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The purpose of the visit was to continue an investigation begun between Peter Giblin
and his former Research Assistant André Diatta, on medial axes and symmetry sets of
families of curves which include a singular member. We concentrated on two of the difficult
cases where only very limited progress had been made in the past. Our object was to
gain insight into these cases by extensive experimentation. This report summarizes the
conclusions from this experimentation and the associated theoretical calculations. We
hope to make further progress, including theoretical progress, when Dr Uribe-Vargas
returns, supported by EPSRC for two months, in the autumn.

1 Umbilic point on a surface

Here we are investigating the curves Ck given by f(x, y) = k2 where k is a small constant
(which we can assume is > 0) and f(x, y) = x2 + y2+ higher order terms. We assume
that the cubic terms are not divisible by x2 + y2 for genericity. Thus Ck is a plane section
of a surface in R

3 parallel and close to the tangent plane at an umbilic (the origin).
Given such a curve Ck we want to know the locus of centres of circles which are

tangent to the curve in two points (or more), and the limit points of this locus. This is
the symmetry set of the curve Ck. If we consider only circles contained inside Ck then we
call the locus the medial axis of Ck.

It is known that Ck, for k sufficiently small, has six vertices (maxima or minima of
curvature) [3]. This gives six endpoints on the symmetry set (and three on the medial
axis). Experimental evidence has suggested for some time that the symmetry set of such
Ck has

• six cusps—these are at the centres of circles which are osculating at one point and
tangent at another point of Ck;

• three triple crossings—these are at the centres of circles tangent to Ck in three
distinct points.

The configuration of these cusps and triple crossings appeared from the evidence to
be the same for any choice of higher order terms in f , for sufficiently small k; thus the
combinatorial structure of the symmetry set appeared to be always the same for any
umbilic.

The work done on this during the visit, using the Department’s Silicon Graphics com-
puters, consisted of a much more thorough search of examples, seeking for configurations
which might be different from the standard one. The examples studied were suggested by
Dr Uribe-Vargas, and are described below.



The idea is that the four combinations of cos3 θ, cos2 θ sin θ, cos θ sin2 θ, sin3 θ given
by

cos θ = cos3 θ + cos θ sin2 θ

sin θ = cos2 θ sin θ + sin3 θ

cos 3θ = cos3 θ − 3 cos θ sin2 θ

sin 3θ = 3 cos2 θ sin θ − sin3 θ

are independent, and hence combinations of them can represent any cubic terms in f .
Writing x = r cos θ, y = r sin θ we have

b0x
3+b1x

2y+b2xy2+b3y
3 = r3

(

3b0 + b1

4
cos θ +

b1 + 3b3

4
sin θ +

b1 − b3

4
sin 3θ +

b0 − b2

4
cos 3θ

)

.

Moreover, by an initial rotation, we can eliminate one of the four terms, say cos 3θ. This
has the effect of making the coefficients of x3 and xy2 always equal: b0 = b2. We sometimes
write the degree four terms of f , when present, as c0x

4 + c1x
3y + c2x

2y2 + c3xy3 + c4y
4,

and so on.

Example 1.1 Consider f(x, y) = x2 + y2 − 3x2y + y3. This just uses the term −r3 sin 3θ
above. See Figure 1. The level sets of f will be circles distorted in a way that has 3-fold
symmetry. We can then move away from this very symmetrical situation to nearby ones,
by adding multiples of cos θ and sin θ as above. The symmetrical case itself presents some
interesting features; in fact, calculations show the following.

(i) The top point of the curve f(x, y) = k2 is of the form (0, k − 1

2
k2 + 5

8
k3 + . . . and

the bottom point is (0,−k − 1

2
k2 − 5

8
k3 + . . .).

(ii) The radius of curvature at the top point is k + 4k2 + 77

8
k3 + . . . and at the bottom

point is k − 4k2 + 77

8
k3 + . . . .

(iii) It follows that the centre of curvature at the top point is (0,−9

2
k2−9k3 + . . .) and at

the bottom point is (0,−9

2
k2 + 9k3 + . . .). These are the positions of the endpoints

of the symmetry set, as in Figure 1, centre, but in this symmetrical case the two
branches overlay each other so only one endpoint, namely the first one, is visible.

(iv) The centre of the bi-osculating circle lying on the y-axis is (0, 3

2
k2 + 27

8
k4 + . . .). The

centre of the triple-tangency circles is the origin: in this case, the ‘outer’ and ‘inner’
triple tangency circles are concentric.

(v) Thus the ratio of the lengths AB : BC in Figure 1, right, is 1:3. The point A lies
at a crossing of the evolute of the umbilic curve, and the point C lies at a cusp of
the evolute. We conjecture that this holds for all umbilics, as k → 0.
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Figure 1: Left: the symmetric umbilic section x2 + y2 − 3x2y + y3 = k2 where k = 0.1, together
with a circle (dashed) which osculates the curve at two points: an A2

2
circle. Centre: the

symmetry set of the same curve; the centre of the circle in the left-hand diagram lies at the
double cusp at the top of the curvilinear triangle in the right-hand diagram. The small figure to
the right is the pre-symmetry set: the set of pairs of parameter values on the curve which admit
a bitangent circle. Right: the ratio AB : BC is 1 : 3.

Remark 1.2 The method used to draw the symmetry set in Figure 1, using the Liverpool
Surfaces Modelling Package (LSMP) is to approximate the curve f(x, y) = k2 as in [2].
That is, we write x = kr(k, θ) cos θ, y = kr(k, θ) sin θ and r = r0 + r1k + r2k

2 + . . .
where the ri are functions of θ (indeed of sin θ and cos θ) only. For the umbilic, r(0, θ) is
constant, in fact equal to 1 for the form we use here. Conversely, if x = kr(k, θ) cos θ, y =
kr(k, θ) sin θ, z = r(k, θ)2 with r smooth and r(0, θ) is constant, them z = f(x, y) has an
umbilic at the origin: fx = fy = 0 and fxx = fyy, fxy = 0 at t = 0.

Examples 1.3 We now consider certain deformations of the curve in Example 1.1, of the
form

f(x, y) = x2 + y2 − 3x2y + y2 + ax(x2 + y2) + by(x2 + y2).

Note that, as above, this is a general deformation of the cubic terms of f . When a = 0
we maintain symmetry about one axes, namely the vertical one; moving away from a = 0
breaks this symmetry. The object of studying these was to discover whether configurations
different from what we regarded as the ‘standard configuration’ were possible. An example
of a ‘standard configuration’ is in Figure 2, where a = −0.2, b = −0.4.

In fact, performing a circuit of the origin in the (a, b)-plane, the standard configuration
is maintained: Figure 3.

When we start to add degree 3 terms generated by cos θ and sin θ (that is x(x2 + y2)
and y(x2 + y2)) and also degree 4 terms the situation changes, in that long and short
branches can now cross. An example is shown in Figure 4. Examples have been found



Figure 2: A ‘standard’ configuration for the symmetry set of an umbilic curve. The symmetry
set is slightly enlarged compared with the curve in the left-hand figure and greatly enlarged in
the right-hand figure. The branches extending to the endpoints do not cross. There is almost
symmetry about a vertical line but not about the lines at ±60◦ to the vertical, on account of the
‘short’ and ‘long’ branches. The ‘long’ (resp. ‘short’) branches end in the centre of curvature
at a minimum (resp. maximum) of curvature. The three branches of the symmetry set join
maximum-maximum, minimum-minimum and maximum-minimum. The last is in some sense
special. This example has a = −0.2, b = −0.4.

where one, two or three pairs cross, and where the crossings are at any place relative to
the triple points. We have not as yet been able to prove that these crossings persist as
k → 0. It may be that for small enough k the generic picture is always that of Figure 3.

Problems 1.4 The following problems remain, and will be the subject of further inves-
tigation.

1. We lack rigorous proofs that there are always 6 cusps and 2 triple crossings on the
symmetry set in the umbilic case, for sufficiently small k, with the same combina-
torial structure as displayed in Figures 3. Writing T for triple point, C for cusp, L
for long endpoint branch and S for short, all branches of the symmetry set in these
examples and other studied are of the form LTCCTS, STCCTS or LTCCTL.

2. Do the crossings of the branches out to the endpoints of the symmetry set persist
as k → 0 or is the generic picture that given by cubic terms alone?

3. What is the flow of the radius function on the symmetry set? It will necessarily
have a turning point at a cusp, and will reach a maximum at an endpoint given



Figure 3: Clockwise from top left: (a, b) = (0.2, 0.4), (0.4, 0), (0.2,−0.4), (−0.2,−0.4), (−0.4, 0),
(−0.2, 0.4). The configuration is essentially the same in each case but short and long branches
(not distinguished here) can switch over when passing through a symmetric configuration with
a = 0. Note the realignments of the triple points in the centres of the figures and also in the
‘pre-symmetry sets’ shown as small boxed figures for each example. These sets show Morse
transitions where branches cross and re-connect in the opposite way; this is an ‘exchange of
cusps’ or ‘nib transition’ on the symmetry set. The pairs of close branches on the symmetry
sets from the endpoints do not cross on their way to the first cusps.

by a minimum of curvature, and vice versa. But other turning points, and their
geometrical meaning, are unclear.

2 Elliptic cusp of Gauss

In this section we consider the case of a surface in R
3 with an elliptic cusp of Gauss (also

called a godron), and plane sections of the surface close to the tangent plane at this point.
Again the sections will be closed curves, or empty, but now the closed curves have two
inflexions and four vertices [3]. The general form of a cusp of Gauss, up to euclidean



Figure 4: A perturbation of a symmetric umbilic f(x, y) = x2 + y2 − 3xy2 + y3 by the addition
of degree 3 terms of the ‘cos θ’ and ‘sin θ’ kind, in fact 2x(x2 + y2)+ 1

2
y(x2 + y2) and also degree

4 terms x4 − 8x3y − 8xy3 + y4. This allows all three pairs of branches going out to endpoints
to cross. This picture has f(x, y) = k2 where k = 0.1. We do not know whether this behaviour
can persist as k → 0.

motions and scaling, is

z = f(x, y) = x2 + b0x
3 + b1x

2y + b2xy2 + c0x
4 + c1x

3y + c2x
2y2 + c3xy3 + c4y

4 + . . . , (1)

where b2 6= 0 (to guarantee a nonsingular parabolic curve at the origin) and b2

2
6= 4c4 for

a non-degenerate cusp of Gauss. This means that the contact with the tangent plane has
type A3 and not higher. When b2

2
− 4c4 < 0 the cusp of Gauss is elliptic and close to the

origin the set f(x, y) = k4 is a closed curve.

Example 2.1 The basic example f0(x, y) = k4 (k > 0) where f0(x, y) = x2 − 2xy2 +
ρy4. The parameter ρ here is from the Platonova normal form; there is an extensive
investigation of the different ranges of ρ in [5]. For an elliptic cusp of Gauss, ρ > 1.
Although special, this example gives a lot of geometrical insight into the way in which
the general section f(x, y) = k4 behaves as k → 0. Many of the examples below have ρ
just greater than the critical value 1.

Remark 2.2 The coefficient −2 in f0 is not significant; by scaling x and y by say λ we
can write x2 − axy2 + ρy4 = k4 (a 6= 0, a2 < 4ρ) as x2 − aλxy2 + ρλ2y4 = k4/λ2. Then
choosing λ = 2/a we get x2−2xy2 +(4ρ/a2)y4 = 1

4
k4a2, which is the ‘basic example’ with

revised values of ρ and k.

The approximate paramterization of the curve f0(x, y) = k4 from [2] (compare Re-
mark 1.2) becomes in this case an exact parametrization. We write x = k2r2 cos θ, y =



kr sin θ; then r becomes a function of θ only in this case:

r−4 = cos2 θ − 2 cos θ sin2 θ + ρ sin4 θ = (cos θ − sin2 θ)2 + (ρ − 1) sin4 θ.

Note that for ρ > 1 this always gives a smooth function r.
Since the curve C0k : f0(x, y) = k4 has two inflexions we must allow both for bitangent

circles which are coherent and non-coherent. Here we take an orientation of the curve C0k

and call the circle coherent provided the two tangencies with C0k are oriented the same
way round the circle. There are as k → 0 four vertices on C0k and special conditions
attach to curves, whether convex or not, with four vertices. (See [4, §6].) In particular,
provided the circles of curvature at the vertices where C0k meets the x-axis intersect, C0k

can be inverted into a convex curve ([4, Theorem 6.3]). If this is the case, then there
cannot be any circle which is osculating for C0k at one point and ordinarily tangent at
another point (an A2A1 circle), since these would carry over to the inverted curve and
such a circle would have to be coherent (for a convex curve) and this would imply that
C0k had at least 6 vertices, using [4, Theorem 7.1]. The same applies to the existence of
A3

1
circles, that is circles tritangent to C0k: for a convex curve these would have to be

coherent circles and this implies at least 6 vertices using the same theorem in [4].
The curve C0k meets the x-axis where x = ±k2; calculation shows that the radii of

curvature of Ck at these points are equal to 1

2
for all k; hence the circles of curvature will

certainly intersect for small k. Consequently:

Proposition 2.3 For small k there can be no A1A2 circles and hence no cusps on the

symmetry set of C0k. With four vertices there must be two branches of the symmetry set

joining the centres of curvature at these vertices, one branch going to infinity.

We give more details of this example below. Extensive experimentation suggested
that the same holds for a general function f(x, y) corresponding to an elliptic cusp of
Gauss. A typical example is shown in Figure 5. Note that the symmetry set of f0 is
special: the branch associated with the minima of curvature overlays itself, because of the
global symmetry about y = 0. Making a small perturbation, as in Figure 5, separates the
branches but does not appear to introduce cusps on the symmetry set, for small enough
k.

In fact using methods and results from [3] we do find the same result as Proposition 2.3
in general. See Proposition 2.6 below.

Next, a note on the shape of the curve C0k as a function of ρ. See Figure 6.
We now give some more details of Example 2.1 and related matters.

Example 2.4 We have noted that, for any elliptic cusp of Gauss the associated curve
f(x, y) = k4 for small k has exactly four vertices and two inflexions. This configuration of
vertices and inflexions does not in itself prevent the appearance of cusps on the symmetry
set, as the following example shows. Start with a curve x = p cos t + q sin t, y = sin3 t +
µ sin t where initially µ = 0. This curve has two inflexions on the x-axis, corresponding
to t = 0, π. It is possible to choose p and q so that the curve has exactly four vertices;



Figure 5: Curve Ck given by an elliptic cusp of Gauss, in fact given by k4 = x2 + x3 + 1.8x2y +
1.3xy2 +0.8x3y−0.6x2y2+0.7xy3 +1.8y4 where k = 0.2. This behaviour, which is believed to be
generic for small k, shows two nonsingular branches of the symmetry set, one going to infinity
(indicated by the arrows) and having endpoints (marked by dots) at the centres of curvature at
the minima of curvature. The other branch connects the maxima of curvature within the curve
Ck.

k
( r  -  1 ) 1 / 4

2 k 2

r k
( r ( r  -  1 ) ) 1 / 2

2

Figure 6: The shape of the curve x2 − 2xy2 + ρy4 = k4. Scaling by 1/k2, the width, both at
the ‘waist’ and overall, stays constant and, as k → 0, the height tends to infinity. We conjecture
that the same holds for any cusp of Gauss.

an example is in Figure 7, left. If we invert this curve with respect to a point not on
the x-axis, then the resulting curve will have a bi-osculating circle (A2A2 contact), which
will be non-coherent, since this is true of the bi-inflexional tangent. However we change µ
slightly and then invert, to produce a curve with A2A1 circles, close to a ‘moth transition’
[1]. See Figure 7, right, which shows the symmetry set having a characteristic ‘moth’ form
with four cusps. The circles giving rise to the cusps on the symmetry set will necessarily
be non-coherent.

It is also possible to have (non-coherent) biosculating circles for the basic Example 2.1,
as illustrated in Figure 8, but as k decreases these disappear since, as noted above in
Proposition 2.3, no cusps are possible for small enough k.

What happens as k is steadily decreased, fixing ρ > 1? The moth configurations shrink
to points and disappear, but it is very hard to determine the exact moment, in terms of
ρ, when this happens. This is because the conditions for bi-osculating circles are hard to
determine explicitly.
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Figure 7: Left: starting with p = 3.5, q = 2.6, µ = 0 in Example 2.4, this produces the curve
on the left, with a (non-coherent) bi-inflexional line and exactly four vertices. Then changing
µ to −0.2 and inverting with respect to (−4, 4) we get the four-vertex curve on the right, with
symmetry set having the ‘expected’ two branches. one going to infinity, but also a ‘moth’
configuration of four cusps. The cameo above the left-hand figure is an enlargement of the
‘moth’, showing also two branches of the evolute which the moth straddles.

However we can look at the way in which vertices of the curve C0k evolve as k decreases.
In fact this does not happen in a simple way. Instead of six vertices changing to four,
the first event is that six vertices become eight, when the vertex at (−k2, 0) becomes
degenerate. Expanding the curve C0k, given by x2 − 2xy2 + ρy4 = k4 about the points
(−k2, 0) and (k2, 0) we get, respectively,

x = −k2 + y2 +
ρ − 1

2k2
y4 +

(ρ − 1)2

8k6
y8 + . . . , x = k2 + y2 − ρ − 1

2k2
y4 − (ρ − 1)2

8k6
y8 + . . . .

For a curve with local equation x = y2 +ay4 +by5 +cy6 + . . ., which therefore has a vertex
at (0, 0), with centre of curvature (1

2
, 0), the conditions for the circle of curvature to have

various contacts with the curve at (0, 0) are as follows:

4-point (ordinary vertex) : a 6= 1; 5-point: a = 1, b 6= 0; 6-point: a = 1, b = 0, c 6= 2,

etc. Bearing in mind that ρ > 1 it follows that, for C0k, a higher vertex at (k2, 0) is
impossible while at (−k2, 0) the condition is k2 = 1

2
(ρ − 1) for a higher vertex, and the

circle of curvature has exactly 6-point contact. It follows that this vertex actually gives
birth to three vertices as k decreases, thus increasing the number from six to eight. What
subsequently happens is that four of these collapse in pairs to leave four vertices altogether,
which then persist for all smaller k. We illustrate this with some further calculations and
figures.

There is a moment at which of the eight vertices give eight cusps on the evolute,
two lying at the same place on the x-axis. Calculation shows that this happens when
k2 = (ρ − 1)/(2ρ3/2), which is of course always less than the above value of k2 at which
six vertices become eight. Shortly after this, two pairs of vertices disappear to give the
final configuration of four vertices, and four cusps on the evolute. See Figure 9.
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Figure 8: Left: example with ρ = 1.04, k = 0.3738 in C0k : x2 − 2xy2 + ρy4 = k4. The thin
curve is the evolute of C0k, going to infinity in two directions, and the six cusps indicate that
C0k has six vertices. Also shown dashed is a bi-osculating circle which is non-coherent. The
centre of this circle is necessarily at a self-crossing of the evolute, marked in the figure, but the
numbers are chosen here so that the two osculating circles with this centre actually coincide.
The symmetry set will acquire an isolated point at the centre of the bi-osculating circle and
increasing k slightly will result in two four-cusped ‘moth’ figures, symmetric about the x-axis
because of the global symmetry of C0k. Right: this is illustrated by taking k = 0.45; here the
symmetry set is shown, not the evolute.

General case 2.5 Finally let us look at the general case of an elliptic cusp of Gauss,
given by (1). We use the methods and results of [3].

The ‘vertex curve’, that is the locus of vertices of all curves f(x, y) = c for constants
c consists of two smooth branches, one tangent to the y-axis and one—the one which
concerns us here—tangent to the line x(c3 − b1b2) = y(b2

2
− 4c4) ([3, Prop.6.1]). This is

the branch along which the vertices corresponding to a minimum of curvature move.
This smooth branch can easily be parametrized, and then we can use a standard

formula for the square of the curvature of an implicit curve f(x, y) = c, namely,

κ2 =
(fxxf

2

y − 2fxyfxfy + fyyf
2

x)2

(f 2
x + f 2

y )3
.

When we do this and then consider the limit as c → 0 (or k → 0 in our previous
notation) we find that the limit of the curvatures at the vertices of minimum curvature is
precisely (up to sign) equal to b2. (Note that in Example 2.1 b2 = −2 and the curvature was
2 up to sign.) Thus as in the particular example we have two circles of curvature of finite
radius |b2| at two points which in the limit lie along the direction x(c3−b1b2) = y(b2

2
−4c4),

not parallel to the y-axis, whereas the tangent to f(x, y) = c tends to the y-axis. These
circles are then bound to intersect, which means that as above we can invert the curve



into a convex curve and this rules out the possibility of cusps or triple crossings on the
symmetry set. We therefore have:

Proposition 2.6 For small k there can be no A1A2 circles and hence no cusps on the

symmetry set of Ck : f(x, y) = k4. With four vertices there must be exactly two branches

of the symmetry set joining the centres of curvature at these vertices, one branch going

to infinity.
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k = 0.55: six vertices have just turned into eight.
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k = 0.4204: the configuration has eight cusps, two at the same place on the x-axis.
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k = 0.4: two pairs of cusps are about to disappear.

Figure 9: Here ρ = 2; the curve C0k and its evolute are shown, with details as appropriate.
The value of k at which six vertices turn into eight (hence six cusps on the evolute turn into
eight) is then k = 1

2

√
2 = 0.707... and the value at which two cusps are at the same point on the

x-axis is 1

2
2−1/4 = 0.420.... Shortly after this four vertices disappear in pairs to leave the stable

situation of four vertices which then persists as k → 0.


