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Abstract

This paper considers and solves the problem of estimat-
ing camera pose given a pair of point-tangent correspon-
dences between the 3D scene and the projected image. The
problem arises when considering curve geometry as the ba-
sis of forming correspondences, computation of structure
and calibration, which in its simplest form is a point aug-
mented with the curve tangent. We show that while the
standard resectioning problem is solved with a minimum of
three points given the intrinsic parameters, when points are
augmented with tangent information only two points are re-
quired, leading to substantial computational savings, e.g.,
when used as a minimal engine within a RANSAC strat-
egy. In addition, computational algorithms are developed
to find a practical and efficient solution which is shown to
effectively recover camera pose using synthetic and realis-
tic datasets. The resolution of this problem is intended as
a basic building block of future curve-based structure from
motion systems, allowing new views to be incrementally reg-
istered to a core set of views for which relative pose has
already been computed.

1. Introduction

A key problem in the reconstruction of structure from
multiple views is the determination of relative pose among
cameras as well as the intrinsic parameters for each cam-
era. The classical method is to rely on a set of corre-
sponding points across views to determine each camera’s
intrinsic parameter matrix Kim as well as the relative pose
between pairs of cameras [11]. The set of correspond-
ing points can be determined using a calibration jig, but,
more generally, using isolated keypoints such as Harris cor-
ners [10] or SIFT/HOG [17] features which remain some-
what stable over view and other variations. As long as there
is a sufficient number of keypoints between two views, a
random selection of a few feature correspondences using
RANSAC [7, 11] can be verified by measuring the number
of inlier features. This class of isolated feature point-based
methods are currently in popular and successful use through
packages such as the Bundler and used in applications such

(a) (c)

(b) (d)

Figure 1. (a) Views with wide baseline separation may not have
a sufficient number of interest points in common, but they often
do share common curve structure. (b) There may not always be
sufficient interest points matching across views of homogeneous
objects, such as for the sculpture, but there is sufficient curve struc-
ture. (c) Each moving object requires its own set of features, but
they may not be sufficient without a richly textured surface. (d)
Non-rigid structures face the same issue.

as Phototourism [1].
Two major drawbacks limit the applicability of auto-

matic methods based on interest points. First, it is well-
known that in practice the correlation of interest points
works for views with a limited baseline, according to some
estimates no greater than 30◦ [18], Figure 1(a). In con-
trast, certain image curve fragments, e.g., those correspond-
ing to sharp ridges, reflectance curves, etc., persist stably
over a much larger range of views. Second, the success
of interest point-based methods is based on the presence
of an abundance of features so that a sufficient number of
them survive the various variations between views. While
this is true in many scenes, as evidenced by the popularity
of this approach, in a non-trivial number of scenes this is
not the case, such as (i) Homogeneous regions, e.g., from
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(a)

Figure 2. Challenges in using curve fragments in multiview geometry: (a) instabilities with slight changes in viewpoint, as shown for
two views in (b) and zoomed in selectively in (c-h) showing real examples of edge grouping instabilities, such as a curve in one being
broken into two in another view, a curve being linked onto background, a curve being detected in one view but absent in another, a curve
being fragmented into various pieces at junctions in one view but fully linked in another view, different parts of a curve being occluded in
different views, and a curve undergoing shape deformation from one view to the other. (i) Point correspondence ambiguity along the curve.

man-made objects, corridors, etc., Figure 1(b); (ii) Multiple
moving objects require their own set of features which may
not be sufficiently abundant without sufficient texture, Fig-
ure 1(c); (iii) Non-rigid objects require a rich set of features
per roughly non-deforming patch, Figure 1(d). In all these
cases, however, there is often sufficient image curve struc-
ture, motivating augmenting the use of interest points by
developing a parallel technology for the use of image curve
structure.

The use of image curves in determining camera pose has
generally been based on epipolar tangencies, but these tech-
niques assume that curves are closed or can be described as
conics or other algebraic curves [14, 15, 19, 21]. The use
of image curve fragments as the basic structure for auto-
calibration under general conditions is faced with two sig-
nificant challenges. First, current edge linking procedures
do not generally produce curve segments which persist sta-
bly across images. Rather, an image curve fragment in one
view may be present in broken form and/or or grouped with
other curve fragments. Thus, while the underlying curve
geometry correlates well across views, the individual curve
fragments do not, Figure 2(a-h). Second, even when the
image curve fragments correspond exactly, there is an intra-
curve correspondence ambiguity, Figure 2(i). This ambigu-

Figure 3. The problem of finding the camera pose R, T given
space curves in a world coordinate system and their projections in
an image coordinate system (left), and an approach to that con-
sisting of (right) finding the camera pose R, T given 3D point-
tangents (i.e., local curve models) in a world coordinate system
and their projections in an image coordinate system.

ity prevents the use of corresponding curve points to solve
for the unknown pose and intrinsic parameters. Both these
challenges motivate the use of small curve fragments.

The paradigm explored in this paper is that small
curve fragments, or equivalently points augmented with
differential-geometric attributes1, can be used as the basic

1Previous work in exploring local geometric groupings [22] has shown

2
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image structure to correlate across views. The intent is to
use curve geometry as a complementary approach to the use
of interest points in cases where these fail or are not avail-
able. The value of curve geometry is in correlating struc-
ture across three frames or more since the correspondence
geometry in two views is unconstrained. However, the dif-
ferential geometry at two corresponding points in two views
reconstruct the differential geometry of the space curve they
arise from [4] and this constrains the differential geometry
of corresponding curves in a third view.

The fundamental questions underlying the use of points
augmented with differential-geometric attributes are: how
many such points are needed, what order of differential ge-
ometry is required, etc. This paper explores the use of first-
order differential geometry, namely points with tangent at-
tributes, for determining the pose of a single camera with
respect to the coordinates of observed 3D point-tangents. It
poses and solves the following:
Problem: For a camera with known intrinsic parameters,
how many corresponding pairs of point-tangents in space
specified in the world coordinates, and point-tangents in 2D
specified in the image coordinates, are required to establish
the pose of the camera with respect to the world coordinates,
Figure 3.

The solution to the above problem is useful under sev-
eral scenarios. First, in situations where many views of
the scene are available and there is a reconstruction avail-
able from two views, e.g., as in [5]. In this case a pair of
point-tangents in the reconstruction can be matched under
the RANSAC strategy to a pair of point-tangents in the im-
age to determine camera pose. The advantage as compared
to using three points from unorganized point reconstruction
and resectioning is that (i) there are fewer edges than sur-
face points and (ii) the method uses two rather than three
points in RANSAC, requiring about half the number of runs
for the same level of robustness, e.g., 32 runs instead of 70
to achieve 99.99% probability of not hitting an outlier in
at least one run, assuming 50% outliers (in practical sys-
tems it is often necessary to do as many runs as possible, to
maximize robustness). Second, the 3D model of the object
may be available from CAD or other sources, e.g., civilian
or military vehicles. In this case a strategy similar to the
first scenario can be used. Third, in stereo video sequences
obtained from precisely calibrated binocular cameras, the
reconstruction from one frame of the video can be used to
determine the camera pose in subsequent frames.

In general, this is a basic problem of interest in pose esti-
mation, camera calibration, triangulation, etc., in computer
vision, robotics, computer graphics, photogrammetry and
cartography.

that tangent and curvature as well as the sign of curvature derivative can be
reliably estimated.

Figure 4. Correspondence of epipolar tangencies used in curve-
based camera calibration. An epipolar line on the left, whose tan-
gency at a curve is marked in a certain color, must correspond to
the epipolar line on the right having tangency on the correspond-
ing curve, marked with the same color. This concept works for
both static curves and occluding contours.

2. Related Work
Previous work generally has relied on the concept of

matching epipolar tangencies on closed curves. Two corre-
sponding points γ1 in image 1 and γ2 in image 2 are related
by γ2>Eγ1 = 0, where E is the well-known essential ma-
trix [16]. This can be extended to the relationship between
the differential geometry of two curves, γ1(s) in the first
view and a curve γ2(s) in a second view, i.e.,

γ1>(s)Eγ2(s) = 0. (2.1)

The tangents t1(s) and t2(s) are related by differentiation

g1(s)t1
>
(s)Eγ2(s) + γ1>(s)Eg2(s)t2(s) = 0, (2.2)

where g1(s) and g2(s) are the respective speeds of
parametrization of the curves γ1(s) and γ2(s). It is then
clear that when one of the tangents t1(s) is along the epipo-
lar plane also, i.e., t1

>
(s)Eγ2(s) = 0 at a point s, then by

necessity γ1>(s)Et2(s) = 0. Thus, epipolar tangency in
image 1 implies epipolar tangency in image 2 at the corre-
sponding point, Figure 4.

The epipolar tangency constraint was first shown in [19]
who use linked edges and a coarse initial estimate E to find
a sparse set of epipolar tangencies, including those at cor-
ners, in each view. They are matched from one view to
another manually. This is then used to refine the estimate
E, see Figure 5, by minimizing the residual γ1>(s)Eγ2(s)
over all matches in an iterative two-step scheme: the cor-
responding points are kept fixed and E is optimized in the
first step and then E is kept fixed and the points are updated
in a second step using a closed form solution based on an
approximation of the curve as the osculating circle. This
approach assumes that closed curves are available.

Kahl and Heyden [14] consider the special case when
four corresponding conics are available in two views, with
unknown intrinsic parameters. In this algebraic approach,
each pair of corresponding conics provides a pair of tan-
gencies and therefore two constraints. Four pairs of conics

3
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Figure 5. Illustrating the differential update of epipolar tangencies
through the use of the osculating circle or curvature information.

are then needed. If the intrinsic parameters are available,
then the absolute conic is known giving two constraints on
the epipolar geometry, so that only 3 conic correspondences
are required. This approach is only applied to synthetic data
which shows the scheme to be extremely sensitive to even
when a large number of conics (50) is used. Kaminski and
Shashua [15] extended this work to general algebraic curves
viewed in multiple uncalibrated views. Specifically, they
extend Kruppa’s equations to describe the epipolar con-
straint of two projections of a general algebraic curve. The
drawback of this approach is that algebraic curves are re-
strictive.

Sinha et al. [21] consider a special configuration where
multiple static cameras view a moving object with a con-
trolled background. Since the epipolar geometry between
any pair of cameras is fixed, each hypothesized pair of
epipoles representing a point in 4D is then probed for a
pair of epipolar tangencies across video frames. Specifi-
cally, two pairs of tangencies in one frame in time and a sin-
gle pair of tangencies in another frame provide a constraint
in that they must all intersect in the same point. This al-
lows for an estimation of epipolar geometry for each pair of
cameras, which are put together for refinement using bun-
dle adjustment, providing intrinsic parameters and relative
pose. This approach, however, is restrictive in assuming
well-segmentable silhouettes.

We should briefly mention the classic results that only
three 2D-3D point correspondences are required to deter-
mine camera pose [7], in a procedure known as camera re-
sectioning in the photogrammetry literature (and by Hart-
ley and Zisserman [11]), also known as camera calibration
when this is used with the purpose of obtaining the intrin-
sic parameter matrix Kim where the camera pose relative
to the calibration jig is not of interest. This is also related
to the perspective n-point problem (PnP) originally intro-
duced in [7] which can be stated as the recovery of the cam-
era pose from n corresponding 3D-2D point pairs [12] or
alternatively of depths [9].
Notation: Consider a sequence of n 3D points

(Γw
1 ,Γw

2 , . . . ,Γw
n ), described in the world coordinate

system and their corresponding projected image points
(γ1, γ2, . . . , γn) described as points in the 3D camera co-
ordinate system. Let the rotationR and translation T relate
the camera and world coordinate systems through

Γ = RΓw + T , (2.3)

where Γ and Γw are the coordinates of a point in the
camera and world coordinate systems, respectively. Let
(ρ1, ρ2, . . . , ρn) be the depth defined by

Γi = ρiγi, i = 1, . . . , n. (2.4)

In general we assume that each point γi is a sample from
an image curve γi(si) which is the projection of a space
curve Γi(Si), where si and Si are length parameters along
the image and space curves, respectively.

The direct solution to P3P, also known as the triangle
pose problem, and given in 1841 [8], equates the sides of
the triangle formed by the three points with those of the
vectors in the camera domain, i.e.,





‖ρ1γ1 − ρ2γ2‖2 = ‖Γw
1 − Γw

2 ‖2
‖ρ2γ2 − ρ3γ3‖2 = ‖Γw

2 − Γw
3 ‖2

‖ρ3γ3 − ρ1γ1‖2 = ‖Γw
3 − Γw

1 ‖2
(2.5)

This gives a system of three quadratic equations (conics)
in unknowns ρ1, ρ2, and ρ3. Following traditional meth-
ods going back to the German mathematician Grunert in
1841 [8] and later Finsterwalder in 1937 [6], by factoring
out one depth, say ρ1, this can be reduced to a system of
two quadratic equations in two unknowns which are depth
ratios ρ2

ρ1
and ρ3

ρ1
. Grunert further reduced this to a single

quartic equation and Finsterwalder proposed an analytic so-
lution.

In general, the camera resectioning problem can be
solved using three 3D ↔ 2D point correspondences when
the intrinsic parameters are known, and six points when the
intrinsic parameters are not known. The camera pose can be
solved using four point correspondences when only the fo-
cal length is unknown, but all the other intrinsic parameters
are known [3], Table 1. We now show that when intrinsic
parameters are known, only a pair of point-tangent cor-
respondences are required to estimate camera pose. We
conjecture that future work will show that 3 and 4 points,
respectively, are required for the other two cases, Table 1.
This would represent a significant reduction for a RANSAC-
based computation.

3. Determining Camera Pose from a Pair of
3D–2D Point-Tangent Correspondences

Theorem 3.1. Given a pair of 3D point-tangents
{(Γw

1 ,T w
1 ), (Γw

2 , T w
2 )} described in a world coordinate

4
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Case Unknowns Min. # of Point Corresp. Min. # of Pt-Tgt Corresp.

Calibrated (Kim known) Camera pose R, T 3 2 (this paper)

Focal length unknown Pose R, T and f 4 3 (conjecture)

Uncalibrated (Kim unknown) Camera model Kim, R, T 6 4 (conjecture)

Table 1. The number of 3D–2D point correspondences needed to solve for camera pose and intrinsic parameters.

system and their corresponding perspective projections, the
2D point-tangents (γ1, t1), (γ2, t2), the pose of the cam-
era R, T relative to the world coordinate system defined
by Γ = RΓw + T can be solved up to a finite number of
solutions2, by solving the system
{

γ>1 γ1 ρ2
1 − 2γ>1 γ2 ρ1ρ2 + γ>2 γ2 ρ2

2 = ‖Γw
1 − Γw

2 ‖2,
Q(ρ1, ρ2) = 0,

(3.1)
where RΓw

1 + T = Γ1 = ρ1γ1 and RΓw
2 + T = Γ2 =

ρ2γ2, and Q(ρ1, ρ2) is an eight degree polynomial. This
then solves for R and T as




R =
[
(Γw

1 − Γw
2 ) T w

1 T w
2

]−1 ·[
ρ1γ1 − ρ2γ2 ρ1

g1
G1

t1 + ρ′1
G1

γ1 ρ2
g2
G2

t2 + ρ′2
G2

γ2

]

T = ρ1γ1 −RΓw
1 ,

where expressions for four auxiliary variables g1
G1

and g2
G2

,
the ratio of speeds in the image and along the tangents, and
ρ1 and ρ2 are available.

Proof. We take the 2D-3D point-tangents as samples
along 2D-3D curves, respectively, where the speed of
parametrization along the image curves are g1 and g2

and along the space curves G1 and G2. The proof pro-
ceeds by (i) writing the projection equations for each
point and its derivatives in the simplest form involv-
ing R, T , depths ρ1 and ρ2, depth derivatives ρ′1 and
ρ′2, and speed of parametrizations G1 and G2, respec-
tively; (ii) eliminating the translation T by subtracting
point equations; (iii) eliminating R using dot products
among equations. This gives six equations in six un-
knowns: (ρ1, ρ2, ρ1

g1
G1

, ρ2
g2
G2

,
ρ′1
G1

,
ρ′2
G2

); (iv) eliminating the
unknowns ρ′1 and ρ′2 gives four quadratic equations in four
unknowns: (ρ1, ρ2, ρ1

g1
G1

, ρ2
g2
G2

). Three of these quadratics
can be written in the form:





Ax2
1 + Bx1 + C = 0

Ex2
2 + Fx2 + G = 0

H + Jx1 + Kx2 + Lx1x2 = 0,

(3.2)

(3.3)
(3.4)

where x1 = ρ1
g1
G1

and x2 = ρ2
g2
G2

and where A through
L are only functions of the two unknowns ρ1 and ρ2. Now,

2assuming that the intrinsic parameters Kim are known

Figure 6. Diagram of the mutual intersection of Equations 3.2–3.4
in the x1–x2 plane.

Equation 3.4 represents a rectangular hyperbola, Figure 6,
while Equations 3.2 and 3.3 vertical and horizontal lines in
the (x1, x2) space. Figure 6 illustrates that only one solu-
tion is possible which is then analytically written in terms of
variables A–L (not shown here). This allows an expression
for ρ1

g1
G1

and ρ2
g2
G2

in terms of ρ1 and ρ2 which is a degree
16 polynomial, but this is in fact divisible by ρ4

1ρ
4
2, leav-

ing a polynomial Q of degree 8. Furthermore, we find that
Q(−ρ1,−ρ2) = Q(ρ1, ρ2), using the symmetry of the orig-
inal equations. This, together with the unused equation (the
remaining one of four) gives the system of equations 3.1.
Please check the detailed proof in the supplementary mate-
rial.

Proposition 3.2. The algebraic solutions to the system (3.1)
of Theorem 3.1 are also required to satisfy the following
inequalities arising from imaging and other requirements
enforced by

ρ1 > 0, ρ2 > 0 (3.5)
g1

G1
> 0,

g2

G2
> 0 (3.6)

det[ρ1γ1 − ρ2γ2 ρ1
g1
G1

t1 +
ρ′1
G1

γ1 ρ2
g2
G2

t2 +
ρ′2
G2

γ2]

det
ˆ
Γw

1 − Γw
2 T w

1 T w
2

˜ > 0.

(3.7)

Proof. There are multiple solutions for ρ1 and ρ2 in Equa-
tion 3.1. Observe first that if ρ1, ρ2, R, T are a solution,
then so are −ρ1, −ρ2, −R, and −T . Only one of these two
solutions are valid, however, as the camera geometry en-
forces positive depth, ρ1 > 0 and ρ2 > 0, so that solutions
are sought only in the top right quadrant of the ρ1–ρ2 space.

5
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In fact, the imaging geometry further restricts the points to
lie in front of the camera.

Second, observe that the matrixR can only be a rotation
matrix if it has determinant +1 and is a reflection rotation
matrix if it has determinant−1. Using (3.2), det(R) can be
written as

detR =
det
h
ρ1γ1 − ρ2γ2 ρ1

g1
G1

t1 +
ρ′1
G1

γ1 ρ2
g2
G2

t2 +
ρ′2
G2

γ2

i

det
ˆ
Γw

1 − Γw
2 T w

1 T w
2

˜ .

Finally, the space curve tangent T and the image curve
tangent t must point in the same direction, i.e., T · t > 0,
or, as detailed in the supplementary material, g1

G1
> 0 and

g2
G2

> 0.

4. A Practical Approach to Computing a Solu-
tion

Equations 3.1 can be viewed as the intersection of two
curves in the ρ1 − ρ2 space. Since one of the curves to
be intersected is shown to be an ellipse, it is possible to
parametrize it by a bracketed parameter and then look for
intersections with the second curve which is of degree 8.
This gives a higher-order polynomial in a single unknown
which can be solved more readily than simultaneously solv-
ing the two equations of degree 2 and 8.

Proposition 4.1. Solutions ρ1 and ρ2 to the quadratic equa-
tion in (3.1) can be parametrized as




ρ1(t) =
2αt cos θ + β(1− t2) sin θ

1 + t2

ρ2(t) =
−2αt sin θ + β(1− t2) cos θ

1 + t2
,

−1 ≤ t ≤ 1

where

tan(2θ) =
2(1 + γ>1 γ2)
γ>1 γ1 − γ>2 γ2

, 0 ≤ 2θ ≤ π,

and

α =

√
2‖Γw

1 − Γw
2 ‖q

(γ>1 γ1 + γ>2 γ2) + (γ>1 γ1 − γ>2 γ2) cos(2θ) + 2γ>1 γ2 sin(2θ)
, α > 0,

β =

√
2‖Γw

1 − Γw
2 ‖q

(γ>1 γ1 + γ>2 γ2) − (γ>1 γ1 − γ>2 γ2) cos(2θ) − 2γ>1 γ2 sin(2θ)
, β > 0.

Proof. An ellipse centered at the origin with semi-axes of
lengths α > 0 and β > 0 and parallel to the coordinates x
and y can be parametrized as

x =
2t

1 + t2
α, y =

(1− t2)
1 + t2

β, t ∈ (−∞,∞), (4.1)

with ellipse vertices identified at t = −1, 0, 1 and ∞, as
shown in Figure 7. For a general ellipse centered at the

Figure 7. Diagram illustrating a parametrization of the ellipse by
a parameter t.

origin, the coordinates must be multiplied with the rotation
matrix for angle θ, obtaining





ρ1 =
2αt cos θ + β(1− t2) sin θ

1 + t2

ρ2 =
−2αt sin θ + β(1− t2) cos θ

1 + t2
.

−1 ≤ t ≤ 1

Figure 7 illustrates this parametrization. Notice that the
range of values of t which we need to consider certainly
lies in the interval [−1, 1] and in fact in a smaller interval
where ρ1 > 0 and ρ2 > 0. Note that t and − 1

t correspond
to opposite points on the ellipse.

The parameters α, β, and θ for the ellipse in (3.1) can
then be found by substitution of ρ1 and ρ2, details of which
are found in the supplementary material.

Both equations in (3.1) are symmetric with respect to the
origin in the (ρ1, ρ2)-plane and the curves will intersect in
at most 2 × 8 = 16 real points, at most 8 of which will be
in the positive quadrant, as we in fact require ρ1 > 0 and
ρ2 > 0.

The parametrization of the ellipse given in Proposi-
tion 4.1 allows us to reduce the two Equations 3.1 to a single
polynomial equation in t. Substituting for ρ1, ρ2 in terms of
t into Q = 0 gives an equation in t for which, in fact, all the
denominators are (1 + t2)12, so that these can be cleared
leaving a polynomial in Q̃(t) of degree 16. The symme-
try with respect to the origin in the (ρ1, ρ2)-plane becomes,
in terms of t, a symmetry with respect to the substitution
t → −1/t, which gives diametrically opposite points of the
ellipse. This implies that Q̃ has the special form

Q̃(t) = q0 + q1t + q2t
2 + · · ·+ q16t

16, (4.2)

where qi = −q16−i for i odd. At most 8 solutions will lie
in the range −1 < t ≤ 1, and indeed we are only interested
in solutions which make ρ1 > 0 and ρ2 > 0.
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Figure 8. Sample views of the synthetic dataset.

5. Experiments

We use two sets of experiments to probe camera pose re-
covery using 2D-3D point-tangent correspondences. First,
we use a set of synthetically generated 3D curves consisting
of a variety of curves (helices, parabolas, ellipses, straight
lines, and saddle curves), as shown in Figure 8. Second, we
use realistic data.

The synthetic 3D curves of Figure 8 are densely sam-
pled and projected to a single 500 × 400 view, and their
location and tangent orientation are perturbed to simulate
measurement noise in the range of 0 − 2 pixels in location
and 0−10◦ in orientation. Our expectation in practice using
the publically available edge detector [22] is that the edges
can be found with subpixel accuracy and edge orientations
are accurate to less than 5◦.

In order to simulate the intended application, pairs of
2D-3D point-tangent correspondences are selected in a
RANSAC procedure from among 1000 veridical ones, to
which 50% random spurious correspondences were added.
The practical method discussed in Section 4 is used to de-
termine the pose of the camera (R, T ) inside the RANSAC
loop. Each step takes 90ms in Matlab on a standard 2GHz
dual-core laptop. What is most significant, however, is that
only 17 runs are sufficient to get 99% probability of hitting
an outlier-free correspondence pair, or 32 runs for 99.99%
probability. In practice more runs can easily be used de-
pending on computational requirements. To assess the out-
put of the algorithm, we could have measured the error of
the estimated pose compared to the ground truth pose. How-
ever, what is more meaningful is the impact of the measured
pose on the measured reprojection error, as commonly used
in the field to validate the output of RANSAC-based estima-
tion. Since this is a controlled experiment, we measure final
reprojection error not just to the inlier set, but to the entire
pool of 1000 true correspondences. In practice, a bundle-
adjustment would be run to refine the pose estimate using
all inliers, but we chose to report the raw errors without
nonlinear least-squares refinement. The distribution of re-
projection error is plotted for various levels of measurement
noise, Figure 9. These plots show that the relative cam-
era pose can be effectively determined for a viable range of
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Figure 9. Distributions of reprojection error without running bun-
dle adjustment, for increasing levels of positional and tangential
perturbation in the measurements.

measurement errors, specially since these results are typi-
cally optimized in practice through bundle adjustment.

Second, we use data from a real sequence, the “Capi-
tol sequence”, which is a set of 256 frames covering a 90◦

helicopter fly-by from the Rhode Island State Capitol, Fig-
ure 2, using a High-Definition camera (1280 × 720). In-
trinsic parameters were initialized using the Matlab Cali-
bration toolbox from J. Bouguet (future extension of this
work would allow for an estimation of intrinsic parameters
as well). The camera parameters were obtained by running
Bundler [1] essentially out-of-the-box, with calibration ac-
curacy of 1.3px. In this setup, a pair of fully calibrated
views are used to reconstruct a 3D cloud of 30 edges from
manual correspondences. Pairs of matches from 3D edges
to observed edges in novel views are used with RANSAC to
compute the camera pose with respect to the frame of the
3D points, and measure reprojection error. One can then ei-
ther use multiple pairs or use bundle adjustment to improve
the reprojection error resulting from our initial computation
of relative pose. Figure 10 shows the reprojection error dis-
tribution of our method for a single point-tangent pair af-
ter RANSAC, before and after running bundle-adjustment,
versus the dataset camera from bundler (which is bundle-
adjusted), for the Capitol sequence. The proposed approach
achieved an average error of 1.1px and 0.76px before and
after a metric bundle adjustment, respectively, as compared
to 1.3px from Bundler.

6. Future Directions
The paper can be extended to consider the case when in-

trinsic parameters are unknown. Table 1 conjectures that
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Figure 10. The reprojection error distribution for real data (Capitol
sequence) using only two point-tangents, before and after bundle
adjustment.

four pairs of corresponding 3D-2D point-tangents are suf-
ficient to solve this problem. Also, we have been working
on the problem of determining trinocular relative pose from
corresponding point-tangents across 3 views. We conjec-
ture that three triplets of correspondences among the views
are sufficient to establish relative pose. This would allow
for a complete curve-based structure from motion system
starting from a set of images without any initial calibration.
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Supplementary Material to Camera Pose Estimation Using
First-Order Curve Differential Geometry, ICCV 2011

Complement to Submission 56

1 Overview of this document
In Section 2 we present additional results for (i) our synthetic experiments, first clarifying the plot shown in the paper,
Figure 1, and then using bundle adjustment, Figures 2–3, together with (ii) results for the standard Dino sequence
from the Middlebury multiview stereo dataset [1], Figure 4. In the remaining sections of this document we supply
additional details in the proofs of theorems and propositions from the paper. All references to equations and figures
are to objects in the present document unless otherwise stated.

2 Additional Results

2.1 Synthetic experiments
Figure 1 clarifies Figure 9 of the paper, by splitting it into two plots, one for fixed tangential perturbation (top), and
another for fixed positional perturbation. We also ran bundle adjustment on top of our RANSAC results, which is
standard practice in applications, and recorded the distribution of reprojection errors, shown in Figures 2–3.

2.2 Dino sequence
Results: We also tested the proposed method on the standard Dino sequence from the Middlebury multiview stereo
dataset [1], Figure 4. The Cameras sample 363 views at 640 × 480 on a hemisphere around the object. The data is
low resolution compared to our Capitol dataset. The calibration accuracy in this case is hard to determine objectively,
but it is “on the order of a pixel” or about 1-2px according to the authors (see a description of the calibration process
below). We note that even though this is a carefully constructed dataset, the average reprojection error using our
method are 1.03px and 0.66px before and after bundle adjustment, respectively, while the average error using the
dataset camera is 0.88px. This was obtained as follows. As for the Capitol sequence, we picked a set of manual edge
correspondences (in this case 10) across 3 views, and reconstructed a 3D cloud of edges from the first two views using
the dataset cameras. This gives a set of 3D-2D correspondences with which we seek to determine the pose of the third
view and compare to the dataset pose. The third view plays the role of novel views to be iteratively integrated and
registered/calibrated by a structure from motion system. We added 50% outliers to the set of manual correspondences,
in order to be realistic, and ran RANSAC to select two point-tangents giving the pose which is most consistent with the
data. Bundle adjustment can then be optionally run to refine this pose. The distributions of reprojection error before
and after bundle adjustment, as compared to that of the dataset camera, are shown in Figure 1.

Details of the dataset calibration process: We note that the dataset calibration of the Dino sequence was performed
as follows [1]: the images were captured using the Stanford Spherical Gantry which enables moving a camera on a
sphere. To calibrate the cameras, they took images of a planar grid from 68 viewpoints and used a combination of
Jean-Yves Bouguet’s Matlab toolbox and their own software to find grid points and estimate camera intrinsics and
extrinsics. From these parameters, they computed the gantry radius and camera orientation, hence enabling a map of
any gantry position to camera parameters. The authors then scanned the object from several orientations using a laser
scanner and merged the results. The cameras were then aligned with the resulting mesh.

1



0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Error distribution for different noise levels

fr
eq

ue
nc

y

reprojection error

 

 
∆

pos
 = 0.5, ∆θ = 5

∆
pos

 = 1, ∆θ = 5

∆
pos

 = 2, ∆θ = 5

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Error distribution for different noise levels

fr
eq

ue
nc

y

reprojection error

 

 
∆

pos
 = 0.5, ∆θ = 0.5

∆
pos

 = 0.5, ∆θ = 1

∆
pos

 = 0.5, ∆θ = 5

∆
pos

 = 0.5, ∆θ = 10

Figure 1: Distributions of reprojection error for synthetic data results without bundle adjustment, for (top) increas-
ing levels of positional perturbation while keeping tangential orientation perturbation fixed; and (bottom) increasing
levels of tangential orientation perturbation while keeping positional perturbation fixed. This is the same as in the
paper, but split into two different plots for clarity.
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Figure 2: Distributions of reprojection error for synthetic data results with bundle adjustment, for (top) increasing
levels of positional perturbation while keeping tangential orientation perturbation fixed; and (bottom) increasing levels
of tangential orientation perturbation while keeping positional perturbation fixed.
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Figure 3: Full set of distributions of reprojection error for synthetic data results with bundle adjustment, for in-
creasing levels of positional perturbation and tangential orientation perturbation. This is the same experiment as in
Figure 2.
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Figure 4: The reprojection error distributions for the standard Dino sequence from the Middlebury multiview stereo
database [1], with a sample image shown at the top, using only two point-tangents selected within a RANSAC frame-
work from 10 manual correspondences plus 50% outliers, before and after bundle adjustment. The average reprojec-
tion error for the proposed method are 1.03px and 0.66px before and after bundle adjustment, respectively, while the
average error using the dataset camera is 0.88px.
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3 Detailed proof of Theorem 3.1
In the course of proving Theorem 3.1, we will also show that

Q(ρ1, ρ2) = A3(EH2 − FHK + GK2)2 + AC2(EJ2 − FJL + GL2)2

− 2A2C(EH2 − FHK + GK2)(EJ2 − FJL + GL2) + [−AB(EH2 − FHK + GK2)

+ BC(EJ2 − FJL + GL2)] [A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL + GL2)]

+ C[A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL + GL2)]2 = 0

(1)

where the parameters A through L are defined as




A = 1− 2γ>1 t1B1 + γ>1 γ1B
2
1

B = [2(γ>1 t1)− 2γ>1 γ1B1]A1

C = (γ>1 γ1)A
2
1 − 1

E = 1− 2γ>2 t2B2 + γ>2 γ2B
2
2

F = [2(γ>2 t2)− 2γ>2 γ2B2]A2

G = (γ>2 γ2)A
2
2 − 1

H = γ>1 γ2A1A2 − (T w
1 )>T w

2

J = [γ>2 t1 − γ>1 γ2B1]A2

K = [γ>1 t2 − γ>1 γ2B2]A1

L = t>1 t2 − γ>2 t1B2 − γ>1 t2B1 + γ>1 γ2B1B2,

(2)

where 



A1 =
(Γw

1 − Γw
2 )>T w

1

(ρ1γ1 − ρ2γ2)>γ1

A2 =
(Γw

1 − Γw
2 )>T w

2

(ρ1γ1 − ρ2γ2)>γ2





B1 =
(ρ1γ1 − ρ2γ2)>t1
(ρ1γ1 − ρ2γ2)>γ1

B2 =
(ρ1γ1 − ρ2γ2)>t2
(ρ1γ1 − ρ2γ2)>γ2

,

(3)

and where 



ρ1
g1

G1
= − A(EH2 − FHK + GK2)− C(EJ2 − FJL + GL2)

A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL + GL2)
.

ρ2
g2

G2
= − E(AH2 −BHJ + CJ2)−G(AK2 −BKL + CL2)

E(2AHK −BHL−BKJ + 2CJL)− F (AK2 −BKL + CL2)
,

(4)

and 



ρ′1
G1

= A1 −B1ρ1
g1

G1

ρ′2
G2

= A2 −B2ρ2
g2

G2
.

(5)

Proof. (Of Theorem 3.1 and the above statements) An image point γ is related to the underlying space point Γ through
Γ = ργ, where ρ is depth. A space point Γ in local coordinates is related to Γw in the world coordinates by a rotation
matrix R and translation T through Γ = RΓw + T . Equating these at each of the two points gives

{
ρ1γ1 = RΓw

1 + T
ρ2γ2 = RΓw

2 + T ,
(6)

where ρ1 and ρ2 are the depth at image points γ1 and γ2, respectively. By differentiating with respect to the parameters
of γ1 and γ2 we have: {

ρ1g1t1 + ρ′1γ1 = RG1T
w
1

ρ2g2t2 + ρ′2γ2 = RG2T
w
2 ,

(7)
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where ρ1 and ρ2 are depth derivatives with respect to the curve parameter, g1 and g2 are speeds of parametrization of
γ1 and γ2, respectively, and G1 and G2 are the speeds of parametrization of the space curves Γ1 and Γ2, respectively.
The vector Equations 6 and 7 represent 3 scalar equations for each point, so that there are 12 equations in all. The
parametrization speeds g1 and g2 are arbitrary and can be set to 1 uniformly, but we keep them in general form. The
given quantities are γ, t, and Γw, T w at each point. The unknowns are R, T (6 unknowns), ρ, ρ′ (4 unknowns), and
the two speeds of the curve Γ at the two points, 12 unknowns in all. Therefore, in principle, two points should provide
enough constraints to solve the problem.

First, T is eliminated by subtracting the two Equations (6)

ρ1γ1 − ρ2γ2 = R(Γw
1 − Γw

2 ), (8)

which together with Equation 7 gives a system of equations





ρ1γ1 − ρ2γ2 = R(Γw
1 − Γw

2 )

ρ1
g1

G1
t1 +

ρ′1
G1

γ1 = RT w
1

ρ2
g2

G2
t2 +

ρ′2
G2

γ2 = RT w
2 .

(9)

(10)

(11)

At this stage, the unknowns are ρ1, ρ2, ρ′1
G1

, ρ′2
G2

, ρ1
g1
G1

, ρ2
g2
G2

, and R, nine numbers in all, which can potentially be
solved through the three vector equations (nine scalar equations) in (9)–(11). The number of unknowns can be reduced
by eliminating R in a second step. The matrix R rotates three known vectors, (Γw

1 − Γw
2 ), T w

1 , and T w
2 to the three

unknown vectors on the left side of these equations, requiring a preservation of vector lengths and mutual angles. The
length and relative angles are obtained from the known dot products, which do not involve R at all. This provides six
equations for the six unknowns {ρ1, ρ2,

g1
G1

, g2
G2

,
ρ′1
G1

,
ρ′2
G2
}. Alternatively, we write these three equations in matrix form

composed from the three vector equations (9)–(11), i.e.,
[
ρ1γ1 − ρ2γ2 ρ g1

G1
t1 + ρ′1

G1
γ1 ρ2

g2
G2

t2 + ρ′2
G2

γ2

]
= R [

(Γw
1 − Γw

2 ) T w
1 T w

2

]
(12)

This is a system of six equations. Note that a clear geometric condition for the problem to have a solution is that the
vectors {(Γw

1 − Γw
2 ), T w

1 , T w
2 } be non-coplanar. Using product of the left hand matrix with its transpose, and using

R>R = I , gives 



(ρ1γ1 − ρ2γ2)
>(ρ1γ1 − ρ2γ2) = (Γw

1 − Γw
2 )>(Γw

1 − Γw
2 )

(ρ1γ1 − ρ2γ2)
>(ρ1

g1

G1
t1 +

ρ′1
G1

γ1) = (Γw
1 − Γw

2 )>T w
1

(ρ1γ1 − ρ2γ2)
>(ρ2

g2

G2
t2 +

ρ′2
G2

γ1) = (Γw
2 − Γw

2 )>T w
2

(ρ1
g1

G1
t1 +

ρ′1
G1

γ1)
>(ρ1

g1

G1
t1 +

ρ′1
G1

γ1) = 1

(ρ2
g2

G2
t2 +

ρ′2
G2

γ2)
>(ρ2

g2

G2
t2 +

ρ′2
G2

γ2) = 1

(ρ1
g1

G1
t1 +

ρ′1
G1

γ1)
>(ρ2

g2

G2
t2 +

ρ′2
G2

γ2) = (T w
1 )>T w

2 .

(13)

The first equation is a quadratic in ρ1 and ρ2

γ>1 γ1 ρ2
1 − 2γ>1 γ2 ρ1ρ2 + γ>2 γ2 ρ2

2 = (Γw
1 − Γw

2 )>(Γw
1 − Γw

2 ), (14)

which as a conic in the ρ1–ρ2 plane with negative discriminant

(γ1 · γ2)
2 − (γ1 · γ1)(γ2 · γ2) = −‖γ1 × γ2‖2 < 0 (15)
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is an ellipse. The ellipse is centered at the origin so we can check that it has real points by solving for ρ1 when ρ2 = 0,
giving ρ2

1‖γ1‖2 = ‖Γw
1 − Γw

2 ‖2, or real roots ρ1 = ±‖Γw
1 −Γw

2 ‖
‖γ1‖ .

The remaining five equations involve the additional unknowns {ρ1
g1
G1

, ρ2
g2
G2

,
ρ′1
G1

,
ρ′2
G2
}. The latter appear in a

linear form in the second and third equations, and in quadratic form in the last three equations. Thus, the terms ρ′1
G1

and ρ′2
G2

can be isolated from the second and third equations and then used in the last three equations




[(ρ1γ1 − ρ2γ2)
>γ1]

ρ′1
G1

= (Γw
1 − Γw

2 )>T w
1 − [(ρ1γ1 − ρ2γ2)

>t1]ρ1
g1

G1

[(ρ1γ1 − ρ2γ2)
>γ2]

ρ′2
G2

= (Γw
1 − Γw

2 )>T w
2 − [(ρ1γ1 − ρ2γ2)

>t2]ρ2
g2

G2
,

(16)

or 



ρ′1
G1

=
(Γw

1 − Γw
2 )>T w

1

(ρ1γ1 − ρ2γ2)>γ1

−
[

(ρ1γ1 − ρ2γ2)>t1
(ρ1γ1 − ρ2γ2)>γ1

]
ρ1

g1

G1
= A1 −B1ρ1

g1

G1

ρ′2
G2

=
(Γw

1 − Γw
2 )>T w

2

(ρ1γ1 − ρ2γ2)>γ2

−
[

(ρ1γ1 − ρ2γ2)>t2
(ρ1γ1 − ρ2γ2)>γ2

]
ρ2

g2

G2
= A2 −B2ρ2

g2

G2
,

(17)

noting that A1, A2, B1, and B2 depend on only two of the unknowns ρ1 and ρ2. The last three equations in (13) can
be expanded as





(
ρ1

g1

G1

)2

+ 2(γ>1 t1)
(

ρ1
g1

G1

)(
ρ′1
G1

)
+ (γ>1 γ1)

(
ρ′1
G1

)2

= 1

(
ρ2

g2

G2

)2

+ 2(γ>2 t2)
(

ρ2
g2

G2

)(
ρ′2
G2

)
+ (γ>2 γ2)

(
ρ′2
G2

)2

= 1

(t>1 t2)
(

ρ1
g1

G1

) (
ρ2

g2

G2

)
+(γ>2 t1)

(
ρ1

g1

G1

)(
ρ′2
G2

)
+ (γ>1 t2)

(
ρ2

g2

G2

)(
ρ′1
G1

)
+

(γ>1 γ2)
(

ρ′1
G1

)(
ρ′2
G2

)
= (T w

1 )>T w
2 .

Substituting ρ′1
G1

and ρ′2
G2

from Equations 17 gives




(
ρ1

g1

G1

)2

+ 2(γ>1 t1)
(

ρ1
g1

G1

)(
A1 −B1

(
ρ1

g1

G1

))
+ (γ>1 γ1)

(
A1 −B1

(
ρ1

g1

G1

))2

= 1

(
ρ2

g2

G2

)2

+ 2(γ>2 t2)
(

ρ2
g2

G2

)(
A2 −B2

(
ρ2

g2

G2

))
+ (γ>2 γ2)

(
A2 −B2

(
ρ2

g2

G2

))2

= 1

(t>1 t2)
(

ρ1
g1

G1

) (
ρ2

g2

G2

)
+ (γ>2 t1)

(
ρ1

g1

G1

) (
A2 −B2

(
ρ2

g2

G2

))
+

(γ>1 t2)
(

ρ2
g2

G2

)(
A1 −B1

(
ρ1

g1

G1

))
+ (γ>1 γ2)

(
A1 −B1

(
ρ1

g1

G1

))(
A2 −B2

(
ρ2

g2

G2

))

= (T w
1 )>T w

2 .

These three equations can be written in summary form using x1 = ρ1
g1
G1

and x2 = ρ2
g2
G2

,





Ax2
1 + Bx1 + C = 0

Ex2
2 + Fx2 + G = 0

H + Jx1 + Kx2 + Lx1x2 = 0,

(18)

(19)
(20)

and where A through L are only functions of the two unknowns ρ1 and ρ2. Thus, the three Equations 18–20 after
solving for x1 and x2 express a relationship between ρ1 and ρ2, which together with Equation 14 can lead to a solution
for ρ1 and ρ2.
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Equation 20, with given values for ρ1 and ρ2, represents a rectangular hyperbola in the x1–x2 plane, as illustrated
in the paper, and each of the Equations 18 and 19 represents a pair of (real) lines in the same plane, parallel respectively
to the x2 and x1 axes. In general there will not be more than one intersection between the aforementioned curves.

Specifically, the variables x1 and x2 can be solved by rewriting Equation 20 as

(H + Jx1) + (K + Lx1)x2 = 0, (21)

giving

x2 = −H + Jx1

K + Lx1
. (22)

Using this expression in Equation 19 gives

E
(H + Jx1)2

(K + Lx1)2
− F

H + Jx1

K + Lx1
+ G = 0, (23)

or
E(H + Jx1)2 − F (H + Jx1)(K + Lx1) + G(K + Lx1)2 = 0. (24)

Reorganizing as a quadratic in x1, this solves for x1 which together with Equation 18 gives a constraint on the param-
eters depending on ρ1 and ρ2,





(EJ2 − FJL + GL2)x2
1 + (2EHJ − FHL− FJK + 2GKL)x1

+(EH2 − FHK + GK2) = 0

Ax2
1 + Bx1 + C = 0.

(25)

(26)

The quadratic term is eliminated by multiplying the first equation by A and the second equation by (EJ2 − FJL +
GL2) and subtracting, giving

[A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL + GL2)]x1+

[A(EH2 − FHK + GK2)− C(EJ2 − FJL + GL2)] = 0,
(27)

so that

x1 = − A(EH2 − FHK + GK2)− C(EJ2 − FJL + GL2)
A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL + GL2)

. (28)

Substituting back into Equation 26 gives

A

[
A(EH2 − FHK + GK2)− C(EJ2 − FJL + GL2)

A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL + GL2)

]2

+

−B
A(EH2 − FHK + GK2)− C(EJ2 − FJL + GL2)

A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL + GL2)
+ C = 0,

(29)

or
A3(EH2 − FHK + GK2)2 + AC2(EJ2 − FJL + GL2)2

− 2A2C(EH2 − FHK + GK2)(EJ2 − FJL + GL2) + [−AB(EH2 − FHK + GK2)

+ BC(EJ2 − FJL + GL2)] [A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL + GL2)]

+ C[A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL + GL2)]2 = 0

(30)

The equation, after expressions for A, B, . . . , L are substituted in, can be divided by ρ4
1ρ

4
2, giving an 8th order

polynomial equation in ρ1 and ρ2, i.e., Q(ρ1, ρ2) = 0. This equation together with Equation 14 represents a system of
two equations in two unknowns

{
γ>1 γ1 ρ2

1 − 2γ>1 γ2 ρ1ρ2 + γ>2 γ2 ρ2
2 = (Γw

1 − Γw
2 )>(Γw

1 − Γw
2 ),

Q(ρ1, ρ2) = 0,
(31)
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and gives a number of solutions for ρ1, and ρ2 which in turn solve for the unknowns ρ1
g1
G1

, ρ2
g2
G2

, ρ′1
G1

, and ρ2
G2

. Once
these unknowns are solved for, the rotationR can be obtained from the matrix equation (12). The translation T is then
solved from Equations 6 as

T = ρ1γ1 −RΓw
1 . (32)

4 Details in the Proof of Proposition 3.2
The parametrization we have assumed in the space curve projects T to the same half plane as t in each view so that T
and t need to point in the same direction, i.e., T · t > 0, or from Equations 10 and 11, g1

G1
> 0 and g2

G2
> 0.

5 Details in the Proof of Proposition 4.1
The parameters α, β, and θ for the ellipse in Equation 14 can be found by substitution of ρ1 and ρ2 in the parametric
form (given in the paper) into Equation 14. Specifically, writing

γ>1 γ1

(1 + t2)2
[4α2t2 cos2 θ + β2(1− t2)2 sin2 θ + 4αβt(1− t2) sin θ cos θ]+

− 2γ>1 γ2

(1 + t2)2
[−4α2t2 sin θ cos θ + 2αβt(1− t2) cos2 θ − 2αβt(1− t2) sin2 θ] + β2(1− t2)2 sin θ cos θ

−2γ>2 γ2

(1 + t2)2
[4α2t2 sin2 θ + β2(1− t2)2 cos2 θ − 4αβt(1− t2) sin θ cos θ] = ‖Γw

1 − Γw
2 ‖2.

(33)

Simplifying the equation as

[(γ>1 γ1)4α2t2 − (γ>1 γ2)4αβt(1− t2) + (γ>2 γ2)β
2(1− t2)2] cos2 θ+

[(γ>1 γ1)β
2(1− t2)2 + (γ>1 γ2)4αβt(1− t2)(γ>2 γ2)4α2t2] sin2 θ+

[(γ>1 γ1)4αβt(1− t2) + (γ>1 γ28α2t2 − (γ>1 γ2)2β2(1− t2)2 − (γ>2 γ2)4αβt(1− t2)] sin θ cos θ

= (1 + t2)2‖Γw
1 − Γw

2 ‖2
(34)

and using simple trigonometric identities cos2 θ = 1+cos(2θ)
2 and sin2 θ = 1−sin(2θ)

2 , cos2 θ − sin2 θ = cos(2θ) and
sin(2θ) = 2 sin θ cos θ, this equation can be better simplified to

[(γ>1 γ1)4α2t2 − (γ>1 γ2)4αβt(1− t2) + (γ>2 γ2)β
2(1− t2)2](1 + cos(2θ))+

[(γ>1 γ1)β
2(1− t2)2 + (γ>1 γ2)4αβt(1− t2) + (γ>2 γ2)4α2t2](1− cos(2θ))+

[(γ>1 γ1)4αβt(1− t2) + (γ>1 γ2)8α2t2 − (γ>1 γ2)2β2(1− t2)2 − (γ>2 γ2)4αβt(1− t2)] sin(2θ)

= 2(1 + t2)2‖Γw
1 − Γw

2 ‖2.

(35)

which is an equation only involving the unknown θ,

(γ>1 γ1 + γ>2 γ2)[4α2t2 + β2(1− t2)]+

[(γ>1 γ1 − γ>2 γ2)[4α2t2 − β2(1− t2)2]− (γ>1 γ2)8αβt(1− t2)] cos(2θ)

[(γ>1 γ1 − γ>2 γ2)4αβt(1− t2) + 2γ>1 γ2[4α
2t2 − β2(1− t2)2]] sin(2θ)

= 2(1 + t2)2‖Γw
1 − Γw

2 ‖2.

(36)

This equation holds for all values of t. For t = 0,

(γ>1 γ1 + γ>2 γ2)β
2 − (γ>1 γ2 − γ>2 γ2)β

2 cos(2θ)− 2γ>1 γ2β
2 sin(2θ) = 2‖Γw

1 − Γw
2 ‖, (37)
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giving

β2 =
2‖Γw

1 − Γw
2 ‖2

(γ>1 γ1 + γ>2 γ2)− (γ>1 γ1 − γ>2 γ2) cos(2θ)− 2γ>1 γ2 sin(2θ)
. (38)

Similarly, at t = 1,

(γ>1 γ1 + γ>2 γ2)4α2 + (γ>1 γ1 − γ>2 γ2)4α2 cos(2θ) + 2γ>1 γ24α2 sin(2θ) = 8‖Γw
1 − Γw

2 ‖2, (39)

giving

α2 =
2‖Γw

1 − Γw
2 ‖2

(γ>1 γ1 + γ>2 γ2) + (γ>1 γ1 − γ>2 γ2) cos(2θ) + 2γ>1 γ2 sin(2θ)
. (40)

6 Additional Remarks
We plan to provide the Matlab source code for our pose estimation approach to the public once this paper gets accepted.
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