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ABSTRACT

This paper presents an algorithm for computing a depth
map for a smooth surface from a sequence of profile curves.
The algorithm requires that the viewing directions be copla-
nar. In addition formulae are derived for computing di-
rectly the Gauss and mean curvatures without first com-
puting a depth map. We have used the algorithm to re-
construct curves from their profiles with a high degree of
accuracy from synthetic, noise-free data.

1. INTRODUCTION

We can tell a lot about the shape of an object from
a single profile, and with multiple views we can often de-
termine the shape uniquely. In this paper we analyze this
reconstruction process mathematically and derive an algo-
rithm to produce a depth map. For some applications it
may not necessary to produce a depth map at all (for ex-
ample in recognition problems). The Gauss and mean cur-
vatures may be sufficient by themselves to solve this prob-
lem, and in any case it will be useful to decompose surfaces
into patches according to whether they are convex, concave,
hyperbolic, parabolic, or planar (Besl and Jain [1], Brady
et al. [2], Ferrie and Levine [4]). This gives a method
for describing surfaces of objects and a basis for matching
with standard surfaces such as spheres, planes, and cylin-
ders. Koenderink and van Doorn [7] have derived a formula.
which could be used to compute the Gauss curvature from
a sequence of intensity images without depth. We have
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extended these results to produce formulae for the mean
curvature, principal curvatures, and principal directions.

The use of profiles for the recognition and description
of surfaces has been explored by many people (Koenderink
and van Doorn [7], Callahan and Weiss (3], Hoffman and
Richards[5)), but most investigations have not combined in-
formation from multiple views. In general, there is no way
to identify a point on one profile with a corresponding point
on a profile from a different view since for smooth surfaces
they will not have any points in common. In fact, most
stereo algorithms which are based on correspondence find
the most similar point and assume it is the same. However,
if the camera motion is known, then there is a method to
identify points on two different profiles. In our work, we
have restricted the camera to planar motion, so that planes
parallel to the plane of motion induce a correspondence
between the profiles. However, it is possible for the pro-
file to change qualitatively between views, and in order to
understand this, we have analyzed the analogous problem
for a curve in the plane. These transitions create ambigu-
ities in the reconstruction process. The criterion used to
resolve this ambiguity is that the most likely solution is the
one which minimizes the change in depth between adjacent
views.

A mathematical approach to the reconstruction o sur-
faces is based on the fact that a smooth surface without
inflection points is the envelope of all of its tangent planes.
However, there are two problems with this; how to com-
pute the envelope of a family of planes and how to handle
inflection points. With the assumption of planar camera
motion, we have been able to reduce the envelope of planes
problem to that of computing the envelope of a family of
lines in a plane, which we were able to solve. The problem
of inflection points requires interpolation of the surface. We
have a simple approach to this which would work in most
cases, and we plan to extend this to polyhedral surfaces
where every points is either an inflection point or a crease
point (i.e. non-smooth).

In Section 2, we give the mathematical framework for
discussing profiles. Then for simplicity in Section 3, we
take the case of reconstructing a plane curve. In Section 4,
this is generalized to surfaces. In Section 5, we present the




experimental results using simulated data.

2. THE PROFILES OF A SURFACE

Let u be a unit vector in 3-space R?® and let M be a
smooth surface in R3. We regard u as defining a viewing
direction. On the surface M there is a locus of points p
for which the tangent plane contains the viewing direction.
This locus of points is called the critical set corresponding
to u. If this curve is projected parallel to u onto the viewing
plane through the origin which is perpendicular to u, the
image is called the profile (Figure 1). For future reference
we note the following standard facts about critical sets and
profiles:

e The critical .set is a smooth curve at p unless p is a
parabolic point and u is the asymptotic direction.

e The profile near q in the viewing plane arising from p
on the critical set is a smooth curve unless the viewing
direction is an asymptotic direction.

e When the critical set is smooth at p, its tangent di-
rection is parallel to the viewing plane if and only if
the viewing direction is a principal direction at p.

e When the profile is smooth at g, its tangent at g is
always in the tangent plane to the surface at p.

In addiiton, the Gauss curvature can be computed from
the profiles. Consider a point p of the critical set. The
viewing direction at p together with the normal to the sur-
face there determine a plane, whose intersection with the
surface is a smooth curve. The curvature of this curve at p
on the critical set is called the radial curvature. The projec-
tion of p onto ¢ lies on the profile, and the curvature of the
profile at g is called the transverse curvature. Koenderink
and van Doorn [7] showed that the Gauss curvature is the
product of the transverse curvature and the radial curva-
ture. Brady et al. [2] has also given an independent proof
of this fact. The curvature of the profile can be computed
directly from an image, and the radial curvature could be
computed from a sequence of images.

3. RECONSTRUCTING PLANE CURVES

Consider a smooth plane curve C, which we usually take
to be closed, so that it is given by a parametrization () =
(X(2), Y (¢)) such tkat the derivative is never Zero, i.e. X'(t)
and Y'(t) are never zero for the same ¢{. As shown in Figure
2, u is the viewing direction. The viewing line is the line
perpendicular to u through the origin. The profile in this
context is the set of points on the viewing line for which
the tangent line is parallel to u. The position of a profile
point can be expressed as w - (sin 8, —cosf), where w is the
signed distance from the origin, O, to the profile point.
For example, in Figure 2, there are three points for which
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w > 0 and one for which w < 0. Note that if # produces
a value w, then § + 7 produces —w. Thus we restrict to
0 < 0 < 7. The collection of all profile points forms a
curve in the plane classically called the pedal curve of C
with respect to O. If # changes in such a way that a pair
of values of w is annihilated and disappear, or a pair is
created, then the pedal curve has a singular point (usually
a cusp). This happens when u passes through the direction
of an inflexional tangent to C, as shown in Figure 3. In a
neighborhood of that point, w cannot be a smooth function
of 6. In general, there will be parts of C for which wis a
function of § for some range of values of 8. Suppose C, is
such a subset of C, then the following proposition states
that C; can be reconstructed from the function w = w(#).
Any part of the curve which has no inflexions satisfies this
property. Another way to say this is that the Gauss map of
C has an inverse, i.e. for each direction on the unit circle
there is at most one point of C; whose normal points in
that direction. Such curves possibly with singularities have
been studied by Langevin, Levitt, and Rosenberg [9] and
are called herissons (hedgehogs)

Proposition 1 1. The curve C, consists of points

z=wsinf + w' cosf

y=—-wcosf + w'sind

and w' = dw/d0 is the distance from the profile point
to the corresponding point of C,

2. The radius of curvature of C, at the posnt correspond-
ing to 0 is w+w". (Here C, is oriented by increasing

9.)

proof: The line through the profile point w - (sin 8, cos8)

parallel to the viewing direction ¥ = (cos@.sin#) has the
equation

((z,y) — (wsind, —wcos0)) - (sin 4, — cosf) = 0

zsinf —ycosf = w (1)

The curve C, is the envelope of the lines obtained by elim-
inating # between equation (1) and the following equation:

zcosf + ysind =o' 2)

This gives the unique solution (z, y) in part 1 of the Propo-
sition. Rewriting this as

(2, ) = w(sin 6, - cos ) + w'(cosd, sin )

proves that ' is the distance. The formula for the radius
of curvature for a curve is given by:

p ="+ 9722y - 2"y)

Differentiating the equations in part 1 and substituting into
the formula for p gives part 2 of the Proposition.




It is not ﬁossible for w + w" to be zero while C; is
smooth: zero radius of curvature is only possible at a cusp
of a curve. On the other hand w + w" can tend to infinity,
making the curvature tend to zero (which is an inflexion).
But at an inflexion w is no longer a function of 0 so it is
not in C;.

Examples of these two cases are w = 6 and w? = 63
respecively (see Figure 4). For the former, z = 3¢%+higher
order terms, and y = 26%+ higher order terms. Thus C, has
a cusp and the pedal curve has an inflexion at # = 0. For the
latter, ¢ = £30"/2+ higher order terms, and y = +16%/2+
higher order terms. Thus, C; has an inflexion and the pedal
curve has a cusp at 8 =0.

In practice if we start with a curve C, and measure its
profile data, i.e. for each viewing direction ¢ = (cos 4, sin )
for some range of values for # we obtain the various values
of w for the profile points. Some values of § will give more
values of w than others, unless C has no inflexions, in which
case each value of § will have two values of w. Starting at
some value # = 6, we choose one of the corresponding val-
ues to be wy and increase § following w as a function of
6 until an inflexion is encountered. This is detected by a
change in the number of w-values. In fact 6, can be chosen
so that it immediately follows after an inflexion. It turns
out that one only needs to consider the case when the num-
ber of w-values decreases by two. The parts of the curve
C lying between inflexions can be reconstructed using part
1 of the Proposition. The computational problem to be
solved is this: having chosen wy for 8 = 6,, what value cor-
responds to 6y + 607 It is not sufficient to simply choose
the closest value of w. Since it is possible for the pedal
curve to have crossings (See Figure 5), there is the dan-
ger of starting on one branch and switching to the other.
Note that we are approximating the function w = f(6) at
discrete points, and we have assumed that this function is
continuous since C is smooth. In_addition, since w' is the
distance from the viewing line to the point of tangency on
the curve, we also want ' to be continuous. This can be
viewed as a constraint on choosing successive values of w
such that w" is minimized.

4. »PERSPECTIVVE PROJECTION OF
CURVES

There is no essential difference in the mathematics of re-
constructing curves from profiles obtained from perspective
projection. We derive the formulas here for completeness.
Assume that the curve C is contained in a circle of radius
r. From each point A on the circle we define the viewing
line to be the line parallel to the tangent to the circle at
A and a distance d away from it. Each tangent line to C
through A will intersect the viewing line at a profile point.
(See Figure 6) The profile points are identified by their dis-
tance w in a counterclockwise direction from the origin of

138

the viewing line, which is the closest point to A. The values
of w for 6 and 6 + 7 are no longer directly related.

Proposition 2 For regions of the curve in which w is a
function of 0,
r= rwd sin 6 + rw? cosd + rw'd cosd
a2 + w? + duw'
_ rwdcosf + rw?sinf + ruw'dsing
- d? + w? + dw'

Thus in this case also the parts of C between inflexions can
be recovered from a knowledge of the function w. However,
in this case the formula for the curvature is rather more
complicated.

5. SURFACES

We would like to reconstruct a surface from its profiles
in a way analogous to the method used for curves in the pre-
vious section. The situation for surfaces differs in two re-
spects: each profile is a curve and there is a two-parameter
family of viewing directions which as unit vectors are points
on the sphere S2. We seek to find all the tangent planes
to M, and for this purpose, it is sufficient (and necessary)
to know the profiles for a “great circle” of viewing direc-
tions, i.e. all directions which lie in a plane. Consider the
tangent plane to M at p. The unit tangent vectors in this
plane form a great circle on S%, and this circle intersects
the great circle of viewing directions. Hence some tangent -
line to M at p is in the viewing direction u, so that p con-
tributes a point ¢ to the profile for the viewing direction u.
Of course, for opaque surfaces the situation is complicated
by occlusion, and it is possible that for some points, none
of the singular sets would be visible.

How do we find the tangent plane to M at p? One line
in that plane is, of course, the line through ¢ parallel to
¢. Another line is the tangent line to the profile at q (see
Figure 7). If the profile is singular at ¢ then the tangent line
is interpreted as a limit of tangent lines at nearby smooth
points of the profile. If the profile has a crossing at ¢, then
both branches will contribute a tangent plane to M but at
different points p of M ([7], [6], [3])-

We shall now reconstruct M from the profiles corre-
sponding to a circle of viewing directions (except where the
tangent plane is parallel to the plane of the circle of viewing
directions). The calculation which follows is local in that
it assumes a parametrization of profiles near each point.

Consider a family of viewing directions, u = (0, cos 8, sinf)
and corresponding viewing planes y cos§+zsin# = 0. Each
viewing plane will contain a profile of M; we use orthonor-
mal coordinates (z,w) in the viewing plane, where the w-
axis is in the direction (0,sin 8, cosf) and the z-axis is the
same for all of the planes. A point (z, w) in a viewing plane
then is the point
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z(1,0,0) + w(0,sin 8, — cos ) = (z, wsind, —wcosh) (3)

in (x,y,z) space. In practice it is the numbers (z, w) which
will be measured from an image.

In general, the profile will be be a curve with isolated
cusps, and we present the theory for reconstructing the
surface from smooth points of profiles. The case of those
cusp points is still under investigation. In practice, this
should not be a problem since one can compute the sur-
face at points in a neighborhood of a cusp where the pro-
file is smooth. Assume that the profiles have the form
w = w(z, §) over a range of values of # and z, where w(z, §)
is a smooth function. Thus we assume that over some range
of values of z and 8 the profiles are smooth and not tangent
to the w-axis. So starting with a point on a given profile
of M, we choose an axis of rotation which is not parallel to
the normal to the profile at that point. It is intuitively rea-
sonable that if the viewing direction remains in the tangent
plane, no additional information will be obtained.

Now consider a fixed z and 8, i.e. a fixed point on a
particular profile curve. The tangent plane to M deter-
mined by this z and @ passes through (z,sin#8, —wcos#)
and contains the directions:

(0, cos 8, sin §) (the viewing direction)
(1, w, sin 6, —w, cos §) (tangent to the profile)

where w, = dw/dz. The equation of the plane is there-
fore : '

w,X —sinfY +coslZ = rw, - w (4)

where we temporarily use (X,Y,Z) as current coordinates
in R3 to avoid the double use of z.
Remark: If the profiles are parametrized as z = z(¢,9),
w = w(t, ) for some parameter ¢, then the tangent plane
is

w, X - z,sin0Y + z,c0807Z = zuy — z,w (5)

The surface M is the envelope of all the tangent planes
described by (4), that is we obtain the point (XY, Z) of
M corresponding to (z,0) by eliminating z and § between
(4) and its derivatives with respect to = and 8, viz.

80z : WX =zw,, (6)

8/00: wyX —cosfY —sinbZ = zw,y — wy (7

This amounts to finding the intersection of three tangent
planes given by (z,0), (z + 62,0), and (2,0 + 66). The
intersection of these three planes will approach the point
on M in the limit as §z and 60 go to zero. This runs
into problems when one or the other direction produces a
stationary tangent plane. According to equation (6), X = =z
(the line through a profile point in a viewing direction is
always in a plane X = a constant), but (6) also indicates
that if the profile has an inflexion (w,; = 0), then there
will be problems distinguishing one tangent plane to M
from the “next”. This is similar to the case for curves in
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which the envelope of tangentclines to a plane curve with
an inflexion contains the whole inflexional tangent line. In
fact (4), (6), and (7) determine a unique point (X,Y,Z) if
and only if w,, # 0, namely the point

f(z,0) = (z, wsin0+wjy cos#, —wcosf+wysinf) € M (8)

Note that w, is the distance from a profile point to the
corresponding point on M.

Remark In the general case where w is not always a function
of z, we can parametrize the family of profile curves as
follows:

z = z(t,0)

w = w(t,0)

In this case, except where z; is zero, equation (8) becomes

f(t,0) = (z,wsind, —wc050)+(_“’0'”t + z;w,)

(0, cos 8, sin 6)
9)

and (—zyw; + z,wy)/ 2z, is the distance from a profile point
to a point on M.

The formula (8) tells us how to reconstruct M from its
profile data, as long as w can be expressed as a function
of £ and 4. The condition for f to give a smooth piece of
surface (i.e. the condition that the differential of f has rank
2) is w + wyy # 0; note that this also arose in the case of
curves above. v

On M at any point f(z,0), we have coordinate direc-
tions corresponding to:

af/3z = f, = (1, w, sin & + wyy cosd, —~w, cosf + w,y sin §)

where f, is in the direction of the erstical set and f, is in
the viewing direction so they are not in general orthogo-
nal. Nevertheless, they are conjugate with respect to the
second fundamental form (see Figure 8). Note that f,
and f, will not coincide at a smooth point of the pro-
file. Geometrically, this means that with respect to the
ellipse determined by this quadratic form, each direction
is tangent to the ellipse at the point of intersection by the
axis determined by the other. Algebraically, the matrix
associated with the second fundamental form is diagonal
with respect to the basis of these two directions and (using
n = (—w,,sin8, - cosf)/(1 + w?)"/? as the unit normal to
M) can be written as:
Wrz

aruge Y
‘0 __w+wpy
(1+ w2)t/2

Thus, it is possible to derive simple formulae the Gaussian
and mean curvatures of M in terms of the profile data w.
As noted above, the consequent formula for the Gaussian
curvature as the product of the radial curvature, «, and the
transverse curvature, £y, was known,but the mean curva-
ture cannot be expressed in terms of only these two.




6.
AND SURFACE CURVATURES

There are three curvatures which enter into the equa-
tions for the surface curvatures.
k. is the curvature of the profile or the radial curvature.
Its formula is 7
Ko = Wy /(1 + w?)¥/?
k. is the sectional curvature of M in the f, direction

(the direction of the tangent to the crmcal set). We find
(see below) that

ke = weo [[(1+ w}) (1 + uf + w},)]
K¢ is the sectional curvature of M in the f, direction,
which is the viewing direction 4 when w + wy > 0 and —u

when w + wyy < 0. This is also known as the transverse
curvature. We find (see below) that

Ko = —1/[(1 + w)/*(w + we)]

Proposition 3 1. The Gauss curvature K and the mean
curvature H of M at f(z,0) are given by

K = —wg,. [[(1 + w2)*(w + wp)] = KcKo
Wz (W +wy)—1-w ,. l (l ) )
2(w + wey) =gk Ky
2. w,y = 0 if and only if the viewing direction is a princs-
pal direction on M at the corresponding point. In this

case f, and fy are the principal directions, k. = Ko,
and H = Lk + £i).

H=

proof: The computation of the Gauss and mean curvatures
from a local parametrization f of M can be found in O’Neill
[8). Wecan obtain f, and fj from equation (8) and compute
the first fundamental form as

(

This together with the second fundamental form given above
allows us to compute the surface curvatures. Thus K and
H can be expressed in terms of the curvatures &, K;, £¢:

The shape operator, which is the derivative of the Gauss
mapping, referred to the basis f;, fy is:

(

The principal directions are the eigenvectors of this ma-
trix. One can see that, given the assumption that w + wy
is nonzero, the matrix is diagonal if and only if wyy = 0.
The principal curvatures are the eigenvalues, and the Gauss
curvature is the product of the eigenvalues and the mean
curvature is their sum. Thus, when the matrix is diagonal,
f. and fj are the principal directions and they are orthog-

14 w2+ w?) we(w + wy)
Wy (w + w") (w + w”)

1
(1 + w2)(w + wo)

Wy (w + w") =Wz Wae
Wap(w + wey) —(1 +w} + wiy)

RELATIONSHIP BETWEEN SECTIONAL

onal.

When the profile has a cusp, the curvatures K and H
will be the limits of the values of the formulae at corre-
sponding smooth points near it. However, K for example
cannot be expressed as k. .k, since &, is infinite and &, is

zero. Finding a formula to replace this is a goal of current
investigation.

7. EXPERIMENTAL RESULTS

In order to determine the potential accuracy of the algo-
rithm for reconstructing curves, several experiments were
performed. Synthetic data was used to generate profile
points for the various values of 8. Figure 8. shows a picture
of a curve with two inflexions and the pieces of the curve
which are reconstructed from the data. The reconstruction
process stops at the inflexion points producing breaks in
the curve. In addition, there is a break in the curve where
the reconstruction process started.

In principle, one could start with the proﬁle data and
trace the curve from start to finish, reversing direction at
inflexion points, always choosing the value of w which mini-
mizes w”. However, there is no sure test on the values for w
which will guarantee that a point is an inflexion point. It is
possible to find all of the tangent directions for the inflexion
points, which can be called flez directions. These are the
directions at which the number of tangent lines changes.
We use these flex directions to break up the profile data
into heurisson segments for which w is a function of the
viewing direction. The current algorithm comstructs arcs ’
corresponding to the heurisson segments between inflexion
points.

As a practical point, one can choose the place to start
drawing the curve to be any w value after a flex direc-
tion. Once the pieces of the curve between the inflexions
are drawn, they can be linked together with straight lines
based on proximity of endpoints (assuming one has started
with a closed curve. In theory one would like to minimize
the integral of the-absolute value of w”. In the current al-
gorithm we only apply this criterion locally to choose the
values of w sequentially. It may be necessary to apply stan-
dard relaxation techniques when dealing with real data.

The algorithm can be extended easily to surfaces, and
we intend to apply this to the problem of model acquisition
from physical prototypes.

8. CONCLUSION

We have given a procedure for reconstructing surfaces
from a sequence of profiles. In addition we have given a
formula for mean curvature in terms of the profile data
which extends the similar result for the Gauss curvature.
This makes it possible to compute both of these curvatures




without first computing a dense depth map. We have used
this algorithm on synthetic, noise-free data to reconstruct
curves with a high degree of accuracy, and we plan to test
it on real data.
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Figure 1: The critical set T and profile of the projection of M
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Figure 2: The profile of a plane curve is a set of points on the viewing line
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Figure 3: An inflexion in C produces a cusp in the pedal curve

Tl Je—l

Figure 4: Examples of pedal curves for a cusp and an inflexion
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Figure 6: The viewing line for perspec-

Figure 5: A point where the pedal tive projection

curve crosses itself
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Figure T: The tangent plane at p contains the viewing direction
and a vector parallel to the tangent to the profile curve
at ¢
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Figure 8: The viewing direction and the tangent to the critical set
are conjugate

Figure 9: a. A drawing of the limacon from initial data. b. The
reconstruction of the limacon.




