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1 Introduction

It is very striking that when certain families of straight lines are drawn in the plane it is not
only the lines which are apparent to the eye but also a curve which has the lines for its tangents.
A simple example is shown in Figure 1, left where the curve, called the envelope of the lines,
has two lobes which join at two “sharp points” called cusps. The center diagram of this figure
is more complicated: the curve drawn heavily is in fact tangent to all the lines and it has one
cusp (and also the curve crosses itself in three places, all on the horizontal axis of symmetry). To
make this more obvious the envelope alone is drawn in the right-hand diagram. These diagrams
of lines and their envelope are often called “embroidery diagrams” since the lines are all formed
by joining two points of a unit circle, in rather the way that cotton might be stretched across
a circular embroidery hoop. For each envelope we choose a rational number m = a/b, where a
and b are coprime, then join the point (cost,sint) to the point (cosmt,sinmt) for many values
of t. The respective values of m are given in the caption. We show how to count the cusps and
tangencies with the circle in §2. The value of m will be restricted to rational values to ensure
a closed envelope curve: there is no continuously varying parameter in this construction which
allows us to observe continuous changes or evolutions of the envelope curve.

In this article we briefly explore these envelopes in §2, but then move on to some generalizations,
also involving envelopes of straight lines, but with continuous parameters which can be varied.
Envelopes constructed from straight lines are a natural and simple way in which to construct
curves with singularities or singular points, that is points at which the speed of the curve becomes
zero; usually this manifests itself a a cusp (sharp point) such as those in Figure 1. There are
other circumstances in which “higher cusps” occur and it is the way in which these break up and
evolve—the technical and rather descriptive word is “unfold”—as the parameters change which
will be our main topic. Such unfoldings are a major concern of “Singularity Theory” and this
article is initended to introduce some of the ideas in a concrete context.

In §4 we introduce one continuous parameter > 1: the straight lines join corresponding points
(cost,sint) and (r cosmt,rsinmt) of two circles centered at the origin, of radii 1 and r. (Here m
is a rational number which, in any one family of envelopes, will be held fixed.) In §5 we allow the
center of the second circle to move from (0, 0) to (0, d), introducing a second continuous parameter
d: we now have a two-parameter family of lines with parameters r, d. The point of doing this is to
show how singularities evolve as the two parameters r,d change. As above, this process is called
“unfolding the singularity”, revealing its inner structure. Some unfoldings may not be sufficient
to reveal the full structure; those that do are called “versal unfoldings”. There is an illustration
in Figure 9, which shows how the “butterfly singularity”, which is the “sharp point” to the left



in the center diagram, unfolds completely (versally) by varying the parameters r,d with m fixed
at 3/4. Note that until we see the unfolding there is no particular visual difference between the
two sharp points in the center diagram, but the one further to the right appears unaffected by the
unfolding—as indeed it is. This cusp is stable, there is nothing further to reveal by unfolding.

Unfolding is one of the central concepts of Singularity Theory and Catastrophe Theory, orig-
inally introduced by René Thom and Hassler Whitney in the 1950s and 1960s and then hugely
developed by many others including John Mather. There is some information on this in [2, 13, 14]
but no comprehensive history of the subject as yet exists.

Using readily available online graphics programs it is possible to explore these envelopes exper-
imentally and to witness the changes in the number and nature of the singularities as parameters
vary. Writing the instructions for such programs requires calculation of the envelope curves start-
ing from the family of lines and we include some standard results and calculations in this direction
in §3. The two-parameterl case studied in §5 is available in the Desmos interactive program [6];
in §3 and elsewhere we shall explain where the formulas in this program come from. The program
allows the rational number m = a/b to be chosen, the lines and the envelope curve to be drawn
or withheld and the parameters » = the radius of the second circle and d = the displacement of
the center in the y-direction to be changed. In fact the center of the second circle can be moved
more generally to (¢, d).

In Remark 4.5 we explain briefly how some of the envelopes in §4 can be generated in a different
way.
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Figure 1: All the figures show the “embroidery” envelope and also the circle. Left: m = 3, with 2 cusps
and no self-crossings. Centre: m = %, which has 1 cusp and 3 self-crossings. Right: just the envelope of
the center diagram without the lines being drawn.

The envelopes considered in this article are examples of a wide class where corresponding points
of two plane curves € and C are joined by straight lines. The two curves can also coincide, and
the “correspondence” can be any relationship, differentiable when expressed in local parameters;
it does not have to be one-to-one. For example the envelope of lines joining points of C; and C5 at
which the tangents are parallel gives the center symmetry set, initially studied by Janeczko [11] but
later developed into a substantial theory extending to higher dimensions by many authors; see [10]
for example. In [9] the authors study the related “Wigner caustic” which is the envelope of lines
halfway between parallel tangents and which first arose in physics. In all cases a central question
is the nature of the singular points (cusps etc.) and the extent to which they are fully unfolded,
with their inner structure revealed, by whatever smoothly varying parameters are available.



2 An envelope from one circle

A well-known way of forming an envelope from chords of a single circle is as follows (see for example
[4, §5.7(2), §7.14(6)]). For each point (cost,sint), 0 < ¢ < 27, on the unit circle construct the
chord from this point to (cos(mt),sin(mt)) where m is a positive integer > 1. (For ¢t = 0 we use
the tangent at the origin instead of a chord.) These lines have an envelope which has m — 1 cusps
and no self-crossings. See Figure 1, left, for the case m = 3. To generalise, we let m = 3 be any
rational number, not equal to 0 or 1 and in its lowest terms. We consider three problems, in
increasing order of difficulty: (i) find the range of values of ¢ which allows the envelope to close;
(ii) find the number of cusps on the envelope; and (iii) find the number of self-crossings on the
envelope. Two examples are given also in Figure 1.
We shall prove the following.

Theorem 2.1 For the envelope constructed as above, with m # —1,0,1 a rational number ¢ in
its lowest terms, with b > 0,

(i) the envelope, starting at t = 0, closes for t = 2bm,

(i) the number of cusps is |a — b|, occurring when (m — 1)t is an odd multiple of m; there are
also |a — b| points of tangency between the envelope and the circle, occurring when (m — 1)t is an
even multiple of .

In addition it can be shown that

(iii) the number of self-crossings is

(lal = Dfa =0 if |m[<1
(b—Dla—b| i |m|>1.

As examples, see those in Figure 1. See §3 below for a more general discussion of envelopes of
lines.

First, we shall need a formula for the envelope itself. The line joining the points (cost,sint)
and (cosmt,sinmt) (m # 1) has equation

z(sinmt — sint) — y(cosmt — cost) = sin(m — 1)t. (1)

The standard way to obtain the envelope of such a family of lines—that is, a curve which is tangent
to all the lines—is to differentiate with respect to ¢ and then to solve for x and y as functions of ¢
from the two equations. The solution will be written as © = X (¢),y = Y (¢) in what follows. After
some trigonometric work we find

X(t) = m#ﬂ(m cost+cosmt), Y(t) = m#ﬂ(m sint + sinmt). (2)

2.1 Tangencies with the circle

It is important to note that in the process of deriving this parametrization there is a cancellation
from numerator and denominator of 1 — cos(m — 1)t which vanishes when (m — 1)t is an even
multiple of m. This corresponds to those values of ¢ for which the two ends of the chord joining
(cost,sint) and (cosmt,sinmt) actually coincide, but because cancellation takes place in both
numerator and denominator it is a “removable singularity” and the parametrization (2) remains
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valid at these points. Indeed these are exactly the points at which the envelope is tangent to the

2nb
circle. To count them (m — 1)t = 2n7 (n an integer) means t = n_7zr) (recall ¢ > 0) and the

values of n which make this angle between 0 and 2br are n = 0,1, ..., |a — b|. Thus there are |a —b|
points of tangency between the envelope and the circle, proving the second part of (ii) This is also
illustrated in Figure 1.

2.2 Cusps

It is clear that with m = ¢ in its lowest terms, and b > 0, the functions giving z and y will begin
to repeat when ¢ = 2br. (This is not the same as saying that the smallest ¢t with X (¢) = X (0)
and Y (t) = Y(0) is t = 2bm: the envelope may, as in (iii) of the above theorem, intersect itself
for smaller values of ¢.) For m an integer this is of course just a period of 27. Thus we need to
consider in general the interval 0 <t < 2bm when discussing cusps or self-crossings of the envelope.
In practice we will regard parameter values ¢ as defined modulo 2br.

A cusp forms on the curve (X (t), Y (t)) when its velocity vector (X'(t),Y’(t)) is zero, the prime
" here representing differentiation with respect to t. These require both sint + sinmt = 0 and
cost+cosmt = 0, which in particular implies that sin t cos mt = cos t sin mt, that is sin(m—1)t = 0
or (m — 1)t = nx for an integer n. Substituting mt = nmw + ¢ into the equations X'(t) = Y'(t) =0
however requires cosnm = —1 in both cases, so in fact n has to be odd. The even values correspond
with the two points on the unit circle coinciding, a case already mentioned above.

Thus for the formation of a cusp |m — 1|t takes values (2k — 1)7 for k = 1,2,.... When m is
an integer, we are looking for values of 0 < ¢ < 27 and the largest value of k is then |m — 1|. In

general when m = ¢ in lowest terms we have 0 < ¢ < 2br and the largest value of k is |a — b|.

Hence there are |a — b| cusps in general, proving (ii) of the theorem.

Remark 2.2 These cusps are always what is called “simple cusps”, which means that by a change
of coordinates in the plane close to any one cusp it can be reparametrised as the “normal form”
(t2,¢3). The standard test for a simple cusp on a curve parametrised as (X(t),Y(t)) is that
X' =Y =0 but X"Y" — X"Y" #£ 0 where the derivatives are evaluated at the cusp point. We
have more to say about this condition in Lemma 5.1 below. (There is some information about
reduction to normal form in [4, pp.154-159]; more formal treatments are found in more advanced
books such as [13, Ch.8]. Note that a simple cusp is referred to as an Ay singularity of a plane

curve.)
In the present case X"Y"” — X"Y"(m # 0,—1) is zero precisely when m cos(m — 1)t + m? —
m+1 = 0. However when cos(m — 1)t = —1 this requires m = 1, a case already eliminated. Thus

all cusps are simple.

3 General envelopes of lines

Let
F(t,z,y) = A(t)x + B(t)y + C(t), (3)

so that F' = 0 is a family of straight lines, parametrized by ¢, with envelope given by F' =0, F;, =
A'z+ B'y+C" = 0, using here and in what follows subscripts to denote partial derivatives. Solving



for x = X(t), y =Y (t) gives (omitting the variable t)

X — BC' - B'C v — A'C— ACY
 AB'—A'B’ = AB' —A'B’
provided of course that AB' — A’'B # 0.
For the envelope considered above in §2 (see (1)), A = sinmt —sint, B = — cosmt +cost,C =

—sin(m — 1)t. Calculation then shows that AB’ — A'B = (m + 1)(1 — cos(m — 1)t) which is zero
when (m — 1)t is an even multiple of 7. These are exactly the points for which the two ends of the
chord joining (cost,sint) to (cosmt,sinmt) coincide, corresponding to lines in the family which
(as limits) are tangent to the circle. Fortunately this does not invalidate the parametrization (2)
and indeed the envelope is actually smooth at these points, the cusps occurring at intermediate
values of ¢ where (m — 1)t is an odd multiple of 7. It is worth recording the following well-known
lemma.

Lemma 3.1 In the above notation, suppose that AB" — A’'B # 0 and let (X(t),Y(t)) be the
resulting parametrization of the envelope, At an envelope point (X(t),Y (t)) with corresponding
parameter t, giwen by solving F(t,X(t),Y(t)) = Fi(t,X(t),Y(t)) = 0, the second derivative
Fiu(t, X(t),Y(t)) vanishes if and only if the envelope is singular, that is X'(t) =Y'(t) = 0.

Note that Fy(t,z,y) = A"z + B"y+ C" so Fu(t, X (t),Y(t)) = A”X(t) + B"Y (t) + C", a function
of t only, and similarly for higher derivatives of F.

Proof We have F(t,X(t),Y(t)) = 0 and Fy(t,X(¢),Y(t)) = 0 identically as functions of ¢.
Differentiating these with respect to ¢t we get Fy + F, X'+ F,)Y' =0=F, + Fi, X' + F,,Y' = 0. It
is clear that if X’ =Y’ = 0 then F;; = 0. For the converse, assume F}; = 0 at an envelope point,
so that Fy = 0 too. We have F, = A, F, = B, F,, = A", F,, = B’ so that the two equations for
XY are AX"+ BY' =0,A X"+ B'Y' =0 and these imply X’ =Y’ =0 since AB’ — A'B # 0.
O

Thus away from points where AB’— A’B = 0 we can detect singular points of the envelope by the
equation Fy; = 0. When AB’ — A’B = 0 then in general we might expect the envelope to “go to
infinity” since the denominator of X and Y vanishes. For the envelope studied in §2 numerator
and denominator always vanish together and these “singularities” are removable. The envelope
never goes to infinity and its genuine singular points are cusps as determined in Theorem 2.1.
In the next section we shall meet an example where the equal denominators of X and Y can
vanish with neither numerator, or one numerator, vanishing, though never both at once. When
one numerator vanishes this means that the envelope “goes to infinity” in the direction of the x-
or the y-axis, and when neither vanishes it means that the envelope goes to infinity in some other
direction.

Naturally singularities of envelopes (X (t),Y(¢)), detected by the conditions X’ =Y’ = 0, are
not always simple cusps, in the sense that they do not always “look like” the cusp y? = 23. In the
case of the singularities present in one-circle envelopes they are in fact simple cusps: a suitable
smooth change of coordinates in the plane near to the cusp will transform it into the standard
form (¢2,13). The test for this is that, writing (X (¢),Y(¢)) for a parametrization of the envelope,
such as (2), we have X'(ty) = Y'(to) = 0, but X" (¢0)Y"(to) # X" (t0)Y"(ty), where ty gives the
position of the cusp. The latter condition is equivalent in fact to Fi (¢, X(¢),Y (t)) # 0 at t = t,.
Calculation shows that either of these conditions reduces to 2cos((m — 1)ty) + 1 = 0, which is
incompatible with the condition sin((m — 1)ty) = 0 for Fj; = 0, so all cusps are simple.
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In the next section we shall meet higher singularities. Simple cusps are stable in the sense that
small changes of continuously varying parameters may move their position but will not destroy
the cusp itself. For the one-circle envelopes there are no such parameters to vary (m is restricted
to being rational) but we shall now introduce one, and later two, parameters of this kind to vary.

4 An envelope from two circles

There is an interesting extension of the above construction to produce a one-parameter family of
envelopes in which changing the parameter which increases or decreases the number of cusps and
self-intersections. However, as we shall see, the construction is too symmetric to exhibit the most
general behavior, and we need to break the symmetry by means of a 2-parameter family to reveal
the full structure of the singular points which arise.

We take two circles centered at the origin, of radii 1 and r > 1, a fixed rational number m,
and join the point (cost,sint) of the first circle to the point (7 cos mt, rsinmt) of the second with
a straight line. This line has equation F'(t,z,y,r) = 0, where

F(t,z,y,r) = x(rsinmt — sint) — y(r cosmt — cost) — rsin(m — 1)t. (4)

Here r is a continuous parameter, given a definite value for each example, and ¢ tells us which line
we are considering.

We shall later describe F' as a three-parameter family of functions of the variable t. Note that
m is restricted to rational values, so for example cannot be differentiatied, and is regarded as
fixed.

The envelope of the lines F' = 0, obtained from F = 0F/0t = 0, is (suppressing r from the
notation for X, Y now)

r [cosmt(r cos(m — 1)t — 1) +mcost(cos(m — 1)t — r)]

X(t) = r(m + 1) cos(m — 1)t — (mr? + 1) |

(5)
7 [sinmt(r cos(m — 1)t — 1) + msint(cos(m — 1)t — r)]
r(m+ 1) cos(m — 1)t — (mr? 4+ 1)

Note that in this case the factor cos((m — 1)t) — 1, which was cancelled from numerator and
denominator when deducing the parametrization (2) in the one-circle case, appears here explicitly:
when 7 = 1 the denominator in (5) becomes exactly (m + 1)(cos(m — 1)t — 1).

We shall assume, as before, that m = 7, a rational number in its lowest terms, with b > 0. We
shall exclude certain values of m, namely —1,0, 1, and sometimes 2 and %

Remark 4.1 The two-circle envelope above can also be constructed from the family of straight
lines joining the point (cosbT’, sinbT') on the unit circle to the point (rcosaT’, rsinal’) on the
concentric circle of radius r: just write ¢t = bT" so that mt = (a/b)bT = aT. The range of values
of T'is 0 < T' < 27. The formula corresponding to (4) is

F(z,y) = z(rsinaTl — sinbT") — y(r cos aT — cosbT') — rsin(a — b)T.

Note that the denominator in (5) can be zero, indicating that the envelope has “gone to

infinity”. This occurs when
( i mr? + 1 (6)
cos(m— 1)t = —.
r(m+1)



The denominator in this expression is not zero! Values of ¢ exist satisfying (6) if and only if the
right-hand side lies in the closed interval [—1,1]. Some work with inequalities, using » > 1 and
m # —1,0,1, shows that this is equivalent to 1 < r < Wl| and in particular is only possible if
|m| < 1. Summing this up:

Proposition 4.2 The 2-circle envelope parametrized by (5), where v > 1, m = £,b > 0 is in
lowest terms, goes to infinity if and only if /m| < 1 and 1 <r < ﬁ The values of t for which
this happens are given by (6) which has 2|b— a| solutions for 0 <t < 2brm, except for r = ﬁ when
the number is |b — al. O

There is an illustration of this in Figure 2.

LKA

a=-2,b=3r=225 a=-2,b=3,r=125 \

a=-2,b=3,r=1.036

Figure 2: Left pair: r > Tl | = 1.5 and the envelope is finite; the central part is enlarged. Centre pair:
the envelope goes to infinity 10 (= 2(b—a)) times, because r < |m| (see Proposition 4.2); the central part
m—2

1| = % which results in 10 additional

cusps, as in Proposition 4.4. One of the configurations of three cusps is enlarged at the far right.

of the envelope is again enlarged for clarity. Right pair: r < ‘

4.1 Cusps on the 2-circles envelope

When counting the cusps on the 2-circles envelope it is helpful to use Lemma 3.1. At points given
by (5), we have

Fy = rmsin(m — 1)t (m — 24 r(m + 1) cos(m — 1)t + r*(1 — 2m)) (7)

and cusps (or possibly higher singularities: see §5) occur when this is zero.

The factor sin(m — 1)t is equal to zero if |m — 1|t takes values km for £k = 0,1, .... Thus, taking
m = £,b > 0 in lowest terms and looking at the range 0 <t < 2bm, there are 2|a — b| solutions for
this term, corresponding to 2|a — b| “general cusps” for any r > 1.
The additional factor of (7) equals zero when

(2m — 1)r? 4+ (2 —m))

cos(m — 1)t = p—

= M say. (8)

Values of ¢ satisfying this expression exist if and only if M lies within the interval [—1,1]. Evalu-

if |m| < 1. Conversely, for |m| > 1, there are no extra cusps besides the 2|a — b| general cusps for
all » > 1. When r takes the extreme value |3 (m— 1)t = +£1,
so that sin(m — 1)t = 0 and the values of ¢ have coincided with those for the “general cusps”
above, possibly changing the nature of these cusps.
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Remarks 4.3 (1) The values of ¢ in (8) cannot coincide with those in (6) (given as usual m #
1,7 > 1), but the cusps given by sin(m — 1)t = 0 can be at infinity, in fact when |m| = 1/r. An
example occurs at the intermediate value r = 1.5, between the illustrations in Figure 2, left and

center, when all these cusps (the outer five in the left-hand diagram) have “gone to infinity”.
(2) Clearly m = % is slightly special in the above discussion: with a = 1,0 = 2 there are
2|a — b| = 2 additional cusps for all values of r > 1. The envelope goes to infinity in this case just

for r > 1/|m| = 2, according to Proposition 4.2, and when r = 2 one of the cusps goes to infinity.
From the above discussion we have the following.

Proposition 4.4 The two-circle envelope parametrized by (5), where as usual m = § is in its
lowest terms, v > 1 and the range of t is [0,2bw), has cusps as follows.

(i) 2|a —b| cusps always (we call these the general cusps);

(ila) when |m| <1l and1l <r < ‘ Z=m | 2| —b| cusps in addition to (i) [two additional cusps for

2m—1
allr > 1 when m = %] See figure 3, right;
(iib) when |m| <1 and r = |227;T1 , 2la — b| cusps altogether. Not all these cusps may be simple;
this is explored in §5. O

Some further examples are given in Figures 3 and 4.

o ———

~— _ —

Figure 3: Left and center: the case a = —4,b = 3,7 = 3.5, with 2|a — b| = 14 cusps. On the left the lines
forming the envelope are drawn and also the circle radius r is drawn dashed. In the center the envelope
is the solid curve and the circles of radii 1 and r are drawn dashed. Right: the case a = 3,b =4,r =2
with 4 cusps, which is 4|a — b|, as in (iia) of Proposition 4.4. The collection of three nearby cusps at the
left of this envelope is called a butterfly configuration. As r — |2 —m|/|2m — 1| = 2.5 this configuration
collapses to a single point which is a butterfly singularity. This is not a simple cusp and is discussed
further in §5. At r = 2.5 there are now 2|a — b| = 2 cusps as in (iib) of Proposition 4.4. See also Figure 9.

Remark 4.5 The special case m = 2 (or m = % ). The 2-circle envelope of lines, in this special
case, has an interpretation as a different envelope of lines, in fact as the envelope of rays reflected
from a circular mirror of radius 1 with a point light source at (r,0) where r > 0 is the radius of the
second circle. (By symmetry it is enough to consider a light source on the positive z-axis.) This
is the caustic by reflexion of the unit circle with a finite light source. For further information on
caustics see for example [5, 12]; there are also articles and videos on the internet under headings
such as ‘caustic’ (in the mathematical, not chemical, sense).
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Figure 4: A discontinuous change for m = 1/4 from r = 1 to r = 1.1 and then on to r = 1.6 and r = 3.5.
The last transition shows three butterfly configurations which collapse to three (non-simple) cusps. To
reveal the full structure of these cusps we need to introduce a second parameter as in §5 and Figure 9.

Figure 5, left, shows a light ray C'P from a point source at (r,0) reflected at the point P on
the unit circle (the “mirror”) and striking the concentric circle of radius r at (). Note that if the
angle t is small in magnitude then the light ray will in practice bounce off the unit circle and not
focus at all: we have to produce it “backwards” inside the unit circle for focussing to take place.
Thus we are really considering the “mathematical caustic” which is a completion of the “physical
caustic”. In practice light rays may be reflected many times inside the mirror; many studies have
considered these multiple caustics, for example [3].

The triangles POC and POQ are congruent so that the point ) has coordinates (r cos 2t, r sin 2t),
that is PQ is the same line as in the construction of the 2-circle envelope with m = 2. Any lin-
gering doubts that this always works, even if » < 1, can be answered by finding the equation of
the reflected ray:

sint(2r cost — 1)x + (cost — rcos2t)y — rsint =0

which always contains the point (r cos2t, rsin 2t) using the standard double angle formulas.

5 Swallowtails and Butterflies

The cusps on an envelope constructed from two concentric circles call for some further analysis.
One such envelope is shown in the central diagram of Figure 9 (the circles themselves are not

shown), where m = 2 and r = 2. In terms of Proposition 4.4(iib) this is an extreme value of

1 2
r. The left and right cusps occur for ¢t = 0 and t = 47 respectively and the initial terms of the
Taylor expansions of the envelope curves (X (¢),Y (t)) close to the two cusps in this example are

as follows:

25 75

5! 5) 5)
Left Cusp: <—? — mtél, —ﬁtf)) 3 nght cusp: (—% — @(t — 47T>2, ——(t — 47T)3)

The right cusp is therefore a simple cusp, reducible to (¢2,¢%) by a change of coordinates, but the
left cusp is not: it is a “(4,5)” cusp which is called a butterfly singularity. Figure 3, right, shows
the effect on this singularity of changing r slightly: the butterfly opens its wings into a 3-cusped
curve (all these cusps are in fact simple), while the simple cusp remains simple.

In what follows we shall use higher derivatives of the defining equation (4) of the 2-circle
envelope to distinguish the various cusps. (These conditions apply to any envelope of lines, not
just the 2-circle envelope.) Recall that the envelope itself is determined by F' = F; = 0. The



Figure 5: Left: identification of a caustic by reflexion in the unit circle with source at (r,0) with the
2-circle envelope taking m to be 2. Right: envelope of reflected rays with r = 0.4; thus the source of
light is at the point (0.4,0) on the inner circle and the full mathematical caustic is drawn, irrespective of
whether the reflected rays focus inside the mirror (the outer circle).

condition for a singular envelope is that in addition Fy, = 0 (evaluated as usual at (¢, X (t),Y (t))),
which from Lemma 3.1 is equivalent to X’ = Y’ = 0. First we introduce a standard example of
something simpler (but not simple), unfolding a “(3,4) cusp” or swallowtail point.

5.1 A standard swallowtail

A basic example of a 3-parameter family of functions of ¢, not arising from 2-circle envelopes, is
G(t,z,y,2) =t + z+yt + 2t° (10)

for which the discriminant set G = Gy = 0 is parametrised x(t) = 3t* + 212, y(t) = —4t3 — 22t.
(Thus z here plays an analogous role to r in the 2-circle envelope case.) This set is illustrated in
(z,y, z) space in Figure 8, left, and the slices z = constant near to z = 0 in Figure 8, right. When
z = 0 the parametrisation of the curve is x = 3t*, y = —4t3, a “(3,4)” singularity or swallowtail
singularity. As z goes through 0, the swallowtail singularity unfolds to reveal two ordinary cusps
and a crossing in one direction z < 0 and a smooth curve in the other direction z > 0.

Note that in this example, Gy(0,0,0,0) = 120 # 0. We shall see below that this property
distinguishes (3, 4) singularities on 2-circle envelopes from the standard example above. It is what
prevents a swallowtail point on a 2-circle envelope from being fully unfolded by changing the radius
r. We shall see in §5.4 how adding an extra parameter to F, thereby breaking the symmetry of
the construction, both swallowtail and higher “butterfly” singularities exhibit full unfoldings.
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5.2 Further details of the 2-circle construction

In general terms, the more derivatives of F' with respect to ¢ which vanish, the “higher” the cusp.
A simple cusp has F' = F; = F;; = 0 but Fy; # 0. Reference™*** Here we shall check the next
case.

Lemma 5.1 Suppose that F' = F, = Fy = 0 at (t, X (t),Y(t)) so that, as above, the envelope of
lines ' = 0 is singular at this point. Then Fy; = 0 too if and only if X"Y"" — X"Y" =0, which
is the condition for a “higher cusp”, typically a “swallowtail point”.

Proof The equations F(t, X(t),Y(t)) = 0, that is aX +bY + ¢ = 0 and F,(¢t, X(¢),Y(t)) = 0,
that is ' X +b'Y 4+ = 0, are identities and can be differentiated with respect to ¢ any number of
times, still giving zero. Differentiating the first and using the second gives a X’ + bY’ = 0, which
simply says that the line F' = 0 is tangent to the envelope curve. Differentiating this and using
X' =Y =0 gives aX” + bY"” = 0 at singular points.

Next, differentiating F' = 0 three times, and F; = 0 twice, using X’ = Y’ = 0 gives the
equations

Fyy + 3a' X" + 3" + ax" + by — 0’ Fyy + a X" + YY" =0

respectively, from which we deduce a X" + bY"" = 2F};; at points where X’ =Y’ = 0. Combining
this with aX” 4+ bY"” = 0 and using the fact that a and b cannot vanish together, gives the result
of the lemma. ]

At such a swallowtail point, it can be shown that by a local change of coordinates the envelope
assumes the “normal form” (#3,t1). Examples of swallowtail points are given below, though in
fact the 2-circles envelope does not actually exhibit them: we need to break some of the symmetry
to observe such singularities. (See (iib) in the Proposition below.) The fourth derivative of F,
that is Fjyy, can vanish in addition to the second and third, and in that case the singularity is
called a “butterfly”. We have already met this in (9) above. (See also [4, p.129], or, for the more
advanced viewpoint of “elementary catastrophes”, [13, §7.5], [1, §13] or [15]. There is also much
information, and good illustrations, on the internet, such as [2].)

Recall from Proposition 4.1 that cusps occur on the 2-circles envelope when Fy (¢, X (¢), Y (t)) =
0 where F' = 0 is the equation of the line as in (4) and Fj; is written out in (7). Furthermore
Fy; = 0 if and only if sin(m — 1)t = 0 or cos(m — 1)t = M = ((2m — 1)r?+2 —m)/r(m+ 1), which
is only possible when |m| < 1 and 1 <r <|m —2|/|2m — 1].

Routine but sometimes messy calculations then reveal the following details.

Proposition 5.2 (i) Suppose that sin(m — 1)t = 0, that is (m — 1)t is an integer multiple of .
Then the non-simple cusp condition Fyu(t, X (t),Y (t)) =0 (or X"Y" = X""Y") requires r to have
an extreme value |m — 2|/|2m — 1|. In fact r = (2 —m)/(2m — 1) when cos(m — 1)t = +1, and
r=(m—2)/(2m — 1) when cos(m — 1)t = —1.

(ii) When sin(m —1)t =0 and Fyy = 0 as in (i), then also Fyyy = 0, which raises the singular type
of the cusp to the form (t*,1%) as in the central figure of Figure 9. Mercifully, the next derivative
is not zero here!

(iii) When cos(m — 1)t = M then the non-simple cusp condition Fyy = 0 requires that r is an
extreme value |(m —2)/(2m — 1)|, but in that case M = £1 so cos(m — 1)t = £1 and we are back
in case (i), that is sin(m — 1)t = 0. O
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Note that the two cusps in the central figure of Figure 9 are distiguished by (i) and (ii) of the
Proposition. For the left hand non-simple cusp, t = 0 and m = 3/4,cos(m — 1)t = +1,r =5/2 =
(2—m)/(2m —1) so Fy; = 0, while for the right hand simple cusp, m = 3/4,t = 4w, cos(m — 1)t =
—1but r# (m—2)/(2m — 1) so Fy # 0.

Note also that (ii) and (iii) of the Proposition show that swallowtail singularities given by
Fy =0,Fy =0, Fyyy # 0 do not occur on 2-circle envelopes. We shall see below that they occur
when we add another parameter besides r to the family of lines defining the envelope.

We can treat the left hand side of equation (4) as F'(t,x,y,r), a 3-parameter family of functions
of t. For fixed r the discriminant set is the envelope in the (x,y) plane as above, given by
F=F =0.

We say something about the underlying reason why G displays a swallowtail transition and F'
does not, that is why the fourth derivative is important, in §5.5.

5.3 A standard butterfly
By analogy with the family G in (10) for a swallowtail consider the family

H(t,w,x,y,2) =t° +w+ xt + yt* + 2t> (11)
for which the discriminant H = H; = 0 in 4-dimensional (w, z,y, z) space has parametrisation
(w,m,y,2) = (48° + 2% + yt*, —5t* — 2yt — 3242, y, 2). (12)

This is a 3-dimensional set in 4-space, parametrised by ¢, y, z. The planar “slices”, given by fixing
y and z in the first two coordinates of (12), are curves parametrised by t. As y and z vary near the
value 0 we can observe how these curves evolve. When y = z = 0 the curve has a (4, 5) singularity
(switching the coordinates), which is the same as the singularity in the central diagram of Figure 9.
A simple Desmos demonstration enabling you to draw the curves for different (y, z), appearing
in Desmos as (Y, Z), is at [7]. A different version [8] takes the point (Y, Z) for a tour around the
origin Y = Z = 0. See also Figure 6 for a “still” from [8].

Two swallowtail transitions for the family (11), observed in a the circular tour of (y, z) = (0,0),
are also displayed in Figure 7.

We now show how to add a parameter to the 2-circles family so that the full structure of a
more complicated singularity can be unfolded.

5.4 Adding an extra parameter to the 2-circles construction

We can extend the function F'(¢,z,y,r) in (4), which gives the family of lines joining corresponding
points of two circles both centered at the origin and of radius 1 and r, by allowing the center of the
second circle to move to (0,d). That is, the line now joins (cost,sint) to (rcosmt,d + rsinmt),
with equation F = 0 where

F(t,z,y,r,d) = z(rsinmt — sint + d) — y(r cosmt — cost) — r cost sinmt + rsint cosmt — d cos t.
(13)
There is a correspondingly more complicated formula for the discriminant F = F; = 0.
The addition of the parameter d can be described as breaking the symmetry of the 2-circles
envelope construction and it confers an extra degree of freedom on the envelope curve.
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Figure 6: One of the curves given by fixing (y, z) (appearing here as (Y, Z)) close to (0,0) in (12). This
Desmos figure sets Y = 0.5cosa, Z = 0.5sina, /2 < a < 57/2 so that a tour of the origin (Y, Z) = (0,0)
occurs by allowing the angle a to travel through this interval. Clicking on the arrow against a animates
this tour. The figure initially displays a = 37/2 ~ 4.712.

005
0.
posmEEREsC—Cadh ol
Al -0.05 0 01 015 ‘
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3 R T N — i |
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Figure 7: Four diagrams from a tour of the origin (y,z) = (0.5cosa, 0.5sina) for, left to right, a =
4.3, 4.6, 4.8, 5.1 exhibiting two swallowtail transitions in a neighborhood of a butterfly singularity. The
symmetric diagram a = 4.712 is in Figure 6.

Figure 9 displays a “clock diagram” of plane curves obtained by taking m = 3/4 and taking
values of r and d close to (r,d) = (2.5,0). This base value makes the singularity of the envelope
at (—5.7,0) of type (4,5): see (9). A two-dimensional array of figures is needed to display the
independent variation of the two parameters r, d.

13



Figure 8: Left: a swallowtail surface in (z,y, z)-space, obtained as the discriminant of the family
G(t,xz,y,z) = t* + = + yt + 2t2. Right: slices z = constant of this surface from “back” to “front”.
The reversal of the usual axes arises from using the natural progression z,y, z in the definition of G.
The sequence displays a “swallowtail transition” but a similar transition, where two cusps and a crossing
merge and evolve into a smooth curve, does not occur on 2-circle envelopes without introducing a second
parameter besides r (see Proposition 5.2 and the comments following it). The “swallowtail singularity”
itself occurs in the center diagram. It looks like a kink in the curve, a point where the first derivative
exists as a limit but the second does not.

OO

r=25d=05 r=3d=05 r=235d=0.5

OO0

= = r=25d=0 r=3,d=

elele

r=25d=-05r=3d=-05 r=3,d=-0.5

Figure 9: A tour of the origin in the (r, d)-plane, showing the envelope obtained from the unit circle and
the circle radius r near to 2.5 and center (0,d) near to (0,0). Throughout, m = 3/4 and all figures are
scaled to be approximately the same size. The diagram as a whole is called a “clock diagram” for the
butterfly singularity which is to the left in the central diagram. It shows a “universal unfolding” of that
singularity, revealing all “nearby singularities” to ik butterfly, that is singularities which can occur in
any small perturbation. Swallowtail transitions occur top left to top right, and bottom left to bottom
right.



5.5 Some more technical comments

How can we disinguish between a family such as H in (11),

Here we shall indicate how it can be decided whether an unfolding will display “all nearby
singularities” to a given starting singularity, that is, reveal the full inner structure of that singu-
larity. The methods are simple but the justification is more technical and we must refer to books
such as [4, p.148-151],[13] for the details. There are also some details on the webpage [16] though
these refer to a slightly different classification.

Using the methods of [4, Ch.7] it can be shown that the two parameters r and d are always
sufficient to produce the full unfolding of the butterfly singularity exhibited in this figure. In this
diagram there are two instances of swallowtail transitions: top left to top right and bottom left
to bottom right. Two cusps disappear via a swallowtail point to a smooth piece of curve.

Besides books such a [1, 13, 15] there is much information and good illustrations of these
singularities, or “catastrophes” on the internet, such as [2].
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