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We introduce a new affinely invariant structure on smooth surfaces in R
3 by defining

a family of reflections in all points of the surface. We show that the bifurcation set of
this family has a special structure at ‘A∗

2 points’, which are not detected by the flat
geometry of the surface. These A∗

2 points (without an associated structure on the
surface) have also arisen in the study of the centre symmetry set; using our technique
we are able to explain how the points are created and annihilated in a generic family
of surfaces. We also present the bifurcation set in a global setting.
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1. Introduction

Symmetries of various kinds have played an important role in the study of surfaces
in Euclidean 3-space R

3 and in applications of the geometry of such surfaces. One of
the best-known examples is the (Blum) medial axis, or medial axis transform [17],
which is constructed for a smooth closed surface M by taking the closure of the
locus of centres c of spheres S that are entirely contained inside the closed region
of R

3 bounded by M and tangent to M at two places (or more). The connection
here with symmetry is local: the plane π through c perpendicular to the line joining
two points p, q of contact of S and M is a local or first-order plane of symmetry
for M . This means that reflection in π takes p to q and also takes the tangent
plane of M at p to the tangent plane at q. Furthermore, π is tangent to the medial
axis (at smooth points). Thus, the medial axis captures some aspects of the local
reflectional symmetries of M , where here ‘reflectional’ means reflection in a plane.
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There are close connections between the singularities of the medial axis and the
contact between S and M (or singularities of the distance-squared function on M
from points of R

3 [6,8]). This leads to close relations with the differential geometry
of M , such as ridge curves where two contact points p, q coincide. The bifurcation
set of the family of distance-squared functions on M is the union of the focal
set of M (the locus of centres of principal curvature) and the symmetry set of
M , which is the closure of the locus of centres of all spheres tangent to M at
two points (or more) [9, 17]. The medial axis has proved to be a major tool in
computer vision [17]. Besides distance-squared functions, which are said to extract
the ‘spherical geometry’ of M , the family of height functions on M extracts the
affinely invariant ‘flat geometry’ such as parabolic curves, asymptotic curves and
cusps of Gauss (also known as godrons) [5, 7].

A different use of reflections, also closely connected with differential geometry, was
made by Bruce and Wilkinson in [4]. They studied the local reflectional symmetry
of a surface in R

3 by considering reflection in planes containing the normal line to
M at a point p ∈ M and the family of ‘folding maps’. Principal directions on M
emerge naturally in this way, but, perhaps more importantly, the bifurcation set of
the family of folding maps is the union of the duals of the focal set and symmetry
set. Thus, information is available about the tangential structure of these sets by
studying local symmetries. This includes the ‘sub-parabolic points’ of M (points at
which the corresponding point on the focal surface is parabolic), of significance in
shape analysis and computational geometry [9].

A number of authors have studied a local version of central symmetry : the centre
symmetry set of a surface M in R

3 is the (affinely invariant) envelope of chords
joining distinct points p, q at which the tangent planes to M are parallel. For a
globally centrally symmetric surface this envelope degenerates to a single point that
is the centre of all such chords. This subject was initiated for plane curves in [16] and
followed up in many articles; see, for example, [12, 13]. There are connections here
not only with the differential geometry of M , but also with physics via the ‘Wigner
caustic’ [2,10] and Finsler geometry [12]. The structure of the centre symmetry set
has been shown to give information about M that does not arise from any of the
above methods [13].

In this article we contribute to the above programme of relating differential geom-
etry of surfaces to the theory of singularities and symmetry. We work from a dif-
ferent viewpoint to those above: we study the family of reflection maps in points
of M itself. That is, for each p ∈ M we take the map reflecting M in p and study
the contact function between M and the reflected surface M∗. It turns out that the
bifurcation set of this family of functions extracts in a very simple way much of the
information about the differential geometry of M that comes via the centre sym-
metry set. In this instance we are able to give a global meaning to the bifurcation
set of the family of local reflection maps, and we are able to determine, in a family
of surfaces, how the special features of the bifurcation are created and destroyed. In
a subsequent article we plan to carry out a similar investigation for surfaces in R

4.

2. Previous work and plan of this article

In [11] we introduced an affinely invariant family of reflection maps on a surface M
in three- or four-dimensional space and studied the relation of this family to the
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underlying geometry of the surface. Given a point p of M , the reflection map based
at p takes m ∈ M to its reflection m∗ in p, and as m traces out a neighbourhood
of p, so m∗ traces out a surface M∗ whose contact with M at p is measured by
the contact map. Varying p now produces a family of reflection maps and contact
maps that give geometrical information about M distinct from that given by, say,
the family of height functions on M , which are related to the flat geometry of M .
The reflection maps pick out the parabolic set of M and also special points of the
parabolic set, called ‘A∗

2 points’. These arose in the study of the affine equidistants
and centre symmetry set of M . Both of these depend on chords joining pairs of
points of M with parallel tangent planes; an affine equidistant is the locus of points
at a fixed ratio of distance from the ends of such chords, and the centre symmetry
set is the envelope of the chords (when this exists). Then at A∗

2 parabolic points
of M the structures of the ‘halfway equidistant’ (ratio of distances = 1) and the
centre symmetry set are different from the structures at other parabolic points.
See [14, p. 74, definition 3.3].

In the present article we consider in detail the affinely invariant bifurcation set
of the family of reflection maps for a smooth surface M in R

3. We identify this
bifurcation set with the set of critical values of a symmetric map R

2 → R
2, and use

the classification of projections of surfaces with boundary in [3] to identify it. (For
an alternative approach to this classification, see [15].) The role of the ‘boundary’
is taken by the parabolic set of M , and the bifurcation set in a neighbourhood of a
parabolic point of M always contains the parabolic set. At special parabolic points
it has an extra branch arising from a ‘semi-fold’ singularity in the terminology of [3].
These points are the ‘A∗

2’ points referred to above, and they are affinely invariant
points of M . There is no special structure at a cusp of Gauss: the reflection maps
do not ‘recognize’ these points that affect the flat geometry of M .

Our work provides a geometrical interpretation of the A∗
2 points, as well as an

explanation of how they are created or disappear in a generic one-parameter family
of surfaces, something that was left unsolved in [18]. In fact these transitions occur
at singularities of the semi-lips or semi-beaks type in the language of [3]. We show
that another codimension 1 singularity, the semi-cusp, cannot occur in the present
context.

The bifurcation set that we study appears to be most meaningful in a neighbour-
hood of the parabolic set, but it does extend over the surface, in both elliptic and
hyperbolic regions. Apart from in § 7 we shall work locally, parametrizing M as a
graph.

In § 3 we study the family of reflections. In § 4 we study the bifurcation set BF ,
splitting into three cases: case 1, a non-singular parabolic point that is not a cusp
of Gauss; case 2, a cusp of Gauss; and case 3, a singular parabolic point. These
split into subcases according to additional geometric conditions on M . In § 5 we
study in more detail families of surfaces in order to discover how the bifurcation
set evolves when the surface M is perturbed in a generic way. The same three
cases are considered. In § 6 we give some explicit examples and in § 7 we place
our investigation in the setting of global surfaces, given by equations of the form
g(x, y, z) = 0 in R

3.
Here are the main results of this article, with references to the sections where

details can be found.
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Theorem 2.1. Let p ∈ M . The structure of the bifurcation set of the family of
reflection maps in a neighbourhood of p is (as a subset of M) as follows.

• The parabolic curve, if p is not an A∗
2 point of M . See § 4, case 1(a) (also

case 2(a) for p a cusp of Gauss).

• The parabolic curve and a branch tangent to it and terminating at p, if p is
an A∗

2 point of M . The branch can lie locally in either the elliptic or hyper-
bolic region of M , giving two types: elliptic and hyperbolic A∗

2 points. See § 4,
case 1(b) and figure 1(i).

Furthermore, we have the following.

• For a generic one-parameter family of surfaces, A∗
2 points of the same type

are created or destroyed through a ‘semi-lips’ or ‘semi-beaks’ transition. See
§§ 4 and 5, case 1(c).

• The projection of surfaces with a boundary singularity ‘semi-cusp’ cannot
occur in the present context. See § 4, case 1(d).

• There is no creation of A∗
2 points at Morse-type transitions of the parabolic

curve. See §§ 4 and 5, case 3.

3. The family of reflections

For the local version of the family we take a surface M in R
3 in Monge form, that

is, as the graph z = f(x, y) of a smooth function f , which we write in the form

f(x, y) = f20x
2 + f11xy + f02y

2 + · · · + fijx
iyj + · · · (3.1)

in order to perform calculations. For the most part we take the origin to be a
parabolic point of M , with f11 = f02 = 0, and we can scale to make f20 = 1. All
our constructions are invariant under affine transformations in the ambient R

3.
Let p = (p, q, r), where r = f(p, q), be a point of M and consider the map that

reflects M in this point. That is, for any other point m = (p+x, q + y, r + z) of M ,
where z = f(p+x, q+y)−f(p, q), we reflect in p to obtain m∗ = (p−x, q−y, r−z),
which will of course not in general lie on M . As x and y vary, m∗ traces another
surface M∗ through p and we can measure the contact between M and M∗ at p.
The contact function is the composite F given by parametrizing M∗ and following
by the function whose zero-set is M :

(x, y) �→ (p − x, q − y, r − z)
�→ f(p − x, q − y) − (r − z)
= f(p + x, q + y) + f(p − x, q − y) − 2f(p, q)
= F (x, y, p, q). (3.2)

Note that F is symmetric in x and y: we always have F (x, y, p, q) = F (−x,−y, p, q).
It can be regarded as a two-parameter unfolding, with parameters p, q of the func-
tion F0(x, y) = F (x, y, 0, 0) = f(x, y) + f(−x,−y), which is twice the even part of
f , and the bifurcation set we study in this article is in this sense.
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Our objective in this article is to calculate the bifurcation set of F , namely (using
suffixes to denote partial derivatives),

BF = {(p, q) : there exist x, y with Fx = Fy = FxxFyy − F 2
xy = 0}.

This lies in the parameter plane of M but can also be considered as a subset of M
itself. If the origin is not a parabolic point, then the equation FxxFyy − F 2

xy = 0
contains a constant term, namely, a multiple of 4f20f02−f2

11, so that small solutions
for x, y are not possible. We shall assume unless otherwise stated that the origin
is parabolic, since we are chiefly interested in the germ of BF at a point of the
parabolic set of M . Nevertheless, the bifurcation set does have a global structure,
away from the parabolic curve, and we give a ‘semi-global’ example in figure 3.

In order to study BF we shall consider the critical set

ΣF = {(x, y, p, q) : Fx = Fy = 0}. (3.3)

A significant source of difficulty is that, from the definition in (3.2), all points
(0, 0, p, q) belong to ΣF . These points, the ‘trivial component’ of ΣF , prevent ΣF

from being smooth; they have to be eliminated before we can compute the struc-
ture of BF as the set of critical values of a projection π : Σ0

F → R
2, (x, y, p, q) �→

(p, q), where Σ0
F is the ‘non-trivial’ component of ΣF . This is defined precisely in

lemma 4.1.

4. The bifurcation set of F for a generic surface

In this section we show how to eliminate the ‘trivial’ component of ΣF , yielding
a smooth surface in (x, y, p, q)-space; this allows us to reduce the problem to the
study of a symmetric map from the plane to the plane. We take the classification up
to codimension 1, that is, singularities that we expect to occur on a generic surface
or in a generic one-parameter family of surfaces.

Case 1: the origin is a parabolic point of M but not a cusp of Gauss

At an ordinary parabolic point of M the tangent plane has A2 contact with M ,
while at a cusp of Gauss it has A3 contact. With M in Monge form the contact
at the origin with the tangent plane is measured by the function f itself. Thus, in
(3.1) we take f20 = 1, f11 = 0, f02 = 0, and also f03 �= 0 to avoid A3 contact. Using
this, it is easy to check that, by an affine transformation, we can also assume that
f12 = 0, and we shall do this since it simplifies the formulae that occur later. Thus,
for case 1, f has the form

f(x, y) = x2 + f30x
3 + f21x

2y + f03y
3 + higher terms, f03 �= 0.

Lemma 4.1. Let f be as above. Then the component Σ0
F other than {(0, 0, p, q)}

of ΣF is locally a smooth 2-manifold parametrized locally in the form (y, p) �→
(X(y, p, Q(y, p)), y, p, Q(y, p)), where Q is in fact a smooth function of y2 and p; in
fact Qy = yV (y, p), where V (0, 0) = − 4

3f04.
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Proof. We break the proof up into several steps, (i)–(v) below. The coefficient of x
in Fx is 2, and hence Fx = 0 can be solved locally for x = X(y, p, q), say.

(i) X(y, p, q) = −X(−y, p, q) for all y, p, q; in particular, X(0, p, q) ≡ 0.

Now x = X is the unique solution to Fx(x, y, p, q) = 0, and Fx(−x,−y, p, q) =
−Fx(x, y, p, q) from the definition of F . Thus,

Fx(−X(−y, p, q),−y, p, q) = −Fx(X(y, p, q), y, p, q) ≡ 0,

and x = −X(−y, p, q) is the unique solution to Fx(x, y, p, q) = 0 and hence equals
X(y, p, q).

Now substitute x = X into Fy = 0; then Fy(X(0, p, q), 0, p, q) = Fy(0, 0, p, q) ≡ 0,
so that by Hadamard’s lemma, Fy(X(y, p, q), y, p, q) = yU(y, p, q) for a smooth
function U . Note that the solution y = 0 to Fy = 0 leads to x = X(0, p, q) = 0, so
it is the other solution, U(y, p, q) = 0, that we wish to pursue.

(ii) U(y, p, q) = U(−y, p, q); therefore U is a function of y2, p and q. Also, the only
term in U of degree less than or equal to 1 is 3q, so U(0, 0, 0) = 0.

We have Fy(X(−y, p, q),−y, p, q) = −yU(−y, p, q). But the left-hand side of this
is U(−X(y, p, q),−y, p, q) by (i), and Fy(−x,−y, p, q) = −Fy(x, y, p, q) for any x, y,
from the definition of F . So −yU(y, p, q) = −Fy(X(y, p, q), y, p, q) = −yU(−y, p, q)
for all values of y, p, q and this gives the first result. The last sentence follows from
a direct calculation.

A calculation shows that Uq(0, 0, 0) = Fyyq(0, 0, 0, 0) = 12 �= 0, so that U = 0
can be solved for q = Q(y, p), say, so that U(y, p, Q(y, p)) ≡ 0.

(iii) Q(y, p) = Q(−y, p), so that Q is a function of y2 and p (and Q(0, 0) = 0).

Now q = Q(y, p) is the unique solution to U(y, p, q) = 0, so U(y, p, Q(y, p)) ≡ 0,
and replacing y by −y we have U(−y, p, Q(−y, p)) ≡ 0. But the left-hand side is
U(y, p, Q(−y, p)) by (ii), so by uniqueness Q(−y, p) = Q(y, p).

(iv) Qy(−y, p) = −Qy(y, p) for all y, p and, in particular, Qy(0, p) = 0 for all p,
so that Qy = yV (y, p) for a smooth function V , and the critical set of π away from
the parabolic curve is given by V (y, p) = 0.

This is immediate from (iii).

(v) We have V (0, 0) = − 4
3f04.

This follows from a direct calculation and completes the proof of the lemma.

Corollary 4.2. The bifurcation set BF that we wish to study is the set of critical
values of the projection π : Σ0

F → R
2, π(y, p) = (p, Q(y, p)).

Lemma 4.3. The set of points π(0, p) = (p, Q(0, p)) is locally the parabolic set of
M , and this forms part of the bifurcation set.

Note that when f has 2-jet equal to x2, the parabolic set on M : z = f(x, y) is
smooth at the origin unless f12 = f03 = 0, and parametrized by x provided that
f03 �= 0.
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Proof. This is a matter of using the information in (i)–(iv) above, together with
Fxx(0, 0, p, q) = 2fxx(p, q) and similarly for Fxy, Fyy. In fact, differentiating

Fx(X(y, p, q), y, p, q) ≡ 0 and Fy(X(y, p, q), y, p, q) = yU(y, p, q)

with respect to y, putting y = 0 and using the properties above, we deduce that

Fxx(0, 0, p, Q(0, p))Fyy(0, 0, p, Q(0, p)) = Fxy(0, 0, p, Q(0, p))2

for all p. The last sentence follows from (iv) above.

Since Q is a function of y2 and p, say Q(y, p) = K(y2, p), by lemma 4.1 the map π
in the corollary will be classified according to the classification of symmetric maps,
which coincides with that of singularities of projections of surfaces with boundary.
We use the inductive classification in [3, § 3], and for this we need the expansion
of the function K about (0, 0). In our situation the parabolic set takes the role of
the boundary y = 0, by lemma 4.3. We write Y for y2, so that K is a function
of Y and p. The singularity that is relevant for us is the corank 1 singularity of
π̃ : (Y, p) �→ (p, K(Y, p)) so that changes of coordinates in the source must preserve
the ‘boundary’ Y = 0.

Case 1(a): an ordinary (‘A2’) point of the parabolic set.

Recall that f03 �= 0; if also f04 �= 0, then

K(Y, p) = −2
3

f04

f03
Y + higher terms,

so that as a boundary singularity π̃ is equivalent to (Y, p) �→ (p, Y ):

if f03 �= 0, f04 �= 0, then the bifurcation set consists locally of
the (smooth) parabolic set.

Thus, by an ordinary A2 point we mean one for which f04 �= 0. As noted above, by
A2 we refer to the contact of M with its tangent plane. The boundary singularity
is a local diffeomorphism.

Case 1(b): a parabolic point at which f04 = 0 (an ‘A∗
2 point’).

Such points were called A∗
2 points in [14], where they were related to the structure

of certain equidistants. When f04 = 0 the function K has the following 2-jet,
ignoring terms depending only on p and using cij to denote the coefficient of Y ipj ,

c20Y
2 + c11Y p =

f2
13 − 4f06

4f03
Y 2 +

2(f21f13 − f14)
3f03

Y p.

The classification in [3, § 3] is according to which of these coefficients is non-zero.
Suppose that both are non-zero; then the boundary singularity is equivalent to

(Y, p) �→ (p, Y p + Y 2), which is 2-determined. This is the stable ‘semi-fold’ singu-
larity:

if f03 �= 0, f04 = 0, f2
13 −4f06 �= 0, f21f13 −f14 �= 0, then the bifurcation

set consists locally of the (smooth) parabolic set and another smooth
curve tangent to it at the origin, and ending there.

See figure 1(i) for a schematic representation.
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There are two distinct kinds of semi-fold, since the curve tangent to the parabolic
set can lie locally in the elliptic or the hyperbolic region of M ; we can refer to these
as elliptic A∗

2 points or hyperbolic A∗
2 points. See figure 3 for an example with several

hyperbolic A∗
2 points.

Lemma 4.4. Assume as above that f2
13 − 4f06 and f21f13 − f14 are non-zero. Then

the second branch of the bifurcation set BF at an A∗
2 point is locally in the hyperbolic

(respectively, elliptic) region of M if and only if f2
13 − 4f06 > 0 (respectively, f2

13 −
4f06 < 0). This holds if and only if the singularity of F0(x, y) = F (x, y, 0, 0) is of
type A+

5 (respectively, A−
5 ), that is, right-equivalent to x2+y6 (respectively, x2−y6).

Proof. Following through the calculations up to (iv) above, we find that the critical
set of π, away from the parabolic set, is given by V (y, p) = 0, where

V (y, p) =
4(f21f13 − f14)

3f03
p +

f2
13 − f06

f03
y2 + · · · ,

and solving this for p as a function of y, say p = A(y), the branch of the critical set
is given by (A(y), Q(y, A(y))). Substituting these into fxxfyy − f2

xy gives 3(4f06 −
f2
13)y

4 + · · · . When this is negative the branch lies in the hyperbolic region.
The last sentence follows because F0(x, y) is twice the even part of f , using a

standard argument with right-equivalence of functions.

Remark 4.5. We remark that the A∗
2 points are not related to the ‘goose’ points on

the parabolic set, as described in, for example, [1]. These are parabolic points such
that projection of the surface in the unique asymptotic direction to a plane yields
a rhamphoid cusp in the image. A necessary condition for this is, in the notation
of (3.1), and assuming f11 = f02 = 0, that f2

12 = 3f21f03, a condition unrelated to
that for an A∗

2 point.

Case 1(c): f40 = 0, c11 = 0, i.e. f21f13 − f14 = 0; c20 �= 0, i.e. f2
13 − 4f06 �= 0.

Following the classification in [3, § 3] we examine the cubic terms of K; a change
of variable of the form Y → Y (1 + αp + βY ) for constants α and β (this change
of variable preserving Y = 0) removes the cubic terms in Y 2p and Y 3, leaving the
important term c12Y p2, where

c12 =
3f03(3f31f13 + 4f21f23 − 2f24 − 2f2

21f22 − 6f30f21f13) + 10f05(f22 − f2
21)

9f2
03

.

If c12 �= 0, then from the classification π̃ is equivalent to (Y, p) �→ (p, Y 2 ± Y p2),
where the sign is that of c20c12. This is called a semi-lips or semi-beaks according
to whether the sign is + or −. In this case the critical set of π̃ is tangent to the
‘boundary’ Y = 0 but transverse to the kernel line of the map π̃. This case will be
relevant in the next section, where we discuss one-parameter families of surfaces.
We sum it up as follows.

Lemma 4.6. With the conditions f40 = 0, f21f13 − f14 = 0, f2
13 − 4f06 �= 0, the

boundary singularity of π̃ is of semi-lips or semi-beaks type according to whether
c20c12 is greater than 0 or less than 0. It is hyperbolic or elliptic according to whether
c20 is greater than 0 or less than 0, where c20 = (f2

13 − 4f06)/4f03 as above.
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For additional information on case 1(c), see § 5.
In the case of the singularity, called semi-goose in [3], which is a degeneration of

the semi-lips/beaks discussed here, we have c20 = c11 = 0 and the vanishing of the
complicated expression c12 above means in geometrical terms that the critical set
of π̃ and the ‘boundary’ Y = 0 have inflectional contact. This is in line with the
classification of [3].

Case 1(d): f40 = 0, c11 �= 0, i.e. f21f13 − f14 �= 0; c20 = 0, i.e. f2
13 − 4f06 = 0.

In this case a change of variable in Y , as in case 1(c), removes the cubic terms
except for Y 3, but the coefficient c30 of Y 3 turns out to be a multiple of c20, which
we are assuming is zero. So the ‘semi-cusp case’, equivalent to (Y, p) �→ (p, Y p+Y 3),
cannot occur in our situation.

Case 2: the origin is a cusp of Gauss (godron)

Here, in (3.1) we take f20 = 1, f11 = 0, f02 = 0, and also f03 = 0, but assume that
f12 �= 0 so that the parabolic set of M is not singular at the origin. (So in this case
f12 cannot be made zero by an affine transformation, as it could in case 1.) In fact
there is very little to say here, since cusps of Gauss are no different from parabolic
points as in case 1(a) above: the reflection maps do not distinguish cusps of Gauss
but they do distinguish quite different points, the A∗

2 points of the parabolic curve.
We shall not give so much detail as above; in the present case the parametrization
of the ‘non-trivial’ part of the critical set ΣF is different since p is a smooth function
of q rather than the other way round. We reduce to a map π : (y, q) �→ (q, P (y, q)),
where, as before, P is a function of Y = y2. Thus, as a boundary singularity we
consider the map π̄ : (Y, q) �→ L(Y, q), where L(Y, q) = P (y, q). Then we find the
following.

Case 2(a): f04 �= 0.

Then the 1-jet of L(Y, q) is −2f04Y/f12 so that L is equivalent to the bound-
ary singularity (Y, q) �→ (q, Y ) and the bifurcation set consists locally of just the
parabolic curve. This is the same as case 1(a), an ordinary point of the parabolic
curve.

Case 2(b): f04 = 0.

This means that the origin is a cusp of Gauss that is ‘also an A∗
2 point’. It gives a

semi-fold singularity provided that we also have f12f13−5f05 �= 0 and f2
13−4f06 �= 0.

For additional information on this case, see § 5.

Case 3: the parabolic curve is singular

Case 3(a): the quadratic terms of f are not identically zero.

This amounts to f20 = 1, f11 = 0, f02 = 0, f12 = 0, f03 = 0 and occurs generically
only in a one-parameter family of surfaces (see § 5). We shall assume by genericity
that f04 �= 0 (vanishing of f04 would give an ‘A∗

2 point at which the parabolic curve
is singular’ and require a two-parameter family of surfaces). The first steps (i) and
(ii) of the proof of lemma 4.1 still apply, so that we can solve Fx = 0 for x as a
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function of y, p, q and substitute in Fy = 0, divide by y and obtain a function U
that depends on y2, p, q. But now the 2-jet of U is (dividing by 4)

2f04y
2 + (f22 − f2

21)p
2 + 3f13pq + 8f04q

2,

with no linear term in p or q. However, we can replace y2 by Y in U and solve for
Y to give

y2 = Y =
f2
21 − f22

2f04
p2 − 3f12

2f04
pq − 3q2 + higher terms.

It is now clear that the projection map from ΣF to the (p, q)-plane has no singu-
larities except those corresponding to singularities of ΣF itself, which occur when
Y , or y, is zero, and this is the parabolic set of M . Hence, we have the following
lemma.

Lemma 4.7. At a generic singular point of the parabolic curve, where the quadratic
terms of the surface f = 0 are not identically zero, the bifurcation set BF consists
locally of the parabolic curve only.

Case 3(b): the quadratic terms of f are identically zero (an elliptic or hyperbolic
umbilic).

Again this occurs only in a generic family of surfaces. We find again that the
bifurcation set remains throughout just the parabolic curve, that is, no A∗

2 points
are involved. Because the calculations in this case are quite different from those in
case 3(a) we give an example in § 6.

For additional information about case 3, see § 5.

5. The bifurcation set of F for a generic one-parameter family of
surfaces

In this section we shall interpret cases 1(c), 2(b) and 3 from the previous section as
occurring in generic one-parameter families of surfaces, say z = f(x, y, ε). In order
to discover the evolution of the bifurcation set as ε passes through 0 we need to
add some conditions that allow us to determine the structure of the ‘big bifurcation
set’ in (p, q, ε)-space, and to determine the level sets ε = const. of the parameter ε.

Case 1(c): semi-lips and semi-beaks.

This transition explains the way in which A∗
2 points are formed in an evolution of

a surface. The first examples of this are in [18, ch. 7, § 5]. Suppose that z = f̃(x, y, ε)
is a family of surfaces in Monge form, so that ε only enters the terms of degree 2 or
higher, and suppose that for ε = 0 the surface z = f̃(x, y, 0) = f(x, y) satisfies the
conditions above, namely, f20 = 1, f11 = f02 = f04 = 0, f03 �= 0, f2

13 − 4f06 �= 0,
f21f13 − f14 �= 0. Then the boundary singularity (Y, p) �→ (p, K(Y, p)) is of type
semi-lips or semi-beaks (with normal form (p, Y 2 ± Y p2)), provided the additional
condition c12 �= 0 above holds. According to [3, p. 410], for the ε terms to give a
versal unfolding we need a term εY in K. For this we need to include a term εy2 in
the family of surfaces, that is, ensure that f̃yyε(0, 0, 0) �= 0, and then the coefficient
of εY works out as 10f05/9f2

03. Thus we have the following lemma.



Bifurcation sets of families of reflections on surfaces in R
3 347

(i) (iii)(ii)

Figure 1. Schematic diagrams of (i) case 1(b) (semi-fold), (ii) case 1(c) (semi-lips) and (iii)
case 1(c) (semi-beaks). In all cases the region above the horizontal line (which represents
the parabolic set of M) can be the elliptic or the hyperbolic region.

Lemma 5.1. Assume that all the conditions of case 1(c) are satisfied, and that in
addition f05 �= 0 and that a family of surfaces z = f̃(x, y, ε) satisfies f̃yyε(0, 0, 0) �=
0. Then the bifurcation set passes through a semi-lips or semi-beaks transition
according to whether the sign of c20c12 (in case 1(c)) is positive or negative.

Note that this represents the way in which A∗
2 points are created or destroyed

in a family of surfaces. Because of the nature of the transitions, both A∗
2 points

must be elliptic, or both hyperbolic, in the terminology of lemma 4.4. There is an
example in the next section. See figures 1 and 2.

Case 2(b): an A∗
2 point that is also a cusp of Gauss.

This case is much less interesting since it simply means that the conditions of
case 2(a) are satisfied, and that in the family of surfaces the coefficient f04 passes
through 0. There is no change in the bifurcation set: it is a semi-fold throughout
and at the moment when f04 = 0, the base point is a cusp of Gauss. The addi-
tional branch characteristic of an A∗

2 point simply ‘slides along the parabolic curve’
through the cusp of Gauss.

Case 3: singular parabolic set.

The result of the discussion in case 3 in § 4 is that throughout the transition
the local bifurcation set remains simply the parabolic set. The key consequence is
that A∗

2 points are not created or destroyed by the evolution of the parabolic set
through the standard Morse transitions (as described in, for example, [5, 7]). This
was suggested by examples in [18, ch. 7]. The creation and destruction of A∗

2 points
takes place only through the transition of case 1(c), in a generic one-parameter
family of surfaces. We give an example of case 3(b) in § 6 since the calculations are
rather different from those encountered above.

6. Examples

Figure 1 shows in schematic form (i) case 1(b) (semi-fold), (ii) case 1(c) (semi-lips)
and (iii) case 1(c) (semi-beaks). The horizontal line represents the boundary, which
in our case is the parabolic set of M , and the curved lines the additional component
of the bifurcation set BF . The dots are A∗

2 points, in the middle diagrams of (ii)
and (iii) these are degenerate A∗

2 points at which f21f13 = f14.

Example 6.1. The most interesting case is case 1(c), which can be realized by the
one-parameter family of surfaces

z = f̃(x, y, ε) = x2 + εy2 + y3 ± x3y + xy3 − y5, (6.1)
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– 0.15

0.15

– 0.15

0

– 0.02

0.02

A2
*

A2
*

A2
*
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*

parabolic curve

p

p

ε

ε

ε < 0

ε < 0

ε < 0 ε > 0 ε > 0

ε > 0

ε > 0

(a)

(b)

Figure 2. The values of p for which there are real points on BF , besides the parabolic
set, for the family (6.1), are shown on the left of parts (a) and (b) by thick vertical lines.
Part (a) represents semi-lips, where real values of p exist only for ε � 0, and part (b)
represents semi-beaks, where for ε < 0 there is a gap in the values of p. The right of each
part shows the actual bifurcation sets during the transition. These are all hyperbolic A∗

2

points in this example, that is, the branches all lie in the hyperbolic region of M . The
boxed schematic figures show the transition with the curves more separated than in the
actual example.

where ‘+’ realizes semi-lips and ‘−’ realizes semi-beaks, at the origin. Figure 2 shows
the boundary between the pairs (ε, p), which give positive or negative values of Y ,
and hence real or complex values for y, other than the solution y = 0, when the
equation Qy = 0 is solved for the critical set of Q. The figure also shows the actual
bifurcation sets that pass through a semi-lips or semi-beaks transition, causing the
creation or destruction of two A∗

2 points of the same kind, elliptic or hyperbolic.

Example 6.2. Figure 3 shows an example of the bifurcation set BF , where there
are two A∗

2 points within the range shown. The equation of the surface in this
example, which satisfies all the conditions of lemma 4.4, is sufficiently simple that
the bifurcation set can be calculated directly.
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L

q

P

p

B

B

2

2

1

0 1–1

Figure 3. The parameter (p, q) plane of the surface z = x2 + y3 + 2x2y + xy3, which has
an A∗

2 point at the origin. One component of the parabolic set is marked P . The curve
marked L determines, together with P , whether the solutions for Y in the bifurcation set
are positive, and hence whether the point (p, q) is a real point or not. The solid lines marked
B are the real bifurcation set and the dashed continuations are those excluded because
Y < 0. Thus, the figure contains two A∗

2 points, the endpoints of B. The A∗
2 points in this

example are both hyperbolic. The diagram is cut off above q = − 1
2 since this example

becomes highly degenerate at (p, q) = (− 3
16 , − 1

2 ), with an entire line (x, 0, p, q) projecting
to a point.

Example 6.3. To illustrate case 3(b) in § 4, consider the elliptic/hyperbolic umbilic
at the origin on the surface z = f(x, y) = εx2y + y3 + y4, placed in the family of
surfaces given by

z = tx2 + εx2y + y3 + f04y
4,

where t is small, f04 �= 0 and ε is 1 for a hyperbolic umbilic and −1 for an elliptic
umbilic (see [5,7]). Writing down Fx and Fy we can eliminate x to obtain an equation
for y2 that solves to give

x = − εpy

t + εq
, y2 =

−3tq + p2 − 3(ε + 2f04t)q2 − 6εf04q
3

2f04(t + εc)
.

But substituting this into the third defining equation FxxFyy − F 2
xy = 0 we find

exactly that the numerator of the expression for y2 is zero, giving x = y = 0, which
shows that the bifurcation set consists entirely of the parabolic set. When t = 0 the
parabolic set is locally an isolated point for ε = 1 and has two smooth transverse
branches when ε = −1.

7. Global surfaces, and a Lagrangian interpretation

Consider R
3×R

3, with coordinates (p, q, r; u, v, w); the surface M in R
3 is now given

by an equation: M : g(p, q, r) = 0, ∇g|M �= 0. The surface obtained by reflecting M
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in the point (p, q, r) has equation

g(2p − u, 2q − v, 2r − w) = 0,

and the function g(2p−u, 2q−v, 2r−w) is also the contact function of the reflected
surface with M at (p, q, r).

Thus, the contact Lagrangian submanifold L̃M for the family of reflections

L̃M ⊂ T ∗(R3 × R
3) = T ∗

R
3 × T ∗

R
3, Ω = ω ⊕ ω,

ω being the canonical 2-form on T ∗
R

3, is defined by the generating function of
contact

G(p, q, r; u, v, w, λ) = g(2p − u, 2q − v, 2r − w) + λg(u, v, w).

It is a smooth constrained Lagrangian submanifold in T ∗(R3 × R
3) with λ being

a Morse parameter. The contact structure of the surface M with the family of its
reflections is given by the singular set (caustic) of the reduced Lagrangian sub-
manifold over R

3 with coordinates (p, q, r). Reduction is given by the coisotropic
submanifold

N = {(µu, µv, µw) = 0},

where (µp, µq, µr; p, q, r, µu, µv, µw; u, v, w) are coordinates on T ∗
R

3 × T ∗
R

3. Fur-
thermore,

ν : N → T ∗
R

3 	 (µp, µq, µr; p, q, r),

is the canonical projection such that Ω|N = ν∗ω.
Now the Lagrangian submanifold of contact of M with its reflections is given by

the reduction

LM = µ(N ∩ L̃M ) ⊂ T ∗
R

3 	 (µp, µq, µr; p, q, r).

Its generating Morse family is

h(u, v, w, λ; p, q, r) = g(2p − u, 2q − v, 2r − w) + λg(u, v, w),

with four Morse parameters u, v, w, λ.
We use subscripts u, v, w to denote derivatives with respect to first, second, third,

variables of g(u, v, w), and write p for (2p − u, 2q − v, 2r − w) and u for (u, v, w).
Then LM is given by

µp =
∂h

∂p
= 2gu(p),

µq =
∂h

∂q
= 2gv(p),

µr =
∂h

∂r
= 2gw(p),
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0 =
∂h

∂u
= −gu(p) + λgu(u),

0 =
∂h

∂v
= −gv(p) + λgv(u),

0 =
∂h

∂w
= −gw(p) + λgw(u),

0 =
∂h

∂λ
= g(u).

The additional equation for the bifurcation set ΣLM is

det

⎛
⎜⎜⎝

guu(p) + λguu(u) guv(p) + λguv(u) guw(p) + λguw(u) gu(u)
guv(p) + λguv(u) gvv(p) + λgvv(u) gvw(p) + λgvw(u) gv(u)
guw(p) + λguw(u) gvw(p) + λgvw(u) gww(p) + λgww(u) gw(u)

gu(u) gv(u) gw(u) 0

⎞
⎟⎟⎠ = 0.

These are identical to the conditions Fx = Fy = FxxFyy − F 2
xy = 0 in § 3, when

M is given as a graph.
Thus, for the Lagrangian formulation, u, v, w are treated globally, not as a tubular

neighbourhood of M but as coordinates of the extended ambient space R
3 × R

3.
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