
generalizations to higher dimensions, the most obvious being when M is a hypersurface in R

n.
Together with the focal set, the symmetry set forms the ‘full bifurcation set’ of the family of
distance-squared functions on M , parametrized by the points of the ambient euclidean space.

There are also a number of constructions which depend only on the affine structure of M ,
that is they depend not on distance and angle but on affine concepts such as parallelness,
midpoint or equality of areas. The motivation for seeking and investigating such constructions
lies in the wish to detect symmetry when a scene is presented only after distortion by an affine
transformation, such as viewing ‘at an angle’.

In this article I shall survey these affinely invariant constructions and give some details and
examples of each, with special emphasis on interesting lines of investigation which have so far
not been followed up. Nearly all the examples will be in R

2, with occasional mention of R
3.

There are classical constructions in affine differential geometry which can be used to imitate
the above metric definition of the symmetry set of a plane curve; these give rise to the ‘affine
distance symmetry set’ (ADSS) which is described in §2. It is also possible to imitate a dual
construction of the symmetry set as an envelope of lines and this gives rise to the ‘affine envelope
symmetry set’ (AESS); see §3. Both the ADSS and the AESS have close connexions with conics,
as the natural analogue of circles. A number of constructions use pairs of points for which the
tangent lines (or planes) to M are parallel: the ‘centre symmetry set’ (CSS) measures the extent
to which M is centrally symmetric, and the singular points of the ‘affine equidistants’ sweep out
the CSS in much the same way that the focal set of a curve or surface M is swept out by the
singularities of the euclidean parallels, or offsets, of M .

An entirely different approach is given by an area-based symmetry set, the affine area sym-

metry set (AASS), which was introduced for plane curves in [19] as a construction which is
robust to small perturbations of the boundary shape: an objection to constructions which de-
pend on the calculation of higher derivatives of a curve or surface is that these quantities are
highly sensitive to noise or to perturbations of M . The AASS, like the euclidean symmetry set
or the ADSS, is defined for a plane curve M , at least for a strictly convex curve (see §4) by
means of a family of functions on M parametrized by an open set of points of the plane. The
bifurcation set of this family consists of the AASS together with the midpoints of chords joining
parallel tangent pairs, which is one of the affine equidistants mentioned above. This set also has
interesting connexions with the boundary of the ‘tricentre set’, that is the boundary of the set
of points inside M which are the midpoints of three chords. See §4.
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2 The Affine Distance Symmetry Set (ADSS) of a plane curve

This is a direct analogue of the euclidean symmetry set, but uses a different family of functions.
The euclidean distance between points is not of course an affine invariant, but, given a curve M
in R

2, we can, following Izumiya [15], define an affine distance function f . Suppose first that
M has no inflexions (points of zero curvature), and use a parametrization γ by ‘affine arclength
s’, which means that the determinant |γ′, γ′′| = 1 for all parameter values, ′ standing for d/ds,
or, later, ∂/∂s. Then we define

f : R
2 × R, f(x, s) = |x − γ(s), γ′(s)|.

(If γ is a closed curve then the second factor R should be replaced by the circle S1.) In the
special case when γ is a central conic (an ellipse or hyperbola), and x is its centre, this function
is constant; its value is called the affine radius of the conic.

Using this family for a general curve γ without inflexions, we can imitate the definitions in
the euclidean case. Proofs of the results below are in [9, 10].

(a) The affine normal at γ(s) is the set of points x in the plane for which f ′(x, s) = 0. This
is equivalent to saying that the affine normal is the set of points γ(s) + tγ′′(s) for t ∈ R.
The affine normal is also the locus of points x which are centres of conics having 4-point
contact with γ at γ(s).

(b) The affine centre of curvature of γ at γ(s) is the unique point x for which f ′(x, s) =
f ′′(x, s) = 0. This is the point

γ(s) + 1

µ
γ′′(s),

where the affine radius of curvature is µ(s) = |γ′′(s), γ′′′(s)|. This is a finite point unless
γ′′′ = 0, which is called an affine inflexion. It is the centre of the unique conic having at
least 5-point contact with γ at γ(s).

(c) The affine evolute of γ is the envelope of the affine normals; it is also the set of affine
centres of curvature. It has cusps at the affine centre of curvature at points where the
unique 5-point contact conic has 6-point contact (sextactic points).

(d) The ADSS is the set of points x ∈ R
2 for which there exist two distinct parameter values

s1, s2, with
f(x, s1) = f(x, s2) and f ′(x, s1) = 0, f ′(x, s2) = 0, (1)

together with limit points of this set.

The definition (d) is exactly analogous to the euclidean requirement that the euclidean distance
function should have extrema at two points of γ , meaning that x lies on two euclidean normals
to γ, and that the euclidean distances of x from these two curve points should be equal. Put
together, these mean in the euclidean case that there is a circle tangent to γ at the two points.
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Figure 1: Left: an affine distance symmetry set (ADSS), with the affine evolute shown in grey. Notice
the complicated structure of the ADSS, similar to that of the euclidean symmetry set. Right: an affine
distance medial axis (ADMA), drawn heavily with this time the affine evolute a thinner line. The ADMA
has three basic almost straight branches. Although this does not in theory guarantee three partial affine
axes of symmetry, in practice it appears that this is ‘almost’ the case.

In the affine case, where circles are replaced by conics which have a greater freedom, we cannot
deduce that there is a single conic which is tangent to γ at γ(s1), γ(s2). We can deduce that
there are two conics with the same centre x and the same affine radius, having four-point contact
with γ at γ(s1), γ(s2).

The condition on s1, s2 that there should exist an x as in (1) is

|γ(s1) − γ(s2), γ′′(s1) − γ′′(s2)| = 0, or |γ1 − γ2, γ′′

1 − γ′′

2 | = 0 for short (2)

which can be called the pre-ADSS condition.
Because the ADSS is based upon a distance, there is the possibility of defining a correspond-

ing medial axis, the ADMA, by insisting that the extrema in (1) are absolute minima. Indeed
we can equally require them to be absolute maxima since it is not so clear in this case which is
more appropriate. The conic which has 4-point contact at γ(s1) and γ(s2) could be a hyperbola,
and there is therefore no concept of the conic being ‘inside’ or ‘outside’ the curve γ. This is in
contrast with the euclidean symmetry set, where a bitangent circle can be required to be entirely
inside a curve γ. Note that every point of a smooth closed convex curve γ contributes to the
ADMA in the same way that every point of a closed curve contributes to the euclidean medial
axis. Illustrations of an ADSS and ADMA are shown in Figure 1.

The ADSS, and consequently the ADMA, has many of the properties one would expect from
the analogy with the euclidean case.

(e) The ADSS (or ADMA) has endpoints in the cusps of the affine evolute. These are A3

points of the affine distance function f , where the second and third derivatives vanish as
well as the first. The above conic has 6-point contact and the contact points γ(s1), γ(s2)
have coincided.

(f) The ADSS (but not the ADMA) has cusps which lie on the affine evolute, and occur when
one of the conics has 5-point contact. These are A1A2 points. The generic structure of
the ADMA is, as for the euclidean medial axis, that of a tree with branches at which three
arcs meet.
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The ADSS has one unfortunate feature: if it is straight we cannot guarantee that the curve
γ is symmetric in an affine sense. An affine reflexion is an affine map from the plane to itself,
of order two (equal to its inverse) and preserving a line `. A curve which is, as a whole, taken
to itself by an affine reflexion is called affine symmetric with ` as an axis of affine symmetry.
In the euclidean case, if the euclidean symmetry set of two arcs of a curve is a straight line
`, we can deduce that those arcs are symmetric in the usual euclidean sense with ` as axis of
symmetry. However the obvious analogy, that if the ADSS of two arcs is straight, then the
arcs are symmetric by an affine reflexion, is not true; there is an example in [9]. However in
many examples of closed curves it does appear that the ADSS has ‘almost straight branches’
and that, as measured by the affine envelope symmetry set (the subject of the next section)
there is approximately an affine symmetry preserving part of the curve. The exact relationship
between affine symmetry and the ADSS is not well understood.

Another problem with the ADSS is that it does not appear to be possible to generate it in
a simple way by a flow. The euclidean symmetry set of γ can be thought of as the locus of
self-intersections of the euclidean parallels (offsets) of γ, and these are generated by a flow along
the normals of γ at unit speed. There does not appear to be any analogous way of generating
the ADSS.

Strictly speaking the existence of the ADSS depends on γ being free from inflexions (a
convex curve). However, inflexions are themselves affinely invariant points of a curve, and we
can segment a curve by means of the inflexions before treating each pair of inflexion-free arcs as
above when calculating the ADSS. We mention here two significant facts about the ADSS of a
curve with inflexions (see [6]). Firstly, in a generic 1-parameter family of such curves, the local
transitions on the euclidean symmetry set were listed in [4], and certain transitions, in principle
possible for bifurcation sets in the plane, were excluded for geometrical reasons. However, all
the ‘missing’ transitions occur in the context of the ADSS. Secondly, consider singularities of the
ADSS arising directly from inflexions: for example, at the point where an inflexional tangent
meets the curve again, the ADSS exhibits a singularity of the highly degenerate type (t5, t6).
In a 1-parameter family of curves, two such singularities can cancel one another and leave a
smooth ADSS branch. Because the family of affine distance functions has infinite values at such
point, a systematic treatment appears to need V.I. Arnold’s theory of ‘fractions’ [1] (analogous
to meromorphic functions), but there is no published work on the ADSS from this point of view.

Note on Reconstruction Suppose we are given a smooth arc S, parametrized by γ(s) where
s is euclidean arclength, and a smooth function r defined on S such that r′(s) < 1 for all s
close to some s0. We can ‘reconstruct’ a pair of arcs M1,M2 with symmetry set S by taking
the envelope of circles, centred at the γ(s) and of radius r(s); the condition r′(s) < 1 ensures
that the envelope is real. It is not clear what is needed besides a smooth arc S in order to
‘reconstruct’ two arcs with ADSS equal to S. A variant of this problem is the following. Given
S and one arc M1 can we reconstruct a second arc M2 such that the two Mi have ADSS equal to
S? (In the euclidean case we merely need the normals to M1 to meet S; this immediately gives
the radii and centres of the bitangent circles.) In fact, using the interpretation of the ADSS in
terms of contact with conics, it is shown in [14] that:

(g) we can choose a general point p2 ∈ R
2 and a point p1 ∈ M1 and then find a smooth

curve M2 through p2 such that S is the ADSS of M1 and M2 and p1,p2 are corresponding
points.

There is an analogous construction for the ADSS of a surface in R
3, based also on an

affine distance function (see for example [2, p.110]). However, there does not appear to be any
simple relationship with quadric surfaces, and the properties of this ADSS have not as yet been
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Figure 2: Left: the affine envelope symmetry set (AESS, heavy line) of a convex curve, together with
(thin line) an ‘affine equidistant’ §5, also called the ‘area evolute’ §4. As can be seen these fit together
nicely with cusps facing one another. This is investigated in [14]. Right: an AESS together with the
affine evolute, the latter in grey. The three almost straight branches of the AESS do indicate three partial
axes of affine symmetry.

investigated. There is a good deal of information on the affine focal surface, which forms the
remainder of the full bifurcation set of the family of affine distance functions, in [5].

3 The affine envelope symmetry set (AESS) of a plane curve

The construction of the AESS is dual to that of the ADSS. In the euclidean case this dual
construction yields the same symmetry set as the usual construction, but in the affine setting it
yields a different symmetry set. The details of the following can be found in [10] and [20].

The AESS can be defined as an envelope of lines, as follows. Associate to a pair of param-
eter points s1, s2 on the curve M with parametrization γ the line ` which passes through the
intersection of the tangent lines to γ at the points γ(s1), γ(s2) and through the midpoint of
the segment joining γ(s1) and γ(s2). The obvious variant of this applies when the tangents are
parallel: ` is parallel to the tangents and through the midpoint of the segment. In the limit as
s2 → s1 the line ` in fact approaches the affine normal of γ at the point γ(s1) = γ(s2) (see (a)
in §2).

For a closed curve parametrized by γ : S1 → R
2 this defines a mapping m from S1 × S1 to

the set of lines in R
2, that is the dual plane. Locally this is simply a mapping R

2 → R
2 and

it turns out that (s1, s2) is a critical point if and only if there is a conic having 3-point contact
with γ at γ(s1) and γ(s2). The locus of centres of such conics is called the AESS and is the
envelope of the lines ` for which (s1, s2) is a critical point of m. That is, the critical locus of m
defines the AESS as an envelope. The envelope of affine normals arises as part of this envelope
(the limiting case s1 = s2) but we exclude this from the AESS, just as the evolute is excluded
from the symmetry set in the euclidean case.

An example of an AESS is shown in Figure 2. The AESS has the following properties:

(a) The AESS has cusps at the centres of conics where the contact is 4-point at one of the two
contact points (and usually 3-point at the other).

(b) The AESS has endpoints in the cusps of the affine evolute (exactly as for the ADSS).
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(c) If the AESS has a straight segment, then the corresponding arcs of the curve γ are affine
symmetric with that segment as affine axis (defined as in §2).

(d) The condition for s1, s2 to give a point of the AESS is (with affine arclength parametriza-
tion)

|γ(s1) − γ(s2), γ′(s1) + γ′(s2)| = 0;

this equation therefore determined the pre-AESS.

Two more remarks on the AESS:

(e) There is no obvious concept of an ‘Affine Envelope Medial Axis’, that is a medial axis
which is a significantly simpler subset of the AESS but nevertheless captures all of the
curve γ. In view of (c) above it would be very interesting to discover such a medial axis.

(f) It would be a pleasant surprise if the essential structure of the AESS were preserved by
projective transformations. (This possibility was suggested to the author as an interesting
question by Prof W. Thurston.)

Unfortunately, it is been shown [20] that the proposal in (f) fails both for the AESS and the
ADSS. For the AESS the problem lies partly in (e): the AESS generically has cusps and
there is no obvious way to restrict it so that these are removed. The number of cusps can
be changed by projective transformations, which can produce a swallowtail transition on the
AESS. The motivation for (f) is that the essential structure of the euclidean symmetry set is
preserved by Möbius transformations of the plane, that is ‘fractional linear’ transformations
(z 7→ (az + b)/(cz + d), z ∈ C, ad − bc 6= 0), which actually map the plane extended by a
point at infinity to itself. These preserve circles, and contact between curves, so bitangent cir-
cles are taken to bitangent circles. On the other hand centres of circles are not preserved so a
Möbius transformation does not actually take the symmetry set (resp. medial axis) of a curve
to the symmetry set (resp. medial axis) of the transformed curve. But the ‘graph structure’
of the symmetry set—the branches, the endpoints and the triple crossings, and also the cusp
structure—is preserved. At the medial axis level, where the underlying combinatorial structure
is a tree, the branches, the Y-junctions and the endpoint structure is all preserved by Möbius
transformations so that the medial axis is taken to another which is isomorphic as a graph.

Note on reconstruction The analogue for the AESS of (g) in §2 is the following (see [14]).

(g) We can choose a general point p2 ∈ R
2 and then find a smooth curve M2 through p2 such

that S is the AESS of M1 and M2.

In this case we do not have the freedom to choose a corresponding point p1 on M1. It is unclear
whether there is another simple ‘reconstruction’ result along the lines ‘given S and some other
information, analogous to the radius function in the euclidean case, there are unique arcs M1,M2

having S for their AESS’.
It is not clear whether there is a natural definition of the AESS for a surface M in R

3. For
example, given a pair of points of M we can consider the perpendicular bisector plane for the
chord joining them. This gives us a map M×M → G where G is the 3-dimensional grassmannian
of planes in R

3. So we cannot imitate the construction given above in R
2.

4 The affine area symmetry set of a plane curve

Let M be a simple closed plane curve. We shall usually take M to be smooth, with a parametriza-
tion γ, but it can equally well be piecewise smooth, as in Figure 3. We shall assume here that
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M is strictly convex; some results on the non-convex case are in [19, 18]. Our purpose here is to
point out the similarity of definition with that of the other distance-based symmetry sets and
to link it to the affine equidistants which arise in §5.

For each point x in the interior of M and each point γ(t) on M , let A(t,x) be the area of
the region inside M cut off by, and to the right of, the chord from γ(t) through x. See Figure 3.
We can regard A as a two-parameter family of functions defined on M . Using the basic formula

A(t,x) = 1

2

∫ u

t

|γ(s) − x, γ′(s)|ds,

where | , | denotes the determinant of a 2 × 2 matrix, and u(t,x) is the other end of the chord,
we can derive the following ([14, 19]).

(a) A′(t,x) = 0 (where ′ means ∂/∂t) if and only if x is the midpoint of this chord.

(b) A′ = A′′ = 0 at (t,x) if and only if in addition the tangents to M at the endpoints of this
chord are parallel.

The area evolute of M is the set of points x for which there exists t with A′ = A′′ = 0 at (t,x).
This is the locus of midpoints of chords having parallel tangents at their endpoints; it can also
be obtained as the envelope of the lines halfway between pairs of parallel tangents. Note that
if M is described anticlockwise, that is with positive curvature, the area evolute is a curve with
cusps also described with positive curvature, making the ‘inside’ of the area evolute on the right
of the curve, as with the euclidean evolute of a plane curve without inflexions.

The area evolute has also been called the midpoint parallel tangent locus and the anti-

symmetry set, see [14, 17]). It is also an example of an affine equidistant as in §5.

(c) A′ = A′′ = A′′′ = 0 at (t,x), so that the area evolute is singular, with generically an
ordinary cusp, if and only if, in addition to the conditions of (a) and (b), the point x is
also on the AESS (§3), that is, there is a conic having 3-point contact at the two endpoints
of the chord. The AESS also has a cusp at such a point. See Figure 2, left. The condition
for an ordinary cusp on the area evolute can also be expressed in a less obviously affinely
independent way by saying that the (euclidean) curvatures of M are the same at the two
endpoints but their derivatives with respect to (euclidean) arclength are not.

The affine area symmetry set (AASS) is then defined as the remaining part of the full
bifurcation set of the family A, that is the set of points x for which there exist distinct t1, t2
such that

A(t1,x) = A(t2,x) and A′ = 0 at (t1,x) and (t2,x), (3)

together with limit points of this set.

(d) The tangent to the AASS is parallel to the line joining γ(t1) to γ(t2), or equally well to the
line joining the other ends γ(u1), γ(u2) of the two chords which cut off equal areas inside
M . Since the two chords have the same midpoint, their four endpoints are at the vertices
of a parallelogram.

Because we are dealing again with a family of functions we can define a corresponding affine

area medial axis (AAMA) by requiring that the extrema of A in (3) are absolute minima. Two
examples of an AASS is given in Figure 3. Because they are based on an area construction, this
symmetry set and medial axis are very robust to small deformations in the curve M , and to
noisy data. See [19].
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Figure 3: See §4 for details. (i) The area A(t,x) is cut off inside the oval γ by the chord through γ(t)
and x. The other end of the chord is at γ(u) where, for a strictly convex curve, u is a function of t
and x. The envelope of chords cutting off a fixed area is an area parallel of γ; this is also the locus of
midpoints of such chords; (ii) and (iii) show two area parallels of a quadrilateral, with four and six cusps
respectively, and one of the corresponding chords in each case. (iv): The self-intersections of the area
parallels for a triangle, which make up the affine area symmetry set (AASS). (v): some area parallels for
a rounded triangle; (vi): the outer 3-cusped curve is the area evolute, the inner 3-cusped curve is the
area parallel corresponding to half the area, and the three nearly straight lines are the AASS, which is
the locus of self-intersections of the parallels. The ‘area medial axis’ will have the same three arms but
extending only as far as the triple junction. (vii): the shaded region ‘inside’ the area evolute is also the
set of points which are centres of three chords of the curve.

A possible extension to curves with inflexions is discussed in [19]; naturally we have to decide
how to measure the area of a region cut off by a chord meeting the curve at more than just its
endpoints. A different approach, where we essentially count enclosed areas on one side of the
chord as positive and on the other side as negative, has been investigated in [18] but no definitive
treatment exists. The affine equidistants for surfaces, that is midpoints of chords joining surface
points where the tangent planes are parallel, are studied in R

3 in [25]. There is no work on the
extension of the AASS itself to surfaces in R

3, though in this case the extension, using volumes
of regions cut off by planes, is a natural one. It can be shown that, if the volume cut off inside a
strictly convex surface M by planes through a fixed interior point x is an extremum for a plane
Π, then x is the centre of mass of the intersection of M and Π, in analogy with (a) above.

We conclude this section by describing briefly an interesting connexion between the area
evolute and the boundary, B say, of the set T of tricentres inside a strictly convex closed
curve M , where by a tricentre we mean the common midpoint of three chords of M . The
existence of tricentres is proved in [21]. Indeed it is shown that there is a 2-parameter family
of tricentres, since two of the angles between the three chords can be specified; thus tricentres

8



can be expected to form a 2-dimensional region T . Boundary points of T occur when two or
more of the chords tend to coincidence. When two chords with a common midpoint tend to
coincidence the tangents at their ends become parallel—compare (a) and (b) above—and when
three chords with a common endpoint tend to coincidence the curvatures at the ends of the
chord also become equal, as in (c) above. In either case B will be contained in the area evolute
of M as defined above.

(e) In fact (at any rate for a generic M), T is the boundary of the region ‘enclosed’ by the
area evolute, and we indicate below why this is so. An example is shown in Figure 3(vii).

(f) As above we use a parametrization γ of M . For a generic M , if six distinct parameter
values (ti, ui), i = 1, 2, 3 give the endpoints of three distinct chords of M with a common
midpoint m0, then nearby parameter values fill out an open neighbourhood of m0 in the
plane.

Assume that the six parameters are distinct. Also consider the three tangent pairs at the ends of
the three chords and assume that at least one of these pairs is not parallel (a generic assumption).
The result (f) can be established using the map F : R

6 → R
4 given locally by

F (t1, u1, t2, u2, t3, u3) = (γ(t1) + γ(u1) − γ(t2) − γ(u2), γ(t1) + γ(u1) − γ(t3) − γ(u3)) ,

together with the midpoint map m(t1, u1, t2, u2, t3, u3) = 1

2
(γ(t1) + γ(u1)). Thus m(F−1(0)) is

locally the set of tricentres. It is easy to check that F−1(0) is locally a smooth 2-manifold and
m restricted to this set is a local diffeomorphism.

But use of F when the ti and ui are not distinct is hampered by the presence of ‘unwanted’
solutions to F = 0. These include t2 = t3, u2 = u3 where the chords with endpoints t1, u1 and
t2, u2 have a common midpoint, and indeed t1 = t2 = t3, u1 = u2 = u3. Both of these give
2-dimensional families of solutions and they prevent F−1(0) from being smooth at the points
we need to discuss. Thus it will be difficult to restrict m to the ‘wanted’ part of F = 0 and find
conditions for the result to be a fold or a cusp map. A different approach is outlined below.

Suppose that the tangents at the ends of one chord are parallel. Without loss of generality,
the chord is along the x-axis, the tangents are parallel to the y-axis and the centre of the chord
is at the origin O. The curve is then given in polar coordinates by say r = r(θ). The function
R(θ) = r(θ + π) − r(θ) is zero precisely when O is the midpoint of the chord at slope θ and
since R(θ +π) = −R(θ) it follows that R is determined by its values on 0 ≤ θ < π. Furthermore
R(0) = R′(0) = 0 and double zeros of R correspond with chords having parallel tangents at their
ends, while triple zeros require in addition that the curvatures at the two ends are equal. Note
that R must have an odd number of zeros in 0 ≤ θ < π; consequently if it has exactly a double
zero at θ = 0 then there is another zero which makes the origin the centre of three chords, two
of them having coincided with the x-axis. The origin is then locally in the set B, that is so far
as points of M near to (±r(0), 0) are concerned. The area evolute passes through the origin
tangent to the y-axis since this is the line halfway between the parallel tangents at (±r(0), 0).

Examining the function R we find the following.

1. If R has exactly a double zero at θ = 0 then the points near the origin which are tricentres
lie on the same side of the area evolute as the ‘interior’ of the area evolute (that is, on the
right of this curve);

2. If R has exactly a triple zero at θ = 0 then the area evolute has a cusp at the origin (with
cuspidal tangent the y-axis) and the points near the origin which are tricentres lie within
this cusp.

9



p

p

x

1

2

Figure 4: Left: a curve of constant width with its chords joining parallel tangent pairs drawn; these are
automatically binormals to the curve. The CSS is the envelope of these chords, hence is doubly covered
by the evolute. The chord p1p2 is tangent to the CSS at x and the ratio of distances p1x to xp2 is equal
to the ratio of curvatures κ(p2) to κ(p1). The other chord drawn, tangent at a cusp on the CSS, has
the ratio of curvatures at the endpoints of the chord an extremum. Centre: the CSS of a more general
oval, again having an odd number of cusps (a generic phenomenon). The chord drawn, tangent at a cusp
on the CSS, has one end at a degenerate inflexion—in a family of curves, this one is about to become
non-convex—and the other end at the cusp point itself. Right: a family of affine equidistants of the same
curve as in the left figure, with the special equidistant λ = 1

2
, also known as the ‘area evolute’ (§4), drawn

heavily. The cusps on the equidistants trace out the CSS.

Thus, locally, the interior of the area evolute is the same as the set of tricentres. Globally
different smooth branches may overlay one another but the set of tricentres is then, as claimed
in (e) above, the interior of the area evolute in the natural sense illustrated in Figure 3(vii).

It would be interesting to study the situation for curves with inflexions. The result of [21] is
not known to hold then. In addition, it is not clear whether there are sensible generalizations
to surfaces in R

3.

5 The centre symmetry set and affine equidistants

Consider a simple closed smooth plane curve M and for each pair of distinct points at which the
tangents are parallel draw the straight line through those points. The envelope of these lines is
called the centre symmetry set (CSS) of M ; it was first defined in a different way in [16]. For
a centrally symmetric curve the CSS is a point, namely the centre of symmetry. A particularly
simple case occurs for a curve M of constant width, for then it is well-known that all chords
joining pairs p1,p2 of parallel-tangent points are in fact normal to M at each end-point p1,p2.
In this case the CSS is doubly covered by the evolute of M . An example is drawn in Figure 4,
left.

From the chords joining parallel tangent pairs p1,p2 we can construct also a family of affine

equidistants by fixing a real number λ and taking the locus of points (1−λ)p1+λp2. Of course λ
and 1−λ give the same locus, so that λ = 1

2
is special. This is the locus of midpoints of parallel

tangent pairs and has arisen above (§4) as the area evolute of M , that is as the bifurcation set of
the area family A (the remaining part of the full bifurcation set being the AASS). See Figure 4,
right.

There has been extensive work on the local structure of the CSS both for plane curves and
for surfaces in R

3; see [6, 11, 12, 13, 26]. For a curve M in R
2 the CSS is necessarily real

(Figure 4), and has one point for each pair of parallel tangent points of M . For a surface in
R

3, the CSS is the envelope of a 2-parameter family of lines, hence may not be everywhere
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Figure 5: Left: the given curve has an inflexion and the CSS of this curve is tangent to this inflexion and
has an endpoint there. The affine equidistants for λ 6= 1

2
have an inflexion at the same point and with the

same tangent, and have a cusp which, as λ varies, traces out the CSS. The special equidistant for λ = 1

2

(dark line) has an endpoint like the CSS. Right: one of the λ 6= 1

2
equidistants E for a surface M with

a parabolic curve (the dark line). The intersection of M and E is ‘inflexional’ along the parabolic curve
and transverse along another curve, and E has a cuspidal edge. As λ varies the cuspidal edge sweeps out
the CSS.

real: corresponding to each pair of parallel tangent points of M there may be 2, 1 or 0 real
CSS points. Hence there are generically ‘special curves’ on M over which there is a single CSS
point. This contrasts with typical euclidean constructions such as the euclidean focal set, where
the two focal points generically coincide only over isolated umbilics of M . The CSS situation
is similar to that for the ‘affine focal surface’, mentioned also in §2 above: there are generically
‘special’ curves in the hyperbolic region of M where the two affine principal curvatures coincide.
There are many results about the latter curves in [5]: for example, they meet the parabolic curve
only at hyperbolic and certain elliptic cusps of Gauss, and then two special curve branches are
tangent to the parabolic curve. Many other results concerning cusps of Gauss (‘godrons’) are in
the work of R.Uribe-Vargas [22].

One of the most interesting cases of the CSS and of the associated equidistants is the purely
local case which in R

2 results from a curve with an inflexion p and in R
3 from a surface with

a parabolic point p. (See [12, §5].) In either case there are parallel tangent pairs for which
both points are arbitrarily close to p. Figure 5 shows the curve case. The surface case for a
generic parabolic point or a cusp of Gauss is essentially a product of this picture with a line
perpendicular to the plane of the diagram: the equidistant λ = 1

2
clings to the parabolic curve

and the nearby equidistants have double contact along this curve and cuspidal edges which
trace out the CSS. This, and investigations of families of surfaces for which the parabolic curve
undergoes a transition, are in [25].
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