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Abstract

We study centre symmetry sets and equidistants for a 1-parameter family of plane curves where,
for a special member of the family, there exist two inflexions with parallel tangents. Some results can
be obtained by reducing a generating family to normal forms, but others require direct calculation
from the generating family.
MSC2010 Classification: 57R45, 53A04, 53A15

1 Introduction

The centre symmetry set (CSS) of a hypersurface M in Rk+1 is the envelope of (infinite) straight lines
joining pairs of points of M with parallel tangent hyperplanes, or “parallel tangent chords” as we shall
call them. The CSS, which is invariant under affine transformations of Rk+1, has been studied in detail
for many cases in, for example, [10, 7, 8, 9, 6]. In this article we are principally concerned with k = 1,
that is a plane curve M , but allowing the curve to vary in a generic 1-parameter family. For a generic
smooth closed plane curve the inflexion points (where the tangent line has at least 3-point contact) will
all be ordinary (the contact is exactly 3-point) and no two will have parallel tangent lines. However, for
a special member of a generic 1-parameter family there can exist two inflexion points of M with parallel
tangent lines. This introduces some features of the CSS which are not present for a generic curve, such
as a supercaustic, introduced in [11], which we define and investigate in §2. We are interested in how
the CSS evolves in such a family, and also in how the equidistants evolve—an equidistant is the set of
points of the form (1− λ)a+ λb where λ is fixed and a, b are distinct points of M at which the tangent
hyperplanes are parallel.

The generating function method for investigating the CSS was introduced in [8]. In the context of a
smooth parametrized plane curve γ : S1 → R2 it is as follows. Consider the function

F : S1 × R× R× R× R2 → R, F (n, s, t, λ,x) = (1− λ)⟨γ(s)− x,n⟩+ λ⟨γ(t)− x,n⟩. (1)

Here s, t are parameter values for γ, n is a unit vector in R2 and ⟨−,−⟩ can be interpreted as scalar
product of vectors. We shall use here only a multi-local form of F : we choose two base values s0 ̸= t0
where the tangents γ′(s0), γ

′(t0) are parallel, and s, t will be close to these base values. We denote by M
a neighbourhood of γ(s0) on the curve, and by N a neighbourhood of γ(t0). Then, using subscripts to
denote partial derivatives, the set of points

ΣF = {(λ,x) : ∃ (n, s, t) with F = Fn = Fs = Ft = 0}

consists of (i) points of the form (0, γ(s)) and (1, γ(t)), and (ii) points (λ, (1− λ)γ(s) + λγ(t)) where the
tangents γ′(s), γ′(t) are parallel (both perpendicular to n). Thus ΣF is the union of all parallel tangent
chords of γ close to the base pair, spread out in the λ-direction, together with copies of M and N .

Let λ = λ0 + α where α is small and λ0 ̸= 0, 1. Setting up coordinates as in Figure 1, right, with
s0 = t0 = 0, and two curve pieces given by M : (s, f2s

2 + f3s
3 + . . .) and N : (t, 1 + g2t

2 + g3t
3 + . . .),

with n = (n, 1), we find that ΣF is smooth at (λ0, (0, λ0)) unless (1 − λ0)g2 + λ0f2 = 0. If f2 and g2
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are nonzero and distinct then this gives the unique CSS point (0, λ0) = (0, g2/(g2 − f2)) on the chord
joining the two basepoints (compare for example [7, Th.4]; if f2 = g2 ̸= 0 the CSS point is at infinity).
See Figure 1. In general, setting aside the values λ0 = 0, 1, the CSS can be computed as a caustic: the
set of critical values of the projection of ΣF to x.

y  =  g ( x )

y  =  f ( x )M

N ( 0 , 1 )

a

b

c
x

y

Figure 1: Left: a closed curve, several equidistants, with the “half-way equidistant” shown by a heavier line, and
the CSS, the outer 3-cusped curve passing through the cusps of the equidistants. Centre: two parallel tangents,
at a and b, with the chord joining them, tangent to the CSS at c, the position being determined by the ratio of
(euclidean) curvatures at a and b. Right: the standard setup for studying the CSS or the equidistants close to a
particular parallel tangent chord.

The case of interest to us in this article, however, is f2 = g2 = 0, that is, both basepoints are inflexion
points; then the above equation suggests that every point of the chord joining them “contributes to the
CSS”. We trace this back in §2 to the existence of supercaustics, and give a more general exposition.

It is notable that for the case f2 = g2 = 0, as a member of a generic family of curves, we have found
that some arguments work well in analogy with those in the earlier works cited above, by reduction of the
generating family to an appropriate “normal form”, while for others a much more “hands-on” approach
appears to be needed. In particular we shall encounter some very degenerate situations where normal
forms cannot be expected to help.

The remainder of the article is organized as follows. In §2 we study supercaustics in more detail than
is needed for our main application. In §3 we study the CSS of a family of curves γε, parametrized by
ε, which contains a member γ0 with parallel but distinct tangents at inflexion points. In particular we
show that the union of the CSS for all small ε—the “big CSS”—is a cuspidal edge surface, but with
the function ε, whose level sets are the separate CSS, being very degenerate. In §4 we study families
of equidistants associated with a fixed γε and close to certain special values of λ . In §5 we show how
in some situations it is possible to reduce the generating family to a normal form. These allow us to
recognize the big CSS and the evolution of the momentary CSS as ε changes, but unfortunately not the
momentary CSS in the parallel inflexional tangents case (Propositions 5.8 and 5.9). We also identify the
“big equidistant” and evolution as ε changes of the momentary equidistants for a fixed value of λ away
from the special values (Proposition 5.10).

2 Supercaustics

When we investigate the CSS of two parametrized hypersurfaces M = {(s, f(s))} and N = {(t, g(t))} in
Rk+1 by means of the generating function

F (n, s, t, λ,x) = (1− λ)⟨(s, f(s))− x,n⟩+ λ⟨(t, g(t))− x,n⟩

we consider the set F−1(0), or its projection to (λ,x)-space, where

F : R4k+2 → R3k+1, F(n, s, t, λ,x) = (F, Fn, Fs, Ft). (2)

It can happen that F−1(0) is itself singular. This will occur when the rank of the Jacobian of F is less
than 3k + 1.
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Definition 2.1 (See [11].) The supercaustic of the pair (M,N) is the projection to (λ,x)-space of the
set of singular points of F−1(0). This always includes λ = 0,x ∈ M and λ = 1,x ∈ N , so we regard
these as “trivial” parts and we are interested in the rest of the supercaustic, when this exists.

We shall see that, for generic M and N , the non-trivial supercaustic is empty, but that it can be non-
empty in a generic 1-parameter family. In this article we are principally concerned with the case k = 1,
that is plane curves, but we shall state a more general version of the condition for the supercaustic to be
non-empty. We write n = (n1, n2, . . . , nk, 1).

To prepare for the statement, we consider the case k = 2. We use the parametrizations

f(s1, s2) = f20s
2
1 + f11s1s2 + f02s

2
2 + . . . , g(t1, t2) = 1 + g20t

2
1 + g11t1t2 + g02t

2
2 + . . . .

Writing down the Jacobian of F and evaluating at the basepoints n1 = n2 = 0, s1 = s2 = 0, t1 = t2 = 0
we obtain the 7× 10 matrix

J2 =



x y 0 0 0 0 −1 0 0 1
0 0 λ− 1 0 −λ 0 0 1 0 0
0 0 0 λ− 1 0 −λ 0 0 1 0

λ− 1 0 2(λ− 1)f20 (λ− 1)f11 0 0 0 0 0 0
0 λ− 1 (λ− 1)f11 2(λ− 1)f02 0 0 0 0 0 0
−λ 0 0 0 −2λg20 −λg11 0 0 0 0
0 −λ 0 0 −λg11 −2λg02 0 0 0 0


.

It is clear that, for any k, the only nonzero entries in the last k + 1 columns will occur, as in the case
J2, in the positions corresponding to Fn1x1 ,Fn2x2 , . . .Fnkxk

,Fxk+1
. The last k + 1 columns and the first

k+1 rows can therefore be deleted, reducing the rank by k+1, and column 3k+1 now consists of zeros
and can be deleted without changing the rank. After performing row operations on the reduced 2k × 3k
we obtain, for the above case k = 2, and assuming λ ̸= 0, λ ̸= 1,

0 0 2f20 f11 −2g20 −g11
0 0 f11 2f02 −g11 −2g02
1 0 0 0 2g20 g11
0 1 0 0 g11 2g02

 ,

from which the first two columns and the last two rows can be removed, reducing the rank by 2 (in
general by k). The final matrix is k × 2k and has the form, removing the minus signs and factors of 2,
(A|B) where A is the symmetric matrix of the quadratic form of f and B is that of g. This has rank
< k, and therefore the original Jacobian has rank < k+ k+ k+1 = 3k+ 1 if and only if λ = 0, λ = 1 or
every k × k minor of (A|B) is zero.

For the surface case k = 2 this implies (taking λ ̸= 0, 1) that the basepoints (0, 0, 0) on M and (0, 0, 1)
on N are both parabolic. Then we may choose the unique asymptotic direction on M at (0, 0, 0) to be
(1, 0, 0) and considering the other 2×2 minors it follows that this is also the unique asymptotic direction
on N at (0, 0, 1).

For the curve case k = 1 we deduce similarly that both points (0, 0) on M and (0, 1) on N are
inflexions. For k = 2 the existence of parabolic points with parallel tangent planes is a generic condition,
requiring four conditions with four degrees of freedom, but requiring also that the asymptotic directions
are parallel is an additional condition which requires, in general, a 1-parameter family of surfaces to
realize. Likewise for k = 1 parallel tangents at inflexions occur only in a 1-parameter family of curves.
The general case can be stated as follows.

Theorem 2.2 For generic M and N , and away from λ = 0, λ = 1, the supercaustic is empty but can be
nonempty for a 1-parameter family of k-manifolds in Rk+1.
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For k = 1 the condition for the rank of F to drop below its maximum is that the basepoints on M and N
are both inflexions (and have parallel tangent lines);
For k = 2 the condition is that the basepoints are parabolic points with parallel asymptotic directions (and
parallel tangent planes).
For general k the condition is that the k × 2k matrix (A|B) should have rank < k, where A,B are the
k × k matrices of the quadratic forms of M and N at the basepoints (that is, the quadratic forms of the
parametrizing functions f and g). This can be expressed by saying that the second fundamental forms
share a common kernel vector.

The supercaustic itself, in (λ,x)-space, then consists locally of all points of the form (0,x),x ∈ M or
(1,x),x ∈ N (the trivial parts) or (λ, (0, 0, . . . , 0, λ)).

Projecting to x-space we obtain M ∪N ∪ {(0, . . . , 0, λ)}. �

Remark 2.3 The same result holds for the case where M,N share the same tangent (hyper)-plane
xk+1 = 0, being tangent to it at distinct points, say (0, 0, . . . , 0) and (1, 0, . . . , 0).

When we investigate the centre symmetry set of a pair of curves having a supercaustic, both for itself
and as part of a 1-parameter family, we shall need the pairs of parallel tangent pairs close to those at the
inflexion points. We pause here to describe these pairs, and extend the description to the case k = 2 of
surfaces. Thus we ask the following.

k = 1. Suppose that the basepoints on curves M and N are inflexions with parallel tangent
lines. What are the nearby points on M and N with parallel tangent lines?
k = 2. Suppose that the basepoints on surfaces M and N are parabolic with parallel asymp-
totic directions. What are the nearby pairs of points on M and N which have parallel tangent
planes?

For the case k = 1, and curves y = f(x), y = g(x) with parallel inflexional tangents at (0, 0) and (0, 1),
it is easy to see that the signs of f ′′(0) and g′′(0) determine the nature of the nearby parallel tangents,
as in Figure 2.

s

t

s

t( s ,  f  ( s ) )

( t ,  g ( t ) )

M

N

( a ) ( b )

x

y

Figure 2: Two inflexions with parallel tangents, (a) with the same orientations, that is f ′′(0)g′′(0) > 0, and (b)
with opposite orientations, that is f ′′(0)g′′(0) < 0. In (a) there are sets of four nearby points all with parallel
tangents, while in (b) there is no pair with parallel tangents apart from those at the inflexions. The (s, t) diagrams
represent pairs (s, t) giving parallel tangents.

For surfaces (k = 2) the situation is more interesting. Consider two surfaces M,N with parabolic
points at (0, 0, 0) and (0, 0, 1), having the same asymptotic direction (0, 1, 0) there, so that the surfaces
have the form z = f20x

2+ h.o.t. and z = 1 + g20x
2+ h.o.t. Consider next the (modified) Gauss maps of

these surfaces, (x, y) 7→ (fx, fy) and (x, y) 7→ (gx, gy), defined close to the basepoints (0, 0) and (0, 1). The
images of these, that is the fold lines of the Gauss map, are tangent at the origin as shown in Figure 3,
where the arrows indicate the direction in which the Gauss map is a double cover. In all these diagrams,
the image of the parabolic curve could be curved upwards or downwards; what matters is which image is
“above” the other and the directions of the arrows. Some straightforward calculations show the following.
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We shall assume that f20, g20, f03, g03 are all nonzero, the last two conditions being those to avoid a cusp
of Gauss on M or N (a further degeneracy). We also define, for M at (0, 0, 0),

A =
3f21f03 − f2

12

f2
20f03

,

and similarly B for N at (0, 0, 1). We then assume A ̸= B since if this fails, the two images in the Gauss
sphere have inflexional contact. In fact A > B is the condition for the image for M to be “above” that
for N .

Proposition 2.4 (i) When f03g03 > 0 the situation is as in Figure 3(a),(c) with a locally connected
region of the Gauss sphere occupied by parallel normals (that is parallel tangent planes) to M and N .
(ii) When f03g03 < 0 and A − B has the same sign as g03 then the situation is as in Figure 3(b), with
two local regions of the Gauss sphere occupied by parallel normals to M and N other than those at the
base points.
(iii) When f03g03 < 0 and A − B has the same sign as f03 the situation is as in Figure 3(d), with no
pairs of parallel normals apart from those at the base points. �

( a ) ( b ) ( c ) ( d )

Figure 3: For two surfaces M and N , having (ordinary) parabolic points at the base points (0, 0, 0) and (0, 0, 1)
with parallel tangent planes there, and parallel asymptotic directions, these show the images of the parabolic curves
under the Gauss map; M could give the upper or the lower curve. The arrows point into the folds of the Gauss
map and the images for M and N have ordinary contact. In cases (a), (b), (c) there will be pairs of points from
M and N , close to the basepoints, with parallel tangent planes, while in case (d) there will not.

3 The CSS

The main focus of this article is on the centre symmetry sets of a generic 1-parameter family of curves,
containing a special curve having two inflexions at which the tangents are distinct and parallel. We
represent the special curve by a pair M : y = f0(x) = f30x

3 + f40x
4 + . . . , and N : y = g0(x) =

1 + g30x
3 + g40x

4 + . . .. On M the parameter will be x = s and on N it will be x = t while the family of
curves will be parametrized by ε. Since nonsingular affine maps do not affect any of our results we may
use a 1-parameter family of such maps to reduce to the following.

Property 3.1 For every ε close to 0, the curve y = f(x, ε) has an inflexion at the origin with horizontal
tangent there, and for every ε close to 0, the curve y = g(x, ε) has an inflexion at (0, 1).

In fact we could impose a further condition, such as f30 = 1, but prefer to keep the symmetry of
representation of f and g. The above allow us to write, up to order 5 in f and order 4 in g,

f(x, ε) = x3f1(x, ε) = f30x
3 + f40x

4 + f31x
3ε+ f50x

5 + f41x
4ε+ f32x

3ε2 + . . . ,

g(x, ε) = 1 + xg1(ε) + x3g2(x, ε) = 1 + g11xε+ g30x
3 + g12xε

2 + g40x
4 + g31x

3ε+ g13xε
3 + . . . , (3)

since g1(0) = 0. When it is necessary to do calculations directly from the parametrizations we shall use
(3). We shall always assume that f30, g30 and g11 are nonzero; the last says in effect that the slope of the
curve through (0, 1) is not stationary with respect to ε at ε = 0, while the first two say that the inflexions
on M,N for ε = 0 are ordinary.
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3.1 CSS of the base curves given by ε = 0

Note that we are concerned here with chords joining a point of M = {(s, f0(s))} and a point of N =
{(t, g0(t))} where there are parallel tangent lines. We do not consider the contribution of chords joining
two points of M (or of N) with parallel tangent lines, as in the left-hand diagram of Figure 2(a). This
contribution is well-known and is described in, for example, [7, Sec. 4].

The CSS is the image in the (x, y)-plane of the critical set of the projection F−1(0) to the (x, y)-
plane. Since F−1(0) is itself singular the image of the singular set is included in the CSS and this is the
y-axis together with the curves M (λ = 0) and N (λ = 1). For the rest of the CSS the set of points
(x, y) is obtained from the Jacobian matrix of F and comes to the following, where suffix s or t denotes
differentiation.

(x, y) = (1− λ)(s, f0(s)) + λ(t, g0(t)) where f0s = g0t and λf0ss + (1− λ)g0tt = 0. (4)

Remark 3.2 This is nearly identical with the envelope of lines as obtained by the more traditional route,
that is writing L = 0 for the equation of the line joining (s, f0(s)) and (t, g0(t)), G = 0 for the condition
f0s − g0t = 0 and adding the “envelope” condition LsGt − LtGs = 0. But the latter definition does not
automatically include M and N themselves.

For the case where f30g30 < 0 there are no parallel tangents apart from those at the inflexion points
(see Figure 2(b)), so the CSS in that case consists only of M,N and the y-axis.

Notation For the case f30g30 > 0 we may assume both are positive and write

f30 = a23, g30 = b23 for some numbers a3 > 0, b3 > 0, a3 − b3 ̸= 0. (5)

From (4) we find that the branches of the set f0s = g0t are (compare the right–hand diagram of
Figure 2(a))

t = ±a3
b3

s− 2

3

a33g40 ± b33f40
a3b43

s2 + . . . ,

and that these give branches of the CSS tangent to the y-axis:

x =
3

8

a3b3(b3 ∓ a3)
3

a33g40 ∓ b33f40

(
y − b3

b3 ∓ a3

)2

+ . . . . (6)

Definition 3.3 The two points on the y-axis at which these branches are tangent, namely(
0,

b3
b3 − a3

)
and

(
0,

b3
b3 + a3

)
are called special points and their y coordinates the special values of y, or of λ, since the structure of the
CSS is different at these points.

Note that the special points can never coincide with (0, 0) or (0, 1); in fact the second special point lies
between (0, 0) and (0, 1) and the first does not.

Hence:

Proposition 3.4 The CSS of the base curves given by ε = 0 consists of the curves M and N (the
“trivial” part), together with the y-axis and the two “parabolic” curves (6) tangent to the y-axis at the
special points. The curves can be independently on either side of the y-axis. �
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Remark 3.5 The points of the envelope of a family of lines can “usually” be thought of as limits of
intersections of line pairs of the family (see for example [5, Sec. 5.8]). So it is of interest to ask whether
all the points of the above envelope are obtained in this way, as limits of intersections of pairs of parallel
tangent chords. In fact all of the envelope apart from the “trivial” components M ∪ N is obtained by
such a limiting process.

Each small value of t gives two values of s close to 0 for which the tangents are parallel, as in
Figure 2(a); let us take two such values of t, say t1 and t2, where t2 = kt1 and k is to be determined.
Then t1 has two corresponding s, say s11 and s12, where s12 < 0 < s11, and similarly t2 has s21 and s22,
where s21 < 0 < s22. Some calculation shows the following.

The limit of intersections of chords t1s11 and t2s21 as t1 → 0 is

(
0,

b3
b3 − a3

)
.

The limit of intersections of chords t1s11 and t2s22 is

(
0,

b3(k + 1)

b3(k + 1) + a3(k − 1)

)
.

We can make the last expression equal to any value y0 by taking k =
y0(a3 − b3) + b3
y0(a3 + b3)− a3

. For example,

y0 = 0 requires k = −1, y0 = 1 requires k = 1 and y0 equal to one of the special values above requires
k = 0 or k = ∞, the latter being interpreted as t1 = 0.

Thus every point of the y-axis is a limit of intersections of “nearby parallel tangent chords”. The
limits of the other two intersections, namely t1s12, t2s21 and t1s12, t2s22 trace out the remaining parts
of the envelope, namely the smooth curves tangent to the y-axis at the special points, one of which is
drawn as a solid line CSS0 in Figure 5(a).

3.2 CSS of the family of curves

The CSS of the various curves of the family (3) is described by a surface in (x, y, ε)-space, the “big CSS”,
whose plane sections ε = constant give the CSS of the individual curves. The CSS for ε = 0 was examined
in the last section. We now consider the augmented function and map

F̃ (n, s, t, λ, x, y, ε) = (1− λ)⟨(s, f(s, ε))− (x, y),n⟩+ λ⟨(t, g(t, ε))− (x, y),n⟩, (7)

F̃(n, s, t, λ, x, y, ε) = (F̃ , F̃n, F̃s, F̃t). (8)

We write n = (n, 1); then the Jacobian matrix of F̃ at n = s = t = ε = 0 is
−x 0 0 1 0 −1 0
0 1− λ λ 0 −1 0 0

1− λ 0 0 0 0 0 0
λ 0 0 0 0 0 λg11

 . (9)

Since g11 ̸= 0 this has rank 4 provided λ ̸= 0, 1. Hence F̃−1(0) is a smooth 3-manifold in the source space
in a neighbourhood of any point ((0, 1), 0, 0, λ, x, y, 0) where λ ̸= 0, 1. The critical set of the projection
of this 3-manifold to (x, y, ε)-space requires the additional condition λfss + (1− λ)gtt = 0, so that, as in
(4), the “big CSS” is given by

(x, y) = (1− λ)(s, f(s, ε)) + λ(t, g(t, ε)) where fs = gt and λfss + (1− λ)gtt = 0. (10)

Let us write λ = λ0 +α where α is small. The set F̃−1(0) can be locally parametrized by s, t, α, and, on
the critical set of the projection F̃−1(0) to x, y, ε-space, t can be expressed as a smooth function of s, α.
Furthermore the image of the critical set of this projection (the big CSS) is smooth provided λ0 does not
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take either of the special values of λ as in Definition 3.3. Assuming this, the equation of the big CSS can
be written as

ε =
3a23b

2
3

(b3 − λ0(a3 + b3))(b3 + λ0(a3 − b3))g11
x2 + h.o.t. in x and y. (11)

We therefore have the following.

Proposition 3.6 Locally to (0, λ0) on the y-axis, where λ0 is not a special value, the CSS given by ε =
constant comprises two smooth curves, one on each side of the y-axis. As ε → 0 these two curves move
into coincidence along the y-axis. �

Remark 3.7 In the case of two “opposite inflexions”, as in Figure 2(b), the denominator of (11) becomes
(a23λ

2
0 + b23(1− λ0)

2)g11, which is never zero. In this case, the conclusion of the above proposition always
holds (away from λ0 = 0, 1).

The situation at a special point on the y-axis must be different, since there the local picture of the
CSS for ε = 0 is a line (the y-axis) and a parabolic curve by Proposition 3.4, and in fact the big CSS is
singular. We find that the big CSS is (for a generic family of curves) locally diffeomorphic to a cuspidal
edge surface. There are several ways to see this. The most immediate way is to use the projection from
F̃−1(0) to (x, y, ε). From (9) the first, third, fourth and seventh columns are independent since λ ̸= 0, 1
at a special value (and g11 ̸= 0, as assumed throughout). Therefore we can use s, x, y as parameters on
the smooth manifold F̃−1(0) close to n = s = t = ε = 0. The base values of s, x are zero but that of y is
λ0 so we need to write Y = y−λ0 and expand as a function of s, x, Y . Expressed using these parameters,
and using the special value λ0 = b3/(a3 + b3), the map to (x, Y, ε) takes the form

(s, x, Y ) 7→
(
x, Y,

6a3(a3 + b3)

g11
sx+

4(a33g40 + b33f40)

b33g11
s3 +

6a3(a3 + b3)
2

b3g11
s2Y + . . .

)
,

where there is also a quadratic term in x2 and other cubic terms in s, x, Y , besides terms of degree > 3.
Provided the displayed coefficients are nonzero this is enough to recognize the germ at s = x = Y = 0, up
to left-right, that is A-equivalence, using the classification in [4]. In fact the germ is then A-equivalent
to (s, x, y) 7→ (x, y, sx+ x3) and the set of critical values of this germ, that is the big CSS, is therefore a
cuspidal edge. At the other special value the conclusion is similar.

Proposition 3.8 In addition to the usual assumptions that all of f30 = a23, g30 = b23, a3 − b3 and g11 are
nonzero, assume that

f40
a33

̸= ∓g40
b33

.

Then the big CSS in x, y, ε-space, close to the point (0, λ0, 0) where λ0 is one of the special values
b3/(b3 ± a3), is locally diffeomorphic to a cuspidal edge. See Figure 4. �

Remark 3.9 There is an interesting geometrical interpretation of the condition in Proposition 3.8. Con-
sider the “reflexion” of the curve y = f0(x) in the point (0, λ0) = (0, b3/(b3 ± a3)), but scaled so that

(0, 0) is sent to (0, 1). This amounts to the affine map (x, y) 7→
(
x(λ0 − 1)

λ0
,
y(λ0 − 1)

λ0
+ 1

)
. Then the

“reflected” curve M∗ is y = 1+ b23x
3 ∓ (b33/a

3
3)f40x

4 + (b43/a
4
3)f50x

5 + . . ., to be compared with the curve
N with equation y = g0(x) = 1+ b23x

3 + g40x
4 + g50x

5 + . . .. The curves M∗ and N have at least 4-point
contact, and at least 5-point contact if and only if the condition of the proposition is violated.
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x

Y

e

Figure 4: Left: the “big CSS” or union of the CSS for ε close to 0, in (x, Y, ε)-space, for λ0 equal to one of the
special values. This requires a3b3 > 0, as in Figure 2(a). The ε axis is vertical and the surface contains a line, the
Y -axis, and a cuspidal edge surface which osculates the plane ε = 0. The other three diagrams show horizontal
plane sections ε = constant of this surface.

It is clear that the function ε on this cuspidal edge surface is a very degenerate function since the plane
ε = 0 is tangent to the surface along an entire line x = ε = 0. This makes it unlikely that we can
describe the family of CSS by reducing ε to a normal form. Instead, by carefully parametrizing the
surface and considering small values of ε we find that the level sets, that is the individual CSS, are as
in Figure 5, where there is one cusp on each side of ε = 0 and each half of the y (or Y ) axis is a limit
from only one side as ε → 0. The details are in the following proposition, where we use the abbreviation
A± = a33g40 ± b33f40 ( ̸= 0) and y±0 = b3/(b3 ± a3). The CSS for ε = 0 is given in Proposition 3.4.

Proposition 3.10 The cuspidal edge of the big CSS in (x, y, ε)-space has the parametrization, close to
(0, y±0 , 0) (

a3b3(b3 ± a3)
3

2A± (y − y±0 )
2 + . . . , y, ∓(b3 ± a3)

6a33b
3
3

2(A±)2g11
(y − y±0 )

3 + . . .

)
.

The locus of cusps in the (x, y) plane, for varying ε is therefore given by the first two coordinates, and
since 1

2 > 3
8 the CSS for ε = 0 is locally between this locus and the y-axis. See Figure 5. �

( 0 , y 0 )

y

( 0 , y 0 )

y

L C
L C

C S S 0

C S S 0

C S S
e

L C

C S S
e

L C

C S S
e

C S S
e

C S S

s p e c i a l

p o i n t

(a) (b)

Figure 5: The case ε = 0. (a) The thick solid lines, marked CSS0, are the part close to a special point (0, y0) of
the CSS for ε = 0, that is for two curves with parallel tangents at inflexion points. The thin solid line marked LC
is the locus of cusps on the CSS for ε close to 0. The dashed line, marked CSSε, is the CSS itself for ε close to 0;
one diagram will be for ε > 0 and the other for ε < 0. Compare Figure 4. In (b) equidistants are drawn for λ at,
and close to, a special point. The CSS is drawn in a lighter colour and the two “branches” of the equidistants are
solid and dashed lines. At the special value one branch has a rhamphoid cusp.
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4 Equidistants

The λ-equidistant is the set of points (1− λ)a+ λb for a fixed λ where the tangents to M at a and to N
at b are parallel. The singular points of equidistants, for a fixed ε, sweep out the centre symmetry set.

4.1 Fixed λ equidistants

In this subsection we consider λ to be fixed at say λ0. When λ0 is not a special value as in Definition 3.3
the normal form technique of §5 can be applied; see Proposition 5.10. Suppose now that λ0 is one of the
special values—hence the inflexions satisfy f30 = a23, g30 = b23 where a3 > 0, b3 > 0—and we ask how the
equidistants vary as ε passes through 0. Thus the “big equidistant” in this context lies in (x, y, ε)-space.
An option here is to regard F̃ , for fixed λ, as an unfolding of a function in the variables n, s, t with
unfolding parameters x, y, ε. Then we ask
(i) what is the singularity of the function F0(n, s, t) = F̃ ((n, 1), s, t, λ0, 0, y0, 0), at n = s = t = 0, where
y0 = λ0 is a special value?
(ii) writing y = y0 + Y, is this function versally unfolded by the parameters x, Y, ε?

In fact, using the special value b3/(a3 + b3), the expansion of F0 is(
a3

a3 + b3

)
ns+

(
b3

a3 + b3

)
nt+

(
a33

a3 + b3

)
s3 +

(
b33

a3 + b3

)
t3 + h.o.t..

Using the substitution n = u+ v, s = 1
a3
((u− v)(a3 + b3)− b3t) reduces F0 to

u2 − v2 +
b3(a

3
3g40 + b33f40)

a33(a3 + b3)
t4 + h.o.t.,

which is of type A3 at u = v = t = 0, provided a33g40 + b33f40 ̸= 0, the same condition that occurred in

Proposition 3.8 above. It is then a routine matter to check that, using only b3 ̸= 0, F̃ is a versal unfolding
of this A3 singularity. Hence we have the following.

Proposition 4.1 Consider the fixed, special value b3/(b3 ± a3) of λ. Assume that a3, b3, a3 − b3, g11 and
a33g40 ± b33f40 ̸= 0 are all nonzero, for the corresponding sign ±. Then the big equidistant, that is the set
in (x, y, ε)-space consisting of all the equidistants for ε close to 0, is locally diffeomorphic to a swallowtail
surface. �

The function ε on this big equidistant has level sets ε = constant which are the individual equidistants.
Unlike the case above (Proposition 3.8) where ε is a highly non-generic function, in the present situation
we can identify ε in a standard list of functions on a swallowtail (see e.g. [1, p. 565]).

For the standard swallowtail, that is the discriminant surface of the monic reduced quartic polynomial
w4+ p+ qw+ rw2, the stable function on (p, q, r)-space preserving the swallowtail is the function r. The
key property for recognizing this function is that the level set r = 0 is transverse to the limiting tangent
line to the cusp edge and self-intersection curve on the swallowtail surface (on the standard swallowtail
this limiting tangent line is the r-axis). (It is then automatically transverse to the limiting tangent plane
to the smooth 2-dimensional strata through the origin.)

The “next” function on the standard swallowtail is q+ r2, whose level set q+ r2 = 0 is not transverse
to the r-axis. We can distinguish this function from more degenerate ones by considering the contact
of the level set with the self-intersection curve on the swallowtail1. The self-intersection curve has
parametrization (w4, 0,−2w2), having 4-point contact with the level set q + r2 = 0. Examining the
self-intersection curve of the swallowtail surface arising as a big equidistant we find the following.

1Contact with the cuspidal edge curve does not work; the authors thank J.W.Bruce for this crucial insight.
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Proposition 4.2 The function ε on the swallowtail surface in Proposition 4.1 is equivalent to the func-
tion q + r2 on the standard swallowtail provided the additional condition

4f2
40

a63
− 3f50

a43
̸= 4g240

b63
− 3g50

b43

holds. The resulting transition on equidistants is illustrated in Figure 6(a). �

Remark 4.3 The geometrical meaning of the condition in the proposition is not clear to us; however if
the curves M∗ and N in Remark 3.9 have at least 6-point contact then both the conditions in Proposi-
tions 3.8 and 4.2 are violated.

( a )

( 0 , l 0 )

( b )

c = 0
c = 0

c < 0

c < 0
c > 0

c > 0
c u s p i d a l  

e d g e  c u r v e

e  =  0

(c)

Figure 6: (a): Sections q + r2 = c of the standard swallowtail surface (see text). On the left, c < 0 and c = 0; on
the right c = 0 and c > 0. This transition is the same as that on the equidistants for a fixed, special value of λ, as ε
passes through 0. The section c = 0 consists of a smooth branch and another with a rhamphoid cusp (A-equivalent
to (u2, u5)). (b): An equidistant for ε = 0 through a point of the y-axis away from a special point; see §4.2. There
are two branches and one is drawn dashed. (c): The equidistant in (b) is the section ε = 0 of the big equidistant
which is a cuspidal edge surface, the transition through ε = 0 being a beaks transition. See Proposition 5.10.

4.2 ε = 0 equidistants

We can also fix ε at 0 and ask how the equidistants evolve as λ moves through a value λ0. The case where
λ0 is not special, as in Definition 3.3, is easy (again we assume a3b3 > 0). Recall from Proposition 3.4
that the CSS for ε = 0 and away from special points consists of just the y-axis. A direct calculation
shows that the two branches of the parallel tangent set (Figure 2(a)) give rise to two smooth branches of
the equidistant through (0, λ0 + α), where λ0 is not special and α is small, given by

y = λ0 + α+
a23b

2
3

(b3(1− λ0)± a3λ0)2
x3 + h.o.t,

where the higher terms depend on α as well as x (and λ0). These are two curves having inflexions parallel
to those of the curves M and N , and having exactly 3-point contact. See Figure 6(b). Together these
two curves exhibit an A5 singularity (equivalent to y2 − x6); this singularity conserves the idea that “the
CSS is swept out by the singularities of equidistants”. As λ0 varies locally, the two curves move vertically
but are unchanged to third order.

Determining the structure of the family of equidistants for λ close to one of the special values, and
ε = 0, is more problematic, and we have not identified the big equidistant in this case. However explicit
calculations can be done and Figure 5(b) shows a typical way in which the ε = 0 equidistants evolve for
varying λ close to a special point of the y-axis.
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5 Reductions to a normal form

In this section we study the same problem using a slightly different approach, starting from the same
generating function (1) but attempting to reduce to normal forms under appropriate equivalences. This
method has been used extensively to study the CSS. See for example [12, 13]; also [15, 3] for background
details. However there are some situations where a “direct” approach such as we have adopted above
seems to be the only option, for example the evolution of CSS close to ε = 0 described in Figure 5.
Various difficulties have arisen in applying the “normal form” method to these situations.

The situations where the reduction method is successful are:
(i) the study, up to local diffeomorphism, of the big equidistant, namely the union in (λ, x, y, ε)-space of
the λ-equidistants for an arbitrary curve of the family;
(ii) the evolution of the equidistants in the family of curves, for a fixed λ away from special values of
Definition 3.3;
(iii) the big CSS, that is the union in (x, y, ε)-space of the CSS for curves in the family; see Figure 4 and
Proposition 3.8.

The key first step in finding normal forms is the following reduction in the number of variables using
stabilization (see [2]), that is writing the family F̃ in equation (8) as the sum of two terms where the first is
a nondegenerate quadratic form in variables not occurring in the second term. The constructions we want,
that is the CSS and equidistants, remain the same up to local diffeomorphism by such a stabilization.

The proposition holds without assuming the basepoints (0, 0) and (0, 1) on the curves M,N are
inflexions, merely that the tangents there are parallel, so that we can write M : y = f(x, ε), f(0, 0) =
fx(0, 0) = 0 and N : y = g(x, ε), g(0, 0) = 1, gx(0, 0) = 0. The “base chord” is as before the y-axis.

Proposition 5.1 The germ of the family F̃ at a point (n, s, t, λ, x, y, ε) = (0, 0, 0, λ0, 0, y0, 0) where
λ0 ̸= 1 is stably equivalent to the family germ

Φ(t, λ, x, y, ε) = (1− λ)f

(
x− λt

1− λ
, ε

)
+ λg(t, ε)− y (12)

in the variable t ∈ R and parameters (λ, x, y, ε) ∈ R× R2 × R at t = 0, λ = λ0, x = 0, y = y0, ε = 0.

Proof We have F̃ = An+B where A = (1− λ)s+ λt− x and B = (1− λ)f(s, ε) + λg(t, ε)− y.

For λ ̸= 1 we can write s =
A+ x− λt

1− λ
. In the new coordinates we have F̃ = An+ B(A, t, λ, x, y, ε)

where the function B does not depend on n. Applying Hadamard’s lemma to the function B we have
B(A, t, λ, x, y, ε) = B(0, t, λ, x, y, ε) + Aϕ where ϕ is a smooth function of A, t, λ, x, y, ε which in fact
vanishes at (0, 0, λ0, 0, y0, 0). Now the function F̃ takes the form A(n+ϕ)+B(0, t, λ, x, y, ε), and since n
does not appear in B we can replace n+ ϕ by n, so that the first term An is a nondegenerate quadratic
form in variables not appearing in B. Therefore, the function F̃ is stably equivalent to the function
Φ = B(0, t, λ, x, y, ε), being the restriction of the function B to the subspace A = 0. This completes the
proof of Proposition 5.1. �

Let M to be the set {(s, f(s, ε))} and let N to be the set {(t, g(t, ε)}. We can assume that, for all ε,
M passes through the origin with horizontal tangent, and that N passes through the point (0, 1).

f(s, ε) = s2f1(s, ε) = f20s
2 + f30s

3 + f21s
2ε+ f40s

4 + . . .

g(t, ε) = 1 + tg1(ε) = 1 + g11tε+ g20t
2 + g30t

3 + g21t
2ε+ f40t

4.
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Expanding in terms of t, x, y, ε gives:

Φ = λ− y + λ

(
g11ε− 2

f20x

1− λ

)
t+ λ

(
f20λ

1− λ
+ g20 + 3

f30λx

(1− λ)2
+

(
f21λ

1− λ
+ g21

)
ε

)
t2

+λ

(
g30 −

f30λ
2

(1− λ)2
− 4

f40λ
2x

(1− λ)3
+

(
− f31λ

2

(1− λ)2
+ g31

)
ε

)
t3

+λ

(
f40λ

3

(1− λ)3
+ g40 + 5

f50λ
3x

(1− λ)4
+

(
f41λ

3

(1− λ)3
+ g41

)
ε

)
t4 + ...

where terms of order greater than 1 in ε, x and y are denoted by dots.

Reducing from F̃ to Φ gives the following, where x stands for (x, y).
• The big equidistant is the set of points in (λ,x, ε)-space for which there exists t with Φ = Φt = 0.
• For a fixed ε the big ε-equidistant is the intersection of the big equidistant with ε = constant. Fixing
both λ and ε we obtain a particular equidistant for one curve of the family.
• The big CSS is the set of critical values of the projection from the big equidistant to (x, ε)-space. This
consists of the images of points where Φtt = 0. Intersections with ε = constant are the individual CSS.

In this section we use these techniques to study, up to local diffeomorphism, the big equidistant, the
big CSS and the metamorphoses of the ε-equidistants for a fixed λ away from special values.

We have the following theorems, where M and N are (germs of) generic smooth plane curves, varying
in a generic family parametrized (as in the above sections) by values of ε close to 0.

Proposition 5.2 The germ at any point of the big CSS away from M and N is diffeomorphic to one of
the standard caustics of Ar type with r = 2, 3 or 4 (regular surface, cuspidal edge or swallowtail).

The cuspidal edge case we have met in Proposition 3.8; the swallowtail case arises from the appearance
or disappearance of two cusps on the CSS; it is described in [7, Th.7], and will not be investigated here,
but see Proposition 5.9.

Remarks 5.3 There still remains the possibility of extending the current results to finding normal forms
up to other equivalences that study, for example, how the caustic bifurcates as ε varies near 0 or the
two parameter family of equidistants as λ and ε vary. Various difficulties arise whilst using the current
techniques and we have so far been unable reduce the generating family to normal forms in these instances.

Consider the following equivalence relations, where the base values of the variable and parameters
t, λ,x, ε are, as usual, (0, λ0, (0, y0), 0).

Definition 5.4 Two germs of families Φ1 and Φ2 of the variable t and with parameters λ,x, ε are called
contact equivalent if there exists a nonzero function ϕ(t, λ,x, ε) and diffeomorphism germ θ : R × R4 →
R×R4, of the form θ : (t, λ,x, ε) 7→ (T (t, λ,x, ε),Λ(λ,x, ε), X(λ,x, ε), E(λ,x, ε)) such that ϕΦ1 = Φ2 ◦θ.

Definition 5.5 Two germs of families Φ1 and Φ2 of the variable t and with parameters λ,x, ε are called
space-time contact equivalent if there exists a nonzero function ϕ(t, λ,x, ε) and diffeomorphism germ
θ : R × R4 → R × R4, of the form θ : (t, λ,x, ε) 7→ (T (t, λ,x, ε),Λ(λ,x, ε), X(x, ε), E(x, ε)) such that
ϕΦ1 = Φ2 ◦ θ.

Definition 5.6 Two germs of families Φ1 and Φ2 of the variable t and with parameters λ,x, ε are
called (λ,x, ε)-contact equivalent if there exists a nonzero function ϕ(t,x, λ, ε) and diffeomorphism germ
θ : R × R4 → R × R4, of the form θ : (t, λ,x, ε) 7→ (T (t, λ,x, ε),Λ(λ,x, ε), X(x, ε), E(ε)) such that
ϕΦ1 = Φ2 ◦ θ.
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Definition 5.7 Two germs of families Φ1 and Φ2 of the variable t and with parameters x, ε are called
time-space contact equivalent if there exists a nonzero function ϕ(t,x, ε) and diffeomorphism germ θ :
R×R3 → R×R3, of the form θ : (t,x, ε) 7→ (T (t,x, ε), X(x, ε), E(ε)) such that ϕΦ1 = Φ2 ◦ θ. Note that
here λ is fixed.

The key properties are the following.
• Contact equivalence preserves the big equidistant up to local diffeomorphism, but not the level sets
λ = constant or ε = constant.
• Space-time contact equivalence preserves the big CSS up to local diffeomorphism, but not the level
sets ε = constant.
• If two germs are (λ, x, ε)-contact equivalent then their families of CSS as ε varies have equivalent
bifurcations. We say that two families of CSS have equivalent bifurcations if there is a diffeomorphism
germ mapping one big CSS to the other respecting the fibers of its projection to ε. So families have
equivalent bifurcations if via some appropriate reparametrisation of the ε, each momentary CSS from
one family is diffeomorphic to the respective momentary CSS of the other family.
• In this version of time-space contact equivalence 5.7, ε plays the role of time and the bifurcations of
the individual equidistants for a fixed value of λ and varying ε are preserved up to local diffeomorphism.

Proposition 5.8 For a generic pair of M and N at any point x of a parallel tangent chord except the
points of M,N themselves (λ = 0 or λ = 1) the germ of the respective generating family Φ is space-time
contact equivalent to one of the standard versal deformations in parameters (λ,x, ε) ∈ R×R2 ×R of the
function germs at the origin in the variable t of the type Ak for k = 1, ..., 4 as follows:
A1 : Φ = t2 + λ, A2 : Φ = t3 + xt+ λ,
A3 : Φ = t4 + yt2 + xt+ λ. A4 : Φ = t5 + εt3 + yt2 + xt+ λ.

Proposition 5.8 gives the normal forms for the big equidistant in (λ,x, ε)-space and the big CSS in
(x, ε)-space. In the case A1 the big equidistant germ is smooth and the big CSS is empty. For A2 the
big equidistant is diffeomorphic to the product of a cusp with 2-dimensional space whilst the big CSS is
a smooth surface. For the case A3 the big equidistant is diffeomorphic to the product of a swallowtail
with a line and the big CSS is diffeomorphic to a cuspidal edge surface, as in Proposition 3.8. For A4 the
big equidistant is diffeomorphic to a butterfly and the big CSS is diffeomorphic to a swallowtail.

Note that up to diffeomorphism, this does not tell us anything about the special way that the big
CSS sits in the (x, ε) space in the “parallel inflexions” case or any other. The special points of λ in the
parallel inflexions case corresponds to when an A3 singularity occurs on the special parallel inflexions
chord. Note that the A4 does not occur generically on the parallel inflexions chord.

Conditions for Proposition 5.8
Each chord (apart from the parallel inflexions chords) contains one CSS point. If f20 = 0, the CSS point
coincides with the curve N and if g20 = 0 the CSS point coincides with the curve M . If f20 = g20 = 0
then we have the parallel inflexions case. Here the whole chord belongs to the CSS and, when the

inflexions satisfy f30g30 > 0, and using the notation of (5), the chord has two special values at λ
1−λ

=

± b3
a3

corresponding to A3 points (compare Definition 3.3). More degenerate singularities do not occur
generically in the parallel inflexions case.

If f20 and g20 are both nonzero, there exists a CSS point m0 with λ
1−λ

= − g20
f20

. The singularity at the

point m0 is of type A2 unless g220f30 = f2
20g30 in which case the singularity will be more degenerate. In

particular, it will be of type A3 if the condition g320f40 ̸= f3
20g40 holds. If this fails, then the singularity

will be of type A4, assuming that g420f50 ̸= f4
20g50 which holds generically. No further degeneration can

occur generically.

Proposition 5.9 For a generic one-parameter family of a pair of curves M and N , which do not both
have inflexions, at any point x of any parallel tangent chord, away from (λ = 0 or 1), the germ of the
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respective generating family Φ is (λ, x, ε)-contact equivalent to the germ at the origin of one of the
following deformations in parameters (λ,x) ∈ R× R3 of the function germs in the variable t of the type
Ak for k = 2, 3 and 4.
A2 : Φ = t3 + xt+ λ, A3 : Φ = t4 + yt2 + xt+ λ, A4 : Φ = t5 + εt3 + yt2 + xt+ λ.

Proposition 5.9 gives the normal forms for the CSS in the x-plane as ε varies, but not, of course, in the
parallel inflexions case. The normal forms A2 and A3 do not contain ε and so no transition occurs. The
caustic at an A2 singularity is diffeomorphic to a smooth curve and at an A3 singularity it is diffeomorphic
to an ordinary cusp. The bifurcation of type A4 determines the standard swallowtail transition.

Conditions for Proposition 5.9

We assume that f20 are g20 are both nonzero. Again, there is a single A2 point λ
1−λ

= − g20
f20

. The

conditions for A3 and A4 type singularities are the same as above.

Proposition 5.10 For a fixed value of λ = λ0, away from special values as in Definition 3.3, the
generating family near a parallel inflexions chord is time-space contact equivalent to the germ at the
origin of one of the following deformation in parameters (λ,x) ∈ R× R2 of the function variable t:

A∗±
2 : F = t3 + (ε± x2)t+ y.

This tells us how the equidistants for a fixed λ change with ε away from the special values of λ on the
parallel inflexions chord. Compare §4.1 where a direct calculation can handle the case of the special
values. The case A∗+

2 occurs if and only if f30g30 < 0 and corresponds to the standard “lips” transition
and the case A∗−

2 occurs if and only if f30g30 > 0 and corresponds to the standard “beaks” (bec-à-bec)
transition. See Figure 6(c) for the beaks case.

Remark 5.11 The list A2, A3, A4 in Proposition 5.9 is a subset of the list of possible Lagrangian types
A2, A3, A

1
3, A4, D

±
4 in [16, p.2727, n = 2], occurring away from parallel inflexions. In the parallel inflexions

case the new types of singular points described here are not expected to be in Zakalyukin’s list since the
surfaces being projected there are smooth.

5.1 Details of the proofs

Proof of proposition 5.8. A theorem in [11] states that if ∂Φ
∂λ

̸= 0, then the stability with respect to
space-time contact equivalence of the germ Φ coincides with its stability with respect to standard contact
equivalence. The singularities of Ak type are versally unfolded if and only if the first k rows of the
following matrix of derivatives has maximal rank, see for example [11, 12].

JAk
=


∂Φ
∂x

∂Φ
∂y

∂Φ
∂λ

∂Φ
∂ε

∂2Φ
∂t∂x

∂2Φ
∂t∂y

∂2Φ
∂t∂λ

∂2Φ
∂t∂ε

∂3Φ
∂t2∂x

∂3Φ
∂t2∂y

∂3Φ
∂t2∂λ

∂3Φ
∂t2∂ε

 at t = ε = x = 0, λ = λ0.

Substituting the derivatives into the matrix gives

JAk
=


0 −1 1 0

−2 λ
1−λ

f20 0 0 g11λ

3 λ2

(1−λ)2
f30 0 g20 − f20λ(λ−2)

(1−λ)2
λg21 +

λ2

1−λ
f21

−4 λ3

(1−λ)3
f40 0 g30 +

f30λ2(λ−3)2

(1−λ)3
λg31 − λ3

(1−λ)2
f31

 .
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Singularities of type A2 are versally unfolded in the non-parallel inflexions case, since here we assume
f20 ̸= 0 as we are not interested in the case λ = 0. For the parallel inflexions case A2 singularities are
generically versally unfolded because g11 is generically nonzero.

Singularities of type A3 are versally unfolded in the non-parallel inflexions case, since here we assume
f20 ̸= 0 as we are not interested in the case λ = 0, and f20 ̸= g20 as we are not interested in the case when
λ is infinite. For the parallel inflexions case A3 singularities are generically versally unfolded because g11
and f30 are generically nonzero.

Singularities of the type A4 do not occur generically in the parallel inflexions case. Away from parallel
inflexions, singularities of type A4 are generically versally unfolded as JAk

has nonzero determinant
generically. No further singularities occur generically. �
Proof of Proposition 5.9. This proposition is concerned with the bifurcations of the CSS, away from
parallel inflexions, as ε varies. We have the following notion of (λ, x, ε)-versality (see definition 5.6 of
(λ, x, ε)-equivalence).

Definition 5.12 The germ of a family of functions Φ is called (λ, x, ε)-versal if for any germ ϕ(t, λ,x, ε)
there exists a decomposition of the form

ϕ(t, λ,x, ε) = h̃(t, λ,x, ε)Φ + T̃ (t, λ,x, ε)
∂Φ

∂t
+ Λ(λ,x, ε)

∂Φ

∂λ
+

2∑
i=1

Xi(x, ε)
∂Φ

∂xi
+ E(ε)

∂Φ

∂ε
.

For the case where there are no inflexions with parallel tangents we are able to show (λ, x, ε)-versality
using the following lemma:

Lemma 5.13 If the deformation Φ is space-time versal with respect to λ and x only, keeping ε constant,
then it is automatically (λ, x, ε)-versal.

Proof Assume that Φ is space-time versal with respect to λ and x only. This means that for any germ
ϕ(t, λ,x, ε) we can write

ϕ(t, λ,x, ε) = h̃(t, λ,x, ε)Φ + T̃ (t, λ,x, ε)
∂Φ

∂t
+ Λ̃(λ,x)

∂Φ

∂t
+

2∑
i=1

X̃i(x)

for some smooth function germs h̃, T̃ , Λ̃ and Xi in the respective variables. Setting E(ε) = 0, Xi(x, ε) =

X̃i(x), Λ(λ,x, ε) = Λ̃(λ,x) in 5.12 gives the required decomposition. �
We now use the following lemma from [11].

Lemma 5.14 Let F (t, λ,x) be a (right) infinitesimally versal deformation with parameters λ and x of
a quasi-homogeneous germ of a function f(t) at the origin. If ∂F

∂λ
̸= 0 at the origin, then F is space-time

contact infinitesimally versal.

Proposition 5.15 The singularities of type A1, A2 and A3 are versally unfolded. The singularity A4 is
generically versally unfolded.

Proof. Consider the following matrix of derivatives which does not include the column of derivatives
with respect to ε:

J̃Ak
=


0 −1 1

−2 λ
(1−λ)

f20 0 0

3 λ2

(1−λ)2
f30 0 g20 − f20λ(λ−2)

(1−λ)2

 .
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Singularities of type Ak for k = 1, 2, 3 are versally unfolded if the first k rows of this matrix have maximal

rank. The singularity of type A2 occurs if λ
1−λ

= − g20
f20

and g30f
2
20 ̸= f30g

2
20.

Here we are not concerned with the parallel inflexions case, nor the case near λ = 0, so we assume
f20 ̸= 0. Therefore A2 singularities are (λ, x, ε)-versally unfolded.

Singularities of type A3 occur if λ
1−λ

= − g20
f20

, g30f
2
20 = f30g

2
20 and g40f

3
20 ̸= f40g

3
20. Substituting the

conditions for an A3 singularity into the matrix reveals that it has non-vanishing determinant if f20 and
g20 are both nonzero and f20 ̸= g20. Therefore, A3 singularities are versally unfolded. Note that this
means that no beaks or lips bifurcations occur.

The singularity A4 occurs if λ
1−λ

= − g20
f20

and g30f
2
20 = f30g

2
20, g40f

3
20 = f40g

3
20 and g50f

4
20 ̸= f50g

4
20.

The singularity is versally unfolded if JAk
has nonzero determinant and also the determinant of the 4× 4

matrix JAk
used in the proof of Proposition 5.8 is nonzero. The first condition has already shown to

be true and the matrix JAk
has nonzero determinant generically. Therefore, singularities of type A4 are

generically versally unfolded. �
Proof of proposition 5.10. Consider the family of wavefronts for a fixed value λ = λ0. We consider the
family Φ up to time-space equivalence: here ε plays the role of time and (x, y) as space.

Lemma 5.16 If
λ2
0

(1−λ0)2
̸= g30

f30
, the generating family is time-space contact equivalent to the germ at the

origin of the following deformation in parameters (λ,x) ∈ R× R2 of the function variable t:

A∗
2± : F = t3 + (ε± x2)t+ y.

Proof Here, as in [12], we show time-space versality by showing versality with respect to contact
equivalence without involving ε. The singularity is versal if and only if the matrix of derivatives, that
does not include the column that contains the derivatives with respect to ε, has maximal rank. Since
this matrix of derivatives

ĴA2 =

(
∂Φ
∂x

∂Φ
∂y

∂2Φ
∂t∂x

∂2Φ
∂t∂y

)
=

(
0 −1
0 0

)
at t = ε = x = 0, λ = λ0

does not have maximum rank the wave fronts are not of type A2, i.e. an ordinary cusp.
In order to be of type A∗

2 the following conditions must hold (see [11]):

1) The first row of ĴA2 has maximal rank. This is true as it has a nonzero entry.
2) The matrix of derivatives that includes the column with derivatives with respect to epsilon has maximal
rank:

JA2 =

(
0 −1 1
0 0 −g11

)
This condition is satisfied so long as g11 ̸= 0, which we assume throughout.

The family can therefore be reduced to the form:

F = t3 + (ε+ α(x))t+ y

for some α(x) with linear part in x vanishing.

Proposition 5.17 If f30 and g30 have the same sign then the equidistants for a fixed λ (̸= 0, 1 and away
from special values) at ε = 0 are of beaks type. If f30 and g30 are of opposite sign then the equidistants
for a fixed λ (̸= 0, 1) at ε = 0 are of lips type. In particular the generating family is time-space equivalent
to

F = t3 + (ε± x2)t+ y.
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At an A∗
2 singularity the generating family can be reduced to the form F = at3 + (ε + bx2) + y, where

a and b are nonzero coefficients. The necessary and sufficient condition for beaks to occur is ab < 0 and
for lips it is ab > 0, see for example [2]. We have

Φ(t, x, ε) = ϕ0(x, ε) + ϕ1(x, ε)t+ ϕ2(x, ε)t
2 + ϕ3(x, ε)t

3 + ϕ(x, ε)t4 + ...

for some functions ϕi.
Substituting t = ξ(T, x, ε) for some function ξ, the generating family Φ can be reduced to the form

Φ̃(T, x, ε) = ϕ̃0(x, ε) + ϕ̃1(x, ε)T + ϕ̃2(x, ε)T
2 + T 3.

Solving as a power series reveals that the necessary function is

ξ(T, x, ε) =

(
1

ϕ3

) 1
3

T − 1

3

(
1

ϕ3

) 5
3

ϕ4T
2 + ...

Now make a further substitution T = t1 − ϕ̃2/3 to give Φ̂ = t31 + ϕ̂1t1 + ϕ̂0 for some functions ϕ̂1 and ϕ̂0.

Keeping track of terms yields that ϕ̂1 = cε+dx2+h.o.t. for some c and d where d3 =
−27λ6(1−λ)6f3

30g
3
30

(f30λ4−(1−λ)4g30)4

which can be written as some positive factor multiplied by −f30g30. So we have that if f30 and g30 are
of the same sign this expression is negative and hence the beaks transition occurs, whereas if f30 and g30
are of opposite sign the expression is positive and then the lips transition occurs. �

Remark 5.18 Note that further changes of variables ε and x respecting the time-space equivalence can
reduce the generating family to one of the normal forms in 5.10. These further changes do not affect the
sign of the coefficients in Φ̂ corresponding to the monomials t31 and x2t1.
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